US20120261188A1 - Method of high power laser-mechanical drilling - Google Patents

Method of high power laser-mechanical drilling Download PDF

Info

Publication number
US20120261188A1
US20120261188A1 US13/403,132 US201213403132A US2012261188A1 US 20120261188 A1 US20120261188 A1 US 20120261188A1 US 201213403132 A US201213403132 A US 201213403132A US 2012261188 A1 US2012261188 A1 US 2012261188A1
Authority
US
United States
Prior art keywords
borehole
laser
mechanical
bit
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/403,132
Inventor
Mark S. Zediker
Brian O. Faircloth
Erik C. Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foro Energy Inc
Original Assignee
Foro Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/543,986 external-priority patent/US8826973B2/en
Application filed by Foro Energy Inc filed Critical Foro Energy Inc
Priority to US13/403,132 priority Critical patent/US20120261188A1/en
Assigned to FORO ENERGY INC. reassignment FORO ENERGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLEN, ERIK C., FAIRCLOTH, BRIAN O., ZEDIKER, MARK S.
Publication of US20120261188A1 publication Critical patent/US20120261188A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids

Definitions

  • the present inventions relate to high power laser energy tools and systems and methods.
  • high power laser energy means a laser beam having at least about 1 kW (kilowatt) of power.
  • greater distances means at least about 500 m (meter).
  • substantial loss of power means a loss of power of more than about 3.0 dB/km (decibel/kilometer) for a selected wavelength.
  • substantially power transmission means at least about 50% transmittance.
  • earth should be given its broadest possible meaning, and includes, the ground, all natural materials, such as rocks, and artificial materials, such as concrete, that are or may be found in the ground, including without limitation rock layer formations, such as, granite, basalt, sandstone, dolomite, sand, salt, limestone, rhyolite, quartzite and shale rock.
  • rock layer formations such as, granite, basalt, sandstone, dolomite, sand, salt, limestone, rhyolite, quartzite and shale rock.
  • borehole should be given it broadest possible meaning and includes any opening that is created in a material, a work piece, a surface, the earth, a structure (e.g., building, protected military installation, nuclear plant, offshore platform, or ship), or in a structure in the ground, (e.g., foundation, roadway, airstrip, cave or subterranean structure) that is substantially longer than it is wide, such as a well, a well bore, a well hole, a micro hole, slimhole, a perforation and other terms commonly used or known in the arts to define these types of narrow long passages.
  • Wells would further include exploratory, production, abandoned, reentered, reworked, and injection wells.
  • boreholes are generally oriented substantially vertically, they may also be oriented on an angle from vertical, to and including horizontal.
  • a borehole can have orientations ranging from 0° i.e., vertical, to 90°,i.e., horizontal and greater than 90° e.g., such as a heel and toe and combinations of these such as for example “U” and “Y” shapes.
  • Boreholes may further have segments or sections that have different orientations, they may have straight sections and arcuate sections and combinations thereof; and for example may be of the shapes commonly found when directional drilling is employed.
  • the “bottom” of a borehole refers to the end of the borehole, i.e., that portion of the borehole furthest along the path of the borehole from the borehole's opening, the surface of the earth, or the borehole's beginning.
  • the terms “side” and “wall” of a borehole should to be given their broadest possible meaning and include the longitudinal surfaces of the borehole, whether or not casing or a liner is present, as such, these terms would include the sides of an open borehole or the sides of the casing that has been positioned within a borehole.
  • Boreholes may be made up of a single passage, multiple passages, connected passages and combinations thereof, in a situation where multiple boreholes are connected or interconnected each borehole would have a borehole bottom. Boreholes may be formed in the sea floor, under bodies of water, on land, in ice formations, or in other locations and settings.
  • Boreholes are generally formed and advanced by using mechanical drilling equipment having a rotating drilling tool, e.g., a bit.
  • a drilling bit is extending to and into the earth and rotated to create a hole in the earth.
  • the bit In general, to perform the drilling operation the bit must be forced against the material to be removed with a sufficient force to exceed the shear strength, compressive strength or combinations thereof, of that material.
  • the material that is cut from the earth is generally known as cuttings, e.g., waste, which may be chips of rock, dust, rock fibers and other types of materials and structures that may be created by the bit's interactions with the earth.
  • cuttings are typically removed from the borehole by the use of fluids, which fluids can be liquids, foams or gases, or other materials know to the art.
  • the term “advancing” a borehole should be given its broadest possible meaning and includes increasing the length of the borehole. Thus, by advancing a borehole, provided the orientation is not horizontal, e.g., less than 90° the depth of the borehole may also be increased.
  • the true vertical depth (“TVD”) of a borehole is the distance from the top or surface of the borehole to the depth at which the bottom of the borehole is located, measured along a straight vertical line.
  • the measured depth (“MD”) of a borehole is the distance as measured along the actual path of the borehole from the top or surface to the bottom.
  • the term depth of a borehole will refer to MD.
  • a point of reference may be used for the top of the borehole, such as the rotary table, drill floor, well head or initial opening or surface of the structure in which the borehole is placed.
  • ream As used herein, unless specified otherwise, the terms “ream”, “reaming”, a borehole, or similar such terms, should be given their broadest possible meaning and includes any activity performed on the sides of a borehole, such as, e.g., smoothing, increasing the diameter of the borehole, removing materials from the sides of the borehole, such as e.g., waxes or filter cakes, and under-reaming.
  • the terms “drill bit”, “bit”, “drilling bit” or similar such terms should be given their broadest possible meaning and include all tools designed or intended to create a borehole in an object, a material, a work piece, a surface, the earth or a structure including structures within the earth, and would include bits used in the oil, gas and geothermal arts, such as fixed cutter and roller cone bits, as well as, other types of bits, such as, rotary shoe, drag-type, fishtail, adamantine, single and multi-toothed, cone, reaming cone, reaming, self-cleaning, disc, three cone, rolling cutter, crossroller, jet, core, impreg and hammer bits, and combinations and variations of the these.
  • Mechanical bits cut rock with shear stresses created by rotating a cutting surface against the rock and placing a large amount of weight-on-bit (“WOB”).
  • WOB weight-on-bit
  • Mechanical bits cut rock by applying crushing (compressive) and/or shear stresses created by rotating a cutting surface against the rock and placing a large amount of WOB.
  • a bit made of the material polycrystalline diamond compact (“PDC”) e.g., a PDC bit
  • this action is primarily by shear stresses and in the case of roller cone bits this action is primarily by crushing (compression) and shearing stresses.
  • the WOB applied to an 83 ⁇ 4′′ PDC bit may be up to 15,000 lbs
  • the WOB applied to an 83 ⁇ 4′′ roller cone bit may be up to 60,000 lbs.
  • the effective drilling rate is based upon the total time necessary to complete the borehole and, for example, would include time spent tripping in and out of the borehole, as well as, the time for repairing or replacing damaged and worn bits.
  • the term “drill pipe” should be given its broadest possible meaning and includes all forms of pipe used for drilling activities; and refers to a single section or piece of pipe.
  • the terms “stand of drill pipe,” “drill pipe stand,” “stand of pipe,” “stand” and similar type terms are to be given their broadest possible meaning and include two, three or four sections of drill pipe that have been connected, e.g., joined together, typically by joints having threaded connections.
  • the terms “drill string,” “string,” “string of drill pipe,” string of pipe” and similar type terms are to be given their broadest definition and would include a stand or stands joined together for the purpose of being employed in a borehole. Thus, a drill string could include many stands and many hundreds of sections of drill pipe.
  • tubular should be given its broadest possible meaning and includes drill pipe, casing, riser, coiled tube, composite tube, vacuum insulated tubing (“VIT), production tubing and any similar structures having at least one channel therein that are, or could be used, in the drilling industry.
  • VIT vacuum insulated tubing
  • joint is to be given its broadest possible meaning and includes all types of devices, systems, methods, structures and components used to connect tubulars together, such as for example, threaded pipe joints and bolted flanges.
  • the joint section typically has a thicker wall than the rest of the drill pipe.
  • the thickness of the wall of tubular is the thickness of the material between the internal diameter of the tubular and the external diameter of the tubular.
  • a method of directed energy mechanical drilling having the steps of: providing directed energy to a surface of a material; providing mechanical energy to that surface; so that the ratio of directed energy to mechanical energy is greater than about 5; and, in this manner a borehole is advance through the surface of the material.
  • a method directed energy mechanical drilling having steps including: providing directed energy to a surface of a material; providing mechanical energy to the surface; so that the ratio of directed energy to mechanical energy is greater than about 10; and, in this manner a borehole is advance through the surface of the material.
  • a method of directed energy mechanical drilling including the following: providing directed energy to a surface of a material; providing mechanical energy to the surface; so that the ratio of directed energy to mechanical energy is greater than about 20; and, in this manner a borehole is advance through the surface of the material.
  • directed energy mechanical drilling by directing directed energy to a surface of a material and directing mechanical energy to the surface in a ratio of directed energy to mechanical energy that is greater than about 2 and this manner a borehole is advance through the surface of the material.
  • a method of directed energy mechanical drilling having the steps of: providing high power laser directed energy to a surface of a material; providing mechanical energy to the surface; and, so that the ratio of high power laser directed energy to mechanical energy is greater than about 5; and, in this manner a borehole is advance through the surface of the material.
  • a directed energy mechanical drilling method of providing high power laser directed energy to a surface of a material; providing mechanical energy to the surface; in the ratio of high power laser directed energy to mechanical energy that is greater than about 10; and, thus advancing a borehole through the surface of the material.
  • a method of directed energy mechanical drilling by providing high power laser directed energy to a surface of a material, providing mechanical energy to the surface, so that the ratio of high power laser directed energy to mechanical energy is greater than about 20; and, in this manner a borehole is advance through the surface of the material.
  • a method of directed energy mechanical drilling having steps including: providing high power laser directed energy to a surface of a material; providing mechanical energy to the surface; and, so that the ratio of high power laser directed energy to mechanical energy is greater than about 40; and, in this manner a borehole is advance through the surface of the material.
  • a directed energy mechanical drilling method by providing high power laser directed energy to a surface; providing mechanical energy to the surface; in a ratio of directed energy to mechanical energy that is greater than about 2 and, thus advancing a borehole through the surface of the material are utilized.
  • the methods may also include steps, conditions and parameters in which: the directed energy is high power laser energy and in which the high power laser directed energy has a power of at least about 40 kW; the surface is not substantially melted by the laser energy; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 10 feet per hour; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 10 feet per hour; the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour; the high power laser
  • a method of advancing borehole in the earth using high power laser mechanical drilling techniques involving: directing laser energy, in a moving pattern, to a bottom surface of a borehole in the earth; heating the earth with the directed laser energy to a point below the melting point; providing mechanical energy to the heated earth; so that the ratio of laser energy to mechanical energy is greater than about 2; and, in this manner the borehole is advanced
  • the methods may also include steps, conditions and parameters in which: the laser energy has a power of about 20 kW or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 50 W/cm 2 or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 75 W/cm 2 or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 100 W/cm 2 or greater; the laser energy on the surface of the bottom of the borehole is about 200 W/cm 2 or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 300 W/cm 2 or greater; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and so that the borehole is advanced at a rate of penetration of at least
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 30 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 240 to about 720, a WOB of less than about 2,000 lbs, a DE Power/Area of about 90 W/cm 2 to about 560 W/cm 2 , and an ME Power/Area of about 4 W/cm 2 to about 250 W/cm 2 ; and in this manner the borehole is advanced at an ROP of at least about 10 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 30 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 600 to about 800, a WOB of less than about 5,000 lbs, a DE Power/Area of about 40 W/cm 2 to about 250 W/cm 2 , and an ME Power/Area of about 200 W/cm 2 to about 3000 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 15 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 600 to about 1250, a WOB of from about 500 to about 5,000 lbs, a DE Power/Area of about 90 W/cm 2 to about 570 W/cm 2 , and an ME Power/Area of about 40 W/cm 2 to about 270 W/cm 2 ; and in this manner the borehole is advanced at an ROP of at least about 10.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of about 250, a WOB of from about 1,000 lbs, a DE Power/Area of about 370 W/cm 2 , and an ME Power/Area of about 40 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 20 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi having the steps of: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 190 W/cm 2 , and an ME Power/Area of about 250 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 50 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 370 W/cm 2 , and an ME Power/Area of about 250 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 50 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 5,000 lbs, a DE Power/Area of about 290 W/cm 2 , and an ME Power/Area of about 240 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 20 ft/hr.
  • this method includes: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 1,200, a WOB of from about 500 lbs, a DE Power/Area of about 470 W/cm 2 , and an ME Power/Area of about 100 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 30 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 470 W/cm 2 , and an ME Power/Area of about 250 W/cm 2 ; and, in this manner the borehole is advanced at an ROP of at least about 30 ft/hr.
  • a method of laser-mechanical drilling a borehole in a formation by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; applying from the high power laser beam source a high power laser beam to a surface of the borehole, so that the high power laser beam generates an intensity ranging from about 150 to about 250 W/cm 2 on a surface of the borehole for an elapsed time sufficient to cause a surface temperature rise in the range from about 400 degrees C. to about 1,000 degrees C. and thus forming a laser applied surface; and applying a mechanical force to the laser applied surface, so that the mechanical force generates an intensity ranging from about 30 to about 250 W/cm 2 to remove the laser applied surface of the borehole.
  • FIG. 1A is a perspective view of an embodiment of a fixed cutter laser-mechanical bit in accordance with the present invention.
  • FIG. 1B is a bottom view of the bit of FIG. 1A .
  • FIG. 1C is a cross section view of the bit of FIGS. 1A and 1B taken along line 1 C- 1 C.
  • FIG. 2 is a schematic of an embodiment of a high power laser drilling, workover and completion unit in accordance with the present invention.
  • FIG. 3 is a chart showing various directed energy regimes.
  • FIG. 4 is schematic of chips of basalt.
  • FIG. 5 is a schematic of chips of dolomite.
  • the present inventions relate to directed energy mechanical drilling methods that utilize high power directed energy in conjunction with mechanical forces. These methods may find uses in many different types of materials and structures, such as metal, stone, composites, concrete, the earth, and structures in the earth. In particular, these methods may find preferable uses in situations and environments where advancing a borehole with conventional, e.g., non-directed energy technology, was difficult or impossible, because, for example, the remoteness of the area where the borehole was to be advanced, difficult environmental conditions or other factors that placed great, and at times insurmountable burdens on conventional drilling or boring technologies. These methods also find preferable uses in situations where reduced noise and vibrations, compared to conventional technologies, are desirable or a requisite.
  • the present methods involve the application of directed energy and mechanical forces to a surface, e.g., the bottom of a borehole, to remove material and advance the borehole.
  • the directed energy and mechanical forces are preferably applied in a rotating or revolving manner, so that they are so moved about or on the surface to be drilled (i.e., the drilling surface), e.g., the bottom of a borehole.
  • Directed energy would include, for example, optical laser energy, non-optical laser energy, microwaves, sound waves, plasma, electric arcs, flame, flame jets, steam and combinations of the foregoing, as well as, water jets (although a water jet may be viewed as having a mechanical interaction with the drilling surface, for the purpose of this specification it will be characterized amongst the group of directed energies, based upon the following specific definition of mechanical energy), and other forms of energy that are not “mechanical energy” as defined in these specifications.
  • Mechanical energy is limited to energy that is transferred to the drilling surface by the interaction or contact of a solid object, e.g., a drill bit cutter, roller cone, or a saw blade, with the drilling surface.
  • the directed energy is propagated at the bottom surface (and potentially side and gauge surfaces).
  • the directed energy weakens (and may also partially remove, and remove) the material so contacted, i.e., directed energy affected material.
  • the mechanical devices e.g., cutters, then rotate in the borehole, contacting and removing the directed energy affected material (and potentially some additional material).
  • the mechanical cutter, and the mechanical energy that it delivers is only sufficient to remove the directed energy affected material. In this way the life of the cutters is preserved, damage is minimized, and the amount of heat built up from friction is controlled and preferably in some embodiments kept to a minimum.
  • the source of directed energy is a high power laser beam.
  • the laser beam, or beams may have 10 kW, 20 kW, 40 kW, 80 kW or more power; and have a wavelength in the range of from about 445 nm (nanometers) to about 2100 nm, preferably in the range of from about 800 to 1900 nm, and more preferably in the ranges of from about 1530 nm to 1600 nm, from about 1060 nm to 1080 nm, and from about 1800 nm to 1900 nm.
  • the types of laser beams and sources for providing a high power laser beam may be the devices, systems, optical fibers and beam shaping and delivery optics that are disclosed and taught in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication No. US 2010/0044102, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, and Ser. No. 61/493,174, the entire disclosures of each of which are incorporated herein by reference.
  • the source for providing rotational movement may be a string of drill pipe rotated by a top drive or rotary table, a down hole mud motor, a down hole turbine, a down hole electric motor, and, in particular, may be the systems and devices disclosed in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044104, Publication No. US 2010/0044103, Ser. No. 12/896,021, Ser. No. 61/446,042 and Ser. No. 13/211,729, the entire disclosures of each of which are incorporated herein by reference.
  • the high power lasers for example may be fiber lasers or semiconductor lasers having 10 kW, 20 kW, 50 kW or more power and, which emit laser beams with wavelengths preferably in about the 1064 nm range, about the 1070 nm range, about the 1360 nm range, about the 1455 nm range, about the 1550 nm range, about the 1070 nm range, about the 1083 nm range, or about the 1900 nm range (wavelengths in the range of 1900 nm may be provided by Thulium lasers).
  • the source of mechanical energy is a fixed cutter drill bit or roller cone used as part of a laser-mechanical bit.
  • the components of a laser mechanical bit may be made from materials that are known to those of skill in the art for such applications or components, or that are later developed for such applications.
  • the bit body may be made from steel, preferably a high-strength, weldable steel, such as SAE 9310 , or cemented carbide matrix material.
  • the blades may be made from similar types of material.
  • the blades and the bit body may be made, for example by milling, from a single piece of metal, or they may be separately made and affixed together.
  • the cutters may be made from for example, materials such as polycrystalline diamond compact (“PDC”), grit hotpressed inserts (“GHI”), and other materials known to the art or later developed by the art. Cutters are commercially available from for example US Synthetic, MegaDiamond, and Element 6 .
  • the roller cone arms may be made from steel, such as SAE 9310 . Like the blades, the arms and the bit body may be made from a single piece of metal, or they may be made from separate pieces of metal and affixed together. Roller cone inserts, for example, may be made from sintered tungsten carbide insert (“TCI”) or the roller cones may be made with milled teeth (“MTs”).
  • Roller cones, roller cone inserts, and roller cones and leg assemblies may be obtained commercially from Varel International, while TCI may be obtained from for example Kennametal or ATI Firth Sterling. It is preferred that the inner surface of the beam path be made of material that does not absorb the laser energy, and thus, it is preferable that such surfaces be reflective or polished surfaces. It is also preferred that any surfaces of the bit that may be exposed to reflected laser energy, reflections, also be non-absorptive, minimally absorptive, and preferably be polished or made reflective of the laser beam.
  • FIGS. 1A to C An example of such a bit and system to provide the high power laser energy and mechanical energy are set forth in FIGS. 1A to C, and in FIG. 2 .
  • FIGS. 1A , 1 B and 1 C there is shown views of an embodiment of a fixed cutter type laser-mechanical bit.
  • a laser-mechanical bit 100 having a body section 101 and a bottom section 102 .
  • the bottom section 102 has mechanical blades 103 , 104 , 105 , 106 , 107 , 108 , 109 , and 110 .
  • the bit body 101 may have a receiving slot for each mechanical blade. For example, in FIG. 1A receiving slots, 111 , 112 , 113 , are 114 are identified. Note that with respect to blades, of the type shown as blades 108 , 109 and 110 , the receiving slots may be joined or partially joined, into a unitary opening.
  • the bit body 101 has side surfaces or areas, e.g., 115 a , 115 b , 117 in which the blade receiving slots are formed.
  • the bit body 101 has surfaces or areas, e.g., 116 a , 116 b for supporting gauge pads, e.g., 141 .
  • the bit body 101 further has surfaces 119 a , 119 b , 119 c , 119 d , that in this embodiment are substantially normal to the surfaces 115 a , 115 b , 116 a , 116 b , which surfaces 115 a , 115 b , have part of the blade receiving slots formed therein.
  • the surface 119 a , 119 b , 119 c , 119 d are connected to surfaces 115 a , 115 b , 116 a , 116 b by angled surfaces or areas 118 a , 118 b , 118 c , 118 d.
  • the bit is further provided with beam blades, 120 , 121 , 122 , 123 .
  • the beam blades are positioned along essentially the entirely of the width of the bit 100 and merge at the end 126 of beam path slot 125 into a unitary structure.
  • the inner surfaces or sides of the beam blades form, in part, slot 125 .
  • the outer surfaces or sides of the beam blades also form a sidewall for the junk slots, e.g., 170 .
  • the beam blades are positioned in both the bit body section 101 and the bottom section 102 . Other positions and configurations of the beam blades are contemplated. In the embodiment of FIGS.
  • the bottom of the beam blades is located at about the same level as the depth of cut limiters, e.g., 146 , that are located on blades 103 , 107 , i.e. depth of cut blades, and slightly below the bottom of the cutters, e.g., 134 .
  • bottom refers to the section of the bit that is intended to engage or be closest to the bottom of a borehole
  • top of the bit refers to the section furthers away from the bottom.
  • the distance between the top and the bottom of the bit would be the bit length, or longitudinal dimension; and the width would be the dimension transverse to the length, e.g., the outside diameter of the bit, as used herein unless specified otherwise.
  • the longitudinal position of the bottom of the beam blades with respect to the cutters and any depth of cut limiters, e.g., the beam blades relative proximity to the bottom of the borehole, may be varied in each bit design and configuration and will depend upon factors such as the power of the laser beam, the type of rock or earth being drilled, the flow of and type of fluid used to keep the beam path clear of cuttings and debris.
  • the longitudinal positioning of the bottoms of the beam blades, any depth of cut limiter blades and the cutter blades all be relatively close, as shown in FIG. 1A , although other positions and configurations are envisioned.
  • a beam path 124 is formed in the bit, and is bordered, in part, by the inner surfaces or sides of the beam blades 120 , 121 , 122 , 123 and the inner ends of blades 103 , 105 , 107 and 109 .
  • the beam path extends through the center axis 161 of the bit and divides the bit into two separate sections, as more clearly seen in FIG. 1B .
  • the structures and their configuration on one side of the beam path 124 be similar, and more preferably the same, as the structures on the other side of the beam path 124 , which is the case for this embodiment. This positioning and configuration is preferred, although other positions and configurations are contemplated.
  • the beam path 124 should be close to, but preferably not touch the beam blades or the beam blade inner surfaces.
  • high power laser energy and in particular laser energy greater than 5 kW, 10 kW, 20 kW, 40 kW, 80 kW and greater, if the beam path, and, in particular, the laser beam 160 , which is propagated along the beam path, contacts a blade it will melt or otherwise remove that section of the blade in the beam path, and potentially damage the remaining section of the blade, bit, or other bit structure or component that is struck.
  • the beam path in this embodiment also serves as a fluid path for a fluid, such as air, nitrogen, or a transmissive, or substantially transmissive liquid to the laser beam.
  • a fluid such as air, nitrogen, or a transmissive, or substantially transmissive liquid to the laser beam.
  • This fluid is used to keep the laser beam path clear and also to remove or help remove cuttings from the borehole.
  • Configurations, systems and methods for providing and removing such fluids in laser drilling, and for keeping the beam path clear, as well as, the removal of cuttings from the borehole, during laser drilling are provided in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044102, Publication No. US 2010/0044103, Publication No. US 2010/0044104, Ser. No. 12/896,021, Ser. No. 13/211,729, Ser. No. 13/210,581 and Ser. No. 13/222,931, the entire disclosures of each of which are incorporated herein by reference.
  • the beam blades 120 , 121 , 122 and 123 form a beam path slot 125 , which slot has ends, e.g., 126 a , 126 b .
  • the beam path slot 125 extends from the bottom section 102 partially into the bit body section 101 .
  • the beam path slot 125 may also have end sections 126 a , 126 b , these end sections 126 a , 126 b , are angled, such that they do not extend into the beam path.
  • the beam pattern e.g., the shape of the area of illumination by the laser upon the bottom of the borehole, or at any cross section of the beam as it is traveling toward the area to be cut, e.g., a borehole surface, when the bit is not in rotation, in this embodiment is preferably a narrow ellipse or rectangular type of pattern, and more preferably may be such a generally elliptical rectangular pattern where less energy or on laser energy is provided to center of pattern.
  • the laser beam 160 is shown as having a beam pattern that is substantially rectangular.
  • the beam path for this pattern expands from the optics, not shown, until it strikes the bottom of the borehole (see and compare, FIG.
  • FIG. 1C showing a cross section of the laser beam 160 and the beam path 161 , with FIG. 1B showing the bottom view of the laser beam pattern, and thus, the shape of the area of illumination of the bottom surface of the borehole by the laser beam when the beam is not rotating).
  • the beam path is such that the area of illumination of the bottom of the borehole surface is wider, i.e., a larger diameter, than the diameter of the bit, put about the same as the outer diameter of the gauge cutters.
  • the area of illumination may be equal to the bit diameter (excluding or including gauge cutters and/or gauge reamers as forming the outer diameter of the bit), substantially the same as the bit diameter (excluding or including gauge cutters and/or gauge reamers as forming the outer diameter of the bit), greater than the bit diameter (excluding or including gauge cutters and/or gauge reamers as forming the outer diameter of the bit).
  • the bottom of the end section 126 also defines the end of the slot 125 with respect to the outer surface of the bit body. In this embodiment the end of the slot 125 is at about the same longitudinal position as the end of the blades, e.g., 127 .
  • the slot, beam slot or beam path slot refers to the opening or openings, e.g., a slot, in the sides, or side walls, of the bit that permit the beam path and the laser beam to extend out of, or from the side of the bit, as illustrated, by way of example, in FIG. 1C .
  • gauge cutters 128 , 129 , 130 , 131 .
  • the gauge cutters are located on blades 105 , 106 , 109 and 110 .
  • Blades 106 and 110 only support gauge cutters 128 , 130 .
  • Blades 105 , 109 support gauge cutters 131 , 129 , as well as, bottom cutters 132 , 133 , 134 , 138 , 139 , 140 , which cutters remove material from the bottom of the borehole, after it has been softened, or otherwise weakened, e.g., laser-affected material, by the laser beam 160 .
  • the gauge cutters may also be removing laser-affected rock or material.
  • Gauge pads e.g., 141 are positioned in surfaces of the bit body, e.g., 116 a .
  • gauge reamers 142 , 143 , 144 , 145 are positioned in blades 104 , 105 (and also similarly positioned in blades 108 , 109 although not seen in FIG. 1A ).
  • Blades 103 and 107 have depth of cut limiters, e.g., 146 .
  • the blades and in particular the blades having cutters, may have internal passages for cooling, e.g., vents or ports, such as, e.g., 147 , 148 , 149 (it being noted that the actual openings for vents 148 , 149 , are not seen in the view of FIG. 1A ).
  • vents or ports such as, e.g., 147 , 148 , 149 (it being noted that the actual openings for vents 148 , 149 , are not seen in the view of FIG. 1A ).
  • the cutters are positioned with respect to each other, such that they each take a slightly different path along the bottom of the borehole, in this way each cutter is assisting in the removal of laser-affected rock, and preferably does not encounter any rock that has not first been affected by the laser.
  • the distance of travel by a cutter before it contacts laser-affected rock is shown by arc 162 .
  • Arc 162 defines an angle between the laser beam path, and in this embodiment the laser beam, and the plane of the blade supporting the cutters. This angle, which may be referred to as the “beam path angle,” can be from about 90 degrees to about 140 degrees, about 100 degrees to about 130 degrees, and about 110 degrees to about 120 degrees.
  • Beam path angles of less than 90 degrees may be employed, but are not preferred, as they tend to not give enough time for the heat deposited by the laser to affect the rock before the cutter reaches the area of laser affected rock.
  • Greater angles than 140 degrees may be employed, however, at greater angles space and strength of component issues can become significant, as the blades have very little space in which to be positioned.
  • each blade could have the same, substantially the same, or a different angle (although care should be taken when using different angles to make certain that the cutters and overall engagement with the borehole surface is properly balanced.) In the embodiment of FIG. 1B this angle, defined by arc 162 , is 135 degrees.
  • This angle between the laser beam (and the beam path, since generally in a properly functioning bit they are coincident) and the cutter position has a relationship to, and can be varied and selected to, address and maximize, efficiency based upon several factors, including for example, the laser power that is delivered to the rock, the reflectivity and absorptivity of the rock to the laser beam, the rate and depth to which the laser beam's energy is transmitted into the rock, the thermal properties of the rock, the porosity of the rock, and the speed, i.e., RPM at which the bit is rotated.
  • the laser is fired, e.g., a laser beam is propagated, along its beam path from optics to the surface of the borehole, a certain amount of time will pass from when the laser first contacts a particular area of the surface of the borehole until the cutter revolves around and reaches that point.
  • This time can be referred to as soak time.
  • the soak time can be adjusted, and optimized to a certain extent by the selection of the cutter-laser beam angle.
  • the bit 100 has channels, e.g., junk slots, 170 , 171 that provide a space between the bit 100 and the wall or side surface 150 of the borehole, for the passage of cuttings up the borehole.
  • channels e.g., junk slots, 170 , 171 that provide a space between the bit 100 and the wall or side surface 150 of the borehole, for the passage of cuttings up the borehole.
  • the relationship of the gauge cutters 129 , 128 , 131 , 130 as well as other components of the bit 100 to the wall of the borehole 150 can been seen in FIG. 1B .
  • the blades that support the cutters, 104 , 105 , 106 , 108 , 109 , 110 are essentially right angle shaped.
  • the bottom section of the blades i.e., the lower end holding the cutters that engage the bottom and/or gauge of the borehole, and also the associated bottom of the cutters positioned in that end (e.g., cutters 134 , 133 , 132 , 129 ), are along an essentially straight line that forms a right angle with the side section of the blades, i.e., the side end holding the cutters that engage the side and/or gauge of the borehole, and also the associated side of the cutters positioned in that end (e.g., cutters 142 , 144 , 129 ) form a right angle.
  • This right angle configuration of all of the cutter blades as shown in the embodiment of FIG.
  • the bottom of the bit is essentially flat and more preferably flat, and as such will engage the borehole in an essentially even manner, and more preferably an even manner, and will in general provide a borehole with an essentially flat bottom and more preferably a flat bottom.
  • the cutters e.g., 134 , 133 , 132 , gauge cutters, e.g., 129 , and gauge reamers, e.g., 144 , 142
  • the gauge pads e.g., 141
  • carbide inserts which provides for impact resistance, enhanced wear, as well as bit stability.
  • FIG. 2 provides a cut away perspective view showing the surface of the earth 1030 and a cut away of the earth 1002 below the surface 1030 .
  • a source of electrical power 1003 which provides electrical power by cables 1004 and 1005 to a laser 1006 and a chiller 1007 for the laser 1006 .
  • the laser provides a laser beam, i.e., laser energy, that can be conveyed by a laser beam transmission means 1008 to a spool of tubing 1009 .
  • a source of fluid 1010 is provided. The fluid is conveyed by fluid conveyance means 1011 to the spool of tubing 1009 .
  • the spool of tubing 1009 e.g., coiled tubing, composite tubing or other conveyance device, is rotated to advance and retract the tubing 1012 .
  • conveyance means are disclosed and taught in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044104, Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, Ser. No. 13/366,882 and Ser. No. 13/211,729, the entire disclosures of each of which are incorporated herein by reference.
  • the tubing 1012 contains a means to transmit the laser beam along the entire length of the tubing, i.e., “long distance high power laser beam transmission means,” to the bottom hole assembly, 1014 .
  • the tubing 1012 also contains a means to convey the fluid along the entire length of the tubing 1012 to the bottom hole assembly 1014 .
  • a support structure 1015 which holds an injector 1016 , to facilitate movement of the tubing 1012 in the borehole 1001 .
  • Further other support structures may be employed, for example, such structures could be derrick, crane, mast, tripod, or other similar type of structure or hybrid and combinations of these.
  • BOP blow out preventer
  • the tubing 1012 is passed from the injector 1016 through the diverter 1017 , the BOP 1018 , a wellhead 1020 and into the borehole 1001 .
  • the fluid is conveyed to the bottom 1021 of the borehole 1001 . At that point the fluid exits at or near the bottom hole assembly 1014 and is used, among other things, to carry the cuttings, which are created from advancing a borehole, back up and out of the borehole.
  • the diverter 1017 directs the fluid as it returns carrying the cuttings to the fluid and/or cuttings handling system 1019 through connector 1022 .
  • This handling system 1019 is intended to prevent waste products from escaping into the environment and separates and cleans waste products and either vents the cleaned fluid to the air, if permissible environmentally and economically, as would be the case if the fluid was nitrogen, or returns the cleaned fluid to the source of fluid 1010 , or otherwise contains the used fluid for later treatment and/or disposal.
  • the BOP 1018 serves to provide multiple levels of emergency shut off and/or containment of the borehole should a high-pressure event occur in the borehole, such as a potential blow-out of the well.
  • the BOP is affixed to the wellhead 1020 .
  • the wellhead in turn may be attached to casing.
  • casing For the purposes of simplification the structural components of a borehole such as casing, hangers, and cement are not shown. It is understood that these components may be used and will vary based upon the depth, type, and geology of the borehole, as well as, other factors.
  • the downhole end 1023 of the tubing 1012 is connected to the bottom hole assembly 1014 .
  • the bottom hole assembly 1014 contains optics for delivering the laser beam 1024 to its intended target, in the case of FIG. 1 , the bottom 1021 of the borehole 1001 .
  • the bottom hole assembly 1014 for example, also contains means for delivering the fluid.
  • this system operates to create and/or advance a borehole by having the laser create laser energy in the form of a laser beam.
  • the laser beam is then transmitted from the laser through the spool and into the tubing. At which point, the laser beam is then transmitted to the bottom hole assembly where it is directed toward the surfaces of the earth and/or borehole.
  • this process can be viewed as a hybrid thermal/mechanical process in which thermally-induced compressive stresses are generated in a thin skin of rock at the drilling surface. These thermally induced stresses create fractures parallel to the surface of the rock and give rise to rock removal from the borehole via chips of material. Mechanical cutter action is present primarily to ensure continuous removal of the fractured material, which in the presence of laser energy only might not be completely expelled from the surface. The physics of the process and experimental and theoretical results indicate that higher rates of penetration can be achieved by increases in laser power delivered to the drilling surface.
  • the material response can generally include several regimes, which may be generally classified as: an ultrafast regime 310 , a heating regime 320 , a melting regime 330 , and a vaporization regime 340 .
  • Various processes may occur along these regimes, such as shock hardening 341 , drilling 342 , glazing 331 , cutting 332 , welding 333 , cladding 334 , stereo lithography 321 , and transformation hardening 322 .
  • regime 340 lies the regime in which spallation or rock fragmentation occur, as shown in regime area 350 .
  • the spallation regime 350 is the preferred area in which it is presently believed that the greatest synergistic benefit for the tailored directed energy mechanical energy process may occur.
  • these chips 401 , 402 , 403 , 404 are characterized by a high aspect ratio, e.g., the lateral dimensions 1.48′′ arrow 411 , and 1.87′′ arrow 412 are much greater than the thickness 0.140′′ of chip 404 .
  • These chips, e.g., 401 of FIG. 4 are basalt.
  • chips 501 , 502 , 503 , 504 , 505 , 506 , 507 , 508 , 509 , 510 , and 511 are characterized by a high aspect ratio, e.g., the lateral dimensions 1.06′′ arrow 521 , and 1.52′′ arrow 522 , are much greater than the thickness 0.182′′ of chip 511 .
  • spallation without a mechanical removal mechanism may be and at time has been shown to be an unreliable drilling solution.
  • rock type spalls e.g., a spallable limestone is believed to have never been identified, for example
  • macroscopic fractures in the rock mass can inhibit the spallation process.
  • thermal stress and stress-induced fracture is likely a universal rock response
  • the explosive release of spalled chips is presently believed to be material specific.
  • a laser represents an ideal directed energy source, as a high flux of energy can be delivered to the rock over a precisely controlled area designed to minimize heat loads on the mechanical cutters.
  • the role of the mechanical cutters is to provide a minimum amount of pressure sufficient to remove the damaged material; and so that they do not otherwise contribute substantially to the rate of material removal.
  • the surface temperature of the rock during the process may generally be around 250-650° C., which is the temperature rise sufficient to generate compressive stresses comparable to the strength of the rock; broader ranges are provide in the table of examples and may prove advantageous for various tailored drilling conditions and parameters, Under intense laser power, the surface temperature rise may be sufficient to melt rock directly under the laser beam. This melting would reduce or eliminate the thermal stresses responsible for laser processing, and is therefore preferably a condition to be avoided for this method of processing. Processes whereby the rock surface is melted allowed to cool and then scraped off are contemplated. Such processes do not rely upon a spallation regime and thus may have a broader application to different materials and in particular materials that do not exhibit spallation. Thus, this directed energy mechanical energy process is not material specific.
  • WOB Weight on bit. Force applied by the bit. Units of pounds.
  • ROP Rate of penetration. This is the speed of advancement of the drilling surface. Units of feet per hour.
  • RPM Rotation speed of the bit in revolutions per minute.
  • Torque the degree of twist applied by the bit. Units of foot-pounds.
  • Ratio of DE/ME The ratio of directed energy or directed laser energy to mechanical energy is the delivered directed laser energy (DE) divided by the delivered mechanical energy (ME). Dimensionless number.
  • DE Power/Area The directed energy laser power per unit of drilling surface area. Units are Watts per square centimeter.
  • ME Power/Area The delivered mechanical energy power per unit of drilling surface area. Units are Watts per square centimeter.
  • the laser power is to be delivered to the rock surface.
  • the examples are for use with air as the fluid for drilling, and may be utilized with, by way of example, the bits and systems that are described in FIGS. 1A-C and 2 of this specification and with the bits and systems disclosed and taught in U.S. patent applications Ser. No. 61/446,043 and co-filed patent application having attorney docket no. 13938/79 (Foro s13a).
  • a method of laser-mechanical drilling a borehole in a formation having at least 500 feet, at least about 1,000 ft, at least about 5,000 and at least about 10,000 feet of material having a hardness greater than about 15 ksi, greater than about 20 ksi, greater than about 30 ksi, and greater than about 40 ksi and at drilling rates, e.g., ROP, of at least about 10 ft/hr, at least about 20 ft/hr, at least about 30 ft/hr and at least about 40 ft/hr.
  • Such methods in generally would include, by way of example, drilling under the following conditions and parameters: (i) an RPM of from about 240 to about 720, a WOB of less than about 2,000 lbs, a DE Power/Area of about 90 W/cm 2 to about 560 W/cm 2 , and an ME Power/Area of about 4 W/cm 2 to about 250 W/cm 2 ; (ii) an RPM of from about 600 to about 800, a WOB of less than about 5,000 lbs, a DE Power/Area of about 40 W/cm 2 to about 250 W/cm 2 , and an ME Power/Area of about 200 W/cm 2 to about 3000 W/cm 2 ; (iii) an RPM of from about 600 to about 1250, a WOB of from about 500 to about 5,000 lbs, a DE Power/Area of about 90 W/cm 2 to about 570 W/cm 2 , and an ME Power/Area of about 40 W/cm 2 to about

