JP2014510292A - 複数視野のハイパースペクトルイメージング装置およびこれを使用する方法 - Google Patents

複数視野のハイパースペクトルイメージング装置およびこれを使用する方法 Download PDF

Info

Publication number
JP2014510292A
JP2014510292A JP2014503682A JP2014503682A JP2014510292A JP 2014510292 A JP2014510292 A JP 2014510292A JP 2014503682 A JP2014503682 A JP 2014503682A JP 2014503682 A JP2014503682 A JP 2014503682A JP 2014510292 A JP2014510292 A JP 2014510292A
Authority
JP
Japan
Prior art keywords
image
front lens
diffracted
hyperspectral imaging
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014503682A
Other languages
English (en)
Other versions
JP6149294B2 (ja
JP2014510292A5 (ja
Inventor
イー セカンド コムストック,ラヴェル
エル ウィギンズ,リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2014510292A publication Critical patent/JP2014510292A/ja
Publication of JP2014510292A5 publication Critical patent/JP2014510292A5/ja
Application granted granted Critical
Publication of JP6149294B2 publication Critical patent/JP6149294B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0232Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using shutters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

複数視野ハイパースペクトルイメージング装置(300)およびこれを使用する方法を本書において説明する。一実施の形態において、複数視野ハイパースペクトルイメージング装置は、複数の前方レンズ(308、310)、複数の折返しミラー(312、314)、複数の開口(318、320)を含むスリット、分光計(302)、および2次元検出器を備えている。