Abstract

There is provided a laser-mechanical method for drilling boreholes that utilizes specific combinations of high power directed energy, such as laser energy, in combination with mechanical energy to provide a synergistic enhancement of the drilling process.

Description

  • This application: (i) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,041; (ii) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,312; (iii) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,040; (iv) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,043; (v) claims, under 35 U.S.C. §119(e)(1), the benefit of the filing date of Feb. 24, 2011 of U.S. provisional application Ser. No. 61/446,042; (vi) is a continuation-in-part of U.S. patent application Ser. No. 12/544,038 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384; (vii) is a continuation-in-part of U.S. patent application Ser. No. 12/543,968 filed Aug. 19, 2009; and (viii) is a continuation-in-part of U.S. patent application Ser. No. 12/543,986 filed Aug. 19, 2009, which claims under 35 U.S.C. §119(e)(1) the benefit of the filing date of Feb. 17, 2009 of U.S. provisional application Ser. No. 61/153,271, the benefit of the filing date of Oct. 17, 2008 of U.S. provisional application Ser. No. 61/106,472, the benefit of the filing date of Oct. 3, 2008 of U.S. provisional application Ser. No. 61/102,730, and the benefit of the filing date of Aug. 20, 2008 of U.S. provisional application Ser. No. 61/090,384, the entire disclosures of each of which are incorporated herein by reference.
  • This invention was made with Government support under Award DE-AR0000044 awarded by the Office of ARPA-E U.S. Department of Energy. The Government has certain rights in this invention.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present inventions relate to high power laser energy tools and systems and methods.
  • As used herein, unless specified otherwise, “high power laser energy” means a laser beam having at least about 1 kW (kilowatt) of power. As used herein, unless specified otherwise “great distances” means at least about 500 m (meter). As used herein the term “substantial loss of power,” “substantial power loss” and similar such phrases, mean a loss of power of more than about 3.0 dB/km (decibel/kilometer) for a selected wavelength. As used herein the term “substantial power transmission” means at least about 50% transmittance.
  • As used herein, unless specified otherwise, the term “earth” should be given its broadest possible meaning, and includes, the ground, all natural materials, such as rocks, and artificial materials, such as concrete, that are or may be found in the ground, including without limitation rock layer formations, such as, granite, basalt, sandstone, dolomite, sand, salt, limestone, rhyolite, quartzite and shale rock.
  • As used herein, unless specified otherwise, the term “borehole” should be given it broadest possible meaning and includes any opening that is created in a material, a work piece, a surface, the earth, a structure (e.g., building, protected military installation, nuclear plant, offshore platform, or ship), or in a structure in the ground, (e.g., foundation, roadway, airstrip, cave or subterranean structure) that is substantially longer than it is wide, such as a well, a well bore, a well hole, a micro hole, slimhole, a perforation and other terms commonly used or known in the arts to define these types of narrow long passages. Wells would further include exploratory, production, abandoned, reentered, reworked, and injection wells. Although boreholes are generally oriented substantially vertically, they may also be oriented on an angle from vertical, to and including horizontal. Thus, using a vertical line, based upon a level as a reference point, a borehole can have orientations ranging from 0° i.e., vertical, to 90°,i.e., horizontal and greater than 90° e.g., such as a heel and toe and combinations of these such as for example “U” and “Y” shapes. Boreholes may further have segments or sections that have different orientations, they may have straight sections and arcuate sections and combinations thereof; and for example may be of the shapes commonly found when directional drilling is employed. Thus, as used herein unless expressly provided otherwise, the “bottom” of a borehole, the “bottom surface” of the borehole and similar terms refer to the end of the borehole, i.e., that portion of the borehole furthest along the path of the borehole from the borehole's opening, the surface of the earth, or the borehole's beginning. As used herein unless specified otherwise, the terms “side” and “wall” of a borehole should to be given their broadest possible meaning and include the longitudinal surfaces of the borehole, whether or not casing or a liner is present, as such, these terms would include the sides of an open borehole or the sides of the casing that has been positioned within a borehole. Boreholes may be made up of a single passage, multiple passages, connected passages and combinations thereof, in a situation where multiple boreholes are connected or interconnected each borehole would have a borehole bottom. Boreholes may be formed in the sea floor, under bodies of water, on land, in ice formations, or in other locations and settings.
  • Boreholes are generally formed and advanced by using mechanical drilling equipment having a rotating drilling tool, e.g., a bit. For example and in general, when creating a borehole in the earth, a drilling bit is extending to and into the earth and rotated to create a hole in the earth. In general, to perform the drilling operation the bit must be forced against the material to be removed with a sufficient force to exceed the shear strength, compressive strength or combinations thereof, of that material. Thus, in conventional drilling activity mechanical forces exceeding these strengths of the rock or earth must be applied. The material that is cut from the earth is generally known as cuttings, e.g., waste, which may be chips of rock, dust, rock fibers and other types of materials and structures that may be created by the bit's interactions with the earth. These cuttings are typically removed from the borehole by the use of fluids, which fluids can be liquids, foams or gases, or other materials know to the art.
  • As used herein, unless specified otherwise, the term “advancing” a borehole should be given its broadest possible meaning and includes increasing the length of the borehole. Thus, by advancing a borehole, provided the orientation is not horizontal, e.g., less than 90° the depth of the borehole may also be increased. The true vertical depth (“TVD”) of a borehole is the distance from the top or surface of the borehole to the depth at which the bottom of the borehole is located, measured along a straight vertical line. The measured depth (“MD”) of a borehole is the distance as measured along the actual path of the borehole from the top or surface to the bottom. As used herein unless specified otherwise the term depth of a borehole will refer to MD. In general, a point of reference may be used for the top of the borehole, such as the rotary table, drill floor, well head or initial opening or surface of the structure in which the borehole is placed.
  • As used herein, unless specified otherwise, the terms “ream”, “reaming”, a borehole, or similar such terms, should be given their broadest possible meaning and includes any activity performed on the sides of a borehole, such as, e.g., smoothing, increasing the diameter of the borehole, removing materials from the sides of the borehole, such as e.g., waxes or filter cakes, and under-reaming.
  • As used herein, unless specified otherwise, the terms “drill bit”, “bit”, “drilling bit” or similar such terms, should be given their broadest possible meaning and include all tools designed or intended to create a borehole in an object, a material, a work piece, a surface, the earth or a structure including structures within the earth, and would include bits used in the oil, gas and geothermal arts, such as fixed cutter and roller cone bits, as well as, other types of bits, such as, rotary shoe, drag-type, fishtail, adamantine, single and multi-toothed, cone, reaming cone, reaming, self-cleaning, disc, three cone, rolling cutter, crossroller, jet, core, impreg and hammer bits, and combinations and variations of the these.
  • Mechanical bits cut rock with shear stresses created by rotating a cutting surface against the rock and placing a large amount of weight-on-bit (“WOB”). Mechanical bits cut rock by applying crushing (compressive) and/or shear stresses created by rotating a cutting surface against the rock and placing a large amount of WOB. In the case of a bit made of the material polycrystalline diamond compact (“PDC”), e.g., a PDC bit, this action is primarily by shear stresses and in the case of roller cone bits this action is primarily by crushing (compression) and shearing stresses. For example, the WOB applied to an 8¾″ PDC bit may be up to 15,000 lbs, and the WOB applied to an 8¾″ roller cone bit may be up to 60,000 lbs. When mechanical bits are used for drilling hard and ultra-hard rock excessive WOB, rapid bit wear, and long tripping times result in an effective drilling rate that is essentially economically unviable. The effective drilling rate is based upon the total time necessary to complete the borehole and, for example, would include time spent tripping in and out of the borehole, as well as, the time for repairing or replacing damaged and worn bits.
  • As used herein, unless specified otherwise, the term “drill pipe” should be given its broadest possible meaning and includes all forms of pipe used for drilling activities; and refers to a single section or piece of pipe. As used herein the terms “stand of drill pipe,” “drill pipe stand,” “stand of pipe,” “stand” and similar type terms are to be given their broadest possible meaning and include two, three or four sections of drill pipe that have been connected, e.g., joined together, typically by joints having threaded connections. As used herein the terms “drill string,” “string,” “string of drill pipe,” string of pipe” and similar type terms are to be given their broadest definition and would include a stand or stands joined together for the purpose of being employed in a borehole. Thus, a drill string could include many stands and many hundreds of sections of drill pipe.
  • As used herein, unless specified otherwise, the term “tubular” should be given its broadest possible meaning and includes drill pipe, casing, riser, coiled tube, composite tube, vacuum insulated tubing (“VIT), production tubing and any similar structures having at least one channel therein that are, or could be used, in the drilling industry. As used herein the term “joint” is to be given its broadest possible meaning and includes all types of devices, systems, methods, structures and components used to connect tubulars together, such as for example, threaded pipe joints and bolted flanges. For drill pipe joints, the joint section typically has a thicker wall than the rest of the drill pipe. As used herein the thickness of the wall of tubular is the thickness of the material between the internal diameter of the tubular and the external diameter of the tubular.
  • SUMMARY
  • There has been a long-standing need for rapidly and efficiently drilling boreholes into hard and very hard materials, and to do so with minimal damage to the drilling bit. The present inventions, among other things, solve these and other needs by providing the articles of manufacture, devices and processes taught herein.
  • Thus, there is provided herein a method of directed energy mechanical drilling having the steps of: providing directed energy to a surface of a material; providing mechanical energy to that surface; so that the ratio of directed energy to mechanical energy is greater than about 5; and, in this manner a borehole is advance through the surface of the material.
  • Further, there is provided a method directed energy mechanical drilling having steps including: providing directed energy to a surface of a material; providing mechanical energy to the surface; so that the ratio of directed energy to mechanical energy is greater than about 10; and, in this manner a borehole is advance through the surface of the material.
  • Moreover, there is provided a method of directed energy mechanical drilling including the following: providing directed energy to a surface of a material; providing mechanical energy to the surface; so that the ratio of directed energy to mechanical energy is greater than about 20; and, in this manner a borehole is advance through the surface of the material.
  • Still further, there is provided a method of providing directed energy to a surface of a material and providing mechanical energy to the surface; in a manner where the ratio of directed energy to mechanical energy is greater than about 40; and, in this manner a borehole is advance through the surface of the material.
  • Further still, there is provided directed energy mechanical drilling by directing directed energy to a surface of a material and directing mechanical energy to the surface in a ratio of directed energy to mechanical energy that is greater than about 2 and this manner a borehole is advance through the surface of the material.
  • Additionally, there is provided a method of directed energy mechanical drilling having the steps of: providing high power laser directed energy to a surface of a material; providing mechanical energy to the surface; and, so that the ratio of high power laser directed energy to mechanical energy is greater than about 5; and, in this manner a borehole is advance through the surface of the material.
  • Yet still additionally, there is provided a directed energy mechanical drilling method of providing high power laser directed energy to a surface of a material; providing mechanical energy to the surface; in the ratio of high power laser directed energy to mechanical energy that is greater than about 10; and, thus advancing a borehole through the surface of the material.
  • Additionally, there is provided a method of directed energy mechanical drilling by providing high power laser directed energy to a surface of a material, providing mechanical energy to the surface, so that the ratio of high power laser directed energy to mechanical energy is greater than about 20; and, in this manner a borehole is advance through the surface of the material.
  • Still further, there is provided a method of directed energy mechanical drilling having steps including: providing high power laser directed energy to a surface of a material; providing mechanical energy to the surface; and, so that the ratio of high power laser directed energy to mechanical energy is greater than about 40; and, in this manner a borehole is advance through the surface of the material.
  • Yet additionally, there is provided a directed energy mechanical drilling method by providing high power laser directed energy to a surface; providing mechanical energy to the surface; in a ratio of directed energy to mechanical energy that is greater than about 2 and, thus advancing a borehole through the surface of the material are utilized.
  • Still further, the methods may also include steps, conditions and parameters in which: the directed energy is high power laser energy and in which the high power laser directed energy has a power of at least about 40 kW; the surface is not substantially melted by the laser energy; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 10 feet per hour; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 10 feet per hour; the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour; the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour; the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour; the high power laser directed energy has a power of at least about 50 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds so that the borehole is advanced at a rate of penetration the rate of penetration of at least about 20 feet per hour through material having an average hardness of about 20 ksi (kilopound per square inch) or greater; the borehole is advanced for greater than about 500 feet; and the borehole is advanced for greater than about 5,000 feet.
  • Moreover, there is provided a method of advancing borehole in the earth using high power laser mechanical drilling techniques, the method involving: directing laser energy, in a moving pattern, to a bottom surface of a borehole in the earth; heating the earth with the directed laser energy to a point below the melting point; providing mechanical energy to the heated earth; so that the ratio of laser energy to mechanical energy is greater than about 2; and, in this manner the borehole is advanced
  • Furthermore, the methods may also include steps, conditions and parameters in which: the laser energy has a power of about 20 kW or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 50 W/cm2 or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 75 W/cm2 or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 100 W/cm2 or greater; the laser energy on the surface of the bottom of the borehole is about 200 W/cm2 or greater; the power/area of the laser energy on the surface of the bottom of the borehole is about 300 W/cm2 or greater; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and so that the borehole is advanced at a rate of penetration of at least about 10 feet per hour; the mechanical energy is provided by a bit having a weight-on-bit, so that the weight-on-bit is less than about 2000 pounds and so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and so that borehole is advances at a rate of penetration of at least about 10 feet per hour through material having an average hardness of about 20 ksi or greater; the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and so that the borehole is advanced at a rate of penetration of at least about 20 feet per hour through material having an average hardness of about 20 ksi or greater; and the borehole is advanced for greater than about 1,000 feet, greater than about 2,000 feet, and greater than then about 5,000 feet and greater than about 10,000 feet.
  • Moreover, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 30 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 240 to about 720, a WOB of less than about 2,000 lbs, a DE Power/Area of about 90 W/cm2 to about 560 W/cm2, and an ME Power/Area of about 4 W/cm2 to about 250 W/cm2; and in this manner the borehole is advanced at an ROP of at least about 10 ft/hr.
  • Further, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 30 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 600 to about 800, a WOB of less than about 5,000 lbs, a DE Power/Area of about 40 W/cm2 to about 250 W/cm2, and an ME Power/Area of about 200 W/cm2 to about 3000 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 15 ft/hr.
  • Additionally, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 600 to about 1250, a WOB of from about 500 to about 5,000 lbs, a DE Power/Area of about 90 W/cm2 to about 570 W/cm2, and an ME Power/Area of about 40 W/cm2 to about 270 W/cm2; and in this manner the borehole is advanced at an ROP of at least about 10.
  • Yet additionally, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of about 250, a WOB of from about 1,000 lbs, a DE Power/Area of about 370 W/cm2, and an ME Power/Area of about 40 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 20 ft/hr.
  • Yet still further, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method having the steps of: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 190 W/cm2, and an ME Power/Area of about 250 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 50 ft/hr.
  • Further still, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 370 W/cm2, and an ME Power/Area of about 250 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 50 ft/hr.
  • Still further, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 5,000 lbs, a DE Power/Area of about 290 W/cm2, and an ME Power/Area of about 240 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 20 ft/hr.
  • Moreover, there is provided a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, this method includes: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 1,200, a WOB of from about 500 lbs, a DE Power/Area of about 470 W/cm2, and an ME Power/Area of about 100 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 30 ft/hr.
  • Still further, a method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 470 W/cm2, and an ME Power/Area of about 250 W/cm2; and, in this manner the borehole is advanced at an ROP of at least about 30 ft/hr.
  • Furthermore, there is also provided a method of laser-mechanical drilling a borehole in a formation by: providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source; applying from the high power laser beam source a high power laser beam to a surface of the borehole, so that the high power laser beam generates an intensity ranging from about 150 to about 250 W/cm2 on a surface of the borehole for an elapsed time sufficient to cause a surface temperature rise in the range from about 400 degrees C. to about 1,000 degrees C. and thus forming a laser applied surface; and applying a mechanical force to the laser applied surface, so that the mechanical force generates an intensity ranging from about 30 to about 250 W/cm2 to remove the laser applied surface of the borehole.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of an embodiment of a fixed cutter laser-mechanical bit in accordance with the present invention.
  • FIG. 1B is a bottom view of the bit of FIG. 1A.
  • FIG. 1C is a cross section view of the bit of FIGS. 1A and 1B taken along line 1C-1C.
  • FIG. 2 is a schematic of an embodiment of a high power laser drilling, workover and completion unit in accordance with the present invention.
  • FIG. 3 is a chart showing various directed energy regimes.
  • FIG. 4 is schematic of chips of basalt.
  • FIG. 5 is a schematic of chips of dolomite.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present inventions relate to directed energy mechanical drilling methods that utilize high power directed energy in conjunction with mechanical forces. These methods may find uses in many different types of materials and structures, such as metal, stone, composites, concrete, the earth, and structures in the earth. In particular, these methods may find preferable uses in situations and environments where advancing a borehole with conventional, e.g., non-directed energy technology, was difficult or impossible, because, for example, the remoteness of the area where the borehole was to be advanced, difficult environmental conditions or other factors that placed great, and at times insurmountable burdens on conventional drilling or boring technologies. These methods also find preferable uses in situations where reduced noise and vibrations, compared to conventional technologies, are desirable or a requisite.
  • In general, the present methods involve the application of directed energy and mechanical forces to a surface, e.g., the bottom of a borehole, to remove material and advance the borehole. The directed energy and mechanical forces are preferably applied in a rotating or revolving manner, so that they are so moved about or on the surface to be drilled (i.e., the drilling surface), e.g., the bottom of a borehole. “Directed energy” would include, for example, optical laser energy, non-optical laser energy, microwaves, sound waves, plasma, electric arcs, flame, flame jets, steam and combinations of the foregoing, as well as, water jets (although a water jet may be viewed as having a mechanical interaction with the drilling surface, for the purpose of this specification it will be characterized amongst the group of directed energies, based upon the following specific definition of mechanical energy), and other forms of energy that are not “mechanical energy” as defined in these specifications. “Mechanical energy,” as used herein, is limited to energy that is transferred to the drilling surface by the interaction or contact of a solid object, e.g., a drill bit cutter, roller cone, or a saw blade, with the drilling surface.
  • These methods provide for the application of unique combinations of directed energy and mechanical force to obtain a synergism. This synergism enables these methods to advance boreholes through very hard materials, such as hard rocks and ultra hard rocks, with very low WOB, e.g., less than about 5,000 lbs, less than about 2000 lbs and preferably about 1000 lbs or less. This reduction in WOB has the potential benefit of providing for substantially longer drilling bit life, longer drilling times where the bit can remain in the borehole, and reduced tripping, which in turn has the potential to greatly reduce the cost of drilling a borehole. In addition to reducing WOB, in other processes, such as in a cutting application, the associated mechanical forces that are needed may similarly be greatly reduced.
  • In general, and using drilling a borehole in the earth as an illustrative example, as the bit is rotated in the bottom of the borehole, the directed energy is propagated at the bottom surface (and potentially side and gauge surfaces). The directed energy weakens (and may also partially remove, and remove) the material so contacted, i.e., directed energy affected material. The mechanical devices, e.g., cutters, then rotate in the borehole, contacting and removing the directed energy affected material (and potentially some additional material). However, it is preferable, as shown by the examples below, that the mechanical cutter, and the mechanical energy that it delivers, is only sufficient to remove the directed energy affected material. In this way the life of the cutters is preserved, damage is minimized, and the amount of heat built up from friction is controlled and preferably in some embodiments kept to a minimum.
  • Preferably, in these methods the source of directed energy is a high power laser beam. Thus, and more preferably the laser beam, or beams, may have 10 kW, 20 kW, 40 kW, 80 kW or more power; and have a wavelength in the range of from about 445 nm (nanometers) to about 2100 nm, preferably in the range of from about 800 to 1900 nm, and more preferably in the ranges of from about 1530 nm to 1600 nm, from about 1060 nm to 1080 nm, and from about 1800 nm to 1900 nm. Further, the types of laser beams and sources for providing a high power laser beam may be the devices, systems, optical fibers and beam shaping and delivery optics that are disclosed and taught in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication No. US 2010/0044102, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, and Ser. No. 61/493,174, the entire disclosures of each of which are incorporated herein by reference. The source for providing rotational movement may be a string of drill pipe rotated by a top drive or rotary table, a down hole mud motor, a down hole turbine, a down hole electric motor, and, in particular, may be the systems and devices disclosed in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044104, Publication No. US 2010/0044103, Ser. No. 12/896,021, Ser. No. 61/446,042 and Ser. No. 13/211,729, the entire disclosures of each of which are incorporated herein by reference. The high power lasers for example may be fiber lasers or semiconductor lasers having 10 kW, 20 kW, 50 kW or more power and, which emit laser beams with wavelengths preferably in about the 1064 nm range, about the 1070 nm range, about the 1360 nm range, about the 1455 nm range, about the 1550 nm range, about the 1070 nm range, about the 1083 nm range, or about the 1900 nm range (wavelengths in the range of 1900 nm may be provided by Thulium lasers). Thus, by way of example, there is contemplated the use of four, five, or six, 20 kW lasers to provide a laser beam in a bit having a power greater than about 60 kW, greater than about 70 kW, greater than about 80 kW, greater than about 90 kW and greater than about 100 kW. One laser may also be envisioned to provide these higher laser powers.
  • Preferably, the source of mechanical energy is a fixed cutter drill bit or roller cone used as part of a laser-mechanical bit. In general, the components of a laser mechanical bit may be made from materials that are known to those of skill in the art for such applications or components, or that are later developed for such applications. For example, the bit body may be made from steel, preferably a high-strength, weldable steel, such as SAE 9310, or cemented carbide matrix material. The blades may be made from similar types of material. The blades and the bit body may be made, for example by milling, from a single piece of metal, or they may be separately made and affixed together. The cutters may be made from for example, materials such as polycrystalline diamond compact (“PDC”), grit hotpressed inserts (“GHI”), and other materials known to the art or later developed by the art. Cutters are commercially available from for example US Synthetic, MegaDiamond, and Element 6. The roller cone arms may be made from steel, such as SAE 9310. Like the blades, the arms and the bit body may be made from a single piece of metal, or they may be made from separate pieces of metal and affixed together. Roller cone inserts, for example, may be made from sintered tungsten carbide insert (“TCI”) or the roller cones may be made with milled teeth (“MTs”). Roller cones, roller cone inserts, and roller cones and leg assemblies, may be obtained commercially from Varel International, while TCI may be obtained from for example Kennametal or ATI Firth Sterling. It is preferred that the inner surface of the beam path be made of material that does not absorb the laser energy, and thus, it is preferable that such surfaces be reflective or polished surfaces. It is also preferred that any surfaces of the bit that may be exposed to reflected laser energy, reflections, also be non-absorptive, minimally absorptive, and preferably be polished or made reflective of the laser beam.
  • An example of such a bit and system to provide the high power laser energy and mechanical energy are set forth in FIGS. 1A to C, and in FIG. 2.
  • In FIGS. 1A, 1B and 1C there is shown views of an embodiment of a fixed cutter type laser-mechanical bit. Thus, there is provided a laser-mechanical bit 100 having a body section 101 and a bottom section 102. The bottom section 102 has mechanical blades 103, 104, 105, 106, 107, 108, 109, and 110.
  • The bit body 101 may have a receiving slot for each mechanical blade. For example, in FIG. 1A receiving slots, 111, 112, 113, are 114 are identified. Note that with respect to blades, of the type shown as blades 108, 109 and 110, the receiving slots may be joined or partially joined, into a unitary opening. The bit body 101 has side surfaces or areas, e.g., 115 a, 115 b, 117 in which the blade receiving slots are formed. The bit body 101 has surfaces or areas, e.g., 116 a, 116 b for supporting gauge pads, e.g., 141. The bit body 101 further has surfaces 119 a, 119 b, 119 c, 119 d, that in this embodiment are substantially normal to the surfaces 115 a, 115 b, 116 a, 116 b, which surfaces 115 a, 115 b, have part of the blade receiving slots formed therein. The surface 119 a, 119 b, 119 c, 119 d are connected to surfaces 115 a, 115 b, 116 a, 116 b by angled surfaces or areas 118 a, 118 b, 118 c, 118 d.
  • The bit is further provided with beam blades, 120, 121, 122, 123. In this embodiment the beam blades are positioned along essentially the entirely of the width of the bit 100 and merge at the end 126 of beam path slot 125 into a unitary structure. The inner surfaces or sides of the beam blades form, in part, slot 125. The outer surfaces or sides of the beam blades also form a sidewall for the junk slots, e.g., 170. Thus, the beam blades are positioned in both the bit body section 101 and the bottom section 102. Other positions and configurations of the beam blades are contemplated. In the embodiment of FIGS. 1A and 1B the bottom of the beam blades is located at about the same level as the depth of cut limiters, e.g., 146, that are located on blades 103, 107, i.e. depth of cut blades, and slightly below the bottom of the cutters, e.g., 134. As used herein “bottom” refers to the section of the bit that is intended to engage or be closest to the bottom of a borehole, and top of the bit refers to the section furthers away from the bottom. The distance between the top and the bottom of the bit would be the bit length, or longitudinal dimension; and the width would be the dimension transverse to the length, e.g., the outside diameter of the bit, as used herein unless specified otherwise.
  • The longitudinal position of the bottom of the beam blades with respect to the cutters and any depth of cut limiters, e.g., the beam blades relative proximity to the bottom of the borehole, may be varied in each bit design and configuration and will depend upon factors such as the power of the laser beam, the type of rock or earth being drilled, the flow of and type of fluid used to keep the beam path clear of cuttings and debris. In general it is preferable that the longitudinal positioning of the bottoms of the beam blades, any depth of cut limiter blades and the cutter blades all be relatively close, as shown in FIG. 1A, although other positions and configurations are envisioned.
  • A beam path 124 is formed in the bit, and is bordered, in part, by the inner surfaces or sides of the beam blades 120, 121, 122, 123 and the inner ends of blades 103, 105, 107 and 109. In this embodiment the beam path extends through the center axis 161 of the bit and divides the bit into two separate sections, as more clearly seen in FIG. 1B. Thus, it is preferable that the structures and their configuration on one side of the beam path 124, be similar, and more preferably the same, as the structures on the other side of the beam path 124, which is the case for this embodiment. This positioning and configuration is preferred, although other positions and configurations are contemplated. The beam path 124 should be close to, but preferably not touch the beam blades or the beam blade inner surfaces. When using high power laser energy, and in particular laser energy greater than 5 kW, 10 kW, 20 kW, 40 kW, 80 kW and greater, if the beam path, and, in particular, the laser beam 160, which is propagated along the beam path, contacts a blade it will melt or otherwise remove that section of the blade in the beam path, and potentially damage the remaining section of the blade, bit, or other bit structure or component that is struck.
  • The beam path in this embodiment also serves as a fluid path for a fluid, such as air, nitrogen, or a transmissive, or substantially transmissive liquid to the laser beam. This fluid is used to keep the laser beam path clear and also to remove or help remove cuttings from the borehole. Configurations, systems and methods for providing and removing such fluids in laser drilling, and for keeping the beam path clear, as well as, the removal of cuttings from the borehole, during laser drilling are provided in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044102, Publication No. US 2010/0044103, Publication No. US 2010/0044104, Ser. No. 12/896,021, Ser. No. 13/211,729, Ser. No. 13/210,581 and Ser. No. 13/222,931, the entire disclosures of each of which are incorporated herein by reference.
  • The beam blades 120, 121, 122 and 123 form a beam path slot 125, which slot has ends, e.g., 126 a, 126 b. In this embodiment, although other configurations and positions are contemplated, the beam path slot 125 extends from the bottom section 102 partially into the bit body section 101. The beam path slot 125 may also have end sections 126 a, 126 b, these end sections 126 a, 126 b, are angled, such that they do not extend into the beam path. The beam pattern, e.g., the shape of the area of illumination by the laser upon the bottom of the borehole, or at any cross section of the beam as it is traveling toward the area to be cut, e.g., a borehole surface, when the bit is not in rotation, in this embodiment is preferably a narrow ellipse or rectangular type of pattern, and more preferably may be such a generally elliptical rectangular pattern where less energy or on laser energy is provided to center of pattern. (In FIG. 1B the laser beam 160 is shown as having a beam pattern that is substantially rectangular.) The beam path for this pattern expands from the optics, not shown, until it strikes the bottom of the borehole (see and compare, FIG. 1C showing a cross section of the laser beam 160 and the beam path 161, with FIG. 1B showing the bottom view of the laser beam pattern, and thus, the shape of the area of illumination of the bottom surface of the borehole by the laser beam when the beam is not rotating). It should additionally be noted that in this embodiment the beam path is such that the area of illumination of the bottom of the borehole surface is wider, i.e., a larger diameter, than the diameter of the bit, put about the same as the outer diameter of the gauge cutters. It is contemplated that the area of illumination may be equal to the bit diameter (excluding or including gauge cutters and/or gauge reamers as forming the outer diameter of the bit), substantially the same as the bit diameter (excluding or including gauge cutters and/or gauge reamers as forming the outer diameter of the bit), greater than the bit diameter (excluding or including gauge cutters and/or gauge reamers as forming the outer diameter of the bit). The bottom of the end section 126 also defines the end of the slot 125 with respect to the outer surface of the bit body. In this embodiment the end of the slot 125 is at about the same longitudinal position as the end of the blades, e.g., 127.
  • The slot, beam slot or beam path slot refers to the opening or openings, e.g., a slot, in the sides, or side walls, of the bit that permit the beam path and the laser beam to extend out of, or from the side of the bit, as illustrated, by way of example, in FIG. 1C.
  • In the embodiment of FIGS. 1A-C there are provided gauge cutters, 128, 129, 130, 131. The gauge cutters are located on blades 105, 106, 109 and 110. Blades 106 and 110 only support gauge cutters 128, 130. Blades 105, 109 support gauge cutters 131, 129, as well as, bottom cutters 132, 133, 134, 138, 139, 140, which cutters remove material from the bottom of the borehole, after it has been softened, or otherwise weakened, e.g., laser-affected material, by the laser beam 160. Depending upon the configuration and shape of the laser beam, the gauge cutters may also be removing laser-affected rock or material. Gauge pads, e.g., 141 are positioned in surfaces of the bit body, e.g., 116 a. In this embodiment gauge reamers 142, 143, 144, 145 are positioned in blades 104, 105 (and also similarly positioned in blades 108, 109 although not seen in FIG. 1A). Blades 103 and 107 have depth of cut limiters, e.g., 146. The blades, and in particular the blades having cutters, may have internal passages for cooling, e.g., vents or ports, such as, e.g., 147, 148, 149 (it being noted that the actual openings for vents 148, 149, are not seen in the view of FIG. 1A).
  • As best illustrated in FIG. 1B, the cutters are positioned with respect to each other, such that they each take a slightly different path along the bottom of the borehole, in this way each cutter is assisting in the removal of laser-affected rock, and preferably does not encounter any rock that has not first been affected by the laser. In this embodiment the distance of travel by a cutter before it contacts laser-affected rock is shown by arc 162. Arc 162 defines an angle between the laser beam path, and in this embodiment the laser beam, and the plane of the blade supporting the cutters. This angle, which may be referred to as the “beam path angle,” can be from about 90 degrees to about 140 degrees, about 100 degrees to about 130 degrees, and about 110 degrees to about 120 degrees. Beam path angles of less than 90 degrees may be employed, but are not preferred, as they tend to not give enough time for the heat deposited by the laser to affect the rock before the cutter reaches the area of laser affected rock. (Greater angles than 140 degrees may be employed, however, at greater angles space and strength of component issues can become significant, as the blades have very little space in which to be positioned.) Additionally, when multiple blades are used, each blade could have the same, substantially the same, or a different angle (although care should be taken when using different angles to make certain that the cutters and overall engagement with the borehole surface is properly balanced.) In the embodiment of FIG. 1B this angle, defined by arc 162, is 135 degrees.
  • This angle between the laser beam (and the beam path, since generally in a properly functioning bit they are coincident) and the cutter position has a relationship to, and can be varied and selected to, address and maximize, efficiency based upon several factors, including for example, the laser power that is delivered to the rock, the reflectivity and absorptivity of the rock to the laser beam, the rate and depth to which the laser beam's energy is transmitted into the rock, the thermal properties of the rock, the porosity of the rock, and the speed, i.e., RPM at which the bit is rotated. Thus, as the laser is fired, e.g., a laser beam is propagated, along its beam path from optics to the surface of the borehole, a certain amount of time will pass from when the laser first contacts a particular area of the surface of the borehole until the cutter revolves around and reaches that point. This time can be referred to as soak time. Depending upon the above factors, the soak time can be adjusted, and optimized to a certain extent by the selection of the cutter-laser beam angle.
  • The bit 100 has channels, e.g., junk slots, 170, 171 that provide a space between the bit 100 and the wall or side surface 150 of the borehole, for the passage of cuttings up the borehole. The relationship of the gauge cutters 129, 128, 131, 130 as well as other components of the bit 100 to the wall of the borehole 150 can been seen in FIG. 1B.
  • The blades that support the cutters, 104, 105, 106, 108, 109, 110, i.e., the cutter blades, in the embodiment of FIGS. 1A-C, are essentially right angle shaped. Thus, the bottom section of the blades, i.e., the lower end holding the cutters that engage the bottom and/or gauge of the borehole, and also the associated bottom of the cutters positioned in that end (e.g., cutters 134,133, 132,129), are along an essentially straight line that forms a right angle with the side section of the blades, i.e., the side end holding the cutters that engage the side and/or gauge of the borehole, and also the associated side of the cutters positioned in that end (e.g., cutters 142, 144, 129) form a right angle. This right angle configuration of all of the cutter blades, as shown in the embodiment of FIG. 1, is referred to as a flat bottom configuration, or a flat bottom laser-mechanical bit. Thus, the lower ends of the blades, as well as their associated cutters, are essentially co-planar and thus provided the flat bottom of the bottom section 102 of the bit 100. Accordingly, in laser mechanical-bits, having fixed cutters, it is preferable that the bottom of the bit, as primarily defined by the end of the cutter blades, and the position of the cutters in those ends, is essentially flat and more preferably flat, and as such will engage the borehole in an essentially even manner, and more preferably an even manner, and will in general provide a borehole with an essentially flat bottom and more preferably a flat bottom.
  • In the bit of FIG. 1 the cutters, e.g., 134, 133, 132, gauge cutters, e.g., 129, and gauge reamers, e.g., 144, 142, may be PDC; and the gauge pads, e.g., 141, may be carbide inserts, which provides for impact resistance, enhanced wear, as well as bit stability.
  • Further examples of laser-mechanical bits, beam paths, beam patterns including split beam patterns, hybrid-laser-mechanical bits, beam path angles and related processes and systems are disclosed and taught in the following U.S. patent applications Ser. No. 61/446,043 and co-filed patent application having attorney docket no. 13938/79 (Foro s13a), the entire disclosures of each of which are incorporated herein by reference.
  • Thus, in general, and by way of example, there is provided in FIG. 2 a high efficiency laser drilling system 1000 for creating a borehole 1001 in the earth 1002. FIG. 2 provides a cut away perspective view showing the surface of the earth 1030 and a cut away of the earth 1002 below the surface 1030. In general and by way of example, there is provided a source of electrical power 1003, which provides electrical power by cables 1004 and 1005 to a laser 1006 and a chiller 1007 for the laser 1006. The laser provides a laser beam, i.e., laser energy, that can be conveyed by a laser beam transmission means 1008 to a spool of tubing 1009. A source of fluid 1010 is provided. The fluid is conveyed by fluid conveyance means 1011 to the spool of tubing 1009.
  • The spool of tubing 1009, e.g., coiled tubing, composite tubing or other conveyance device, is rotated to advance and retract the tubing 1012. Preferred examples of such conveyance means are disclosed and taught in the following US patent applications and US Patent Application Publications: Publication No. US 2010/0044106, Publication No. US 2010/0044104, Publication No. US 2010/0044105, Publication No. US 2010/0044103, Publication No. US 2010/0215326, Publication No. 2012/0020631, Ser. No. 13/210,581, Ser. No. 13/366,882 and Ser. No. 13/211,729, the entire disclosures of each of which are incorporated herein by reference. Thus, the laser beam transmission means 1008 and the fluid conveyance means 1011 are attached to the spool of tubing 1009 by means of rotating coupling means 1013. The tubing 1012 contains a means to transmit the laser beam along the entire length of the tubing, i.e., “long distance high power laser beam transmission means,” to the bottom hole assembly, 1014. The tubing 1012 also contains a means to convey the fluid along the entire length of the tubing 1012 to the bottom hole assembly 1014.
  • Additionally, there is provided a support structure 1015, which holds an injector 1016, to facilitate movement of the tubing 1012 in the borehole 1001. Further other support structures may be employed, for example, such structures could be derrick, crane, mast, tripod, or other similar type of structure or hybrid and combinations of these. As the borehole is advance to greater depths from the surface 1030, the use of a diverter 1017, a blow out preventer (BOP) 1018, and a fluid and/or cutting handling system 1019 may become necessary. The tubing 1012 is passed from the injector 1016 through the diverter 1017, the BOP 1018, a wellhead 1020 and into the borehole 1001.
  • The fluid is conveyed to the bottom 1021 of the borehole 1001. At that point the fluid exits at or near the bottom hole assembly 1014 and is used, among other things, to carry the cuttings, which are created from advancing a borehole, back up and out of the borehole. Thus, the diverter 1017 directs the fluid as it returns carrying the cuttings to the fluid and/or cuttings handling system 1019 through connector 1022. This handling system 1019 is intended to prevent waste products from escaping into the environment and separates and cleans waste products and either vents the cleaned fluid to the air, if permissible environmentally and economically, as would be the case if the fluid was nitrogen, or returns the cleaned fluid to the source of fluid 1010, or otherwise contains the used fluid for later treatment and/or disposal.
  • The BOP 1018 serves to provide multiple levels of emergency shut off and/or containment of the borehole should a high-pressure event occur in the borehole, such as a potential blow-out of the well. The BOP is affixed to the wellhead 1020. The wellhead in turn may be attached to casing. For the purposes of simplification the structural components of a borehole such as casing, hangers, and cement are not shown. It is understood that these components may be used and will vary based upon the depth, type, and geology of the borehole, as well as, other factors.
  • The downhole end 1023 of the tubing 1012 is connected to the bottom hole assembly 1014. The bottom hole assembly 1014 contains optics for delivering the laser beam 1024 to its intended target, in the case of FIG. 1, the bottom 1021 of the borehole 1001. The bottom hole assembly 1014, for example, also contains means for delivering the fluid.
  • Thus, in general this system operates to create and/or advance a borehole by having the laser create laser energy in the form of a laser beam. The laser beam is then transmitted from the laser through the spool and into the tubing. At which point, the laser beam is then transmitted to the bottom hole assembly where it is directed toward the surfaces of the earth and/or borehole.
  • Without being bound by the following theory providing an explanation for the synergistic effects the present method obtains, and without being bound by the following theory of energy-rock interaction, physics and thermodynamics, the following theory is offered by way of illustration and to assist in the understanding of, and explanation for, the surprising and never before obtained results of these methods.
  • Thus, this process can be viewed as a hybrid thermal/mechanical process in which thermally-induced compressive stresses are generated in a thin skin of rock at the drilling surface. These thermally induced stresses create fractures parallel to the surface of the rock and give rise to rock removal from the borehole via chips of material. Mechanical cutter action is present primarily to ensure continuous removal of the fractured material, which in the presence of laser energy only might not be completely expelled from the surface. The physics of the process and experimental and theoretical results indicate that higher rates of penetration can be achieved by increases in laser power delivered to the drilling surface.
  • When laser power is absorbed by a rock, the response depends on both the intensity of the impinging laser power, as well as, the illumination time. As shown in the chart of FIG. 3, the material response can generally include several regimes, which may be generally classified as: an ultrafast regime 310, a heating regime 320, a melting regime 330, and a vaporization regime 340. Various processes may occur along these regimes, such as shock hardening 341, drilling 342, glazing 331, cutting 332, welding 333, cladding 334, stereo lithography 321, and transformation hardening 322. At laser intensities and times below the melting of rock, regime 340, lies the regime in which spallation or rock fragmentation occur, as shown in regime area 350. The spallation regime 350 is the preferred area in which it is presently believed that the greatest synergistic benefit for the tailored directed energy mechanical energy process may occur.
  • When laser power is absorbed by the rock, a thin layer of rock near the surface of the sample is rapidly heated. The thickness of the layer is determined both by the quantity of absorbed laser power, and the thermal properties of the rock. Rock is a naturally insulating material, which means that the propagation of heat into the rock is slow, and the heated region may by necessity be very near the surface. In an unconstrained rock sample, laser absorption would cause the heated region to expand in volume. However, in a drilling environment, the heated rock is constrained on all sides by the surrounding rock mass, and the result is a thermally induced stress state in the heated section that is compressive in nature.
  • When the magnitude of the thermally induced stress reaches a level comparable to the compressive strength of the rock, it induces fracture in the direction of the maximum compressive stress (i.e., parallel to the heated surface). Under sufficiently large stress, these fractures can extend to very long distances until they intersect with the surface, resulting in the formation of chips, in a process known as “spallation”. Turning to FIG. 4, these chips 401, 402, 403, 404 are characterized by a high aspect ratio, e.g., the lateral dimensions 1.48″ arrow 411, and 1.87″ arrow 412 are much greater than the thickness 0.140″ of chip 404. These chips, e.g., 401 of FIG. 4 are basalt. Similar characteristics of dolomite chips are shown in FIG. 5. Thus, chips 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, and 511 are characterized by a high aspect ratio, e.g., the lateral dimensions 1.06″ arrow 521, and 1.52″ arrow 522, are much greater than the thickness 0.182″ of chip 511.
  • However, spallation without a mechanical removal mechanism may be and at time has been shown to be an unreliable drilling solution. Not every rock type spalls (e.g., a spallable limestone is believed to have never been identified, for example), and macroscopic fractures in the rock mass can inhibit the spallation process. Although the generation of thermal stress and stress-induced fracture is likely a universal rock response, the explosive release of spalled chips is presently believed to be material specific.
  • The introduction of mechanical action to a primarily thermal process, then, can increase robustness in a synergistic manner by removing the thermally fractured and damaged material without relying on explosive spallation for rock removal. For a combined thermal/mechanical process, a laser represents an ideal directed energy source, as a high flux of energy can be delivered to the rock over a precisely controlled area designed to minimize heat loads on the mechanical cutters. In the preferred method of operation the role of the mechanical cutters is to provide a minimum amount of pressure sufficient to remove the damaged material; and so that they do not otherwise contribute substantially to the rate of material removal.
  • The surface temperature of the rock during the process may generally be around 250-650° C., which is the temperature rise sufficient to generate compressive stresses comparable to the strength of the rock; broader ranges are provide in the table of examples and may prove advantageous for various tailored drilling conditions and parameters, Under intense laser power, the surface temperature rise may be sufficient to melt rock directly under the laser beam. This melting would reduce or eliminate the thermal stresses responsible for laser processing, and is therefore preferably a condition to be avoided for this method of processing. Processes whereby the rock surface is melted allowed to cool and then scraped off are contemplated. Such processes do not rely upon a spallation regime and thus may have a broader application to different materials and in particular materials that do not exhibit spallation. Thus, this directed energy mechanical energy process is not material specific.
  • The methods provided herein can further be understood by the exemplary conditions and parameters set forth in the examples of Table 1. As used in the Table 1, the headings have the following meanings:
  • WOB: Weight on bit. Force applied by the bit. Units of pounds.
  • ROP: Rate of penetration. This is the speed of advancement of the drilling surface. Units of feet per hour.
  • RPM: Rotation speed of the bit in revolutions per minute.
  • Torque: the degree of twist applied by the bit. Units of foot-pounds.
  • Mechanical power: The power transmitted to the rock by the bit, given by the equation torque*RPM. Units of kilowatts.
  • Ratio of DE/ME: The ratio of directed energy or directed laser energy to mechanical energy is the delivered directed laser energy (DE) divided by the delivered mechanical energy (ME). Dimensionless number.
  • DE Power/Area: The directed energy laser power per unit of drilling surface area. Units are Watts per square centimeter.
  • ME Power/Area: The delivered mechanical energy power per unit of drilling surface area. Units are Watts per square centimeter.
  • TABLE 1
    Compressive Sonic Velocity Hole Diameter
    Example # Rock Type Strength (ksi) (m/s) Porosity (%) Laser Power (kW) RPM (inches) WOB
    1 Sandstone 35 4800 3.8% 5 120 3.25 200
    2 Sandstone 35 4800 3.8% 5 240 3.25 1000
    3 Sandstone 35 4800 3.8% 5 360 3.25 200
    4 Sandstone 35 4800 3.8% 5 720 3.25 2000
    5 Sandstone 35 4800 3.8% 10 120 3.25 200
    6 Sandstone 35 4800 3.8% 10 240 3.25 1000
    7 Sandstone 35 4800 3.8% 10 360 3.25 200
    8 Sandstone 35 4800 3.8% 10 720 3.25 2000
    9 Sandstone 35 4800 3.8% 10 1200 3.25 500
    10 Sandstone 35 4800 3.8% 15 120 3.25 200
    11 Sandstone 35 4800 3.8% 15 240 3.25 1000
    12 Sandstone 35 4800 3.8% 15 360 3.25 200
    13 Sandstone 35 4800 3.8% 15 720 3.25 2000
    14 Sandstone 35 4800 3.8% 15 1200 3.25 500
    15 Sandstone 35 4800 3.8% 20 120 3.25 200
    16 Sandstone 35 4800 3.8% 20 240 3.25 1000
    17 Sandstone 35 4800 3.8% 20 360 3.25 200
    18 Sandstone 35 4800 3.8% 20 720 3.25 2000
    19 Sandstone 35 4800 3.8% 20 1200 3.25 500
    20 Sandstone 35 4800 3.8% 25 240 3.25 1000
    21 Sandstone 35 4800 3.8% 25 360 3.25 200
    22 Sandstone 35 4800 3.8% 25 720 3.25 2000
    23 Sandstone 35 4800 3.8% 25 1200 3.25 500
    24 Sandstone 35 4800 3.8% 30 240 3.25 1000
    25 Sandstone 35 4800 3.8% 30 360 3.25 200
    26 Sandstone 35 4800 3.8% 30 720 3.25 2000
    27 Sandstone 35 4800 3.8% 30 1200 3.25 500
    28 Sandstone 35 4800 3.8% 10 240 6 1500
    29 Sandstone 35 4800 3.8% 10 360 6 3000
    30 Sandstone 35 4800 3.8% 10 720 6 2000
    31 Sandstone 35 4800 3.8% 10 1200 6 500
    32 Sandstone 35 4800 3.8% 20 120 6 500
    33 Sandstone 35 4800 3.8% 20 240 6 1500
    34 Sandstone 35 4800 3.8% 20 360 6 3000
    35 Sandstone 35 4800 3.8% 20 720 6 2000
    36 Sandstone 35 4800 3.8% 20 1200 6 500
    37 Sandstone 35 4800 3.8% 30 120 6 500
    38 Sandstone 35 4800 3.8% 30 240 6 1500
    39 Sandstone 35 4800 3.8% 30 360 6 3000