Description

関連出願の説明
本出願は、その内容が引用されその全体が参照することにより本書に組み込まれる、2011年4月4日に出願された米国仮特許出願第61/471393号の優先権の利益を米国特許法第119条の下で主張するものである。
本発明は、ハイパースペクトルイメージング分野に関し、特に、複数視野のハイパースペクトルイメージング装置と、この複数視野ハイパースペクトルイメージング装置を使用する方法に関する。
分光計は、光信号を入力として受信し、かつ入力した光信号の様々な波長成分または色に従って、空間に広がる光信号を出力として生成する装置である。分光計に取り付けられた検出器が、スペクトルと呼ばれるその出力信号を分析し、その入力した信号に存在している各波長成分の量を定量化する。1つの具体的な種類の分光計はオフナー(Offner)分光計として知られ、この分光計を使用して、遠隔物体の画像を狭いスペクトルバンドの連続範囲に亘って生成することができる。この種の画像化はハイパースペクトルイメージングとして知られ、近年、航空機搭載および人工衛星搭載の偵察およびリモートセンシングに対する、軍事的解決策/航空宇宙的解決策の重要な部分として現れてきた。基本的に、ハイパースペクトルイメージングシステムはオフナー分光計と高度なデータ処理技術とを利用して、スペクトルシグネチャデータが埋め込まれた画像を生成する。このシグネチャデータは、(例えば)目標指示/認識、ミサイルプルームの識別、および地雷探知など、多岐にわたる用途に有用である。さらに、ハイパースペクトルイメージングシステムは、癌検出、環境監視、農業監視、および鉱物探査など、種々さまざまな商業用途に使用可能である。オフナー分光計を組み込んだ例示的な従来のハイパースペクトルイメージングシステムを、図1A〜1B(従来技術)を参照して以下で論じる。
図1A〜1B(従来技術)を参照すると、オフナー分光計102を組み込んだ例示的な従来のハイパースペクトルイメージングシステム100の2つの斜視図が示されている。ハイパースペクトルイメージングシステム100は第1ハウジング104を含み、第1ハウジング104は第2ハウジング106の隣に設置されかつこれに取り付けられている(図1A参照)。第1ハウジング104は、単一の前方レンズ108、スリット110(単一開口111を有する)、および2次元検出器112を包囲しかつ保護している。第2ハウジング106は、オフナー分光計102を包囲しかつ保護している(図1B参照)。この例においてオフナー分光計102は、入口開口114(スリットの開口111と同一、またはこれに隣接したものとし得る)、第1ミラー116、回折格子118、第2ミラー120、および出口開口120(2次元検出器112の隣に位置している)を含んだ、1対1の光中継装置である。従来のハイパースペクトルイメージングシステム100に関して提供される説明を明瞭にするために、当産業において周知であって本発明を説明および理解するために必要ではない特定の詳細および構成要素は省略することを理解されたい。
従来のハイパースペクトルイメージングシステム100は、遠隔物体105の画像を狭いスペクトルバンドの連続範囲に亘って生成するように動作するものであり、このとき前方レンズ108が遠隔物体105からビーム107を受けてビーム107をスリットの単一開口111へと導き、単一開口111がトリムされたビーム122(画像のスライス)をオフナー分光計102へと出力し、オフナー分光計102がトリムされたビーム122を回折させて回折ビーム124を検出器112へと送る(図1Aおよび1B参照)。具体的には、スリットの単一開口111がトリムされたビーム122を出力し、このビーム122が入口開口114(存在している場合)を通過して第1ミラー116(球面ミラー116)がこれを受け、第1ミラー116がトリムされたビーム122を回折格子118に向けて反射する。回折格子118はトリムされたビーム122を受けて回折させ、かつ回折ビーム124を第2ミラー120(球面ミラー120)へと反射する。第2ミラー120は回折ビーム124を受け、この回折ビーム124を出口開口120を通じて検出器112へと反射する。検出器112(例えば、2次元焦点面アレイ(FPA)112)は、分光計の出口開口120を通過した回折ビーム124を受けて処理する。
この種のハイパースペクトルイメージングシステム100は、一般にほとんどの用途においてよく機能するが、短波長赤外(SWIR)波長帯(0.75〜2.5μm)および長波長赤外(LWIR)波長帯(7〜15μm)において今の市販の検出器112は、可視波長帯に関連する市販の検出器に比べて、画像化に使用可能な画素の数が限られている。特に、今の市販の検出器112は、空間方向とスペクトル方向とから成る2次元焦点面に遠隔物体105を画像化するために使用できる画素の数が限られている。すなわち、空間場の適用範囲を特定の解像度で改善するために、各従来のハイパースペクトルイメージングシステム100a、100b・・・100nの「直線状の視野」の端と端とを互いに位置合わせして遠隔物体105(図示なし)を特定の解像度で画像化するよう、現在は複数の従来のハイパースペクトルイメージングシステム100a、100b・・・100nを図2(従来技術)に示したように隣合わせに位置付けている。この解決策は、(非常に高価な)複数の検出器、冷却器、分光計などの、空間、重力、電力制限、およびコストのために、SWIR用途およびLWIR用途を含む多くの用途で手が出ない。
従来技術の欠点を克服し、かつSWIR用途およびLWIR用途を含む多くの用途において使用することが可能な、複数視野ハイパースペクトルイメージング装置およびこれを使用する方法を、本出願の独立クレームに記載する。この複数視野ハイパースペクトルイメージング装置およびこれを使用する方法の有利な実施形態を、従属クレームに記載する。
一態様において、本発明は遠隔物体を画像化するための複数視野ハイパースペクトルイメージング装置を提供する。この複数視野ハイパースペクトルイメージング装置は、(a)遠隔物体の第1部分から第1画像を受け取る、第1前方レンズ、(b)遠隔物体の第2部分から第2画像を受け取る、第2前方レンズ、(c)第1折返しミラー、(d)第2折返しミラー、(e)第1開口と第2開口とを備えているスリットであって、このとき第1前方レンズから第1画像を受ける第1折返しミラーであって、トリムされた第1画像を出力する第1開口へと、この第1画像を導く第1折返しミラーに、第1前方レンズが関連したものであり、かつ第2前方レンズから第2画像を受ける第2折返しミラーであって、トリムされた第2画像を出力する第2開口へと、この第2画像を導く第2折返しミラーに、第2前方レンズが関連したものである、スリット、(f)トリムされた第1画像を第1開口から受けて、回折された第1画像を出力し、かつ、トリムされた第2画像を第2開口から受けて、回折された第2画像を出力するように設置された、分光計、および(g)回折された第1画像と回折された第2画像とを分光計から最終焦点面で受けて、その後、回折された第1画像および回折された第2画像の、2次元画像を出力するように設置された、2次元検出器、を備えている。
別の態様において、本発明は、遠隔物体を画像化するために複数視野ハイパースペクトルイメージング装置を使用する方法を提供する。この方法は、(a)複数視野ハイパースペクトルイメージング装置を提供するステップであって、この複数視野ハイパースペクトルイメージング装置が、(i)遠隔物体の第1部分から第1画像を受け取る、第1前方レンズ、(ii)遠隔物体の第2部分から第2画像を受け取る、第2前方レンズ、(iii)第1折返しミラー、(iv)第2折返しミラー、(v)第1開口と第2開口とを備えているスリットであって、このとき第1前方レンズから第1画像を受ける第1折返しミラーであって、トリムされた第1画像を出力する第1開口へと、この第1画像を導く第1折返しミラーに、第1前方レンズが関連したものであり、かつ第2前方レンズから第2画像を受ける第2折返しミラーであって、トリムされた第2画像を出力する第2開口へと、この第2画像を導く第2折返しミラーに、第2前方レンズが関連したものである、スリット、(vi)トリムされた第1画像を第1開口から受けて、回折された第1画像を出力し、かつ、トリムされた第2画像を第2開口から受けて、回折された第2画像を出力するように設置された、分光計、および(vii)回折された第1画像と回折された第2画像とを分光計から最終焦点面で受けて、その後、回折された第1画像および回折された第2画像の、2次元画像を出力するように設置された、2次元検出器、を備えたものである、ステップ、および、(b)第1前方レンズと第2前方レンズとを制御して、回折された第1画像および回折された第2画像の、2次元画像を得るステップ、を含んでいる。