    40 Sandstone 35 4800 3.8% 30 720 6 2000
    41 Sandstone 35 4800 3.8% 30 1200 6 500
    42 Sandstone 35 4800 3.8% 40 120 6 500
    43 Sandstone 35 4800 3.8% 40 240 6 1500
    44 Sandstone 35 4800 3.8% 40 360 6 3000
    45 Sandstone 35 4800 3.8% 40 720 6 2000
    46 Sandstone 35 4800 3.8% 40 1200 6 500
    47 Sandstone 35 4800 3.8% 50 120 6 500
    48 Sandstone 35 4800 3.8% 50 240 6 1500
    49 Sandstone 35 4800 3.8% 50 360 6 3000
    50 Sandstone 35 4800 3.8% 50 720 6 2000
    51 Sandstone 35 4800 3.8% 50 1200 6 500
    52 Sandstone 35 4800 3.8% 60 240 6 1500
    53 Sandstone 35 4800 3.8% 60 360 6 3000
    54 Sandstone 35 4800 3.8% 60 720 6 2000
    55 Sandstone 35 4800 3.8% 60 1200 6 500
    56 Sandstone 35 4800 3.8% 70 240 6 1500
    57 Sandstone 35 4800 3.8% 70 360 6 3000
    58 Sandstone 35 4800 3.8% 70 720 6 2000
    59 Sandstone 35 4800 3.8% 70 1200 6 500
    60 Sandstone 35 4800 3.8% 80 360 6 3000
    61 Sandstone 35 4800 3.8% 80 720 6 2000
    62 Sandstone 35 4800 3.8% 80 1200 6 500
    63 Sandstone 35 4800 3.8% 15 240 8.5 2000
    64 Sandstone 35 4800 3.8% 15 360 8.5 3500
    65 Sandstone 35 4800 3.8% 15 720 8.5 5000
    66 Sandstone 35 4800 3.8% 15 1200 8.5 1000
    67 Sandstone 35 4800 3.8% 30 120 8.5 1000
    68 Sandstone 35 4800 3.8% 30 240 8.5 2000
    69 Sandstone 35 4800 3.8% 30 360 8.5 3500
    70 Sandstone 35 4800 3.8% 30 720 8.5 5000
    71 Sandstone 35 4800 3.8% 45 120 8.5 1000
    72 Sandstone 35 4800 3.8% 45 240 8.5 2000
    73 Sandstone 35 4800 3.8% 45 360 8.5 3500
    74 Sandstone 35 4800 3.8% 45 720 8.5 5000
    75 Sandstone 35 4800 3.8% 45 1200 8.5 1000
    76 Sandstone 35 4800 3.8% 60 120 8.5 1000
    77 Sandstone 35 4800 3.8% 60 240 8.5 2000
    78 Sandstone 35 4800 3.8% 60 360 8.5 3500
    79 Sandstone 35 4800 3.8% 60 720 8.5 5000
    80 Sandstone 35 4800 3.8% 60 1200 8.5 1000
    81 Sandstone 35 4800 3.8% 75 120 8.5 1000
    82 Sandstone 35 4800 3.8% 75 240 8.5 2000
    83 Sandstone 35 4800 3.8% 75 360 8.5 3500
    84 Sandstone 35 4800 3.8% 75 720 8.5 5000
    85 Sandstone 35 4800 3.8% 75 1200 8.5 1000
    86 Sandstone 35 4800 3.8% 90 120 8.5 1000
    87 Sandstone 35 4800 3.8% 90 240 8.5 2000
    88 Sandstone 35 4800 3.8% 90 360 8.5 3500
    89 Sandstone 35 4800 3.8% 90 720 8.5 5000
    90 Sandstone 35 4800 3.8% 90 1200 8.5 1000
    91 Sandstone 35 4800 3.8% 105 120 8.5 1000
    92 Sandstone 35 4800 3.8% 105 240 8.5 2000
    93 Sandstone 35 4800 3.8% 105 360 8.5 3500
    94 Sandstone 35 4800 3.8% 105 720 8.5 5000
    95 Sandstone 35 4800 3.8% 105 1200 8.5 1000
    96 Sandstone 35 4800 3.8% 120 240 8.5 2000
    97 Sandstone 35 4800 3.8% 120 360 8.5 3500
    98 Sandstone 35 4800 3.8% 120 720 8.5 5000
    99 Sandstone 35 4800 3.8% 120 1200 8.5 1000
    100 Dolomite 30 5400 3.2% 5 240 3.25 1000
    101 Dolomite 30 5400 3.2% 5 360 3.25 200
    102 Dolomite 30 5400 3.2% 5 720 3.25 2000
    103 Dolomite 30 5400 3.2% 10 120 3.25 200
    104 Dolomite 30 5400 3.2% 10 240 3.25 1000
    105 Dolomite 30 5400 3.2% 10 360 3.25 200
    106 Dolomite 30 5400 3.2% 10 720 3.25 2000
    107 Dolomite 30 5400 3.2% 10 1200 3.25 500
    108 Dolomite 30 5400 3.2% 15 120 3.25 200
    109 Dolomite 30 5400 3.2% 15 240 3.25 1000
    110 Dolomite 30 5400 3.2% 15 360 3.25 200
    111 Dolomite 30 5400 3.2% 15 720 3.25 2000
    112 Dolomite 30 5400 3.2% 15 1200 3.25 500
    113 Dolomite 30 5400 3.2% 20 120 3.25 200
    114 Dolomite 30 5400 3.2% 20 240 3.25 1000
    115 Dolomite 30 5400 3.2% 20 360 3.25 200
    116 Dolomite 30 5400 3.2% 20 720 3.25 2000
    117 Dolomite 30 5400 3.2% 20 1200 3.25 500
    118 Dolomite 30 5400 3.2% 25 120 3.25 200
    119 Dolomite 30 5400 3.2% 25 240 3.25 1000
    120 Dolomite 30 5400 3.2% 25 360 3.25 200
    121 Dolomite 30 5400 3.2% 25 720 3.25 2000
    122 Dolomite 30 5400 3.2% 25 1200 3.25 500
    123 Dolomite 30 5400 3.2% 30 120 3.25 200
    124 Dolomite 30 5400 3.2% 30 240 3.25 1000
    125 Dolomite 30 5400 3.2% 30 360 3.25 200
    126 Dolomite 30 5400 3.2% 30 720 3.25 2000
    127 Dolomite 30 5400 3.2% 30 1200 3.25 500
    128 Dolomite 30 5400 3.2% 10 240 6 1500
    129 Dolomite 30 5400 3.2% 10 360 6 3000
    130 Dolomite 30 5400 3.2% 10 720 6 2000
    131 Dolomite 30 5400 3.2% 10 1200 6 500
    132 Dolomite 30 5400 3.2% 20 120 6 500
    133 Dolomite 30 5400 3.2% 20 240 6 1500
    134 Dolomite 30 5400 3.2% 20 360 6 3000
    135 Dolomite 30 5400 3.2% 20 720 6 2000
    136 Dolomite 30 5400 3.2% 20 1200 6 500
    137 Dolomite 30 5400 3.2% 30 120 6 500
    138 Dolomite 30 5400 3.2% 30 240 6 1500
    139 Dolomite 30 5400 3.2% 30 360 6 3000
    140 Dolomite 30 5400 3.2% 30 720 6 2000
    141 Dolomite 30 5400 3.2% 30 1200 6 500
    142 Dolomite 30 5400 3.2% 40 120 6 500
    143 Dolomite 30 5400 3.2% 40 240 6 1500
    144 Dolomite 30 5400 3.2% 40 360 6 3000
    145 Dolomite 30 5400 3.2% 40 720 6 2000
    146 Dolomite 30 5400 3.2% 40 1200 6 500
    147 Dolomite 30 5400 3.2% 50 120 6 500
    148 Dolomite 30 5400 3.2% 50 240 6 1500
    149 Dolomite 30 5400 3.2% 50 360 6 3000
    150 Dolomite 30 5400 3.2% 50 720 6 2000
    151 Dolomite 30 5400 3.2% 50 1200 6 500
    152 Dolomite 30 5400 3.2% 60 120 6 500
    153 Dolomite 30 5400 3.2% 60 240 6 1500
    154 Dolomite 30 5400 3.2% 60 360 6 3000
    155 Dolomite 30 5400 3.2% 60 720 6 2000
    156 Dolomite 30 5400 3.2% 60 1200 6 500
    157 Dolomite 30 5400 3.2% 70 120 6 500
    158 Dolomite 30 5400 3.2% 70 240 6 1500
    159 Dolomite 30 5400 3.2% 70 360 6 3000
    160 Dolomite 30 5400 3.2% 70 720 6 2000
    161 Dolomite 30 5400 3.2% 70 1200 6 500
    162 Dolomite 30 5400 3.2% 80 120 6 500
    163 Dolomite 30 5400 3.2% 80 240 6 1500
    164 Dolomite 30 5400 3.2% 80 360 6 3000
    165 Dolomite 30 5400 3.2% 80 720 6 2000
    166 Dolomite 30 5400 3.2% 80 1200 6 500
    167 Dolomite 30 5400 3.2% 15 120 8.5 1000
    168 Dolomite 30 5400 3.2% 15 240 8.5 2000
    169 Dolomite 30 5400 3.2% 15 360 8.5 3500
    170 Dolomite 30 5400 3.2% 15 720 8.5 5000
    171 Dolomite 30 5400 3.2% 15 1200 8.5 1000
    172 Dolomite 30 5400 3.2% 30 120 8.5 1000
    173 Dolomite 30 5400 3.2% 30 240 8.5 2000
    174 Dolomite 30 5400 3.2% 30 360 8.5 3500
    175 Dolomite 30 5400 3.2% 30 720 8.5 5000
    176 Dolomite 30 5400 3.2% 45 120 8.5 1000
    177 Dolomite 30 5400 3.2% 45 240 8.5 2000
    178 Dolomite 30 5400 3.2% 45 360 8.5 3500
    179 Dolomite 30 5400 3.2% 45 720 8.5 5000
    180 Dolomite 30 5400 3.2% 60 120 8.5 1000
    181 Dolomite 30 5400 3.2% 60 240 8.5 2000
    182 Dolomite 30 5400 3.2% 60 360 8.5 3500
    183 Dolomite 30 5400 3.2% 60 720 8.5 5000
    184 Dolomite 30 5400 3.2% 75 120 8.5 1000
    185 Dolomite 30 5400 3.2% 75 240 8.5 2000
    186 Dolomite 30 5400 3.2% 75 360 8.5 3500
    187 Dolomite 30 5400 3.2% 75 720 8.5 5000
    188 Dolomite 30 5400 3.2% 75 1200 8.5 1000
    189 Dolomite 30 5400 3.2% 90 120 8.5 1000
    190 Dolomite 30 5400 3.2% 90 240 8.5 2000
    191 Dolomite 30 5400 3.2% 90 360 8.5 3500
    192 Dolomite 30 5400 3.2% 90 720 8.5 5000
    193 Dolomite 30 5400 3.2% 90 1200 8.5 1000
    194 Dolomite 30 5400 3.2% 105 120 8.5 1000
    195 Dolomite 30 5400 3.2% 105 240 8.5 2000
    196 Dolomite 30 5400 3.2% 105 360 8.5 3500
    197 Dolomite 30 5400 3.2% 105 720 8.5 5000
    198 Dolomite 30 5400 3.2% 105 1200 8.5 1000
    199 Dolomite 30 5400 3.2% 120 120 8.5 1000
    200 Dolomite 30 5400 3.2% 120 240 8.5 2000
    201 Dolomite 30 5400 3.2% 120 360 8.5 3500
    202 Dolomite 30 5400 3.2% 120 720 8.5 5000
    203 Dolomite 30 5400 3.2% 120 1200 8.5 1000
    204 Granite 20 4700 1.5% 5 240 3.25 1000
    205 Granite 20 4700 1.5% 5 360 3.25 200
    206 Granite 20 4700 1.5% 5 720 3.25 2000
    207 Granite 20 4700 1.5% 5 1200 3.25 500
    208 Granite 20 4700 1.5% 10 120 3.25 200
    209 Granite 20 4700 1.5% 10 240 3.25 1000
    210 Granite 20 4700 1.5% 10 360 3.25 200
    211 Granite 20 4700 1.5% 10 720 3.25 2000
    212 Granite 20 4700 1.5% 15 240 3.25 1000
    213 Granite 20 4700 1.5% 15 360 3.25 200
    214 Granite 20 4700 1.5% 15 720 3.25 2000
    215 Granite 20 4700 1.5% 20 720 3.25 2000
    216 Granite 20 4700 1.5% 25 720 3.25 2000
    217 Granite 20 4700 1.5% 25 1200 3.25 500
    218 Granite 20 4700 1.5% 30 720 3.25 2000
    219 Granite 20 4700 1.5% 30 1200 3.25 500
    220 Granite 20 4700 1.5% 10 120 6 500
    221 Granite 20 4700 1.5% 10 240 6 1500
    222 Granite 20 4700 1.5% 10 360 6 3000
    223 Granite 20 4700 1.5% 10 720 6 2000
    224 Granite 20 4700 1.5% 20 120 6 500
    225 Granite 20 4700 1.5% 20 240 6 1500
    226 Granite 20 4700 1.5% 20 360 6 3000
    227 Granite 20 4700 1.5% 20 720 6 2000
    228 Granite 20 4700 1.5% 20 1200 6 500
    229 Granite 20 4700 1.5% 30 240 6 1500
    230 Granite 20 4700 1.5% 30 360 6 3000
    231 Granite 20 4700 1.5% 30 720 6 2000
    232 Granite 20 4700 1.5% 30 1200 6 500
    233 Granite 20 4700 1.5% 40 240 6 1500
    234 Granite 20 4700 1.5% 40 360 6 3000
    235 Granite 20 4700 1.5% 40 720 6 2000
    236 Granite 20 4700 1.5% 40 1200 6 500
    237 Granite 20 4700 1.5% 50 360 6 3000
    238 Granite 20 4700 1.5% 50 720 6 2000
    239 Granite 20 4700 1.5% 50 1200 6 500
    240 Granite 20 4700 1.5% 60 720 6 2000
    241 Granite 20 4700 1.5% 60 1200 6 500
    242 Granite 20 4700 1.5% 70 720 6 2000
    243 Granite 20 4700 1.5% 70 1200 6 500
    244 Granite 20 4700 1.5% 80 1200 6 500
    245 Granite 20 4700 1.5% 15 120 8.5 1000
    246 Granite 20 4700 1.5% 15 240 8.5 2000
    247 Granite 20 4700 1.5% 15 360 8.5 3500
    248 Granite 20 4700 1.5% 15 720 8.5 5000
    249 Granite 20 4700 1.5% 30 120 8.5 1000
    250 Granite 20 4700 1.5% 30 240 8.5 2000
    251 Granite 20 4700 1.5% 30 360 8.5 3500
    252 Granite 20 4700 1.5% 30 720 8.5 5000
    253 Granite 20 4700 1.5% 30 1200 8.5 1000
    254 Granite 20 4700 1.5% 45 120 8.5 1000
    255 Granite 20 4700 1.5% 45 240 8.5 2000
    256 Granite 20 4700 1.5% 45 360 8.5 3500
    257 Granite 20 4700 1.5% 45 720 8.5 5000
    258 Granite 20 4700 1.5% 45 1200 8.5 1000
    259 Granite 20 4700 1.5% 60 240 8.5 2000
    260 Granite 20 4700 1.5% 60 360 8.5 3500
    261 Granite 20 4700 1.5% 60 720 8.5 5000
    262 Granite 20 4700 1.5% 75 240 8.5 2000
    263 Granite 20 4700 1.5% 75 360 8.5 3500
    264 Granite 20 4700 1.5% 75 720 8.5 5000
    265 Granite 20 4700 1.5% 90 360 8.5 3500
    266 Granite 20 4700 1.5% 90 720 8.5 5000
    267 Granite 20 4700 1.5% 105 720 8.5 5000
    268 Granite 20 4700 1.5% 120 720 8.5 5000
    269 Basalt 40 5100 2.1% 5 120 3.25 200
    270 Basalt 40 5100 2.1% 5 240 3.25 1000
    271 Basalt 40 5100 2.1% 5 360 3.25 200
    272 Basalt 40 5100 2.1% 5 720 3.25 2000
    273 Basalt 40 5100 2.1% 10 240 3.25 1000
    274 Basalt 40 5100 2.1% 10 360 3.25 200
    275 Basalt 40 5100 2.1% 10 720 3.25 2000
    276 Basalt 40 5100 2.1% 10 1200 3.25 500
    277 Basalt 40 5100 2.1% 15 720 3.25 2000
    278 Basalt 40 5100 2.1% 15 1200 3.25 500
    279 Basalt 40 5100 2.1% 20 720 3.25 2000
    280 Basalt 40 5100 2.1% 20 1200 3.25 500
    281 Basalt 40 5100 2.1% 10 240 6 1500
    282 Basalt 40 5100 2.1% 10 360 6 3000
    283 Basalt 40 5100 2.1% 10 720 6 2000
    284 Basalt 40 5100 2.1% 10 1200 6 500
    285 Basalt 40 5100 2.1% 20 240 6 1500
    286 Basalt 40 5100 2.1% 20 360 6 3000
    287 Basalt 40 5100 2.1% 20 720 6 2000
    288 Basalt 40 5100 2.1% 20 1200 6 500
    289 Basalt 40 5100 2.1% 30 360 6 3000
    290 Basalt 40 5100 2.1% 30 720 6 2000
    291 Basalt 40 5100 2.1% 30 1200 6 500
    292 Basalt 40 5100 2.1% 40 720 6 2000
    293 Basalt 40 5100 2.1% 40 1200 6 500
    294 Basalt 40 5100 2.1% 50 1200 6 500
    295 Basalt 40 5100 2.1% 15 120 8.5 1000
    296 Basalt 40 5100 2.1% 15 240 8.5 2000
    297 Basalt 40 5100 2.1% 15 360 8.5 3500
    298 Basalt 40 5100 2.1% 15 720 8.5 5000
    299 Basalt 40 5100 2.1% 15 1200 8.5 1000
    300 Basalt 40 5100 2.1% 30 120 8.5 1000
    301 Basalt 40 5100 2.1% 30 240 8.5 2000
    302 Basalt 40 5100 2.1% 30 360 8.5 3500
    303 Basalt 40 5100 2.1% 30 720 8.5 5000
    304 Basalt 40 5100 2.1% 45 240 8.5 2000
    305 Basalt 40 5100 2.1% 45 360 8.5 3500
    306 Basalt 40 5100 2.1% 45 720 8.5 5000
    307 Basalt 40 5100 2.1% 45 1200 8.5 1000
    308 Basalt 40 5100 2.1% 60 360 8.5 3500
    309 Basalt 40 5100 2.1% 60 720 8.5 5000
    310 Basalt 40 5100 2.1% 60 1200 8.5 1000
    311 Basalt 40 5100 2.1% 75 720 8.5 5000
    312 Basalt 40 5100 2.1% 75 1200 8.5 1000
    313 Basalt 40 5100 2.1% 90 720 8.5 5000
    314 Basalt 40 5100 2.1% 90 1200 8.5 1000
    315 Basalt 40 5100 2.1% 105 1200 8.5 1000
    Surface
    Temp. Mechanical DE Power/Area ME Power/Area
    Example # ROP (ft/hr) Rise (DegC.) Torque (ft-lbs) Power (kW) Ratio of DE/ME (W/cm{circumflex over ( )}2) (W/cm{circumflex over ( )}2)
    1 5.5 434 13.1 0.22 22.3 93.4 4.2
    2 6.6 341 65.7 2.24 2.2 93.4 41.8
    3 5.7 341 13.1 0.67 7.4 93.4 12.6
    4 15.9 170 131.4 13.44 0.4 93.4 251.0
    5 10.6 651 13.1 0.22 44.7 186.8 4.2
    6 12.4 504 65.7 2.24 4.5 186.8 41.8
    7 11.7 467 13.1 0.67 14.9 186.8 12.6
    8 19.4 308 131.4 13.44 0.7 186.8 251.0
    9 13.1 338 32.9 5.60 1.8 186.8 104.6
    10 14.5 866 13.1 0.22 67.0 280.3 4.2
    11 17.1 660 65.7 2.24 6.7 280.3 41.8
    12 16.8 592 13.1 0.67 22.3 280.3 12.6
    13 24.4 416 131.4 13.44 1.1 280.3 251.0
    14 19.2 410 32.9 5.60 2.7 280.3 104.6
    15 17.5 1081 13.1 0.22 89.3 373.7 4.2
    16 20.9 814 65.7 2.24 8.9 373.7 41.8
    17 21.2 717 13.1 0.67 29.8 373.7 12.6
    18 29.1 514 131.4 13.44 1.5 373.7 251.0
    19 24.9 481 32.9 5.60 3.6 373.7 104.6
    20 24.0 968 65.7 2.24 11.2 467.1 41.8
    21 24.9 841 13.1 0.67 37.2 467.1 12.6
    22 33.4 608 131.4 13.44 1.9 467.1 251.0
    23 30.0 550 32.9 5.60 4.5 467.1 104.6
    24 26.6 1121 65.7 2.24 13.4 560.5 41.8
    25 28.1 965 13.1 0.67 44.7 560.5 12.6
    26 37.2 700 131.4 13.44 2.2 560.5 251.0
    27 34.8 619 32.9 5.60 5.4 560.5 104.6
    28 3.7 311 182.0 6.20 1.6 54.8 34.0
    29 6.5 217 364.0 18.60 0.5 54.8 102.0
    30 5.6 204 242.6 24.80 0.4 54.8 136.0
    31 3.4 257 60.7 10.34 1.0 54.8 56.7
    32 6.6 575 60.7 1.03 19.4 109.6 5.7
    33 7.4 451 182.0 6.20 3.2 109.6 34.0
    34 9.7 362 364.0 18.60 1.1 109.6 102.0
    35 9.2 312 242.6 24.80 0.8 109.6 136.0
    36 7.2 322 60.7 10.34 1.9 109.6 56.7
    37 9.6 754 60.7 1.03 29.0 164.5 5.7
    38 10.8 582 182.0 6.20 4.8 164.5 34.0
    39 13.1 480 364.0 18.60 1.6 164.5 102.0
    40 12.9 398 242.6 24.80 1.2 164.5 136.0
    41 11.0 381 60.7 10.34 2.9 164.5 56.7
    42 12.2 933 60.7 1.03 38.7 219.3 5.7
    43 13.8 711 182.0 6.20 6.5 219.3 34.0
    44 16.3 591 364.0 18.60 2.2 219.3 102.0
    45 16.4 478 242.6 24.80 1.6 219.3 136.0
    46 14.6 439 60.7 10.34 3.9 219.3 56.7
    47 14.3 1112 60.7 1.03 48.4 274.1 5.7
    48 16.5 839 182.0 6.20 8.1 274.1 34.0
    49 19.2 699 364.0 18.60 2.7 274.1 102.0
    50 19.8 555 242.6 24.80 2.0 274.1 136.0
    51 18.1 497 60.7 10.34 4.8 274.1 56.7
    52 18.9 966 182.0 6.20 9.7 328.9 34.0
    53 21.8 805 364.0 18.60 3.2 328.9 102.0
    54 22.9 630 242.6 24.80 2.4 328.9 136.0
    55 21.5 554 60.7 10.34 5.8 328.9 56.7
    56 21.0 1093 182.0 6.20 11.3 383.7 34.0
    57 24.2 910 364.0 18.60 3.8 383.7 102.0
    58 25.8 705 242.6 24.80 2.8 383.7 136.0
    59 24.7 611 60.7 10.34 6.8 383.7 56.7
    60 26.3 1015 364.0 18.60 4.3 438.6 102.0
    61 28.5 780 242.6 24.80 3.2 438.6 136.0
    62 27.8 668 60.7 10.34 7.7 438.6 56.7
    63 2.7 274 343.8 11.71 1.3 41.0 32.0
    64 4.5 195 601.6 30.75 0.5 41.0 84.0
    65 14.6 94 859.4 87.85 0.2 41.0 240.0
    66 2.6 224 171.9 29.28 0.5 41.0 80.0
    67 4.9 481 171.9 2.93 10.2 81.9 8.0
    68 5.5 385 343.8 11.71 2.6 81.9 32.0
    69 7.0 313 601.6 30.75 1.0 81.9 84.0
    70 14.5 188 859.4 87.85 0.3 81.9 240.0
    71 7.4 616 171.9 2.93 15.4 122.9 8.0
    72 8.2 485 343.8 11.71 3.8 122.9 32.0
    73 9.7 405 601.6 30.75 1.5 122.9 84.0
    74 15.5 274 859.4 87.85 0.5 122.9 240.0
    75 8.4 330 171.9 29.28 1.5 122.9 80.0
    76 9.6 750 171.9 2.93 20.5 163.9 8.0
    77 10.7 582 343.8 11.71 5.1 163.9 32.0
    78 12.3 490 601.6 30.75 2.0 163.9 84.0
    79 17.4 349 859.4 87.85 0.7 163.9 240.0
    80 11.2 375 171.9 29.28 2.0 163.9 80.0
    81 11.6 884 171.9 2.93 25.6 204.9 8.0
    82 13.0 678 343.8 11.71 6.4 204.9 32.0
    83 14.7 572 601.6 30.75 2.4 204.9 84.0
    84 19.6 416 859.4 87.85 0.9 204.9 240.0
    85 14.0 419 171.9 29.28 2.6 204.9 80.0
    86 13.3 1018 171.9 2.93 30.7 245.8 8.0
    87 15.1 774 343.8 11.71 7.7 245.8 32.0
    88 17.0 652 601.6 30.75 2.9 245.8 84.0
    89 21.9 479 859.4 87.85 1.0 245.8 240.0
    90 16.7 463 171.9 29.28 3.1 245.8 80.0
    91 14.9 1152 171.9 2.93 35.9 286.8 8.0
    92 17.0 869 343.8 11.71 9.0 286.8 32.0
    93 19.1 731 601.6 30.75 3.4 286.8 84.0
    94 24.2 539 859.4 87.85 1.2 286.8 240.0
    95 19.3 506 171.9 29.28 3.6 286.8 80.0
    96 18.8 964 343.8 11.71 10.2 327.8 32.0
    97 21.1 810 601.6 30.75 3.9 327.8 84.0
    98 26.3 598 859.4 87.85 1.4 327.8 240.0
    99 21.8 549 171.9 29.28 4.1 327.8 80.0
    100 5.1 207 65.7 2.24 2.2 93.4 41.8
    101 4.1 218 13.1 0.67 7.4 93.4 12.6
    102 21.7 79 131.4 13.44 0.4 93.4 251.0
    103 7.7 406 13.1 0.22 44.7 186.8 4.2
    104 9.2 310 65.7 2.24 4.5 186.8 41.8
    105 8.3 295 13.1 0.67 14.9 186.8 12.6
    106 21.6 159 131.4 13.44 0.7 186.8 251.0
    107 9.7 211 32.9 5.60 1.8 186.8 104.6
    108 10.6 536 13.1 0.22 67.0 280.3 4.2
    109 12.7 406 65.7 2.24 6.7 280.3 41.8
    110 12.1 371 13.1 0.67 22.3 280.3 12.6
    111 22.9 232 131.4 13.44 1.1 280.3 251.0
    112 14.1 256 32.9 5.60 2.7 280.3 104.6
    113 12.9 666 13.1 0.22 89.3 373.7 4.2
    114 15.6 500 65.7 2.24 8.9 373.7 41.8
    115 15.4 446 13.1 0.67 29.8 373.7 12.6
    116 25.4 298 131.4 13.44 1.5 373.7 251.0
    117 18.3 300 32.9 5.60 3.6 373.7 104.6
    118 14.7 796 13.1 0.22 111.6 467.1 4.2
    119 18.0 593 65.7 2.24 11.2 467.1 41.8
    120 18.2 521 13.1 0.67 37.2 467.1 12.6
    121 28.0 358 131.4 13.44 1.9 467.1 251.0
    122 22.1 342 32.9 5.60 4.5 467.1 104.6
    123 16.2 926 13.1 0.22 134.0 560.5 4.2
    124 20.0 686 65.7 2.24 13.4 560.5 41.8
    125 20.7 596 13.1 0.67 44.7 560.5 12.6
    126 30.5 416 131.4 13.44 2.2 560.5 251.0
    127 25.6 384 32.9 5.60 5.4 560.5 104.6
    128 2.9 187 182.0 6.20 1.6 54.8 34.0
    129 8.2 106 364.0 18.60 0.5 54.8 102.0
    130 6.4 100 242.6 24.80 0.4 54.8 136.0
    131 2.5 161 60.7 10.34 1.0 54.8 56.7
    132 4.7 359 60.7 1.03 19.4 109.6 5.7
    133 5.5 278 182.0 6.20 3.2 109.6 34.0
    134 9.0 203 364.0 18.60 1.1 109.6 102.0
    135 8.0 179 242.6 24.80 0.8 109.6 136.0
    136 5.2 203 60.7 10.34 1.9 109.6 56.7
    137 6.9 468 60.7 1.03 29.0 164.5 5.7
    138 8.0 359 182.0 6.20 4.8 164.5 34.0
    139 11.0 282 364.0 18.60 1.6 164.5 102.0
    140 10.4 237 242.6 24.80 1.2 164.5 136.0
    141 7.9 240 60.7 10.34 2.9 164.5 56.7
    142 8.8 577 60.7 1.03 38.7 219.3 5.7
    143 10.2 438 182.0 6.20 6.5 219.3 34.0
    144 13.1 353 364.0 18.60 2.2 219.3 102.0
    145 12.9 288 242.6 24.80 1.6 219.3 136.0
    146 10.5 276 60.7 10.34 3.9 219.3 56.7
    147 10.5 685 60.7 1.03 48.4 274.1 5.7
    148 12.2 516 182.0 6.20 8.1 274.1 34.0
    149 15.2 420 364.0 18.60 2.7 274.1 102.0
    150 15.3 337 242.6 24.80 2.0 274.1 136.0
    151 13.1 311 60.7 10.34 4.8 274.1 56.7
    152 11.9 792 60.7 1.03 58.1 328.9 5.7
    153 14.0 593 182.0 6.20 9.7 328.9 34.0
    154 17.0 486 364.0 18.60 3.2 328.9 102.0
    155 17.5 384 242.6 24.80 2.4 328.9 136.0
    156 15.5 346 60.7 10.34 5.8 328.9 56.7
    157 13.1 900 60.7 1.03 67.7 383.7 5.7
    158 15.6 670 182.0 6.20 11.3 383.7 34.0
    159 18.8 551 364.0 18.60 3.8 383.7 102.0
    160 19.6 430 242.6 24.80 2.8 383.7 136.0
    161 17.9 381 60.7 10.34 6.8 383.7 56.7
    162 14.2 1008 60.7 1.03 77.4 438.6 5.7
    163 17.1 747 182.0 6.20 12.9 438.6 34.0
    164 20.3 615 364.0 18.60 4.3 438.6 102.0
    165 21.6 476 242.6 24.80 3.2 438.6 136.0
    166 20.1 415 60.7 10.34 7.7 438.6 56.7
    167 1.5 215 171.9 2.93 5.1 41.0 8.0
    168 2.2 162 343.8 11.71 1.3 41.0 32.0
    169 5.5 94 601.6 30.75 0.5 41.0 84.0
    170 19.7 46 859.4 87.85 0.2 41.0 240.0
    171 2.1 133 171.9 29.28 0.5 41.0 80.0
    172 3.5 301 171.9 2.93 10.2 81.9 8.0
    173 4.1 236 343.8 11.71 2.6 81.9 32.0
    174 6.3 176 601.6 30.75 1.0 81.9 84.0
    175 19.8 92 859.4 87.85 0.3 81.9 240.0
    176 5.3 384 171.9 2.93 15.4 122.9 8.0
    177 6.1 299 343.8 11.71 3.8 122.9 32.0
    178 8.0 239 601.6 30.75 1.5 122.9 84.0
    179 19.7 138 859.4 87.85 0.5 122.9 240.0
    180 7.0 465 171.9 2.93 20.5 163.9 8.0
    181 7.9 359 343.8 11.71 5.1 163.9 32.0
    182 9.8 294 601.6 30.75 2.0 163.9 84.0
    183 19.7 183 859.4 87.85 0.7 163.9 240.0
    184 8.4 546 171.9 2.93 25.6 204.9 8.0
    185 9.6 418 343.8 11.71 6.4 204.9 32.0
    186 11.5 345 601.6 30.75 2.4 204.9 84.0
    187 20.1 228 859.4 87.85 0.9 204.9 240.0
    188 10.2 262 171.9 29.28 2.6 204.9 80.0
    189 9.7 627 171.9 2.93 30.7 245.8 8.0
    190 11.2 476 343.8 11.71 7.7 245.8 32.0
    191 13.2 395 601.6 30.75 2.9 245.8 84.0
    192 20.9 270 859.4 87.85 1.0 245.8 240.0
    193 12.1 289 171.9 29.28 3.1 245.8 80.0
    194 10.9 708 171.9 2.93 35.9 286.8 8.0
    195 12.6 534 343.8 11.71 9.0 286.8 32.0
    196 14.7 444 601.6 30.75 3.4 286.8 84.0
    197 21.9 310 859.4 87.85 1.2 286.8 240.0
    198 14.0 316 171.9 29.28 3.6 286.8 80.0
    199 11.9 789 171.9 2.93 41.0 327.8 8.0
    200 13.9 592 343.8 11.71 10.2 327.8 32.0
    201 16.1 493 601.6 30.75 3.9 327.8 84.0
    202 23.1 348 859.4 87.85 1.4 327.8 240.0
    203 15.8 342 171.9 29.28 4.1 327.8 80.0
    204 7.3 481 65.7 2.24 2.2 93.4 41.8
    205 5.2 507 13.1 0.67 7.4 93.4 12.6
    206 47.9 177 131.4 13.44 0.4 93.4 251.0
    207 7.4 331 32.9 5.60 0.9 93.4 104.6
    208 8.7 1097 13.1 0.22 44.7 186.8 4.2
    209 11.5 800 65.7 2.24 4.5 186.8 41.8
    210 10.2 748 13.1 0.67 14.9 186.8 12.6
    211 48.4 354 131.4 13.44 0.7 186.8 251.0
    212 14.7 1099 65.7 2.24 6.7 280.3 41.8
    213 14.0 985 13.1 0.67 22.3 280.3 12.6
    214 48.7 530 131.4 13.44 1.1 280.3 251.0
    215 48.8 706 131.4 13.44 1.5 373.7 251.0
    216 48.8 883 131.4 13.44 1.9 467.1 251.0
    217 26.2 898 32.9 5.60 4.5 467.1 104.6
    218 48.7 1060 131.4 13.44 2.2 560.5 251.0
    219 29.5 1030 32.9 5.60 5.4 560.5 104.6
    220 2.8 606 60.7 1.03 9.7 54.8 5.7
    221 4.4 423 182.0 6.20 1.6 54.8 34.0
    222 18.5 232 364.0 18.60 0.5 54.8 102.0
    223 14.3 197 242.6 24.80 0.4 54.8 136.0
    224 5.7 951 60.7 1.03 19.4 109.6 5.7
    225 7.4 701 182.0 6.20 3.2 109.6 34.0
    226 18.4 464 364.0 18.60 1.1 109.6 102.0
    227 14.4 393 242.6 24.80 0.8 109.6 136.0
    228 7.0 465 60.7 10.34 1.9 109.6 56.7
    229 10.0 953 182.0 6.20 4.8 164.5 34.0
    230 18.5 695 364.0 18.60 1.6 164.5 102.0
    231 15.9 570 242.6 24.80 1.2 164.5 136.0
    232 10.3 580 60.7 10.34 2.9 164.5 56.7
    233 12.2 1199 182.0 6.20 6.5 219.3 34.0
    234 19.2 917 364.0 18.60 2.2 219.3 102.0
    235 18.1 730 242.6 24.80 1.6 219.3 136.0
    236 13.4 692 60.7 10.34 3.9 219.3 56.7
    237 20.4 1130 364.0 18.60 2.7 274.1 102.0
    238 20.3 882 242.6 24.80 2.0 274.1 136.0
    239 16.3 801 60.7 10.34 4.8 274.1 56.7
    240 22.3 1029 242.6 24.80 2.4 328.9 136.0
    241 19.0 910 60.7 10.34 5.8 328.9 56.7
    242 24.2 1173 242.6 24.80 2.8 383.7 136.0
    243 21.5 1019 60.7 10.34 6.8 383.7 56.7
    244 23.8 1127 60.7 10.34 7.7 438.6 56.7
    245 2.1 503 171.9 2.93 5.1 41.0 8.0
    246 3.5 347 343.8 11.71 1.3 41.0 32.0
    247 12.6 193 601.6 30.75 0.5 41.0 84.0
    248 43.5 110 859.4 87.85 0.2 41.0 240.0
    249 4.5 770 171.9 2.93 10.2 81.9 8.0
    250 5.7 573 343.8 11.71 2.6 81.9 32.0
    251 12.5 387 601.6 30.75 1.0 81.9 84.0
    252 43.9 219 859.4 87.85 0.3 81.9 240.0
    253 5.8 381 171.9 29.28 1.0 81.9 80.0
    254 6.5 1028 171.9 2.93 15.4 122.9 8.0
    255 7.9 767 343.8 11.71 3.8 122.9 32.0
    256 13.0 573 601.6 30.75 1.5 122.9 84.0
    257 44.1 328 859.4 87.85 0.5 122.9 240.0
    258 8.4 477 171.9 29.28 1.5 122.9 80.0
    259 9.9 955 343.8 11.71 5.1 163.9 32.0
    260 14.2 744 601.6 30.75 2.0 163.9 84.0
    261 44.3 437 859.4 87.85 0.7 163.9 240.0
    262 11.6 1138 343.8 11.71 6.4 204.9 32.0
    263 15.6 906 601.6 30.75 2.4 204.9 84.0
    264 44.5 546 859.4 87.85 0.9 204.9 240.0
    265 17.0 1062 601.6 30.75 2.9 245.8 84.0
    266 44.6 655 859.4 87.85 1.0 245.8 240.0
    267 44.6 764 859.4 87.85 1.2 286.8 240.0
    268 44.6 874 859.4 87.85 1.4 327.8 240.0
    269 4.0 1122 13.1 0.22 22.3 93.4 4.2
    270 4.8 868 65.7 2.24 2.2 93.4 41.8
    271 4.2 849 13.1 0.67 7.4 93.4 12.6
    272 12.1 432 131.4 13.44 0.4 93.4 251.0
    273 8.8 1339 65.7 2.24 4.5 186.8 41.8
    274 8.4 1219 13.1 0.67 14.9 186.8 12.6
    275 14.3 803 131.4 13.44 0.7 186.8 251.0
    276 9.7 851 32.9 5.60 1.8 186.8 104.6
    277 17.6 1107 131.4 13.44 1.1 280.3 251.0
    278 14.1 1061 32.9 5.60 2.7 280.3 104.6
    279 20.6 1388 131.4 13.44 1.5 373.7 251.0
    280 17.9 1265 32.9 5.60 3.6 373.7 104.6
    281 2.7 782 182.0 6.20 1.6 54.8 34.0
    282 4.9 549 364.0 18.60 0.5 54.8 102.0
    283 4.2 501 242.6 24.80 0.4 54.8 136.0
    284 2.4 613 60.7 10.34 1.0 54.8 56.7
    285 5.4 1185 182.0 6.20 3.2 109.6 34.0
    286 7.1 949 364.0 18.60 1.1 109.6 102.0
    287 6.8 798 242.6 24.80 0.8 109.6 136.0
    288 5.3 798 60.7 10.34 1.9 109.6 56.7
    289 9.5 1286 364.0 18.60 1.6 164.5 102.0
    290 9.5 1041 242.6 24.80 1.2 164.5 136.0
    291 8.1 971 60.7 10.34 2.9 164.5 56.7
    292 12.0 1270 242.6 24.80 1.6 219.3 136.0
    293 10.8 1141 60.7 10.34 3.9 219.3 56.7
    294 13.3 1309 60.7 10.34 4.8 274.1 56.7
    295 1.5 856 171.9 2.93 5.1 41.0 8.0
    296 1.9 674 343.8 11.71 1.3 41.0 32.0
    297 3.4 482 601.6 30.75 0.5 41.0 84.0
    298 11.1 244 859.4 87.85 0.2 41.0 240.0
    299 1.9 527 171.9 29.28 0.5 41.0 80.0
    300 3.5 1262 171.9 2.93 10.2 81.9 8.0
    301 4.0 991 343.8 11.71 2.6 81.9 32.0
    302 5.1 805 601.6 30.75 1.0 81.9 84.0
    303 11.1 488 859.4 87.85 0.3 81.9 240.0
    304 5.9 1282 343.8 11.71 3.8 122.9 32.0
    305 7.1 1065 601.6 30.75 1.5 122.9 84.0
    306 11.7 719 859.4 87.85 0.5 122.9 240.0
    307 6.2 826 171.9 29.28 1.5 122.9 80.0
    308 8.9 1309 601.6 30.75 2.0 163.9 84.0
    309 12.9 924 859.4 87.85 0.7 163.9 240.0
    310 8.3 957 171.9 29.28 2.0 163.9 80.0
    311 14.4 1112 859.4 87.85 0.9 204.9 240.0
    312 10.3 1086 171.9 29.28 2.6 204.9 80.0
    313 15.9 1292 859.4 87.85 1.0 245.8 240.0
    314 12.2 1213 171.9 29.28 3.1 245.8 80.0
    315 14.1 1339 171.9 29.28 3.6 286.8 80.0
  • In these examples of drilling conditions and parameters, the laser power is to be delivered to the rock surface. The examples are for use with air as the fluid for drilling, and may be utilized with, by way of example, the bits and systems that are described in FIGS. 1A-C and 2 of this specification and with the bits and systems disclosed and taught in U.S. patent applications Ser. No. 61/446,043 and co-filed patent application having attorney docket no. 13938/79 (Foro s13a).
  • Thus, from the forgoing examples, which provide various illustrative laser-mechanical drilling conditions and parameters, there is contemplated generally, and by way of further example, a method of laser-mechanical drilling a borehole in a formation having at least 500 feet, at least about 1,000 ft, at least about 5,000 and at least about 10,000 feet of material having a hardness greater than about 15 ksi, greater than about 20 ksi, greater than about 30 ksi, and greater than about 40 ksi and at drilling rates, e.g., ROP, of at least about 10 ft/hr, at least about 20 ft/hr, at least about 30 ft/hr and at least about 40 ft/hr. Such methods in generally would include, by way of example, drilling under the following conditions and parameters: (i) an RPM of from about 240 to about 720, a WOB of less than about 2,000 lbs, a DE Power/Area of about 90 W/cm2 to about 560 W/cm2, and an ME Power/Area of about 4 W/cm2 to about 250 W/cm2; (ii) an RPM of from about 600 to about 800, a WOB of less than about 5,000 lbs, a DE Power/Area of about 40 W/cm2 to about 250 W/cm2, and an ME Power/Area of about 200 W/cm2 to about 3000 W/cm2; (iii) an RPM of from about 600 to about 1250, a WOB of from about 500 to about 5,000 lbs, a DE Power/Area of about 90 W/cm2 to about 570 W/cm2, and an ME Power/Area of about 40 W/cm2 to about 270 W/cm2; (iv) an RPM of about 250, a WOB of from about 1,000 lbs, a DE Power/Area of about 370 W/cm2, and an ME Power/Area of about 40 W/cm2; (v) an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 190 W/cm2, and an ME Power/Area of about 250 W/cm2; (vi) an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 370 W/cm2, and an ME Power/Area of about 250 W/cm2; (vii) an RPM of from about 720, a WOB of from about 5,000 lbs, a DE Power/Area of about 290 W/cm2, and an ME Power/Area of about 240 W/cm2; (viii) an RPM of from about 1,200, a WOB of from about 500 lbs, a DE Power/Area of about 470 W/cm2, and an ME Power/Area of about 100 W/cm2; (ix) an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 470 W/cm2, and an ME Power/Area of about 250 W/cm2; and, combinations and variations of these.
  • Many other uses for the present inventions may be developed or realized and thus, the scope of the present inventions is not limited to the foregoing examples, uses conditions, and applications. For example, in addition to the forgoing examples and embodiments, the implementation of these directed/mechanical energy processes may find applications in down hole tools, and may also be utilized in holes openers, perforators, reamers, whipstocks, and other types of boring tools.
  • The present inventions may be embodied in other forms than those specifically disclosed herein without departing from their spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.

Claims (48)

1. A method of directed energy mechanical drilling comprising:
a. providing directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of directed energy to mechanical energy is greater than about 5; and,
d. whereby a borehole is advance through the surface of the material.
2. A method directed energy mechanical drilling comprising:
a. providing directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of directed energy to mechanical energy is greater than about 10; and,
d. whereby a borehole is advance through the surface of the material.
3. A method of directed energy mechanical drilling comprising:
a. providing directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of directed energy to mechanical energy is greater than about 20; and,
d. whereby a borehole is advance through the surface of the material.
4. A method of directed energy mechanical drilling comprising:
a. providing directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of directed energy to mechanical energy is greater than about 40; and,
d. whereby a borehole is advance through the surface of the material.
5. A directed energy mechanical drilling comprising:
a. providing directed energy to a surface;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of directed energy to mechanical energy is greater than about 2; and,
d. whereby a borehole is advance through the surface of the material.
6. A method of directed energy mechanical drilling comprising:
a. providing high power laser directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of high power laser directed energy to mechanical energy is greater than about 5; and,
d. whereby a borehole is advance through the surface of the material.
7. A method directed energy mechanical drilling comprising:
a. providing high power laser directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of high power laser directed energy to mechanical energy is greater than about 10; and,
d. whereby a borehole is advance through the surface of the material.
8. A method of directed energy mechanical drilling comprising:
a. providing high power laser directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of high power laser directed energy to mechanical energy is greater than about 20; and,
d. whereby a borehole is advance through the surface of the material.
9. A method of directed energy mechanical drilling comprising:
a. providing high power laser directed energy to a surface of a material;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of high power laser directed energy to mechanical energy is greater than about 40; and,
d. whereby a borehole is advance through the surface of the material.
10. A directed energy mechanical drilling comprising:
a. providing high power laser directed energy to a surface;
b. providing mechanical energy to the surface; and,
c. wherein the ratio of directed energy to mechanical energy is greater than about 2; and,
d. whereby a borehole is advance through the surface of the material.
11. The method of claim 6, wherein the high power laser directed energy has a power of at least about 40 kW.
12. The method of claim 8, wherein the surface is not substantially melted by the laser energy.
13. The method of claim 8, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds.
14. The method of claim 9, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds.
15. The method of claim 11, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds.
16. The methods of claim 9, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 10 feet per hour.
17. The methods of claim 11, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 10 feet per hour.
18. The methods of claim 6, wherein the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 20 feet per hour.
19. The methods of claim 8, wherein the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 20 feet per hour.
20. The methods of claim 10, wherein the high power laser directed energy has a power of at least about 20 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 20 feet per hour.
21. The methods of claim 8, wherein the high power laser directed energy has a power of at least about 50 kW and the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 20 feet per hour.
22. The methods of claim 6, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration the rate of penetration of at least about 20 feet per hour through material having an average hardness of about 20 ksi or greater.
23. The method of claim 6, wherein the borehole is advanced for greater than about 500 feet.
24. The methods of claim 9, wherein the borehole is advanced for greater than about 5,000 feet.
25. A method of advancing a borehole in the earth using high power laser mechanical drilling techniques, the method comprising:
a. directing laser energy, in a moving pattern, to a bottom surface of a borehole in the earth;
b. heating the earth with the directed laser energy to a point below the melting point;
c. providing mechanical energy to the heated earth;
d. wherein the ratio of laser energy to mechanical energy is greater than about 2; and,
e. whereby the borehole is advanced
26. The method of claim 25, wherein the laser energy has a power of about 20 kW or greater.
27. The method of claim 25, wherein the power/area of the laser energy on the surface of the bottom of the borehole is about 50 W/cm2 or greater.
28. The method of claim 25, wherein the power/area of the laser energy on the surface of the bottom of the borehole is about 75 W/cm2 or greater.
29. The method of claim 25, wherein the power/area of the laser energy on the surface of the bottom of the borehole is about 100 W/cm2 or greater.
30. The method of claim 25, wherein the power/area of the laser energy on the surface of the bottom of the borehole is about 200 W/cm2 or greater.
31. The method of claim 25, wherein the power/area of the laser energy on the surface of the bottom of the borehole is about 300 W/cm2 or greater.
32. The method of claim 29, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds.
33. The method of claim 30, wherein mechanical energy is provided by a bit having a weight-on-bit less than about 1000 pounds.
34. The method of claim 28, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 10 feet per hour.
35. The method of claim 28, wherein the mechanical energy is provided by a bit having a weight-on-bit, wherein the weight-on-bit is less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 20 feet per hour.
36. The method of claim 30, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein borehole is advances at a rate of penetration of at least about 10 feet per hour through material having an average hardness of about 20 ksi or greater.
37. The method of claim 30, wherein the mechanical energy is provided by a bit having a weight-on-bit less than about 2000 pounds and wherein the borehole is advanced at a rate of penetration of at least about 20 feet per hour through material having an average hardness of about 20 ksi or greater.
38. The method of claim 36, wherein the borehole is advanced for greater than about 1,000 feet.
39. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 30 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 240 to about 720, a WOB of less than about 2,000 lbs, a DE Power/Area of about 90 W/cm2 to about 560 W/cm2, and an ME Power/Area of about 4 W/cm2 to about 250 W/cm2;
c. whereby the borehole is advanced at an ROP of at least about 10 ft/hr.
40. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 30 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 600 to about 800, a WOB of less than about 5,000 lbs, a DE Power/Area of about 40 W/cm2 to about 250 W/cm2, and an ME Power/Area of about 200 W/cm2 to about 3000 W/cm2;
c. whereby the borehole is advanced at an ROP of at least about 15 ft/hr.
41. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of material having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole while propagating a laser beam against the borehole surface; with an RPM of from about 600 to about 1250, a WOB of from about 500 to about 5,000 lbs, a DE Power/Area of about 90 W/cm2 to about 570 W/cm2, and an ME Power/Area of about 40 W/cm2 to about 270 W/cm2;
c. whereby the borehole is advanced at an ROP of at least about 10.
42. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole with an RPM of about 250, a WOB of from about 1,000 lbs, a DE Power/Area of about 370 W/cm2, and an ME Power/Area of about 40 W/cm2; and,
c. whereby the borehole is advanced at an ROP of at least about 20 ft/hr.
43. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 190 W/cm2, and an ME Power/Area of about 250 W/cm2; and,
c. whereby the borehole is advanced at an ROP of at least about 50 ft/hr.
44. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 370 W/cm2, and an ME Power/Area of about 250 W/cm2; and,
c. whereby the borehole is advanced at an ROP of at least about 50 ft/hr.
45. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 5,000 lbs, a DE Power/Area of about 290 W/cm2, and an ME Power/Area of about 240 W/cm2; and,
c. whereby the borehole is advanced at an ROP of at least about 20 ft/hr.
46. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 1,200, a WOB of from about 500 lbs, a DE Power/Area of about 470 W/cm2, and an ME Power/Area of about 100 W/cm2; and,
c. whereby the borehole is advanced at an ROP of at least about 30 ft/hr.
47. A method of laser-mechanical drilling a borehole in a formation having at least 500 feet of hard rock material, having a hardness greater than about 20 ksi, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. rotating the laser-mechanical bit against a surface of the borehole with an RPM of from about 720, a WOB of from about 2,000 lbs, a DE Power/Area of about 470 W/cm2, and an ME Power/Area of about 250 W/cm2; and,
c. whereby the borehole is advanced at an ROP of at least about 30 ft/hr.
48. A method of laser-mechanical drilling a borehole in a formation, the method comprising:
a. providing a laser-mechanical bit into a borehole, the laser-mechanical bit in optical communication with a high power laser beam source;
b. applying from the high power laser beam source a high power laser beam to a surface of the borehole, wherein the high power laser beam generates an intensity ranging from about 150 to about 250 W/cm2 on a surface of the borehole for an elapsed time sufficient to cause a surface temperature rise in the range from about 400 degrees C. to about 1,000 degrees C., whereby a laser applied surface is formed;
c. applying a mechanical force to the laser applied surface, wherein the mechanical force generates an intensity ranging from about 30 to about 250 W/cm2 to remove the laser applied surface of the borehole.
US13/403,132 2008-08-20 2012-02-23 Method of high power laser-mechanical drilling Abandoned US20120261188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/403,132 US20120261188A1 (en) 2008-08-20 2012-02-23 Method of high power laser-mechanical drilling

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US9038408P 2008-08-20 2008-08-20
US10273008P 2008-10-03 2008-10-03
US10647208P 2008-10-17 2008-10-17
US15327109P 2009-02-17 2009-02-17
US12/543,986 US8826973B2 (en) 2008-08-20 2009-08-19 Method and system for advancement of a borehole using a high power laser
US12/543,968 US8636085B2 (en) 2008-08-20 2009-08-19 Methods and apparatus for removal and control of material in laser drilling of a borehole
US12/544,038 US8820434B2 (en) 2008-08-20 2009-08-19 Apparatus for advancing a wellbore using high power laser energy
US201161446312P 2011-02-24 2011-02-24
US201161446043P 2011-02-24 2011-02-24
US201161446042P 2011-02-24 2011-02-24
US201161446040P 2011-02-24 2011-02-24
US201161446041P 2011-02-24 2011-02-24
US13/403,132 US20120261188A1 (en) 2008-08-20 2012-02-23 Method of high power laser-mechanical drilling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/544,038 Continuation-In-Part US8820434B2 (en) 2008-08-20 2009-08-19 Apparatus for advancing a wellbore using high power laser energy

Publications (1)

Publication Number Publication Date
US20120261188A1 true US20120261188A1 (en) 2012-10-18

Family

ID=46721225

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/403,615 Active 2032-06-26 US9562395B2 (en) 2008-08-20 2012-02-23 High power laser-mechanical drilling bit and methods of use
US13/403,132 Abandoned US20120261188A1 (en) 2008-08-20 2012-02-23 Method of high power laser-mechanical drilling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/403,615 Active 2032-06-26 US9562395B2 (en) 2008-08-20 2012-02-23 High power laser-mechanical drilling bit and methods of use

Country Status (4)

Country Link
US (2) US9562395B2 (en)
EP (1) EP2678512A4 (en)
BR (1) BR112013021478A2 (en)
WO (2) WO2012116153A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US20140041940A1 (en) * 2012-08-09 2014-02-13 James H. Shnell System and method for drilling in rock using microwaves
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
WO2015088553A1 (en) 2013-12-13 2015-06-18 Foro Energy, Inc. High power laser decommissioning of multistring and damaged wells
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9085050B1 (en) 2013-03-15 2015-07-21 Foro Energy, Inc. High power laser fluid jets and beam paths using deuterium oxide
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US9371693B2 (en) 2012-08-23 2016-06-21 Ramax, Llc Drill with remotely controlled operating modes and system and method for providing the same
US9399269B2 (en) 2012-08-02 2016-07-26 Foro Energy, Inc. Systems, tools and methods for high power laser surface decommissioning and downhole welding
US9545692B2 (en) 2008-08-20 2017-01-17 Foro Energy, Inc. Long stand off distance high power laser tools and methods of use
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US20170191314A1 (en) * 2008-08-20 2017-07-06 Foro Energy, Inc. Methods and Systems for the Application and Use of High Power Laser Energy
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US10053967B2 (en) 2008-08-20 2018-08-21 Foro Energy, Inc. High power laser hydraulic fracturing, stimulation, tools systems and methods
US10094172B2 (en) 2012-08-23 2018-10-09 Ramax, Llc Drill with remotely controlled operating modes and system and method for providing the same
CN109139034A (en) * 2018-08-08 2019-01-04 华中科技大学 A kind of tunnel piercing device and method using laser cutting broken rock
US10195687B2 (en) 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US10301912B2 (en) 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590606B2 (en) * 2008-08-20 2023-02-28 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US20130032398A1 (en) * 2011-08-02 2013-02-07 Halliburton Energy Services, Inc. Pulsed-Electric Drilling Systems and Methods with Reverse Circulation
US9181754B2 (en) 2011-08-02 2015-11-10 Haliburton Energy Services, Inc. Pulsed-electric drilling systems and methods with formation evaluation and/or bit position tracking
US9255849B2 (en) * 2012-02-27 2016-02-09 Halliburton Energy Services, Inc. Temperature compensation apparatus, methods, and systems
US10156097B2 (en) * 2013-06-09 2018-12-18 Smith International, Inc. Downhole tool for increasing a wellbore diameter
GB2538866A (en) * 2013-11-19 2016-11-30 Halliburton Energy Services Inc Cutting element support shoe for drill bit
CA2964876C (en) * 2014-11-26 2019-10-29 Halliburton Energy Services, Inc. Hybrid mechanical-laser drilling equipment
CA2946973C (en) 2015-10-30 2020-05-12 The Board Of Trustees Of Western Michigan University Laser augmented diamond drilling apparatus and method
WO2017151353A1 (en) 2016-02-29 2017-09-08 Schlumberger Technology Corporation Energy-emitting bits and cutting elements
CN107288551B (en) * 2017-08-15 2018-04-10 吉林大学 A kind of polar region deep ice layer drilling uses ice auger drill bit
US11197666B2 (en) * 2017-09-15 2021-12-14 Cilag Gmbh International Surgical coated needles
CN108612475B (en) * 2018-05-11 2019-09-27 东北石油大学 For laser drill and mechanical lapping adapting device and boring method
CN109441384B (en) * 2018-12-24 2024-01-12 吉林大学 Laser coring drilling method and device for ice layer drilling
CN110094158A (en) * 2019-05-05 2019-08-06 西南石油大学 A kind of laser engine combination drilling device
US11028648B1 (en) * 2020-11-05 2021-06-08 Quaise, Inc. Basement rock hybrid drilling
US11753870B2 (en) * 2021-04-07 2023-09-12 Saudi Arabian Oil Company Directional drilling tool
CN113653447A (en) * 2021-06-17 2021-11-16 西南石油大学 Laser-mechanical drill bit for efficient rock breaking by combining laser and machine
US11913303B2 (en) 2022-06-21 2024-02-27 Saudi Arabian Oil Company Wellbore drilling and completion systems using laser head