本発明のさらなる態様は、一部は以下の詳細な説明、図面、および任意の請求項の中で明記され、そして一部は詳細な説明から導かれるであろうし、あるいは本発明を実施することにより理解できるであろう。前述の一般的な説明および以下の詳細な説明は、単なる例示および説明のためのものであり、開示される本発明を限定するものではないことを理解されたい。
以下の詳細な説明を添付の図面と共に参照すると、本発明のより完全な理解が得られるであろう。
SWIR用途およびLWIR用途において遠隔物体を低解像度で画像化する、例示的な従来のハイパースペクトルイメージングシステムを示した図 SWIR用途およびLWIR用途において遠隔物体を低解像度で画像化する、例示的な従来のハイパースペクトルイメージングシステムを示した図 各従来のハイパースペクトルイメージングシステムの「直線状の視野」の端と端とを互いに位置合わせしてSWIR用途およびLWIR用途において遠隔物体を高解像度で画像化するよう、隣合わせに位置付けられた複数の従来のハイパースペクトルイメージングシステムを示した図 本発明の一実施の形態による、遠隔物体を画像化するための例示的な複数視野ハイパースペクトルイメージングシステムを示した図 本発明の一実施の形態による、遠隔物体を画像化するための例示的な複数視野ハイパースペクトルイメージングシステムを示した図 本発明の一実施の形態による、遠隔物体を画像化するための例示的な複数視野ハイパースペクトルイメージングシステムを示した図 図3A〜3Cに示したものに類似しているが、本発明の一実施の形態による、シャッター、固定ピックオフミラー(第1前方レンズに関連している)、および可動ステアリングミラー(第2前方レンズに関連している)をさらに組み込んだ、例示的な複数視野ハイパースペクトルイメージングシステムを示している図 本発明の一実施の形態による、図3A〜3Dに示した複数視野ハイパースペクトルイメージングシステム内に組み込むことが可能な例示的なスリットを示した図 本発明の一実施の形態による、図3A〜3Dに示した複数視野ハイパースペクトルイメージングシステム内に組み込むことが可能な例示的なスリットを示した図 本発明の一実施の形態による、図3A〜3Dに示した複数視野ハイパースペクトルイメージングシステム内に組み込むことが可能な例示的なスリットを示した図 本発明の一実施の形態による、図3A〜3Dに示した複数視野ハイパースペクトルイメージングシステム内に組み込むことが可能な例示的なスリットを示した図 本発明の一実施の形態による、図3A〜3Dに示した複数視野ハイパースペクトルイメージングシステム内に組み込むことが可能な例示的なスリットを示した図 本発明の一実施の形態による、図3A〜3Dに示した複数視野ハイパースペクトルイメージングシステム内に組み込むことが可能な別の例示的なスリットを示した図 本発明の別の実施形態による、1以上の遠隔物体を画像化するための別の例示的な複数視野ハイパースペクトルイメージングシステムを示した図
図3A〜3Cを参照すると、本発明の一実施の形態による、遠隔物体305を画像化するための例示的な複数視野ハイパースペクトルイメージングシステム300の3つの斜視図が示されている。ハイパースペクトルイメージングシステム300は、第2ハウジング306の隣に設置されかつこれに取り付けられた、第1ハウジング304を含んでいる(図3A参照)。第1ハウジング304は、第1前方レンズ308、第2前方レンズ310、第1折返しミラー312、第2折返しミラー314、スリット316(第1開口318および第2開口320を含む)、および2次元検出器322を、包囲しかつ保護している(図3B〜3C参照)。第2ハウジング306は、分光計302(オフナー分光計302(図示)、ダイソン(Dyson)分光計302など)を包囲しかつ保護している(図3B〜3C参照)。この例において分光計302は、入口開口324(スリットの開口318および320と同一、またはこれらに隣接したものとし得る)、第1ミラー326、回折格子328、第2ミラー330、および出口開口332(2次元検出器322の隣に位置している)を含んだ、1対1の光中継装置である。ハイパースペクトルイメージングシステム300は、第1前方レンズ308、第2前方レンズ310、および2次元検出器322を含むいくつかの構成要素の動作を制御する、コントローラ323を含んでもよい。ハイパースペクトルイメージングシステム300に関して提供される説明を明瞭にするために、当産業において周知であって本発明を説明および理解するために必要ではない特定の詳細および構成要素は省略することを理解されたい。
ハイパースペクトルイメージングシステム300は、遠隔物体305の画像を狭いスペクトルバンドの連続範囲に亘って生成するように動作するものであり、このとき第1前方レンズ308が遠隔物体305の第1部分309に関連する第1画像307(例えば、第1ビーム307)を受け、かつ第2前方レンズ310が遠隔物体305の第2部分313に関連する第2画像311(例えば、第2ビーム311)を受ける(図3A参照)。第1折返しミラー312が第1前方レンズ308から第1画像307を受けてこの第1画像307をスリットの第1開口318へと導き、第1開口318が、トリムされた第1画像334(第1画像のスライス)を出力する(図3B〜3C参照)。第2折返しミラー314は第2前方レンズ310から第2画像311を受けてこの第2画像311をスリットの第2開口320へと導き、第2開口320が、トリムされた第2画像336(第2画像のスライス)を出力する(図3B〜3C参照)。第1折返しミラー312および第2折返しミラー314は、第1画像307および第2画像311をスリットの開口318および320に導く前に、2つの視野を互いに位置合わせするよう調節されることになる。
分光計302は、スリットの第1開口318および第2開口320からトリムされた第1画像334とトリムされた第2画像336とを受け、かつ、回折された第1画像338と回折された第2画像340とを2次元検出器322に出力するように設置されている。具体的には、スリットの第1開口318および第2開口320がトリムされた第1画像334およびトリムされた第2画像336を出力し、これらの画像が入口開口324(存在している場合)を通過して第1ミラー326(球面ミラー326)へと向かい、このミラーがトリムされた第1画像334およびトリムされた第2画像336を回折格子328に向けて反射する。回折格子328は、第1ミラー326から反射されたトリムされた第1画像334とトリムされた第2画像336とを受けて、回折された第1画像338および回折された第2画像340を第2ミラー330(球面ミラー330)へと出力する。第2ミラー330は、回折された第1画像338と回折された第2画像340とを回折格子328から受けて、回折された第1画像338と回折された第2画像340とを、出口開口332を通じて2次元検出器322へと反射する。2次元検出器322(例えば、2次元FPA322)は、回折された第1画像338および回折された第2画像340を最終焦点面341の位置で受けて、その後、回折された第1画像338および回折された第2画像340の、2次元画像を出力するように設置されている(例えば、図3Cおよび4E参照)。