Family Cites Families (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US914636A (en) 1908-04-20 1909-03-09 Case Tunnel & Engineering Company Rotary tunneling-machine.
US2548463A (en) 1947-12-13 1951-04-10 Standard Oil Dev Co Thermal shock drilling bit
US2742555A (en) 1952-10-03 1956-04-17 Robert W Murray Flame boring apparatus
US3122212A (en) 1960-06-07 1964-02-25 Northern Natural Gas Co Method and apparatus for the drilling of rock
US3383491A (en) 1964-05-05 1968-05-14 Hrand M. Muncheryan Laser welding machine
US3461964A (en) 1966-09-09 1969-08-19 Dresser Ind Well perforating apparatus and method
US3544165A (en) 1967-04-18 1970-12-01 Mason & Hanger Silas Mason Co Tunneling by lasers
US3503804A (en) 1967-04-25 1970-03-31 Hellmut Schneider Method and apparatus for the production of sonic or ultrasonic waves on a surface
US3539221A (en) 1967-11-17 1970-11-10 Robert A Gladstone Treatment of solid materials
US3493060A (en) 1968-04-16 1970-02-03 Woods Res & Dev In situ recovery of earth minerals and derivative compounds by laser
US3556600A (en) 1968-08-30 1971-01-19 Westinghouse Electric Corp Distribution and cutting of rocks,glass and the like
US3574357A (en) 1969-02-27 1971-04-13 Grupul Ind Pentru Foray Si Ext Thermal insulating tubing
US3586413A (en) 1969-03-25 1971-06-22 Dale A Adams Apparatus for providing energy communication between a moving and a stationary terminal
US3652447A (en) 1969-04-18 1972-03-28 Samuel S Williams Process for extracting oil from oil shale
US3699649A (en) 1969-11-05 1972-10-24 Donald A Mcwilliams Method of and apparatus for regulating the resistance of film resistors
GB2265684B (en) 1992-03-31 1996-01-24 Philip Fredrick Head An anchoring device for a conduit in coiled tubing
US3693718A (en) 1970-08-17 1972-09-26 Washburn Paul C Laser beam device and method for subterranean recovery of fluids
JPS514003B1 (en) 1970-11-12 1976-02-07
US3820605A (en) 1971-02-16 1974-06-28 Upjohn Co Apparatus and method for thermally insulating an oil well
US3821510A (en) 1973-02-22 1974-06-28 H Muncheryan Hand held laser instrumentation device
US3823788A (en) 1973-04-02 1974-07-16 Smith International Reverse circulating sub for fluid flow systems
US3871485A (en) 1973-11-02 1975-03-18 Sun Oil Co Pennsylvania Laser beam drill
US3882945A (en) 1973-11-02 1975-05-13 Sun Oil Co Pennsylvania Combination laser beam and sonic drill
US3938599A (en) * 1974-03-27 1976-02-17 Hycalog, Inc. Rotary drill bit
US4047580A (en) 1974-09-30 1977-09-13 Chemical Grout Company, Ltd. High-velocity jet digging method
US3998281A (en) 1974-11-10 1976-12-21 Salisbury Winfield W Earth boring method employing high powered laser and alternate fluid pulses
US4066138A (en) 1974-11-10 1978-01-03 Salisbury Winfield W Earth boring apparatus employing high powered laser
US4019331A (en) 1974-12-30 1977-04-26 Technion Research And Development Foundation Ltd. Formation of load-bearing foundations by laser-beam irradiation of the soil
US4025091A (en) 1975-04-30 1977-05-24 Ric-Wil, Incorporated Conduit system
US3992095A (en) 1975-06-09 1976-11-16 Trw Systems & Energy Optics module for borehole stress measuring instrument
US3960448A (en) 1975-06-09 1976-06-01 Trw Inc. Holographic instrument for measuring stress in a borehole wall
US4057118A (en) 1975-10-02 1977-11-08 Walker-Neer Manufacturing Co., Inc. Bit packer for dual tube drilling
US3977478A (en) 1975-10-20 1976-08-31 The Unites States Of America As Represented By The United States Energy Research And Development Administration Method for laser drilling subterranean earth formations
US4113036A (en) 1976-04-09 1978-09-12 Stout Daniel W Laser drilling method and system of fossil fuel recovery
US4026356A (en) 1976-04-29 1977-05-31 The United States Energy Research And Development Administration Method for in situ gasification of a subterranean coal bed
US4090572A (en) 1976-09-03 1978-05-23 Nygaard-Welch-Rushing Partnership Method and apparatus for laser treatment of geological formations
US4194536A (en) 1976-12-09 1980-03-25 Eaton Corporation Composite tubing product
US4061190A (en) 1977-01-28 1977-12-06 The United States Of America As Represented By The United States National Aeronautics And Space Administration In-situ laser retorting of oil shale
US4162400A (en) 1977-09-09 1979-07-24 Texaco Inc. Fiber optic well logging means and method
US4125757A (en) 1977-11-04 1978-11-14 The Torrington Company Apparatus and method for laser cutting
US4280535A (en) 1978-01-25 1981-07-28 Walker-Neer Mfg. Co., Inc. Inner tube assembly for dual conduit drill pipe
US4151393A (en) 1978-02-13 1979-04-24 The United States Of America As Represented By The Secretary Of The Navy Laser pile cutter
US4189705A (en) 1978-02-17 1980-02-19 Texaco Inc. Well logging system
FR2417709A1 (en) 1978-02-21 1979-09-14 Coflexip FLEXIBLE COMPOSITE TUBE
US4281891A (en) 1978-03-27 1981-08-04 Nippon Electric Co., Ltd. Device for excellently coupling a laser beam to a transmission medium through a lens
US4199034A (en) 1978-04-10 1980-04-22 Magnafrac Method and apparatus for perforating oil and gas wells
US4282940A (en) 1978-04-10 1981-08-11 Magnafrac Apparatus for perforating oil and gas wells
US4249925A (en) 1978-05-12 1981-02-10 Fujitsu Limited Method of manufacturing an optical fiber
US4243298A (en) 1978-10-06 1981-01-06 International Telephone And Telegraph Corporation High-strength optical preforms and fibers with thin, high-compression outer layers
IL56088A (en) 1978-11-30 1982-05-31 Technion Res & Dev Foundation Method of extracting liquid and gaseous fuel from oil shale and tar sand
US4228856A (en) 1979-02-26 1980-10-21 Reale Lucio V Process for recovering viscous, combustible material
US4252015A (en) 1979-06-20 1981-02-24 Phillips Petroleum Company Wellbore pressure testing method and apparatus
US4227582A (en) 1979-10-12 1980-10-14 Price Ernest H Well perforating apparatus and method
US4332401A (en) 1979-12-20 1982-06-01 General Electric Company Insulated casing assembly
US4367917A (en) 1980-01-17 1983-01-11 Gray Stanley J Multiple sheath cable and method of manufacture
FR2475185A1 (en) 1980-02-06 1981-08-07 Technigaz FLEXIBLE CALORIFYING PIPE FOR PARTICULARLY CRYOGENIC FLUIDS
US4336415A (en) 1980-05-16 1982-06-22 Walling John B Flexible production tubing
US4340245A (en) 1980-07-24 1982-07-20 Conoco Inc. Insulated prestressed conduit string for heated fluids
US4459731A (en) 1980-08-29 1984-07-17 Chevron Research Company Concentric insulated tubing string
US4477106A (en) 1980-08-29 1984-10-16 Chevron Research Company Concentric insulated tubing string
US4389645A (en) 1980-09-08 1983-06-21 Schlumberger Technology Corporation Well logging fiber optic communication system
US4370886A (en) 1981-03-20 1983-02-01 Halliburton Company In situ measurement of gas content in formation fluid
US4375164A (en) 1981-04-22 1983-03-01 Halliburton Company Formation tester
US4415184A (en) 1981-04-27 1983-11-15 General Electric Company High temperature insulated casing
US4444420A (en) 1981-06-10 1984-04-24 Baker International Corporation Insulating tubular conduit apparatus
US4453570A (en) 1981-06-29 1984-06-12 Chevron Research Company Concentric tubing having bonded insulation within the annulus
US4374530A (en) 1982-02-01 1983-02-22 Walling John B Flexible production tubing
US4436177A (en) 1982-03-19 1984-03-13 Hydra-Rig, Inc. Truck operator's cab with equipment control station
US4522464A (en) 1982-08-17 1985-06-11 Chevron Research Company Armored cable containing a hermetically sealed tube incorporating an optical fiber
US4504112A (en) 1982-08-17 1985-03-12 Chevron Research Company Hermetically sealed optical fiber
US4531552A (en) 1983-05-05 1985-07-30 Baker Oil Tools, Inc. Concentric insulating conduit
AT391932B (en) 1983-10-31 1990-12-27 Wolf Erich M PIPELINE
US4565351A (en) 1984-06-28 1986-01-21 Arnco Corporation Method for installing cable using an inner duct
JPS61204609A (en) 1985-03-07 1986-09-10 Power Reactor & Nuclear Fuel Dev Corp Optical transmission body
US4860654A (en) 1985-05-22 1989-08-29 Western Atlas International, Inc. Implosion shaped charge perforator
US4860655A (en) 1985-05-22 1989-08-29 Western Atlas International, Inc. Implosion shaped charge perforator
GB2179173B (en) 1985-08-14 1989-08-16 Nova Scotia Res Found Multiple pass optical fibre rotary joint
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
DE3606065A1 (en) 1986-02-25 1987-08-27 Koeolajkutato Vallalat HEAT INSULATION PIPE, PRIMARY FOR MINING
US4952771A (en) 1986-12-18 1990-08-28 Aesculap Ag Process for cutting a material by means of a laser beam
US4741405A (en) 1987-01-06 1988-05-03 Tetra Corporation Focused shock spark discharge drill using multiple electrodes
US4872520A (en) * 1987-01-16 1989-10-10 Triton Engineering Services Company Flat bottom drilling bit with polycrystalline cutters
US5168940A (en) 1987-01-22 1992-12-08 Technologie Transfer Est. Profile melting-drill process and device
DE3701676A1 (en) 1987-01-22 1988-08-04 Werner Foppe PROFILE MELT DRILLING PROCESS
EP0295045A3 (en) * 1987-06-09 1989-10-25 Reed Tool Company Rotary drag bit having scouring nozzles
US4744420A (en) 1987-07-22 1988-05-17 Atlantic Richfield Company Wellbore cleanout apparatus and method
CA1325969C (en) 1987-10-28 1994-01-11 Tad A. Sudol Conduit or well cleaning and pumping device and method of use thereof
US4830113A (en) 1987-11-20 1989-05-16 Skinny Lift, Inc. Well pumping method and apparatus
FI78373C (en) 1988-01-18 1989-07-10 Sostel Oy Telephone traffic or data transmission system
US4896944A (en) * 1988-07-25 1990-01-30 Irwin Timothy L Method and apparatus for trepanning workpieces
US5049738A (en) 1988-11-21 1991-09-17 Conoco Inc. Laser-enhanced oil correlation system
US4924870A (en) 1989-01-13 1990-05-15 Fiberoptic Sensor Technologies, Inc. Fiber optic sensors
FR2651451B1 (en) 1989-09-07 1991-10-31 Inst Francais Du Petrole APPARATUS AND INSTALLATION FOR CLEANING DRAINS, ESPECIALLY IN A WELL FOR OIL PRODUCTION.
US5004166A (en) 1989-09-08 1991-04-02 Sellar John G Apparatus for employing destructive resonance
US5163321A (en) 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US4997250A (en) 1989-11-17 1991-03-05 General Electric Company Fiber output coupler with beam shaping optics for laser materials processing system
US5908049A (en) 1990-03-15 1999-06-01 Fiber Spar And Tube Corporation Spoolable composite tubular member with energy conductors
US5003144A (en) 1990-04-09 1991-03-26 The United States Of America As Represented By The Secretary Of The Interior Microwave assisted hard rock cutting
US5084617A (en) 1990-05-17 1992-01-28 Conoco Inc. Fluorescence sensing apparatus for determining presence of native hydrocarbons from drilling mud
IT1246761B (en) 1990-07-02 1994-11-26 Pirelli Cavi Spa OPTICAL FIBER CABLES AND RELATED COMPONENTS CONTAINING A HOMOGENEOUS MIXTURE TO PROTECT OPTICAL FIBERS FROM HYDROGEN AND RELATED HOMOGENEOUS BARRIER MIXTURE
FR2664987B1 (en) 1990-07-19 1993-07-16 Alcatel Cable UNDERWATER FIBER OPTIC TELECOMMUNICATION CABLE UNDER TUBE.
US5128882A (en) 1990-08-22 1992-07-07 The United States Of America As Represented By The Secretary Of The Army Device for measuring reflectance and fluorescence of in-situ soil
DE9013943U1 (en) * 1990-10-06 1991-01-03 Trumpf Gmbh & Co, 7257 Ditzingen, De
US5125063A (en) 1990-11-08 1992-06-23 At&T Bell Laboratories Lightweight optical fiber cable
US5419188A (en) 1991-05-20 1995-05-30 Otis Engineering Corporation Reeled tubing support for downhole equipment module
FR2676913B1 (en) 1991-05-28 1993-08-13 Lasag Ag MATERIAL ABLATION DEVICE, PARTICULARLY FOR DENTISTRY.
EP0518371B1 (en) 1991-06-14 1998-09-09 Baker Hughes Incorporated Fluid-actuated wellbore tool system
US5121872A (en) 1991-08-30 1992-06-16 Hydrolex, Inc. Method and apparatus for installing electrical logging cable inside coiled tubing
FR2683590B1 (en) 1991-11-13 1993-12-31 Institut Francais Petrole MEASURING AND INTERVENTION DEVICE IN A WELL, ASSEMBLY METHOD AND USE IN AN OIL WELL.
US5172112A (en) 1991-11-15 1992-12-15 Abb Vetco Gray Inc. Subsea well pressure monitor
US5212755A (en) 1992-06-10 1993-05-18 The United States Of America As Represented By The Secretary Of The Navy Armored fiber optic cables
US5285204A (en) 1992-07-23 1994-02-08 Conoco Inc. Coil tubing string and downhole generator
US5287741A (en) 1992-08-31 1994-02-22 Halliburton Company Methods of perforating and testing wells using coiled tubing
GB9219666D0 (en) 1992-09-17 1992-10-28 Miszewski Antoni A detonating system
US5355967A (en) 1992-10-30 1994-10-18 Union Oil Company Of California Underbalance jet pump drilling method
US5269377A (en) 1992-11-25 1993-12-14 Baker Hughes Incorporated Coil tubing supported electrical submersible pump
NO179261C (en) 1992-12-16 1996-09-04 Rogalandsforskning Device for drilling holes in the earth's crust, especially for drilling oil wells
US5356081A (en) 1993-02-24 1994-10-18 Electric Power Research Institute, Inc. Apparatus and process for employing synergistic destructive powers of a water stream and a laser beam
US5500768A (en) 1993-04-16 1996-03-19 Bruce McCaul Laser diode/lens assembly
US5615052A (en) 1993-04-16 1997-03-25 Bruce W. McCaul Laser diode/lens assembly
US5351533A (en) 1993-06-29 1994-10-04 Halliburton Company Coiled tubing system used for the evaluation of stimulation candidate wells
US5469878A (en) 1993-09-03 1995-11-28 Camco International Inc. Coiled tubing concentric gas lift valve assembly
US5396805A (en) 1993-09-30 1995-03-14 Halliburton Company Force sensor and sensing method using crystal rods and light signals
US5411085A (en) 1993-11-01 1995-05-02 Camco International Inc. Spoolable coiled tubing completion system
FR2716926B1 (en) 1993-11-01 1999-03-19 Camco Int Extraction system for extracting a flexible production tube system.
FR2712628B1 (en) 1993-11-15 1996-01-12 Inst Francais Du Petrole Measuring device and method in a hydrocarbon production well.
US5435395A (en) 1994-03-22 1995-07-25 Halliburton Company Method for running downhole tools and devices with coiled tubing
US5573225A (en) 1994-05-06 1996-11-12 Dowell, A Division Of Schlumberger Technology Corporation Means for placing cable within coiled tubing
US5483988A (en) 1994-05-11 1996-01-16 Camco International Inc. Spoolable coiled tubing mandrel and gas lift valves
DE4418845C5 (en) 1994-05-30 2012-01-05 Synova S.A. Method and device for material processing using a laser beam
US5411105A (en) 1994-06-14 1995-05-02 Kidco Resources Ltd. Drilling a well gas supply in the drilling liquid
US5924489A (en) 1994-06-24 1999-07-20 Hatcher; Wayne B. Method of severing a downhole pipe in a well borehole
US5479860A (en) 1994-06-30 1996-01-02 Western Atlas International, Inc. Shaped-charge with simultaneous multi-point initiation of explosives
US5503370A (en) 1994-07-08 1996-04-02 Ctes, Inc. Method and apparatus for the injection of cable into coiled tubing
US5599004A (en) 1994-07-08 1997-02-04 Coiled Tubing Engineering Services, Inc. Apparatus for the injection of cable into coiled tubing
US5503014A (en) 1994-07-28 1996-04-02 Schlumberger Technology Corporation Method and apparatus for testing wells using dual coiled tubing
US5561516A (en) 1994-07-29 1996-10-01 Iowa State University Research Foundation, Inc. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
US5463711A (en) 1994-07-29 1995-10-31 At&T Ipm Corp. Submarine cable having a centrally located tube containing optical fibers
US5515925A (en) 1994-09-19 1996-05-14 Boychuk; Randy J. Apparatus and method for installing coiled tubing in a well
US5586609A (en) 1994-12-15 1996-12-24 Telejet Technologies, Inc. Method and apparatus for drilling with high-pressure, reduced solid content liquid
CA2161168C (en) 1994-12-20 2001-08-14 John James Blee Optical fiber cable for underwater use using terrestrial optical fiber cable
DK0801705T3 (en) 1995-01-13 2002-08-19 Hydril Co Low and light high pressure blowout safety valve
US5757484A (en) 1995-03-09 1998-05-26 The United States Of America As Represented By The Secretary Of The Army Standoff laser induced-breakdown spectroscopy penetrometer system
US6147754A (en) 1995-03-09 2000-11-14 The United States Of America As Represented By The Secretary Of The Navy Laser induced breakdown spectroscopy soil contamination probe
US6157893A (en) 1995-03-31 2000-12-05 Baker Hughes Incorporated Modified formation testing apparatus and method
US5771984A (en) 1995-05-19 1998-06-30 Massachusetts Institute Of Technology Continuous drilling of vertical boreholes by thermal processes: including rock spallation and fusion
US5694408A (en) 1995-06-07 1997-12-02 Mcdonnell Douglas Corporation Fiber optic laser system and associated lasing method
US5566764A (en) 1995-06-16 1996-10-22 Elliston; Tom Improved coil tubing injector unit
CA2167486C (en) 1995-06-20 2004-11-30 Nowsco Well Service, Inc. Coiled tubing composite
US5638904A (en) 1995-07-25 1997-06-17 Nowsco Well Service Ltd. Safeguarded method and apparatus for fluid communiction using coiled tubing, with application to drill stem testing
JPH0972738A (en) 1995-09-05 1997-03-18 Fujii Kiso Sekkei Jimusho:Kk Method and equipment for inspecting properties of wall surface of bore hole
US5707939A (en) 1995-09-21 1998-01-13 M-I Drilling Fluids Silicone oil-based drilling fluids
US5921285A (en) 1995-09-28 1999-07-13 Fiberspar Spoolable Products, Inc. Composite spoolable tube
TW320586B (en) 1995-11-24 1997-11-21 Hitachi Ltd
US5896938A (en) 1995-12-01 1999-04-27 Tetra Corporation Portable electrohydraulic mining drill
US5828003A (en) 1996-01-29 1998-10-27 Dowell -- A Division of Schlumberger Technology Corporation Composite coiled tubing apparatus and methods
US5909306A (en) 1996-02-23 1999-06-01 President And Fellows Of Harvard College Solid-state spectrally-pure linearly-polarized pulsed fiber amplifier laser system useful for ultraviolet radiation generation
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
JPH09242453A (en) 1996-03-06 1997-09-16 Tomoo Fujioka Drilling method
RU2104393C1 (en) 1996-06-27 1998-02-10 Александр Петрович Линецкий Method for increasing degree of extracting oil, gas and other useful materials from ground, and for opening and control of deposits
US5794703A (en) 1996-07-03 1998-08-18 Ctes, L.C. Wellbore tractor and method of moving an item through a wellbore
US6104022A (en) 1996-07-09 2000-08-15 Tetra Corporation Linear aperture pseudospark switch
CA2210563C (en) 1996-07-15 2004-03-02 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
US5862862A (en) 1996-07-15 1999-01-26 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
AU714721B2 (en) 1996-07-15 2000-01-06 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
US5759859A (en) 1996-07-15 1998-06-02 United States Of America As Represented By The Secretary Of The Army Sensor and method for detecting trace underground energetic materials
NO313763B1 (en) 1996-07-15 2002-11-25 Halliburton Energy Serv Inc Method of re-establishing access to a wellbore and guide member for use in forming an opening in a wellbore
AU719919B2 (en) 1996-07-15 2000-05-18 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
US5813465A (en) 1996-07-15 1998-09-29 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
CA2209958A1 (en) 1996-07-15 1998-01-15 James M. Barker Apparatus for completing a subterranean well and associated methods of using same
US5833003A (en) 1996-07-15 1998-11-10 Halliburton Energy Services, Inc. Apparatus for completing a subterranean well and associated methods of using same
WO1998006234A1 (en) 1996-08-05 1998-02-12 Tetra Corporation Electrohydraulic pressure wave projectors
US5929986A (en) 1996-08-26 1999-07-27 Kaiser Optical Systems, Inc. Synchronous spectral line imaging methods and apparatus
US6038363A (en) 1996-08-30 2000-03-14 Kaiser Optical Systems Fiber-optic spectroscopic probe with reduced background luminescence
US5773791A (en) 1996-09-03 1998-06-30 Kuykendal; Robert Water laser machine tool
US5847825A (en) 1996-09-25 1998-12-08 Board Of Regents University Of Nebraska Lincoln Apparatus and method for detection and concentration measurement of trace metals using laser induced breakdown spectroscopy
US5767411A (en) 1996-12-31 1998-06-16 Cidra Corporation Apparatus for enhancing strain in intrinsic fiber optic sensors and packaging same for harsh environments
US5832006A (en) 1997-02-13 1998-11-03 Mcdonnell Douglas Corporation Phased array Raman laser amplifier and operating method therefor
CA2282342C (en) 1997-02-20 2008-04-15 Bj Services Company, U.S.A. Bottomhole assembly and methods of use
US6384738B1 (en) 1997-04-07 2002-05-07 Halliburton Energy Services, Inc. Pressure impulse telemetry apparatus and method
US6281489B1 (en) 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US5925879A (en) 1997-05-09 1999-07-20 Cidra Corporation Oil and gas well packer having fiber optic Bragg Grating sensors for downhole insitu inflation monitoring
GB9710440D0 (en) 1997-05-22 1997-07-16 Apex Tubulars Ltd Improved marine riser
DE19725256A1 (en) 1997-06-13 1998-12-17 Lt Ultra Precision Technology Nozzle arrangement for laser beam cutting
WO1999018329A1 (en) 1997-10-07 1999-04-15 Fmc Corporation Slimbore subsea completion system and method
US6923273B2 (en) 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US6273193B1 (en) 1997-12-16 2001-08-14 Transocean Sedco Forex, Inc. Dynamically positioned, concentric riser, drilling method and apparatus
US6060662A (en) 1998-01-23 2000-05-09 Western Atlas International, Inc. Fiber optic well logging cable
US5986756A (en) 1998-02-27 1999-11-16 Kaiser Optical Systems Spectroscopic probe with leak detection
US6309195B1 (en) 1998-06-05 2001-10-30 Halliburton Energy Services, Inc. Internally profiled stator tube
GB9812465D0 (en) 1998-06-11 1998-08-05 Abb Seatec Ltd Pipeline monitoring systems
DE19826265C2 (en) 1998-06-15 2001-07-12 Forschungszentrum Juelich Gmbh Borehole probe for the investigation of soils
WO2000005622A1 (en) 1998-07-23 2000-02-03 The Furukawa Electric Co., Ltd. Raman amplifier, optical repeater, and raman amplification method
US5973783A (en) 1998-07-31 1999-10-26 Litton Systems, Inc. Fiber optic gyroscope coil lead dressing and method for forming the same
DE19838085C2 (en) 1998-08-21 2000-07-27 Forschungszentrum Juelich Gmbh Method and borehole probe for the investigation of soils
US6377591B1 (en) 1998-12-09 2002-04-23 Mcdonnell Douglas Corporation Modularized fiber optic laser system and associated optical amplification modules
US6352114B1 (en) 1998-12-11 2002-03-05 Ocean Drilling Technology, L.L.C. Deep ocean riser positioning system and method of running casing
US7188687B2 (en) 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
US6250391B1 (en) 1999-01-29 2001-06-26 Glenn C. Proudfoot Producing hydrocarbons from well with underground reservoir
US6355928B1 (en) 1999-03-31 2002-03-12 Halliburton Energy Services, Inc. Fiber optic tomographic imaging of borehole fluids
JP2000334590A (en) 1999-05-24 2000-12-05 Amada Eng Center Co Ltd Machining head for laser beam machine
TW418332B (en) 1999-06-14 2001-01-11 Ind Tech Res Inst Optical fiber grating package
GB9916022D0 (en) 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
US6712150B1 (en) 1999-09-10 2004-03-30 Bj Services Company Partial coil-in-coil tubing
US6166546A (en) 1999-09-13 2000-12-26 Atlantic Richfield Company Method for determining the relative clay content of well core
US6301423B1 (en) 2000-03-14 2001-10-09 3M Innovative Properties Company Method for reducing strain on bragg gratings
NO313767B1 (en) 2000-03-20 2002-11-25 Kvaerner Oilfield Prod As Process for obtaining simultaneous supply of propellant fluid to multiple subsea wells and subsea petroleum production arrangement for simultaneous production of hydrocarbons from multi-subsea wells and supply of propellant fluid to the s.
GB2360584B (en) 2000-03-25 2004-05-19 Abb Offshore Systems Ltd Monitoring fluid flow through a filter
US7163875B2 (en) 2000-04-04 2007-01-16 Synova S.A. Method of cutting an object and of further processing the cut material, and carrier for holding the object and the cut material
US20020007945A1 (en) 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors
US20030159283A1 (en) 2000-04-22 2003-08-28 White Craig W. Optical fiber cable
US6557249B1 (en) 2000-04-22 2003-05-06 Halliburton Energy Services, Inc. Optical fiber deployment system and cable
US6415867B1 (en) 2000-06-23 2002-07-09 Noble Drilling Corporation Aluminum riser apparatus, system and method
US6437326B1 (en) 2000-06-27 2002-08-20 Schlumberger Technology Corporation Permanent optical sensor downhole fluid analysis systems
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
EP1168635B1 (en) 2000-06-30 2009-12-02 Texas Instruments France Method of maintaining mobile terminal synchronization during idle communication periods
US8171989B2 (en) 2000-08-14 2012-05-08 Schlumberger Technology Corporation Well having a self-contained inter vention system
NO315762B1 (en) 2000-09-12 2003-10-20 Optoplan As Sand detector
US6386300B1 (en) 2000-09-19 2002-05-14 Curlett Family Limited Partnership Formation cutting method and system
US7072588B2 (en) 2000-10-03 2006-07-04 Halliburton Energy Services, Inc. Multiplexed distribution of optical power
EP1197738A1 (en) 2000-10-18 2002-04-17 Abb Research Ltd. Anisotropic fibre sensor with distributed feedback
US6747743B2 (en) 2000-11-10 2004-06-08 Halliburton Energy Services, Inc. Multi-parameter interferometric fiber optic sensor
US6494259B2 (en) 2001-03-30 2002-12-17 Halliburton Energy Services, Inc. Downhole flame spray welding tool system and method
US6626249B2 (en) 2001-04-24 2003-09-30 Robert John Rosa Dry geothermal drilling and recovery system
US7096960B2 (en) 2001-05-04 2006-08-29 Hydrill Company Lp Mounts for blowout preventer bonnets
US6591046B2 (en) 2001-06-06 2003-07-08 The United States Of America As Represented By The Secretary Of The Navy Method for protecting optical fibers embedded in the armor of a tow cable
NO322809B1 (en) 2001-06-15 2006-12-11 Schlumberger Technology Bv Device and method for monitoring and controlling deployment of seabed equipment
US7249633B2 (en) 2001-06-29 2007-07-31 Bj Services Company Release tool for coiled tubing
CA2392277C (en) 2001-06-29 2008-02-12 Bj Services Company Canada Bottom hole assembly
US7126332B2 (en) 2001-07-20 2006-10-24 Baker Hughes Incorporated Downhole high resolution NMR spectroscopy with polarization enhancement
SE522103C2 (en) 2001-08-15 2004-01-13 Permanova Lasersystem Ab Device for detecting damage of an optical fiber
US20030053783A1 (en) 2001-09-18 2003-03-20 Masataka Shirasaki Optical fiber having temperature independent optical characteristics
US6981561B2 (en) 2001-09-20 2006-01-03 Baker Hughes Incorporated Downhole cutting mill
US6920946B2 (en) 2001-09-27 2005-07-26 Kenneth D. Oglesby Inverted motor for drilling rocks, soils and man-made materials and for re-entry and cleanout of existing wellbores and pipes
US7174067B2 (en) 2001-12-06 2007-02-06 Florida Institute Of Technology Method and apparatus for spatial domain multiplexing in optical fiber communications
US6755262B2 (en) 2002-01-11 2004-06-29 Gas Technology Institute Downhole lens assembly for use with high power lasers for earth boring
GB0203252D0 (en) 2002-02-12 2002-03-27 Univ Strathclyde Plasma channel drilling process
US6867858B2 (en) 2002-02-15 2005-03-15 Kaiser Optical Systems Raman spectroscopy crystallization analysis method
US6888127B2 (en) 2002-02-26 2005-05-03 Halliburton Energy Services, Inc. Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
US7619159B1 (en) 2002-05-17 2009-11-17 Ugur Ortabasi Integrating sphere photovoltaic receiver (powersphere) for laser light to electric power conversion
US6870128B2 (en) * 2002-06-10 2005-03-22 Japan Drilling Co., Ltd. Laser boring method and system
JP3506696B1 (en) 2002-07-22 2004-03-15 財団法人応用光学研究所 Underground renewable hydrocarbon gas resource collection device and collection method
AU2002327293A1 (en) 2002-07-23 2004-02-09 Halliburton Energy Services, Inc. Subterranean well pressure and temperature measurement
US6915848B2 (en) 2002-07-30 2005-07-12 Schlumberger Technology Corporation Universal downhole tool control apparatus and methods
EA006928B1 (en) 2002-08-15 2006-04-28 Шлюмбергер Текнолоджи Б.В. Use of distributed temperature sensors during wellbore treatments
WO2004020774A2 (en) 2002-08-30 2004-03-11 Sensor Highway Limited Methods and systems to activate downhole tools with light
AU2003267555A1 (en) 2002-08-30 2004-03-19 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
GB2392462B (en) 2002-08-30 2005-06-15 Schlumberger Holdings Optical fiber conveyance, telemetry and/or actuation
US6978832B2 (en) 2002-09-09 2005-12-27 Halliburton Energy Services, Inc. Downhole sensing with fiber in the formation
US6847034B2 (en) 2002-09-09 2005-01-25 Halliburton Energy Services, Inc. Downhole sensing with fiber in exterior annulus
US7100844B2 (en) 2002-10-16 2006-09-05 Ultrastrip Systems, Inc. High impact waterjet nozzle
US6808023B2 (en) 2002-10-28 2004-10-26 Schlumberger Technology Corporation Disconnect check valve mechanism for coiled tubing
US7471862B2 (en) 2002-12-19 2008-12-30 Corning Cable Systems, Llc Dry fiber optic cables and assemblies
US20090190890A1 (en) 2002-12-19 2009-07-30 Freeland Riley S Fiber optic cable having a dry insert and methods of making the same
US6661815B1 (en) 2002-12-31 2003-12-09 Intel Corporation Servo technique for concurrent wavelength locking and stimulated brillouin scattering suppression
US7471831B2 (en) 2003-01-16 2008-12-30 California Institute Of Technology High throughput reconfigurable data analysis system
US6994162B2 (en) 2003-01-21 2006-02-07 Weatherford/Lamb, Inc. Linear displacement measurement method and apparatus
GB2399971B (en) 2003-01-22 2006-07-12 Proneta Ltd Imaging sensor optical system
CA2514800C (en) 2003-02-07 2014-01-07 Southampton Photonics Ltd. Apparatus for providing optical radiation
US7575050B2 (en) 2003-03-10 2009-08-18 Exxonmobil Upstream Research Company Method and apparatus for a downhole excavation in a wellbore
US6851488B2 (en) * 2003-04-04 2005-02-08 Gas Technology Institute Laser liner creation apparatus and method
US6880646B2 (en) 2003-04-16 2005-04-19 Gas Technology Institute Laser wellbore completion apparatus and method
US7024081B2 (en) 2003-04-24 2006-04-04 Weatherford/Lamb, Inc. Fiber optic cable for use in harsh environments
US7646953B2 (en) 2003-04-24 2010-01-12 Weatherford/Lamb, Inc. Fiber optic cable systems and methods to prevent hydrogen ingress
DE602004012554T2 (en) 2003-05-02 2009-04-16 Baker-Hughes Inc., Houston OPTICAL PROCESS AND ANALYZER
US7782460B2 (en) 2003-05-06 2010-08-24 Baker Hughes Incorporated Laser diode array downhole spectrometer
US20070081157A1 (en) 2003-05-06 2007-04-12 Baker Hughes Incorporated Apparatus and method for estimating filtrate contamination in a formation fluid
US7196786B2 (en) 2003-05-06 2007-03-27 Baker Hughes Incorporated Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples
US8181703B2 (en) 2003-05-16 2012-05-22 Halliburton Energy Services, Inc. Method useful for controlling fluid loss in subterranean formations
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US7086484B2 (en) 2003-06-09 2006-08-08 Halliburton Energy Services, Inc. Determination of thermal properties of a formation
US20040252748A1 (en) 2003-06-13 2004-12-16 Gleitman Daniel D. Fiber optic sensing systems and methods
US6888097B2 (en) 2003-06-23 2005-05-03 Gas Technology Institute Fiber optics laser perforation tool
US6912898B2 (en) 2003-07-08 2005-07-05 Halliburton Energy Services, Inc. Use of cesium as a tracer in coring operations
US7195731B2 (en) 2003-07-14 2007-03-27 Halliburton Energy Services, Inc. Method for preparing and processing a sample for intensive analysis
US7073577B2 (en) 2003-08-29 2006-07-11 Applied Geotech, Inc. Array of wells with connected permeable zones for hydrocarbon recovery
US7199869B2 (en) 2003-10-29 2007-04-03 Weatherford/Lamb, Inc. Combined Bragg grating wavelength interrogator and Brillouin backscattering measuring instrument
US7040746B2 (en) 2003-10-30 2006-05-09 Lexmark International, Inc. Inkjet ink having yellow dye mixture
US7362422B2 (en) 2003-11-10 2008-04-22 Baker Hughes Incorporated Method and apparatus for a downhole spectrometer based on electronically tunable optical filters
US7152700B2 (en) 2003-11-13 2006-12-26 American Augers, Inc. Dual wall drill string assembly
US7134514B2 (en) 2003-11-13 2006-11-14 American Augers, Inc. Dual wall drill string assembly
NO322323B2 (en) 2003-12-01 2016-09-13 Unodrill As Method and apparatus for ground drilling
US7213661B2 (en) 2003-12-05 2007-05-08 Smith International, Inc. Dual property hydraulic configuration
US6874361B1 (en) 2004-01-08 2005-04-05 Halliburton Energy Services, Inc. Distributed flow properties wellbore measurement system
US20050201652A1 (en) 2004-02-12 2005-09-15 Panorama Flat Ltd Apparatus, method, and computer program product for testing waveguided display system and components
US7172026B2 (en) 2004-04-01 2007-02-06 Bj Services Company Apparatus to allow a coiled tubing tractor to traverse a horizontal wellbore
US7273108B2 (en) 2004-04-01 2007-09-25 Bj Services Company Apparatus to allow a coiled tubing tractor to traverse a horizontal wellbore
US7503404B2 (en) 2004-04-14 2009-03-17 Halliburton Energy Services, Inc, Methods of well stimulation during drilling operations
US7134488B2 (en) 2004-04-22 2006-11-14 Bj Services Company Isolation assembly for coiled tubing
US7147064B2 (en) * 2004-05-11 2006-12-12 Gas Technology Institute Laser spectroscopy/chromatography drill bit and methods
US7337660B2 (en) 2004-05-12 2008-03-04 Halliburton Energy Services, Inc. Method and system for reservoir characterization in connection with drilling operations
WO2005109056A1 (en) 2004-05-12 2005-11-17 Prysmian Cavi E Sistemi Energia S.R.L. Microstructured optical fiber
EP1598140A1 (en) 2004-05-19 2005-11-23 Synova S.A. Laser machining
US7201222B2 (en) 2004-05-27 2007-04-10 Baker Hughes Incorporated Method and apparatus for aligning rotor in stator of a rod driven well pump
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US9540889B2 (en) 2004-05-28 2017-01-10 Schlumberger Technology Corporation Coiled tubing gamma ray detector
US8522869B2 (en) 2004-05-28 2013-09-03 Schlumberger Technology Corporation Optical coiled tubing log assembly
US8500568B2 (en) 2004-06-07 2013-08-06 Acushnet Company Launch monitor
US7395696B2 (en) 2004-06-07 2008-07-08 Acushnet Company Launch monitor
US8622845B2 (en) 2004-06-07 2014-01-07 Acushnet Company Launch monitor
US8475289B2 (en) 2004-06-07 2013-07-02 Acushnet Company Launch monitor
US7837572B2 (en) 2004-06-07 2010-11-23 Acushnet Company Launch monitor
GB0415223D0 (en) 2004-07-07 2004-08-11 Sensornet Ltd Intervention rod
GB0416512D0 (en) 2004-07-23 2004-08-25 Scandinavian Highlands As Analysis of rock formations
JP2008510964A (en) 2004-08-19 2008-04-10 ヘッドウォール フォトニクス,インコーポレイテッド Multichannel, multispectral imaging spectrometer
US8186454B2 (en) 2004-08-20 2012-05-29 Sdg, Llc Apparatus and method for electrocrushing rock
US20060037516A1 (en) 2004-08-20 2006-02-23 Tetra Corporation High permittivity fluid
US7559378B2 (en) 2004-08-20 2009-07-14 Tetra Corporation Portable and directional electrocrushing drill
US7527108B2 (en) 2004-08-20 2009-05-05 Tetra Corporation Portable electrocrushing drill
US8172006B2 (en) 2004-08-20 2012-05-08 Sdg, Llc Pulsed electric rock drilling apparatus with non-rotating bit
US20060049345A1 (en) 2004-09-09 2006-03-09 Halliburton Energy Services, Inc. Radiation monitoring apparatus, systems, and methods
DE102004045912B4 (en) 2004-09-20 2007-08-23 My Optical Systems Gmbh Method and device for superimposing beams
US8074720B2 (en) 2004-09-28 2011-12-13 Vetco Gray Inc. Riser lifecycle management system, program product, and related methods
US7394064B2 (en) 2004-10-05 2008-07-01 Halliburton Energy Services, Inc. Measuring the weight on a drill bit during drilling operations using coherent radiation
US7087865B2 (en) 2004-10-15 2006-08-08 Lerner William S Heat warning safety device using fiber optic cables
EP1657020A1 (en) 2004-11-10 2006-05-17 Synova S.A. Process and device for optimising the coherence of a fluidjet used for materialworking and fluid flow nozzle for such a device
US7490664B2 (en) 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
GB2420358B (en) 2004-11-17 2008-09-03 Schlumberger Holdings System and method for drilling a borehole
US20060118303A1 (en) 2004-12-06 2006-06-08 Halliburton Energy Services, Inc. Well perforating for increased production
US7720323B2 (en) 2004-12-20 2010-05-18 Schlumberger Technology Corporation High-temperature downhole devices
US7416258B2 (en) 2005-04-19 2008-08-26 Uchicago Argonne, Llc Methods of using a laser to spall and drill holes in rocks
US7487834B2 (en) 2005-04-19 2009-02-10 Uchicago Argonne, Llc Methods of using a laser to perforate composite structures of steel casing, cement and rocks
US7372230B2 (en) 2005-04-27 2008-05-13 Focal Technologies Corporation Off-axis rotary joint
JP3856811B2 (en) 2005-04-27 2006-12-13 日本海洋掘削株式会社 Excavation method and apparatus for submerged formation
US20060289724A1 (en) 2005-06-20 2006-12-28 Skinner Neal G Fiber optic sensor capable of using optical power to sense a parameter
EP1762864B1 (en) 2005-09-12 2013-07-17 Services Petroliers Schlumberger Borehole imaging
US7694745B2 (en) 2005-09-16 2010-04-13 Halliburton Energy Services, Inc. Modular well tool system
JP2007120048A (en) 2005-10-26 2007-05-17 Graduate School For The Creation Of New Photonics Industries Rock excavating method
DE602006011657D1 (en) 2005-11-21 2010-02-25 Shell Oil Co METHOD FOR MONITORING FLUID PROPERTIES
GB0524838D0 (en) 2005-12-06 2006-01-11 Sensornet Ltd Sensing system using optical fiber suited to high temperatures
US7600564B2 (en) 2005-12-30 2009-10-13 Schlumberger Technology Corporation Coiled tubing swivel assembly
US7515782B2 (en) 2006-03-17 2009-04-07 Zhang Boying B Two-channel, dual-mode, fiber optic rotary joint
US20080093125A1 (en) 2006-03-27 2008-04-24 Potter Drilling, Llc Method and System for Forming a Non-Circular Borehole
US8573313B2 (en) 2006-04-03 2013-11-05 Schlumberger Technology Corporation Well servicing methods and systems
FR2899693B1 (en) 2006-04-10 2008-08-22 Draka Comteq France OPTICAL FIBER MONOMODE.
US20070267220A1 (en) 2006-05-16 2007-11-22 Northrop Grumman Corporation Methane extraction method and apparatus using high-energy diode lasers or diode-pumped solid state lasers
US7934556B2 (en) 2006-06-28 2011-05-03 Schlumberger Technology Corporation Method and system for treating a subterranean formation using diversion
US8074332B2 (en) 2006-07-31 2011-12-13 M-I Production Chemicals Uk Limited Method for removing oilfield mineral scale from pipes and tubing
CA2656843C (en) 2006-08-30 2016-10-18 Afl Telecommunications Llc Downhole cables with both fiber and copper elements
US20080112760A1 (en) 2006-09-01 2008-05-15 Curlett Harry B Method of storage of sequestered greenhouse gasses in deep underground reservoirs
US20080067108A1 (en) 2006-09-14 2008-03-20 Halliburton Energy Services, Inc. Methods and compositions for thermally treating a conduit used for hydrocarbon production or transmission to help remove paraffin wax buildup
US20080066535A1 (en) 2006-09-18 2008-03-20 Schlumberger Technology Corporation Adjustable Testing Tool and Method of Use
US7603011B2 (en) 2006-11-20 2009-10-13 Schlumberger Technology Corporation High strength-to-weight-ratio slickline and multiline cables
US7834777B2 (en) 2006-12-01 2010-11-16 Baker Hughes Incorporated Downhole power source
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US8307900B2 (en) 2007-01-10 2012-11-13 Baker Hughes Incorporated Method and apparatus for performing laser operations downhole
US7916386B2 (en) 2007-01-26 2011-03-29 Ofs Fitel, Llc High power optical apparatus employing large-mode-area, multimode, gain-producing optical fibers
JP4270577B2 (en) 2007-01-26 2009-06-03 日本海洋掘削株式会社 Rock processing method and apparatus using laser
SK50872007A3 (en) 2007-06-29 2009-01-07 Ivan Kočiš Device for excavation boreholes in geological formation and method of energy and material transport in this boreholes
US20090033176A1 (en) 2007-07-30 2009-02-05 Schlumberger Technology Corporation System and method for long term power in well applications
US20090034918A1 (en) 2007-07-31 2009-02-05 William Eric Caldwell Fiber optic cables having coupling and methods therefor
US20090031870A1 (en) 2007-08-02 2009-02-05 Lj's Products, Llc System and method for cutting a web to provide a covering
US7835814B2 (en) 2007-08-16 2010-11-16 International Business Machines Corporation Tool for reporting the status and drill-down of a control application in an automated manufacturing environment
US8011454B2 (en) 2007-09-25 2011-09-06 Baker Hughes Incorporated Apparatus and methods for continuous tomography of cores
US7931091B2 (en) 2007-10-03 2011-04-26 Schlumberger Technology Corporation Open-hole wellbore lining
US7593435B2 (en) 2007-10-09 2009-09-22 Ipg Photonics Corporation Powerful fiber laser system
US7715664B1 (en) 2007-10-29 2010-05-11 Agiltron, Inc. High power optical isolator
EP2065554B1 (en) 2007-11-30 2014-04-02 Services Pétroliers Schlumberger System and method for drilling and completing lateral boreholes
EP2065553B1 (en) 2007-11-30 2013-12-25 Services Pétroliers Schlumberger System and method for drilling lateral boreholes
EP2067926A1 (en) 2007-12-04 2009-06-10 Bp Exploration Operating Company Limited Method for removing hydrate plug from a flowline
US8090227B2 (en) 2007-12-28 2012-01-03 Halliburton Energy Services, Inc. Purging of fiber optic conduits in subterranean wells
US8162051B2 (en) 2008-01-04 2012-04-24 Intelligent Tools Ip, Llc Downhole tool delivery system with self activating perforation gun
US7934563B2 (en) 2008-02-02 2011-05-03 Regency Technologies Llc Inverted drainholes and the method for producing from inverted drainholes
US20090205675A1 (en) 2008-02-18 2009-08-20 Diptabhas Sarkar Methods and Systems for Using a Laser to Clean Hydrocarbon Transfer Conduits
JP5826027B2 (en) 2008-03-21 2015-12-02 イムラ アメリカ インコーポレイテッド Laser-based material processing method and system
US7946350B2 (en) 2008-04-23 2011-05-24 Schlumberger Technology Corporation System and method for deploying optical fiber
WO2009131584A1 (en) 2008-04-25 2009-10-29 Halliburton Energy Services, Inc. Multimodal geosteering systems and methods
US8056633B2 (en) 2008-04-28 2011-11-15 Barra Marc T Apparatus and method for removing subsea structures
FR2930997B1 (en) 2008-05-06 2010-08-13 Draka Comteq France Sa OPTICAL FIBER MONOMODE
US20090294050A1 (en) 2008-05-30 2009-12-03 Precision Photonics Corporation Optical contacting enhanced by hydroxide ions in a non-aqueous solution
US8217302B2 (en) 2008-06-17 2012-07-10 Electro Scientific Industries, Inc Reducing back-reflections in laser processing systems
US20100170672A1 (en) 2008-07-14 2010-07-08 Schwoebel Jeffrey J Method of and system for hydrocarbon recovery
US20100013663A1 (en) 2008-07-16 2010-01-21 Halliburton Energy Services, Inc. Downhole Telemetry System Using an Optically Transmissive Fluid Media and Method for Use of Same
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
BRPI0918403A2 (en) 2008-08-20 2015-11-24 Foro Energy Inc method and system for advancing a wellbore using a high power laser
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US20120067643A1 (en) * 2008-08-20 2012-03-22 Dewitt Ron A Two-phase isolation methods and systems for controlled drilling
US20120273470A1 (en) 2011-02-24 2012-11-01 Zediker Mark S Method of protecting high power laser drilling, workover and completion systems from carbon gettering deposits
US10195687B2 (en) 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9074422B2 (en) * 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US20120074110A1 (en) 2008-08-20 2012-03-29 Zediker Mark S Fluid laser jets, cutting heads, tools and methods of use
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9121260B2 (en) 2008-09-22 2015-09-01 Schlumberger Technology Corporation Electrically non-conductive sleeve for use in wellbore instrumentation
US20100078414A1 (en) * 2008-09-29 2010-04-01 Gas Technology Institute Laser assisted drilling
DE102008049943A1 (en) 2008-10-02 2010-04-08 Werner Foppe Method and device for melt drilling
CA2740055A1 (en) * 2008-10-08 2010-04-15 Potter Drilling, Inc. Methods and apparatus for thermal drilling
BRPI0806638B1 (en) 2008-11-28 2017-03-14 Faculdades Católicas Mantenedora Da Pontifícia Univ Católica Do Rio De Janeiro - Puc Rio laser drilling process
US9593573B2 (en) 2008-12-22 2017-03-14 Schlumberger Technology Corporation Fiber optic slickline and tools
AU2009331923B2 (en) 2008-12-23 2016-04-28 Eth Zurich Rock drilling in great depths by thermal fragmentation using highly exothermic reactions evolving in the environment of a water-based drilling fluid
US7814991B2 (en) 2009-01-28 2010-10-19 Gas Technology Institute Process and apparatus for subterranean drilling
SK288264B6 (en) 2009-02-05 2015-05-05 Ga Drilling, A. S. Device to carry out the drillings and method of carry out the drillings
CN101823183A (en) 2009-03-04 2010-09-08 鸿富锦精密工业(深圳)有限公司 Water-conducted laser device
EP2414625B1 (en) 2009-04-03 2014-05-07 Statoil Petroleum AS Equipment and method for reinforcing a borehole of a well while drilling
US8307903B2 (en) 2009-06-24 2012-11-13 Weatherford / Lamb, Inc. Methods and apparatus for subsea well intervention and subsea wellhead retrieval
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
WO2011017609A1 (en) 2009-08-07 2011-02-10 Calera Corporation Carbon capture and storage
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US20110061869A1 (en) 2009-09-14 2011-03-17 Halliburton Energy Services, Inc. Formation of Fractures Within Horizontal Well
US8291989B2 (en) 2009-12-18 2012-10-23 Halliburton Energy Services, Inc. Retrieval method for opposed slip type packers
DE102010005264A1 (en) 2010-01-20 2011-07-21 Smolka, Peter P., Dr., 48161 Chiselless drilling system
JP2011185925A (en) 2010-02-15 2011-09-22 Toshiba Corp In-pipe work device
US8967298B2 (en) 2010-02-24 2015-03-03 Gas Technology Institute Transmission of light through light absorbing medium
WO2011129841A1 (en) 2010-04-14 2011-10-20 Vermeer Manufacturing Company Latching configuration for a microtunneling apparatus
CA2803533C (en) 2010-07-01 2018-03-06 National Oilwell Varco, L.P. Blowout preventer monitoring system and method of using same
US8739899B2 (en) 2010-07-19 2014-06-03 Baker Hughes Incorporated Small core generation and analysis at-bit as LWD tool
CA2808214C (en) 2010-08-17 2016-02-23 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US9080435B2 (en) 2010-08-27 2015-07-14 Baker Hughes Incorporated Upgoing drainholes for reducing liquid-loading in gas wells
CA2813008C (en) 2010-09-22 2019-01-15 Joy Mm Delaware, Inc. Guidance system for a mining machine
US9022115B2 (en) 2010-11-11 2015-05-05 Gas Technology Institute Method and apparatus for wellbore perforation
WO2012116189A2 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. Tools and methods for use with a high power laser transmission system
HU229944B1 (en) * 2011-05-30 2015-03-02 Sld Enhanced Recovery, Inc Method for ensuring of admission material into a bore hole
EP2715887A4 (en) * 2011-06-03 2016-11-23 Foro Energy Inc Rugged passively cooled high power laser fiber optic connectors and methods of use
US9399269B2 (en) 2012-08-02 2016-07-26 Foro Energy, Inc. Systems, tools and methods for high power laser surface decommissioning and downhole welding
AU2012364954B2 (en) * 2012-01-11 2015-11-26 Halliburton Energy Services, Inc. Pipe in pipe BHA electric drive motor
US20140069896A1 (en) 2012-09-09 2014-03-13 Foro Energy, Inc. Light weight high power laser presure control systems and methods of use