a.ハイパースペクトルイメージングシステム300のある設定において、第1前方レンズ308および第2前方レンズ310は互いに異なった倍率を有している。例えば、第1前方レンズ308が広視野を有しかつ第2前方レンズ310が狭視野を有していてもよく、これらは両方とも2次元検出器322上に画像化される。さらに、第1前方レンズ308の手前に固定のピックオフミラー342が設置され、また第2前方レンズ310の手前に高速可動のステアリングミラー344が設置されたものでもよい(図3D参照)。この特定の設定は、より広視野の画像が時間領域において「先行」して特定のスペクトルシグネチャを探すように使用することができる。関心領域が見つかった場合、高速可動ステアリングミラー344が、狭視野画像をその関心領域に位置付けることができる。このような用途では、1以上のシャッター346をさらに組み込んで、第1前方レンズ308または第2前方レンズ310からのいずれかの1視野のみを一度にアクティブにすることによって、画像における信号対ノイズの比率をさらに改善することができる(図3D参照)。この例では1つのシャッター346がスリット316の後ろの位置に図示されており、シャッター346は、スリットのいずれの開口318および320を覆うようにも移動することができる。コントローラ323は、高速可動ステアリングミラー344とシャッター346との動きを制御することになる。提供される説明と図とを明瞭にするために、固定ピックオフミラー342、高速可動ステアリングミラー344、およびシャッター346を支持するために使用される構成要素に関する特定の詳細は、省略することを理解されたい。
ハイパースペクトルイメージングシステム300の別の設定では、第1前方レンズ308および第2前方レンズ310は同じ倍率を有する。この特定の設定は、1つの視野(第1前方レンズ308に関連している)と他方の視野(第2前方レンズ310に関連している)とを時間領域において交互なものとし、種々の「場所の変更」用途を実行できるように使用することができる。例えば、場所の変更用途の1つに、特定の乗り物の追跡が含まれ得る。
図4A〜4Eを参照すると、本発明の実施形態による、複数視野ハイパースペクトルイメージングシステム300内に組み込むことが可能な例示的なスリット316のいくつかの図が示されている。図4A〜4Bには、貫通している第1開口318および第2開口320がその中に延在している基板402を含んだ、スリット316の前方斜視図および後方斜視図が夫々示されている。一例においてスリット316は、第1側面404を有するダイヤモンド機械加工可能な基板402(例えば、銅、ニッケル、アルミニウム、シリコン、ゲルマニウム、金、フッ化カルシウム)から作製され、第1側面404の一部406は、スリットアパーチャの長さ408を画成するダイヤモンドボールノーズのフライス加工(例えば)によって第1側面404から除去されている(図4A参照)。ダイヤモンド機械加工可能な基板402は第2側面410をさらに有し、この第2側面410の2つの部分412および414がダイヤモンドフライカット加工(例えば)によって第2側面410から除去されて2つの溝416および418を形成し、これらの溝が第1側面404まで貫通して2つの開口318および320を形成している(図4B参照)。これらおよび他の機械加工技術によれば、通常の基板内にスリット316をサブマイクロメートルの公差で加工することができる。これらの機械加工技術は、スリット316、回折格子328、および2次元検出器322間の正確なアライメントを必要とする分光計302の性能を最適化するために、スリットの開口318および320を正確に位置合わせされるように加工する点で、さらに優位となる(例えば、2次元検出器322で1/10画素未満)。図4C〜4Dは、例示的なモノリシックナイフエッジ二重スリット316の写真と、この例示的なモノリシックナイフエッジ二重スリット316の一部の400倍画像を表示したコンピュータモニタ425の図とを夫々示したものである。
例示的なスリット316の2つの開口318および320は、分光計の最終焦点面341(1対1の光中継分光計302と仮定)での回折界(diffracted field)を超える分だけ互いに離れている(図4E参照)。具体的には、スリットの第1開口318および第2開口320は、関心のあるスペクトルバンドによって互いに分離されたトリムされた画像334および336を夫々出力し、その結果回折された第1画像338および回折された第2画像340は、2次元検出器322の最終焦点面341上で画像化されたときに互いに分離される(図4E参照)。さらに、回折された第1画像338と回折された第2画像340との重複を防ぐような回折効率で、回折格子328を構成することができる。さらに、2次元検出器322は、バンドパスフィルタ、オーダーソーティングフィルタ、または他の技術を組み込んで、隣接する回折された第1画像338と回折された第2画像340との重複を防ぐことができる。
図5を参照すると、本発明の一実施の形態による複数視野ハイパースペクトルイメージングシステム300内に組み込むことが可能な別の例示的なスリット316’の一部が表示された、コンピュータモニタ500の図が示されている。例示的なスリット316’は、スリット316’が、第2開口320’と、第2開口320’よりも幅広の第1開口318’といった幅の異なる2つの開口318’および320’を有していることを除いて、前述のスリット316と同じものである。この例において、第1開口318’の幅322’は40μmであり、かつ第2開口320’の幅324’は10μmであり、また両開口318’および320’の長さは11mmである。例示的なスリットの2つの開口318’および320’は、分光計の最終焦点面341(1対1の光中継分光計302と仮定)での回折界を超える分だけ互いに離れている。具体的には、スリットの第1開口318’および第2開口320’は、関心のあるスペクトルバンドによって互いに分離されたトリムされた画像334および336を夫々出力し、その結果回折された第1画像338および回折された第2画像340は、2次元検出器322の最終焦点面341上で画像化されたときに互いに分離される(例えば、図4E参照)。あるいは、前述のスリット316および316’は、3以上の開口を有することもあり得る。この場合、複数視野ハイパースペクトルイメージングシステム300は3以上の前方レンズと3以上の折返しミラーとを有することになり、この一例を図6を参照して以下で論じる。
図6を参照すると、本発明の別の実施形態による、1以上の遠隔物体(図示なし)を画像化するための別の例示的な複数視野ハイパースペクトルイメージングシステム600の図が示されている。ハイパースペクトルイメージングシステム600は、第2ハウジング606の隣に設置されかつこれに取り付けられた、第1ハウジング604を含んでいる。第1ハウジング604は、第1前方レンズ608、第2前方レンズ610、第3前方レンズ612、第4前方レンズ614(ピックオフミラー615に関連する)、第1折返しミラー616、第2折返しミラー618、第3折返しミラー620、第4折返しミラー622、スリット624(第1開口626、第2開口628、第3開口630、第4開口632を含む)、および2次元検出器634を、包囲しかつ保護している。第2ハウジング606は、分光計602(オフナー分光計602(図示)、ダイソン分光計602など)を包囲しかつ保護している。この例において分光計602は、入口開口636(スリットの開口626、628、630、および632と同一、またはこれらに隣接したものとし得る)、第1ミラー638、回折格子640、第2ミラー642、および出口開口646(2次元検出器634の隣に位置している)を含んだ、1対1の光中継装置である。ハイパースペクトルイメージングシステム600は、前方レンズ608、610、612、および614と、2次元検出器634とを含むいくつかの構成要素の動作を制御する、コントローラ648を含んでもよい。ハイパースペクトルイメージングシステム600に関して提供される説明および図を明瞭にするために、当産業において周知であって本発明を説明および理解するために必要ではない特定の詳細および構成要素は省略することを理解されたい。
ハイパースペクトルイメージングシステム600の4つの前方レンズ608、610、612、および614は、夫々が90°の視野を有して360°をカバーし、遠隔物体(監視事象または一時的事象)を画像化する。動作時、ハイパースペクトルイメージングシステム600は、第1前方レンズ608が遠隔物体の一部分に関連する第1画像650(例えば、第1ビーム650)を受け、第2前方レンズ610が遠隔物体の別の部分に関連する第2画像652(例えば、第2ビーム652)を受け、第3前方レンズ612が遠隔物体の別の部分に関連する第3画像654(例えば、第3ビーム654)を受け、さらに第4前方レンズ614がピックオフミラー615から遠隔物体のさらに別の部分に関連する第4画像656(例えば、第4ビーム656)を受けると、遠隔物体の画像を狭いスペクトルバンドの連続範囲に亘って生成するように動作する。第1折返しミラー616が第1前方レンズ608から第1画像650を受けてこの第1画像650をスリットの第1開口626へと導き、第1開口626が、トリムされた第1画像658(第1画像650のスライス)を出力する。第2折返しミラー618が第2前方レンズ610から第2画像652を受けてこの第2画像652をスリットの第2開口628へと導き、第2開口628が、トリムされた第2画像660(第2画像652のスライス)を出力する。第3折返しミラー620が第3前方レンズ612から第3画像654を受けてこの第3画像654をスリットの第3開口630へと導き、第3開口630がトリムされた第3画像662(第3画像654のスライス)を出力する。第4折返しミラー622が第4前方レンズ614から第4画像656を受けてこの第4画像656をスリットの第4開口632へと導き、第4開口632がトリムされた第4画像664(第4画像656のスライス)を出力する。折返しミラー616、618、620、および622は、画像650、652、654、および656をスリットの開口626、628、630、および632に導く前に、4つの視野を互いに位置合わせするよう調節されることになる。
分光計602は、スリットの開口626、628、630、および632からトリムされた画像658、660、662、および664を受け、かつ、回折された画像666、668、670、および672を2次元検出器634に出力するように設置されている。具体的には、スリットの開口626、628、630、および632がトリムされた画像658、660、662、および664を出力し、これらの画像が入口開口636(存在している場合)を通過して第1ミラー638(球面ミラー638)へと向かい、このミラーがトリムされた画像658、660、662、および664を回折格子640に向けて反射する。回折格子640は、第1ミラー638から反射されたトリムされた画像658、660、662、および664を受けて、回折された画像666、668、670、および672を第2ミラー642(球面ミラー642)へと出力する。第2ミラー642は、回折された画像666、668、670、および672を回折格子640から受けて、回折された画像666、668、670、および672を、出口開口646を通じて2次元検出器634へと反射する。2次元検出器634(例えば、2次元FPA634)は、回折された画像666、668、670、および672を最終焦点面674の位置で受けて、その後、回折された画像666、668、670、および672の、2次元画像を出力するように設置されている。
ハイパースペクトルイメージングシステム600に組み込まれる前方レンズ608、610、612、および614の倍率は、同一のものでもよいし、異なったものでもよいし、あるいは任意に組み合わせたものでもよい。所望であれば、ハイパースペクトルイメージングシステム600は、ハイパースペクトルイメージングシステム300に関連して上述したような、固定ミラー、高速可動ステアリングミラー、およびシャッターを、1以上組み込んでもよい。さらにハイパースペクトルイメージングシステム600は、開口626、628、630、および632を備えたスリット624を組み込んでいるが、これらの開口は夫々、分光計の最終焦点面674(1対1の光中継分光計602を仮定)での回折界を超える分だけ互いに離れている。スリットの開口626、628、630、および632の幅は、同一でもよいし、異なっていてもよいし、あるいは任意の所望の組合せとしてもよい。さらに、任意の回折された画像666、668、670、および672の重複を防ぐような回折効率で回折格子640を構成することができる。さらに、2次元検出器634は、バンドパスフィルタ、オーダーソーティングフィルタ、または他の技術を組み込んで、隣接する回折された画像666、668、670、および672の重複を防ぐことができる。
上記から、前述のハイパースペクトルイメージングシステム300および600は、SWIR用途およびLWIR用途を含む様々な用途で使用することができること、すなわち従来技術に関連した前述の欠点に対処できることが当業者には理解されるであろう。これらの欠点に対処するために、ハイパースペクトルイメージングシステム300および600は、従来のハイパースペクトルイメージングシステム100(例えば)では活用できなかった利用可能な検出領域を活用している。具体的には、従来のハイパースペクトルイメージングシステム100では、スペクトル次元における全検出領域は活用されず、多くの場合、利用可能な検出領域の20%未満が機能し利用されている。しかしながら、ハイパースペクトルイメージングシステム300および600は、革新的な回折格子設計、画像分割技術、および単一の分光計において複数のハイパースペクトルの視野をカバーする複数の前方レンズを備えることによって、利用可能な検出空間を活用するよう構成されている。さらに、ハイパースペクトルイメージングシステム300および600は、オフナー分光計およびダイソン分光計など多くの「半対称」分光計の光学性能を利用して、スペクトル方向において広範囲をカバーすることができるが、このシステムを他の屈折および反射設計に適用することもできる。オフナー分光計302の代わりに使用することができる例示的なダイソン分光計は、以下の文献、すなわち(1)J. Dyson著「ザイデル収差のない等倍光学系(Unit magnification optical system without Seidel aberrations)」J. Opt. Soc. Am. 第49巻、713〜716頁(1959年)、(2)David W. Warren、David J. Gutierrez、およびEric R. Keim著「高性能赤外線応用のためのダイソン分光計(Dyson spectrometers for high-performance infrared applications)」Optical Engineering/第47巻/第10版(Issue 10)2008年10月14日オンライン公開、および、米国特許出願公開第2009/0237657号明細書(これらの文献の内容は参照することにより本書に組み込まれる)の中に記載されている。ハイパースペクトルイメージングシステム300および600によれば、複数の従来のハイパースペクトルイメージングシステム100a、100b・・・100n(図2参照)に比べて、さらに設備(検出器、分光計、冷却器など)の大幅なコスト低減が可能になり、占有する容積が著しく小さくなり、かつ必要な電力がかなり減少する。
本発明の複数の実施形態を、添付の図面に示し、かつ上述の詳細な説明の中で説明してきたが、本発明は開示された実施形態に限られるものではなく、以下の請求項により明記および画成される本発明から逸脱することなく、多くの再構成、改変および置換えが可能であることを理解されたい。また本書において称する「本発明」または「発明」は、例示的な実施形態に関し、必ずしも添付の請求項に包含されるあらゆる実施形態に関するものではないことに留意されたい。
300、600 ハイパースペクトルイメージングシステム
302、602 分光計
304、604 第1ハウジング
305 遠隔物体
306、606 第2ハウジング
307、650 第1画像
308、608 第1前方レンズ
309 第1部分
310、610 第2前方レンズ
311、652 第2画像
312、616 第1折返しミラー
313 第2部分
314、618 第2折返しミラー
316、624 スリット
318、626 第1開口
320、628 第2開口
322、634 2次元検出器
324、636 入口開口
326、638 第1ミラー
328、640 回折格子
330、642 第2ミラー
332、646 出口開口
334、658 トリムされた第1画像
336、660 トリムされた第2画像
338、666 回折された第1画像
340、668 回折された第2画像
341、674 最終焦点面
342、615 固定ピックオフミラー
344 ステアリングミラー
346 シャッター
612、614 前方レンズ
620、622 折返しミラー
630、632 開口

Claims (10)

  1. 遠隔物体(305)を画像化する複数視野ハイパースペクトルイメージング装置(300、600)において、
    前記遠隔物体の第1部分(309)から第1画像(307、650)を受け取る、第1前方レンズ(308、608)、
    前記遠隔物体の第2部分(313)から第2画像(311、652)を受け取る、第2前方レンズ(310、610)、
    第1折返しミラー(312、616)、
    第2折返しミラー(314、618)、
    第1開口(318、626)と第2開口(320、628)とを備えているスリット(316、624)であって、このとき前記第1前方レンズから前記第1画像を受ける前記第1折返しミラーであって、トリムされた第1画像(334、658)を出力する前記第1開口へと前記第1画像を導く前記第1折返しミラーに、前記第1前方レンズが関連したものであり、かつ前記第2前方レンズから前記第2画像を受ける前記第2折返しミラーであって、トリムされた第2画像(336、660)を出力する前記第2開口へと前記第2画像を導く前記第2折返しミラーに、前記第2前方レンズが関連したものである、スリット、
    前記トリムされた第1画像を前記第1開口から受けて、回折された第1画像(338、666)を出力し、かつ、前記トリムされた第2画像を前記第2開口から受けて、回折された第2画像(340、668)を出力するように設置された、分光計(302、602)、および、
    前記回折された第1画像と前記回折された第2画像とを前記分光計から最終焦点面(341、674)で受けて、その後、該回折された第1画像および回折された第2画像の、2次元画像を出力するように設置された、2次元検出器(322、634)、
    を備えていることを特徴とする複数視野ハイパースペクトルイメージング装置。
  2. 前記スリットの前記第1開口が、前記第2開口から、前記最終焦点面での回折界を超える分だけ離れていることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  3. 前記分光計がオフナー分光計であり、該オフナー分光計が、前記第1開口および第2開口から前記トリムされた第1画像およびトリムされた第2画像を受ける、第1ミラー(326、638)、前記第1ミラーから反射された前記トリムされた第1画像およびトリムされた第2画像を受けて、前記回折された第1画像および回折された第2画像を出力する、回折格子(328、640)、前記回折格子から前記回折された第1画像および回折された第2画像を受けて、該回折された第1画像および回折された第2画像を前記2次元検出器へと反射する、第2ミラー(330、642)、を備えていることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  4. 前記2次元検出器が、前記回折された第1画像と前記回折された第2画像との重複を防ぐためのフィルタを備えていることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  5. 前記第1前方レンズおよび前記第2前方レンズが、同じ倍率を有していることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  6. 前記第1前方レンズが広視野を有しかつ前記第2前方レンズが狭視野を有するように、前記第1前方レンズおよび前記第2前方レンズが異なる倍率を有していることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  7. 前記第2前方レンズに関連するステアリングミラー(344)をさらに備え、ここで広視野を有する前記第1前方レンズが、時間領域において、狭視野を有する前記第2前方レンズに先行するものであり、これにより、特定のスペクトルシグネチャを広視野で捜して、かつ該特定のスペクトルシグネチャが発見されたときに、前記ステアリングミラーを制御して前記狭視野を前記特定のスペクトルシグネチャ上に集中するように位置付けることが可能になることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  8. 前記第1前方レンズまたは前記第2前方レンズからのいずれかの1視野のみを一度にアクティブにするように制御されるシャッター(346)を、さらに備えていることを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  9. 少なくともさらに1つの前方レンズ(612、614)、少なくともさらに1つの折返しミラー(620、622)、少なくともさらに1つの開口(630、632)を備えた前記スリット、をさらに含み、かつ前記2次元検出器が、前記2次元画像を、少なくともさらに1つの回折された画像とともに出力することを特徴とする請求項1記載の複数視野ハイパースペクトルイメージング装置。
  10. 遠隔物体(305)を画像化するために複数視野ハイパースペクトルイメージング装置(300、600)を使用する方法において、
    複数視野ハイパースペクトルイメージング装置であって、
    前記遠隔物体の第1部分(309)から第1画像(307、650)を受け取る、第1前方レンズ(308、608)、
    前記遠隔物体の第2部分(313)から第2画像(311、652)を受け取る、第2前方レンズ(310、610)、
    第1折返しミラー(312、616)、
    第2折返しミラー(314、618)、
    第1開口(318、626)と第2開口(320、628)とを備えているスリット(316、624)であって、このとき前記第1前方レンズから前記第1画像を受ける前記第1折返しミラーであって、トリムされた第1画像(334、658)を出力する前記第1開口へと、前記第1画像を導く前記第1折返しミラーに、前記第1前方レンズが関連したものであり、かつ前記第2前方レンズから前記第2画像を受ける前記第2折返しミラーであって、トリムされた第2画像(336、660)を出力する前記第2開口へと、前記第2画像を導く前記第2折返しミラーに、前記第2前方レンズが関連したものである、スリット、
    前記トリムされた第1画像を前記第1開口から受けて、回折された第1画像(338、666)を出力し、かつ、前記トリムされた第2画像を前記第2開口から受けて、回折された第2画像(340、668)を出力するように設置された、分光計(302、602)、および、
    前記回折された第1画像と前記回折された第2画像とを前記分光計から最終焦点面(341、674)で受けて、その後、該回折された第1画像および回折された第2画像の、2次元画像を出力するように設置された、2次元検出器(322、634)、
    を備えた複数視野ハイパースペクトルイメージング装置を提供するステップステップ、および、
    前記第1前方レンズと前記第2前方レンズとを制御して、前記回折された第1画像および前記回折された第2画像の、前記2次元画像を得るステップ、
    を含むことを特徴とする方法。
JP2014503682A 2011-04-04 2012-03-27 複数視野のハイパースペクトルイメージング装置およびこれを使用する方法 Active JP6149294B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161471393P 2011-04-04 2011-04-04
US61/471,393 2011-04-04
PCT/US2012/030643 WO2012138499A1 (en) 2011-04-04 2012-03-27 Multi field of view hyperspectral imaging device and method for using same

Publications (3)

Publication Number Publication Date
JP2014510292A true JP2014510292A (ja) 2014-04-24
JP2014510292A5 JP2014510292A5 (ja) 2015-05-14
JP6149294B2 JP6149294B2 (ja) 2017-06-21

Family

ID=45937644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014503682A Active JP6149294B2 (ja) 2011-04-04 2012-03-27 複数視野のハイパースペクトルイメージング装置およびこれを使用する方法

Country Status (4)

Country Link
US (1) US8823932B2 (ja)
EP (1) EP2694931B1 (ja)
JP (1) JP6149294B2 (ja)
WO (1) WO2012138499A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521678A (ja) * 2014-05-27 2017-08-03 ジーエイチジーサット インコーポレイテッド 大気微量ガスのファブリ・ペロー干渉計に基づく衛星検出
KR101872240B1 (ko) * 2017-01-26 2018-06-29 서울대학교산학협력단 가시광/근적외선 초분광 현미경기반 영상 측정장치를 이용한 영상 측정방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200958B2 (en) 2012-11-15 2015-12-01 Corning Incorporated Hyperspectral imaging systems and methods for imaging a remote object
EP2857810A1 (en) * 2013-10-02 2015-04-08 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Monolith spectrometer
JP6251073B2 (ja) 2014-02-05 2017-12-20 浜松ホトニクス株式会社 分光器、及び分光器の製造方法
IT201600097439A1 (it) * 2016-09-28 2018-03-28 Eie Space Tech Srl Dispositivo stereo-iperspettrale perfezionato
GB201817092D0 (en) * 2018-10-19 2018-12-05 Cancer Research Tech Ltd Apparatus and method for wide-field hyperspectral imaging
JP6759409B2 (ja) * 2019-04-26 2020-09-23 浜松ホトニクス株式会社 分光器
US11639873B2 (en) * 2020-04-15 2023-05-02 Viavi Solutions Inc. High resolution multi-pass optical spectrum analyzer
US20240040258A1 (en) * 2022-07-28 2024-02-01 Dell Products L.P. Camera with plural selective fields of view

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241897A (ja) * 1993-02-12 1994-09-02 Mitsubishi Heavy Ind Ltd 分光装置
US6104488A (en) * 1999-08-12 2000-08-15 The United States Of America As Represented By The Secretary Of The Air Force Multi-octave spectroscopy with multi-waveband infrared focal plane array
JP2001045521A (ja) * 1999-07-30 2001-02-16 Canon Inc 立体画像撮影光学系及びそれを用いた立体画像撮影装置
US20060038997A1 (en) * 2004-08-19 2006-02-23 Julian Jason P Multi-channel, multi-spectrum imaging spectrometer
JP2006093859A (ja) * 2004-09-21 2006-04-06 Olympus Corp 2眼撮像系を搭載したカメラ及びステレオ撮影可能なカメラ
WO2007095743A1 (en) * 2006-02-22 2007-08-30 Itres Research Limited Optically multiplexed imaging systems and methods of operation
US20080024871A1 (en) * 2006-02-22 2008-01-31 Itres Research Limited Optically multiplexed imaging systems and methods of operation

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748015A (en) 1971-06-21 1973-07-24 Perkin Elmer Corp Unit power imaging catoptric anastigmat
US4259014A (en) * 1979-04-03 1981-03-31 Princeton Applied Research Corporation Fiber optic polychromator
US4494872A (en) * 1980-10-07 1985-01-22 Baylor University Multiple entrance aperture dispersive optical spectrometer
US4566792A (en) * 1983-02-04 1986-01-28 Shimadzu Corporation Multi-channel spectrophotometric measuring device
US5049740A (en) * 1984-12-26 1991-09-17 Hughes Aircraft Company Multiple field of view sensor
JP2791038B2 (ja) * 1988-06-24 1998-08-27 株式会社日立製作所 分光器及びそれを用いた投影露光装置並びに投影露光方法
US5276321A (en) * 1991-04-15 1994-01-04 Geophysical & Environmental Research Corp. Airborne multiband imaging spectrometer
US5768040A (en) 1995-10-06 1998-06-16 Orbital Sciences Corporation Wide field-of-view imaging spectrometer
US5936771A (en) * 1997-07-31 1999-08-10 Raytheon Company Compact flir optical configuration
US6008492A (en) 1996-10-23 1999-12-28 Slater; Mark Hyperspectral imaging method and apparatus
US6122051A (en) 1998-06-04 2000-09-19 Raytheon Company Multi-slit spectrometer
US6100974A (en) 1998-09-15 2000-08-08 California Institute Of Technology Imaging spectrometer/camera having convex grating
US20050270528A1 (en) 1999-04-09 2005-12-08 Frank Geshwind Hyper-spectral imaging methods and devices
FI109149B (fi) * 1999-09-29 2002-05-31 Valtion Teknillinen Spektrometri ja menetelmä optisen spektrin mittaamiseksi
US6903343B2 (en) * 2001-11-20 2005-06-07 Lockheed Martin Corporation Lightweight laser designator ranger flir optics
US7049597B2 (en) * 2001-12-21 2006-05-23 Andrew Bodkin Multi-mode optical imager
US6734966B2 (en) * 2002-04-02 2004-05-11 Northrop Grumman Corporation Space borne high resolution hyperspectral imaging instrument optimized for the study of atmospheric constituents
EP1637837A1 (en) * 2003-05-29 2006-03-22 Olympus Corporation Stereo camera system and stereo optical module
US7528943B2 (en) * 2005-12-27 2009-05-05 Kla-Tencor Technologies Corporation Method and apparatus for simultaneous high-speed acquisition of multiple images
US7697137B2 (en) 2006-04-28 2010-04-13 Corning Incorporated Monolithic Offner spectrometer
US7456940B2 (en) * 2006-06-21 2008-11-25 Sensing Strategies, Inc. Methods and apparatus for locating and classifying optical radiation
US8937651B2 (en) * 2007-04-19 2015-01-20 Dvp Technologies Ltd. Imaging system and method for use in monitoring a field of regard
US7382498B1 (en) 2007-04-30 2008-06-03 Raytheon Company Two-channel imaging spectrometer utilizing shared objective, collimating, and imaging optics
US7817274B2 (en) 2007-10-05 2010-10-19 Jingyun Zhang Compact spectrometer
US7609381B2 (en) 2008-03-20 2009-10-27 The Aerospace Corporation Compact, high-throughput spectrometer apparatus for hyperspectral remote sensing
US8174693B1 (en) * 2009-08-18 2012-05-08 Exelis, Inc. Calibration optic for a solar/earth spectrometer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241897A (ja) * 1993-02-12 1994-09-02 Mitsubishi Heavy Ind Ltd 分光装置
JP2001045521A (ja) * 1999-07-30 2001-02-16 Canon Inc 立体画像撮影光学系及びそれを用いた立体画像撮影装置
US6363225B1 (en) * 1999-07-30 2002-03-26 Canon Kabushiki Kaisha Optical system for shooting a three-dimensional image and three-dimensional image shooting apparatus using the optical system
US6104488A (en) * 1999-08-12 2000-08-15 The United States Of America As Represented By The Secretary Of The Air Force Multi-octave spectroscopy with multi-waveband infrared focal plane array
JP2008510964A (ja) * 2004-08-19 2008-04-10 ヘッドウォール フォトニクス,インコーポレイテッド マルチチャネル、マルチスペクトル型撮像分光計
US20060038997A1 (en) * 2004-08-19 2006-02-23 Julian Jason P Multi-channel, multi-spectrum imaging spectrometer
WO2006023712A2 (en) * 2004-08-19 2006-03-02 Headwall Photonics, Inc. Multi-channel, multi-spectrum imaging spectrometer
JP2006093859A (ja) * 2004-09-21 2006-04-06 Olympus Corp 2眼撮像系を搭載したカメラ及びステレオ撮影可能なカメラ
CA2640311A1 (en) * 2006-02-22 2007-08-30 Itres Research Limited Optically multiplexed imaging systems and methods of operation
US20080024871A1 (en) * 2006-02-22 2008-01-31 Itres Research Limited Optically multiplexed imaging systems and methods of operation
WO2007095743A1 (en) * 2006-02-22 2007-08-30 Itres Research Limited Optically multiplexed imaging systems and methods of operation
CN101384945A (zh) * 2006-02-22 2009-03-11 Itres研究有限公司 光学多路复用成像系统及操作方法
JP2009527953A (ja) * 2006-02-22 2009-07-30 アイトレス リサーチ リミテッド 光多重化撮像システムおよび操作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521678A (ja) * 2014-05-27 2017-08-03 ジーエイチジーサット インコーポレイテッド 大気微量ガスのファブリ・ペロー干渉計に基づく衛星検出
KR101872240B1 (ko) * 2017-01-26 2018-06-29 서울대학교산학협력단 가시광/근적외선 초분광 현미경기반 영상 측정장치를 이용한 영상 측정방법

Also Published As

Publication number Publication date
EP2694931B1 (en) 2022-04-27
US20120250016A1 (en) 2012-10-04
US8823932B2 (en) 2014-09-02
JP6149294B2 (ja) 2017-06-21
EP2694931A1 (en) 2014-02-12
WO2012138499A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP6149294B2 (ja) 複数視野のハイパースペクトルイメージング装置およびこれを使用する方法
US8233148B2 (en) Hyperspectral imaging systems
EP1991903B1 (en) Optically multiplexed imaging systems and methods of operation
US9030660B2 (en) Multi-band imaging spectrometer
US11604096B2 (en) Slit homogenizer for spectral imaging
US10976194B1 (en) Pupil division multiplexed imaging systems
US10088688B1 (en) Compact common aperture imager system
US9244264B1 (en) Gimbaled multispectral imaging system and method
US20090009762A1 (en) Method and Apparatus for Detecting Optical Spectra
AU2018351819B2 (en) Multi-spectral boresight alignment methods and systems
CA3109229C (en) Spectrometers with retro-reflective surfaces and related instruments
US8740168B2 (en) Cryogenically cooled detector pin mount
US10107684B1 (en) Optical systems with improved signal to noise ratio
US11131860B1 (en) Wide spatial field optical systems
US11892349B1 (en) Pupil division multiplexed imaging systems
US9891107B1 (en) Combined temporal/hyperspectral imager
WO2020100139A1 (en) An optical module and method for extending field of view in hyperspectral imaging systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6149294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250