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545692B2 (en) 2008-08-20 2017-01-17 Foro Energy, Inc. Long stand off distance high power laser tools and methods of use
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US8511401B2 (en) 2008-08-20 2013-08-20 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US10301912B2 (en) 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US20190040726A1 (en) * 2008-08-20 2019-02-07 Foro Energy, Inc. High power laser hydraulic fracturing, stimulation, tools systems and methods
US8636085B2 (en) 2008-08-20 2014-01-28 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US10195687B2 (en) 2008-08-20 2019-02-05 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US8701794B2 (en) 2008-08-20 2014-04-22 Foro Energy, Inc. High power laser perforating tools and systems
US10053967B2 (en) 2008-08-20 2018-08-21 Foro Energy, Inc. High power laser hydraulic fracturing, stimulation, tools systems and methods
US8757292B2 (en) 2008-08-20 2014-06-24 Foro Energy, Inc. Methods for enhancing the efficiency of creating a borehole using high power laser systems
US10036232B2 (en) 2008-08-20 2018-07-31 Foro Energy Systems and conveyance structures for high power long distance laser transmission
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US8820434B2 (en) 2008-08-20 2014-09-02 Foro Energy, Inc. Apparatus for advancing a wellbore using high power laser energy
US8826973B2 (en) 2008-08-20 2014-09-09 Foro Energy, Inc. Method and system for advancement of a borehole using a high power laser
US8869914B2 (en) 2008-08-20 2014-10-28 Foro Energy, Inc. High power laser workover and completion tools and systems
US20170191314A1 (en) * 2008-08-20 2017-07-06 Foro Energy, Inc. Methods and Systems for the Application and Use of High Power Laser Energy
US8936108B2 (en) 2008-08-20 2015-01-20 Foro Energy, Inc. High power laser downhole cutting tools and systems
US8997894B2 (en) * 2008-08-20 2015-04-07 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US20130175090A1 (en) * 2008-08-20 2013-07-11 Foro Energy Inc. Method and apparatus for delivering high power laser energy over long distances
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US9284783B1 (en) 2008-08-20 2016-03-15 Foro Energy, Inc. High power laser energy distribution patterns, apparatus and methods for creating wells
US9534447B2 (en) 2008-08-20 2017-01-03 Foro Energy, Inc. Apparatus for performing oil field laser operations
US9512679B2 (en) 2008-08-20 2016-12-06 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9327810B2 (en) 2008-10-17 2016-05-03 Foro Energy, Inc. High power laser ROV systems and methods for treating subsea structures
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8879876B2 (en) 2010-07-21 2014-11-04 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US9784037B2 (en) 2011-02-24 2017-10-10 Daryl L. Grubb Electric motor for laser-mechanical drilling
US9291017B2 (en) 2011-02-24 2016-03-22 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9399269B2 (en) 2012-08-02 2016-07-26 Foro Energy, Inc. Systems, tools and methods for high power laser surface decommissioning and downhole welding
US20140041940A1 (en) * 2012-08-09 2014-02-13 James H. Shnell System and method for drilling in rock using microwaves
US9453373B2 (en) * 2012-08-09 2016-09-27 James H. Shnell System and method for drilling in rock using microwaves
US10094172B2 (en) 2012-08-23 2018-10-09 Ramax, Llc Drill with remotely controlled operating modes and system and method for providing the same
US10683704B2 (en) 2012-08-23 2020-06-16 Ramax, Llc Drill with remotely controlled operating modes and system and method for providing the same
US9371693B2 (en) 2012-08-23 2016-06-21 Ramax, Llc Drill with remotely controlled operating modes and system and method for providing the same
US9410376B2 (en) 2012-08-23 2016-08-09 Ramax, Llc Drill with remotely controlled operating modes and system and method for providing the same
US9085050B1 (en) 2013-03-15 2015-07-21 Foro Energy, Inc. High power laser fluid jets and beam paths using deuterium oxide
WO2015088553A1 (en) 2013-12-13 2015-06-18 Foro Energy, Inc. High power laser decommissioning of multistring and damaged wells
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
CN109139034A (en) * 2018-08-08 2019-01-04 华中科技大学 A kind of tunnel piercing device and method using laser cutting broken rock

Also Published As

Publication number Publication date
WO2012116148A1 (en) 2012-08-30
US9562395B2 (en) 2017-02-07
EP2678512A1 (en) 2014-01-01
US20120255774A1 (en) 2012-10-11
EP2678512A4 (en) 2017-06-14
BR112013021478A2 (en) 2016-10-11
WO2012116153A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
US20120261188A1 (en) Method of high power laser-mechanical drilling
US9512679B2 (en) Methods and apparatus for removal and control of material in laser drilling of a borehole
US9784037B2 (en) Electric motor for laser-mechanical drilling
US9453373B2 (en) System and method for drilling in rock using microwaves
AU2007230605B2 (en) Method and system for forming a non-circular borehole
US10053967B2 (en) High power laser hydraulic fracturing, stimulation, tools systems and methods
US6253864B1 (en) Percussive shearing drill bit
US20160084008A1 (en) Downhole laser systems, apparatus and methods of use
US10655401B2 (en) Energy-emitting bits and cutting elements
CN112513409B (en) Cutting elements configured to reduce impact damage and mitigate polycrystalline superabrasive failure, earth-boring tools including such cutting elements, and related methods
US20120267173A1 (en) Drill bit for boring earth and other hard materials
US11530576B2 (en) Drill bit with hybrid cutting arrangement
US10156097B2 (en) Downhole tool for increasing a wellbore diameter

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORO ENERGY INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZEDIKER, MARK S.;FAIRCLOTH, BRIAN O.;ALLEN, ERIK C.;SIGNING DATES FROM 20120517 TO 20120605;REEL/FRAME:028497/0831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION