JP2008292322A - 移動体用測位装置 - Google Patents

移動体用測位装置 Download PDF

Info

Publication number
JP2008292322A
JP2008292322A JP2007138396A JP2007138396A JP2008292322A JP 2008292322 A JP2008292322 A JP 2008292322A JP 2007138396 A JP2007138396 A JP 2007138396A JP 2007138396 A JP2007138396 A JP 2007138396A JP 2008292322 A JP2008292322 A JP 2008292322A
Authority
JP
Japan
Prior art keywords
satellite
distance
positioning
bias
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007138396A
Other languages
English (en)
Inventor
Tomohiro Usami
知洋 宇佐美
Yoshinori Kadowaki
美徳 門脇
Yukisato Fujita
行識 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007138396A priority Critical patent/JP2008292322A/ja
Publication of JP2008292322A publication Critical patent/JP2008292322A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ドップラ周波数の計測値のバイアス成分の影響を適切に除去して測位精度を高めること。
【解決手段】本発明は、移動体に搭載される移動体用測位装置において、衛星からの搬送波のドップラ周波数の計測値に含まれるバイアス成分を推定するバイアス算出部206と、前記バイアス算出部206から得られるバイアス成分の推定値と、前記ドップラ周波数の計測値とに基づいて、衛星と移動体との間の距離を算出する衛星−車両間距離算出部212と、前記衛星−車両間距離算出部212により算出される衛星移動体間距離に基づいて、移動体の位置を測位する測位演算部214とを備えることを特徴とする。
【選択図】図2

Description

本発明は、移動体に搭載される移動体用測位装置に関する。
従来から、基準局から放送されるコードディファレンシャルGPS補正データに含まれる擬似距離変化率(RRC)および擬似距離補正値(PRC)で、観測した擬似距離を補正するコードディファレンシャル補正手段と、該手段による補正後の擬似距離を、観測したキャリア位相変化量で平滑化するキャリアスムージング手段とを備えた測位装置において、擬似距離補正値(PRC)の変化量と擬似距離変化率(RRC)の積算値とから電離層誤差によるキャリア位相変化量を求め、該キャリア位相変化量分だけ、前記観測したキャリア位相変化量を補正する手段を備えたキャリアスムージングディファレンシャル測位装置が知られている(例えば、特許文献1参照)。
特開2002−196060号公報
ところで、上述の特許文献1に記載されるような相対測位(干渉測位)では、基地局からの補正データを用いて各種の誤差の補正が可能であるが、単独測位では、基地局からの補正データを利用しないので、干渉測位で可能な誤差の補正は行えない。一般的に、車両のような移動体においては、必ずしも単独測位に必要な数の衛星からの電波を常時受信できるとは限らないので、かかる単独測位が不能となった際に、他の測位方法により測位を継続できることは有用である。他の測位方法としては、衛星からの搬送波のドップラ周波数の計測値に基づいて、車両の位置を慣性航法により測位する方法がある。しかしながら、ドップラ周波数の計測値には、電離層等の影響によるバイアス成分が含まれているので、ドップラ周波数の計測値をそのまま用いると、測位精度が悪くなる虞がある。
そこで、本発明は、ドップラ周波数の計測値のバイアス成分の影響を適切に除去して測位精度を高めることが可能な移動体用測位装置の提供を目的とする。
上記目的を達成するため、第1の発明は、移動体に搭載される移動体用測位装置において、
衛星からの搬送波のドップラ周波数の計測値に含まれるバイアス成分を推定するバイアス推定手段と、
前記バイアス推定手段から得られるバイアス成分の推定値と、前記ドップラ周波数の計測値とに基づいて、衛星と移動体との間の距離を算出する衛星移動体間距離算出手段と、
前記衛星移動体間距離算出手段により算出される衛星移動体間距離に基づいて、移動体の位置を測位する測位手段とを備えることを特徴とする。
第2の発明は、第1の発明に係る移動体用測位装置において、
前記バイアス推定手段は、前記ドップラ周波数の計測値から導出される衛星と移動体との間の距離と、衛星からの電波に乗せられた擬似雑音コードのコード位相に基づいて計測される擬似距離との関係に基づいて、前記バイアス成分を推定することを特徴とする。
第3の発明は、第1の発明に係る移動体用測位装置において、
前記バイアス推定手段は、前記ドップラ周波数の計測値から算出される衛星と移動体の間の相対速度と、2時点での移動体の位置情報と衛星の位置情報に基づいて算出される衛星と移動体の間の相対速度との関係に基づいて、前記バイアス成分を推定することを特徴とする。
本発明によれば、ドップラ周波数の計測値のバイアス成分の影響を適切に除去して測位精度を高めることが可能な移動体用測位装置が得られる。
以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
図1は、本発明に係る移動体用測位装置が適用されるGPS(Global Positioning System)の全体的な構成を示すシステム構成図である。図1に示すように、GPSは、地球周りを周回するGPS衛星10と、地球上に位置し地球上を移動しうる車両90とから構成される。尚、車両90は、あくまで移動体の一例であり、その他の移動体としては、自動二輪車、鉄道、船舶、航空機、ホークリフト、ロボットや、人の移動に伴い移動する携帯電話等の情報端末等がありうる。
GPS衛星10は、航法メッセージ(衛星信号)を地球に向けて常時放送する。航法メッセージには、対応するGPS衛星10に関する衛星軌道情報(エフェメリスやアルマナク)、時計の補正値、電離層の補正係数が含まれている。航法メッセージは、C/Aコードにより拡散されL1波(周波数:1575.42MHz)に乗せられて、地球に向けて常時放送されている。尚、L1波は、C/Aコードで変調されたSin波とPコード(Precision Code)で変調されたCos波の合成波であり、直交変調されている。C/Aコード及びPコードは、擬似雑音(Pseudo Noise)符号であり、−1と1が不規則に周期的に並ぶ符号列である。
尚、現在、24個のGPS衛星10が高度約20,000kmの上空で地球を一周しており、各4個のGPS衛星10が55度ずつ傾いた6つの地球周回軌道面に均等に配置されている。従って、天空が開けている場所であれば、地球上のどの場所にいても、常時、少なくとも5個以上のGPS衛星10が観測可能である。
車両90には、移動体用測位装置としてのGPS受信機20が搭載される。
図2は、GPS受信機20の主要構成の一例を示すブロック図である。図3は、GPS受信機20のDLL203の主要構成の一例を示すブロック図である。
ここでは、主に、観測可能な複数のGPS衛星10のうちのGPS衛星10からの衛星信号に関するGPS受信機20の信号処理について代表して説明する。GPS衛星10からの衛星信号に関する信号処理は、他のGPS衛星10からの衛星信号に関する信号処理と実質的に同じである。実際には、以下で説明する衛星信号に関する信号処理は、観測可能な各GPS衛星からの衛星信号に対して並列的(同時)に実行されることになる。
GPS受信機20は、図2に示すように、高周波回路201と、A/D(analog to digital)変換回路202と、DLL(Delay―Locked Loop)203と、PLL(Phase−Locked Loop)204と、フィルタ205と、バイアス計算部206と、モード切替部208と、衛星位置算出部209と、衛星−車両間距離算出部212と、測位演算部214とを備える。
A/D変換回路202は、高周波回路201から供給されるIF信号(アナログ信号)を、デジタル信号処理ができるようにデジタルIF信号に変換する。
DLL203は、L1波のC/Aコードに対して、内部で発生させたレプリカC/AコードによりC/Aコード同期を行い、擬似距離ρ’を算出するように構成されている。尚、符号の意味として、擬似距離ρに付された「’」は、後述のフィルタ処理が実行されていないことを示し、下付き文字「」は、GPS衛星10に関する値(ρ’以外の値についても同様。)であることを示す。また、デジタルIF信号は、実際には、図示しないミキサにより、PLL204から供給されるレプリカキャリアが乗算されてから、DLL203に入力される。
具体的には、DLL203は、図3に示すように、相互相関演算部111,112、位相進め部113、位相遅れ部114、位相ずれ計算部115、位相補正量計算部116、レプリカC/Aコード生成部117、及び、擬似距離算出部118を含む。
レプリカC/Aコード生成部117では、レプリカC/Aコードが生成される。レプリカC/Aコードとは、GPS衛星10からの衛星信号に乗せられるC/Aコードに対して、+1、−1の並びが同一のコードである。
相互相関演算部111には、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードが、位相進め部113を介して入力される。即ち、相互相関演算部111には、Earlyレプリカ符号が入力される。位相進め部113では、レプリカC/Aコードが所定の位相だけ進められる。位相進め部113で進められる位相進み量をθとする。
相互相関演算部111には、また、デジタルIF信号が、図示しないミキサにより、PLL204で生成されるレプリカキャリアが乗算されてから入力される。
相互相関演算部111では、入力されるデジタルIF信号と、位相進み量θのEarlyレプリカ符号を用いて、相関値(Early相関値ECA)が演算される。Early相関値ECAは、例えば以下の式で演算される。
Early相関値ECA=Σ{(デジタルIF)×(Earlyレプリカ符号)}
相互相関演算部112には、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードが、位相遅れ部114を介して入力される。即ち、相互相関演算部112には、Lateレプリカ符号が入力される。位相遅れ部114では、レプリカC/Aコードが所定の位相だけ遅らされる。位相遅れ部114で遅らされる位相遅れ量は、位相進み量θと大きさ同一で符号が異なる。
相互相関演算部112には、また、デジタルIF信号が、図示しないミキサにより、PLL204で生成されるレプリカキャリアが乗算されてから入力される。
相互相関演算部112では、入力されるデジタルIF信号と、位相遅れ量−θのLateレプリカ符号を用いて、相関値(Late相関値LCA)が演算される。Late相関値LCAは、例えば以下の式で演算される。
Late相関値LCA=Σ{(デジタルIF)×(Lateレプリカ符号)}
このようにして、相互相関演算部111、112では、コリレータ間隔L(“スペーシング”とも称される)を2θとした相関値演算が実行される。相互相関演算部111、112にてそれぞれ演算されたEarly相関値ECA及びLate相関値LCAは、位相ずれ計算部115に入力される。
位相ずれ計算部115では、デジタルIF信号と、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードとの間に、どの程度位相のずれがあるかが算出される。即ち、位相ずれ計算部115では、受信したC/Aコードに対するレプリカC/Aコードの位相ずれ量Δφが算出(推定)される。レプリカC/Aコードの位相ずれ量Δφは、例えば以下の式で演算される。
(位相ずれ量Δφ)=(ECA−LCA)/2(ECA+LCA
このようにして算出された位相ずれ量Δφは、位相補正量計算部116に入力される。
位相補正量計算部116では、位相ずれ量Δφを無くすべく、適切な位相補正量が算出される。適切な位相補正量が、例えば以下の演算式に従って、算出される。
(位相補正量)=(Pゲイン)×(位相ずれ量Δφ)+(Iゲイン)×Σ(位相ずれ量Δφ)
この式は、PI制御を利用したフィードバック制御を表す式であり、Pゲイン及びIゲインは、それぞれバラツキと応答性の兼ね合いから実験的に決定される。このようにして算出された位相補正量は、レプリカC/Aコード生成部117に入力される。
レプリカC/Aコード生成部117では、生成されるレプリカC/Aコードの位相が、位相補正量計算部116により算出された位相補正量だけ補正される。即ち、レプリカC/Aコードの追尾点が補正される。かくして生成されたレプリカC/Aコードは、上述の如く位相進め部113及び位相遅れ部114を介して相互相関演算部111、112に入力されると共に、擬似距離算出部118に入力される。尚、相互相関演算部111、112では、このようにして生成されたレプリカC/Aコードは、次回の観測周期で入力されるIFデジタル信号に対する相関値演算に用いられることになる。
擬似距離算出部118では、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードに基づいて、擬似距離ρ’が、例えば以下の式により演算される。
ρ’=NCA×300
ここで、NCAは、GPS衛星10と車両90との間のC/Aコードのビット数に相当し、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードの位相及び受信機1内部の受信機時計に基づいて算出される。尚、数値300は、C/Aコードが、1ビットの長さが1μsであり、1ビットに相当する長さが約300m(1μs×光速)であることに由来する。このようにして算出された擬似距離ρ’を表す信号は、DLL203からフィルタ205に入力される。
図2に戻る。PLL204は、内部で発生させたキャリアレプリカ信号を用いて、受信搬送波(受信キャリア)との相関値演算を行うことにより、ドップラシフトした受信キャリアのドップラ周波数(ドップラ成分)Δfを測定するように構成されている。尚、実際には、デジタルIF信号は、図示しないミキサにより、DLL203から供給されるレプリカC/Aコードが乗算されてから、PLL204に入力される。PLL204は、レプリカキャリアの周波数frと既知の搬送波周波数f(1575.42MHz)に基づいて、ドップラ周波数Δf(=fr−f)を演算する。
フィルタ205では、例えば以下の演算式に従って、フィルタ処理後の擬似距離ρが計算される。
Figure 2008292322
ここで、(i)は今回値を表し、(i−1)は前回値を表し、Mは、重み係数である。Mの値は、精度と応答性を考慮しつつ適切に決定される。また、ΔVは、GPS衛星10と車両90との間の相対速度を表し、PLL204から得られるドップラ周波数Δfを用いて、例えば以下の関係式により算出されてよい。
Δf=ΔV・f/(c−ΔV) 式(1)
尚、上述のフィルタ205のフィルタ処理は、本分野で知られているキャリアスムージングと呼ばれる処理であり、上述のハッチフィルタを用いたフィルタ処理以外にも、例えばカルマンフィルタを用いても実現可能である。
バイアス計算部206は、上述のPLL204で計測されるドップラ周波数Δfの計測値に含まれるバイアス成分Δfj0を推定・算出する。バイアス成分Δfj0の算出方法は、多種多様でありえるが、好ましい方法については、後に詳説する。算出されたバイアス成分Δfj0は、後述の衛星−車両間距離算出部212がアクセス可能なメモリ207に記憶される。
モード切替部208は、各種の所定の切替条件に従って、通常モードとキャリアモードとの間でモード選択を行う。所定の切替条件は、多種多様でありえるが、一例については、後に説明する。通常モードが選択された場合には、フィルタ205からのフィルタ処理後の擬似距離ρが後述の測位演算部214に出力される。キャリアモードが選択された場合には、後述の衛星−車両間距離算出部212からの衛星−車両間距離dが後述の測位演算部214に出力される。
衛星位置算出部209は、航法メッセージの衛星軌道情報に基づいて、GPS衛星10の、ワールド座標系での現在位置S=(X、Y、Z)及び移動速度V=(V、V、V)を計算する。衛星移動速度ベクトルV=(V、V、V)は、算出した衛星位置Sの今回値と前回値の差分を、演算周期の時間幅で除算することにより演算されてよい。このようにして衛星位置算出部209にて導出される衛星位置S及び衛星移動速度ベクトルVは、測位演算部214に入力される。
衛星−車両間距離算出部212は、フィルタ205から出力される擬似距離ρの前回値ρ(i−1)、又は衛星−車両間距離算出部212自身が算出する衛星−車両間距離dの前回値d(i−1)を、初期値として用い、該初期値に、前回周期(i−1)から今回周期(i)まで間の衛星−車両間距離dの変化量Δd(以下、「今回周期(i)の距離変化量Δd(i)」という)を足し合わせることで、今回周期の衛星−車両間距離d(i)を算出する。即ち、衛星−車両間距離算出部212は、d(i)=ρ(i−1)+Δd(i)、または、d(i)=d(i−1)+Δd(i)に従って、今回周期の衛星−車両間距離d(i)を算出する。擬似距離ρの前回値ρ(i−1)及び衛星−車両間距離dの前回値d(i−1)のいずれが今回周期(i)の初期値として用いられるかは、前回周期(i−1)のモードに依存する。即ち、前回周期(i−1)のモードが通常モードである場合、擬似距離ρの前回値ρ(i−1)が今回周期(i)の初期値として用いられ、前回周期(i−1)のモードがキャリアモードである場合、衛星−車両間距離dの前回値d(i−1)が今回周期(i)の初期値として用いられる。
ここで、衛星−車両間距離算出部212における今回周期(i)の距離変化量Δd(i)の算出方法の一例について説明する。
衛星−車両間距離算出部212は、今回周期(i)又は前回周期(i−1)で観測されるドップラ周波数Δf(i)又はΔf(i−1)を、バイアス計算部206により算出されたバイアス成分Δfj0で補正し、当該補正後のドップラ周波数Δf’(i)に基づいて、今回周期(i)の距離変化量Δd(i)を算出してよい。具体的には、衛星−車両間距離算出部212は、先ず、補正後のドップラ周波数Δf’(i)を、Δf’(i)=Δf(i)−Δfj0により、又は、Δf’(i)=Δf(i−1)−Δfj0により、算出する。次いで、衛星−車両間距離算出部212は、前回周期(i−1)から今回周期(i)までの間の経過時間(即ちサンプリング間隔)に亘ってGPS衛星10と車両90との間の相対速度ΔVを時間積分することで、今回周期(i)の距離変化量Δd(i)を算出する。即ち、Δd(i)=∫ΔV・dtにより、今回周期(i)の距離変化量Δd(i)を算出する。ΔVは、GPS衛星10と車両90とを結ぶ方向における相対速度である。ΔVは、補正後のドップラ周波数Δf’(i)を用いて、例えばΔf’(i)=ΔV・f/(c−ΔV)の関係式に従って、算出される。尚、cは光速である。或いは、ΔVは、補正後のドップラ周波数Δf’(i)を用いて、ΔV=λ・Δf’(i)により算出されてもよい。尚、λは、搬送波の波長(既知)である。
測位演算部214は、フィルタ205からのフィルタ処理後の擬似距離ρ(i)、又は、衛星−車両間距離算出部212からの衛星−車両間距離d(i)と、GPS衛星10に係る衛星位置(X(i),Y(i),Z(i))とに基づいて、今回周期(i)での車両90の位置(X(i),Y(i),Z(i))を測位演算する。車両90の位置の測位は、例えば以下のような関係式に基づいて、最小二乗法等を用いて実行されてよい。
Figure 2008292322
尚、c・ΔTは、GPS受信機20における時計誤差を表わす。この場合、例えば測位に用いるGPS衛星10の数が4つである場合には、数2の式が4つ立つので、時計誤差c・ΔTを除去した測位が実現される。尚、この際、GPS衛星10の観測量に含まれる誤差を推定し、当該推定した誤差レベルを表す指標値(例えば分散)を重み付け行列の対角成分に用いて、重み付け測位演算が実行されてもよい。
ここで、上記の数2の左辺の観測量に関して、擬似距離ρ(i)及び衛星−車両間距離d(i)のいずれが用いられるかは、今回周期(i)のモードに依存する。即ち、今回周期(i)のモードが通常モードである場合、擬似距離ρが用いられ、今回周期(i)のモードがキャリアモードである場合、衛星−車両間距離d(i)が用いられる。
図4は、バイアス計算部206によるバイアス成分Δfj0の算出方法の一例を示すフローチャートである。図4に示す処理ルーチンは、例えば車両90のイグニッションスイッチがオンにされてからオフにされるまで、所定の周期毎に繰り返し実行される。所定の周期は、上述の観測周期又はその倍数周期に対応していてよい。
ステップ300では、カウンタが初期化される。即ち、カウンタの値が“1”にセットされる。
ステップ302では、現在のモードが通常モードであるか否かが判定される。通常モードである場合には、ステップ303に進み、通常モードで無い場合(即ちキャリアモードである場合)には、今回の処理ルーチンはそのまま終了する。
ステップ303では、車両90の位置(測位結果)が高精度で確定したか否かが判定される。車両90の位置が高精度で確定したか否かは、DOP(dilution of precision)等に基づいて判断されてもよい。なお、DOPとしては、位置と時刻の精度の総合的な指標となるGDOP(G=geometric)が用いられてもよいし、これに代えて、位置のみの精度の指標となるPDOP(P=position)や、水平方向の位置の精度の指標となるHDOP(P=horizontal)、垂直方向の位置の精度の指標となるVDOP(P=vertical)等が用いられてもよい。車両90の位置が高精度で確定したと判定した場合には、ステップ304に進み、それ以外の場合には、今回の処理ルーチンはそのまま終了する。
ステップ304では、現在のカウンタの値が“1”であるか否かが判定される。カウンタの値が“1”である場合(即ち車両90の位置が高精度で確定した初回の周期である場合)には、ステップ306に進み、それ以外の場合には(即ち、カウンタの値が1より大きい場合には)、ステップ308に進む。
ステップ306では、カウンタの値が“1”だけインクリメントされる。
ステップ308では、GPS衛星10と車両90の位置情報(測位結果を含む)の履歴データに基づいて、GPS衛星10と車両90との間の相対速度ΔVj、est(i)が推定される。相対速度ΔVj、est(i)は、GPS衛星10に対する車両90の視線方向における相対速度であり、下付き文字「est」は、推定値であることを表す。相対速度ΔVj、est(i)は、例えば、以下のようにして、前回周期(i−1)の測位結果(X(i−1),Y(i−1),Z(i−1))と、今回周期(i−1)の測位結果(X(i),Y(i),Z(i))と、前回周期(i−1)のGPS衛星10の位置S=(X(i−1)、Y(i−1)、Z(i−1))と、前回周期(i)のGPS衛星10の位置S=(X(i)、Y(i)、Z(i))とに基づいて、算出されてもよい。
Figure 2008292322
ここで、Δtは、前回周期でのGPS時刻と今回周期でのGPS時刻との差分であり、処理周期に対応する。即ち、Δtは、GPS衛星10の位置がS=(X(i−1)、Y(i−1)、Z(i−1))である時刻から、GPS衛星10の位置がS=(X(i)、Y(i)、Z(i))である時刻までの時間である。
ステップ310では、上記のステップ308で算出された相対速度ΔVj、est(i)に基づいて、参照ドップラ周波数Δfj、refが算出される。参照ドップラ周波数Δfj、refは、例えば以下のような関係式に基づいて、算出されてもよい。
例えば以下の関係式により算出されてよい。
Δfj、ref=ΔVj、est(i)・f/(c−ΔVj、est(i)) 式(2)
ステップ320では、上記のステップ308で算出された参照ドップラ周波数Δfj、refに基づいて、例えば以下のような関係式により、今回周期で観測されたドップラ周波数Δf(i)に含まれるバイアス成分Δfj0が推定・算出される。
Δfj0=Δf(i)−Δfj、ref
このようにして、バイアス計算部206は、バイアス成分Δfj0を算出すると、当該バイアス成分Δfj0をメモリ207に記憶する。メモリ207に記憶されたバイアス成分Δfj0は、以後形成されうるキャリアモードにおいて、上述の如く衛星−車両間距離算出部212により利用される。尚、車両90の位置が高精度で確定する周期が連続する場合、各周期で算出される複数のバイアス成分Δfj0のうちのいずれかが、メモリ207に記憶されてもよいし、複数のバイアス成分Δfj0の各種平均値が、メモリ207に記憶されてもよい。また、バイアス成分Δfj0の信頼性は、時間の経過と共に低くなるので、バイアス成分Δfj0が記憶されてからある一定時間経過後に、当該バイアス成分Δfj0のデータがメモリ207からクリア(消去)されることとしてもよい。
図5は、バイアス計算部206によるバイアス成分Δfj0の算出方法のその他の一例を示すフローチャートである。図5に示す処理ルーチンは、例えば車両90のイグニッションスイッチがオンにされてからオフにされるまで、所定の周期毎に繰り返し実行される。所定の周期は、上述の観測周期又はその倍数周期に対応していてよい。尚、図5に関して、図4に示した処理と同様であってよい処理については、同一のステップ番号を付して説明を省略する。
ステップ308’では、擬似距離ρの履歴データに基づいて、GPS衛星10と車両90との間の相対速度ΔVj、est(i)が推定される。例えば、相対速度ΔVj、est(i)は、今回周期でフィルタ205から入力される擬似距離ρ(i)と、前回周期でフィルタ205から入力される擬似距離ρ(i−1)とを用いて、例えば以下のようにして近似して算出されてよい。
Figure 2008292322
尚、Δtは、擬似距離ρのサンプリング周期(観測周期)である。
ステップ310’では、上記のステップ308’で算出された相対速度ΔVj、est(i)に基づいて、参照ドップラ周波数Δfj、refが算出される。参照ドップラ周波数Δfj、refの算出式は上述と同様であってよい。
尚、以上説明した図5に示す処理は、各観測周期で観測される擬似距離ρの差分値と、対応する観測周期で観測されたドップラ周波数Δf(i)との関係から、バイアス成分Δfj0が推定・算出されている。尚、この推定方法は、今回周期で観測される擬似距離ρ(i)と、擬似距離ρの前回値ρ(i−1)を初期値として今回周期で算出される衛星−車両間距離d(i)=ρ(i−1)+Δd(i)との関係から、バイアス成分Δfj0を推定・算出する推定方法と実質的に等価である。
ここで、図4に示す推定方法により推定されたバイアス成分Δfj0、cと、図5に示す推定方法により推定されたバイアス成分Δfj0、sとを、合成して、最終的なバイアス成分Δfj0を推定してもよい。例えば、最終的なバイアス成分Δfj0は、以下のように算出されてもよい。
Δfj0=(α・Δfj0、c+β・Δfj0、s)/(α+β)
ここで、α、βは、重み付け係数であり、重み付け係数α、βの値は、車両90の速度や、車両90の位置の前回値と今回値の変化量、観測可能なGPS衛星10の減少時間、GPS衛星10の信号強度ないしC/N、車両90の方位変化量等のうちの少なくともいずれか1つをパラメータとして決定されてもよい。
図6は、GPS受信機20において実現される主要処理を示すフローチャートである。図6に示す処理ルーチンは、例えば車両90のイグニッションスイッチがオンにされてからオフにされるまで、所定の周期毎に繰り返し実行される。所定の周期は、上述の観測周期又はその倍数周期に対応していてよい。
ステップ700では、モード切替部208において、キャリアモード移行条件が成立したか否かが判定される。キャリアモード移行条件は、例えば擬似距離ρの精度が悪化した場合や、観測可能なGPS衛星10の数が所定数以下となった場合や、マルチパスが検出された場合等に、成立するものであってよい。キャリアモード移行条件が成立した場合には、ステップ710に進み、それ以外の場合には、ステップ720に進む。
ステップ710では、モード切替部208によりキャリアモードが形成される。
ステップ712では、衛星−車両間距離算出部212において、現在観測されているGPS衛星10に係るドップラ周波数Δfに関するバイアス成分Δfj0が利用可能であるか(メモリ207に記憶されているか)否かが判定される。バイアス成分Δfj0が利用可能である場合には、ステップ714に進み、バイアス成分Δfj0が利用不能である場合には、ステップ716に進む。尚、バイアス成分Δfj0が利用不能である場合としては、今回のトリップ中に、未だバイアス成分Δfj0がバイアス計算部206により推定されていない場合や、推定後に一定の長時間が経過した場合が想定される。
ステップ714では、衛星−車両間距離算出部212において、メモリ207内に記憶されているバイアス成分Δfj0を用いて、例えば今回周期(i)で観測されるドップラ周波数Δf(i)が補正され、次いで、当該補正後のドップラ周波数Δf’(i)を用いて、今回周期(i)の距離変化量Δd(i)が算出され、次いで、当該算出された距離変化量Δd(i)に基づいて、今回周期の衛星−車両間距離d(i)が算出される。
ステップ716では、衛星−車両間距離算出部212において、今回周期(i)又は前回周期(i−1)で観測されるドップラ周波数Δf(i)又はΔf(i−1)をそのまま用いて(即ち補正することなく)、今回周期(i)の距離変化量Δd(i)が算出され、次いで、当該算出された距離変化量Δd(i)に基づいて、今回周期の衛星−車両間距離d(i)が算出される。
ステップ720では、モード切替部208により通常モードが形成される。
ステップ722では、バイアス計算部206において、上述の図4又は図5で説明したようなバイアス成分Δfj0の推定処理が実行される。
ステップ730では、現在のモードに従って測位演算部214による測位演算が実行される。
以上説明した本実施例による移動体用測位装置によれば、車両90の測位精度が高くなった場合に、その測位結果(又は測位結果を導く過程で用いるパラメータ)を用いて、ドップラ周波数Δfに含まれるバイアス成分Δfj0を推定するので、バイアス成分Δfj0を精度良く推定することができる。また、精度の高いバイアス成分Δfj0の推定値によりドップラ周波数Δfの観測値を補正するので、衛星−車両間距離dの精度(ひいては車両位置の測位精度)を高めることができる。これにより、例えばキャリアモードが長期間継続しても、バイアス成分に起因した誤差の累積を防止して、車両位置を高い精度で測位し続けることができる。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
例えば、上述した実施例では、バイアス成分Δfj0は、通常モード中に、車両90の位置精度(測位精度)が高くなった場合に、推定されているが、キャリアモード中に計測されてもよい擬似距離ρを用いて、キャリアモード中に推定されてもよい。この場合、キャリアモード中に、推定された新たなバイアス成分Δfj0によりメモリ207内のデータが更新され、それに伴い、衛星−車両間距離算出部212において用いられるバイアス成分Δfj0が更新されてもよい。
また、上述した実施例では、DOPに基づいて車両90の位置精度(測位精度)が高くなったと判定された場合に、バイアス成分Δfj0が推定されているが、本発明はこれに限られない。例えば、ETCやVICS等のインフラとの路車間通信、又は、車車間通信を介して信頼性の高い車両位置が得られた場合や、画像認識やマップマッチングにより信頼性の高い地図データ上の車両位置が得られた場合に、当該信頼性の高い車両位置に基づいて、バイアス成分Δfj0が推定されてもよい。或いは、車両90の停止中には比較的信頼性の高い観測量が得られることに着目して、車両90の停止中にバイアス成分Δfj0が推定されてもよい。
また、上述した実施例では、前回周期(i−1)が通常モードである状況下で、今回周期(i)の距離変化量Δd(i)を算出する際、初期値として、フィルタ205からの擬似距離ρの前回値ρ(i−1)が用いられているが、本発明はこれに限られない。例えば、以下の数5の式のように、車両90とGPS衛星10との間の距離rを、前回周期(i−1)の測位結果(X(i−1),Y(i−1),Z(i−1))と、前回周期(i−1)のGPS衛星10の位置S=(X(i−1)、Y(i−1)、Z(i−1))に基づいて導出して、当該導出した距離rを、初期値として用いてもよい。
Figure 2008292322
この際、前回周期(i−1)の測位結果(X(i−1),Y(i−1),Z(i−1))は、上述の測位演算部214における衛星航法による測位演算で得られたものでなく、慣性航法のような他の測位方法で得られたものであってよいし、路車間通信、車車間通信、画像認識やマップマッチングを介して得られた位置情報に基づくものであってもよい。
また、上述した実施例では、ドップラ周波数Δfに含まれるバイアス成分Δfj0を、バイアス成分Δfj0自体を推定することで直接推定しているが、ドップラ周波数Δfに基づいて導出されるパラメータのバイアス成分を推定することで、間接的に推定することとしてもよい。例えば、ドップラ周波数Δfに基づいて導出される距離変化量Δdや衛星−車両間距離dに含まれうる、ドップラ周波数Δfのバイアス成分Δfj0に起因したバイアス成分を推定してもよい。この場合、距離変化量Δdや衛星−車両間距離dを、推定したバイアス成分を用いて補正すればよい。
また、上述した実施例において、GPS衛星10と車両90との間の相対速度ΔVj、est(i)は、例えば以下のように、2時点における視線ベクトル(視線ベクトルOA,OBについては数3参照)の大きさの差分を用いて近似的に導出されてもよい。
Figure 2008292322
また、上述の実施例では、GPSに本発明が適用された例を示したが、本発明は、GPS以下の衛星システム、例えばガリレオ等の他のGNSS(Global Navigation Satellite System)にも適用可能である。
また、上述では、好ましい実施例として、通常モードにおいて、キャリアスムージングのようなフィルタ処理が実行されているが、かかるフィルタ処理が省略されてもよい。
また、上述の実施例では、通常モードにおいて、C/Aコードを用いて擬似距離ρを導出しているが、本発明は、L1波のPコード及び/又はL2波のPコードに基づいて、同様に、GPS衛星10に対する擬似距離ρを算出する構成にも適用可能である。尚、Pコードの場合、Wコードで暗号化されているので、Pコード同期を行う際に、クロス相関方式を利用したDLLにより、Pコードを取り出すこととしてよい。Pコードに基づく擬似距離ρは、GPS衛星10でPコードが0ビット目であるとしてPコードのMビット目が車両90にて受信されているかを計測することで、ρ=M×30として求めることができる。
システム全体を示す図である。 GPS受信機20の主要構成の一例を示すブロック図である。 GPS受信機20のDLL203の主要構成の一例を示すブロック図である。 バイアス計算部206によるバイアス成分Δfj0の算出方法の一例を示すフローチャートである。 バイアス計算部206によるバイアス成分Δfj0の算出方法のその他の一例を示すフローチャートである。 GPS受信機20において実現される主要処理を示すフローチャートである。
符号の説明
20 GPS受信機
90 車両
201 高周波回路
202 A/D変換回路
203 DLL
204 PLL
205 フィルタ
206 バイアス算出部
208 モード切替部
209 衛星位置算出部
212 衛星−車両間距離算出部
214 測位演算部

Claims (3)

  1. 移動体に搭載される移動体用測位装置において、
    衛星からの搬送波のドップラ周波数の計測値に含まれるバイアス成分を推定するバイアス推定手段と、
    前記バイアス推定手段から得られるバイアス成分の推定値と、前記ドップラ周波数の計測値とに基づいて、衛星と移動体との間の距離を算出する衛星移動体間距離算出手段と、
    前記衛星移動体間距離算出手段により算出される衛星移動体間距離に基づいて、移動体の位置を測位する測位手段とを備えることを特徴とする、移動体用測位装置。
  2. 前記バイアス推定手段は、前記ドップラ周波数の計測値から導出される衛星と移動体との間の距離と、衛星からの電波に乗せられた擬似雑音コードのコード位相に基づいて計測される擬似距離との関係に基づいて、前記バイアス成分を推定する、請求項1に記載の移動体用測位装置。
  3. 前記バイアス推定手段は、前記ドップラ周波数の計測値から算出される衛星と移動体の間の相対速度と、2時点での移動体の位置情報と衛星の位置情報に基づいて算出される衛星と移動体の間の相対速度との関係に基づいて、前記バイアス成分を推定する、請求項1に記載の移動体用測位装置。
JP2007138396A 2007-05-24 2007-05-24 移動体用測位装置 Pending JP2008292322A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138396A JP2008292322A (ja) 2007-05-24 2007-05-24 移動体用測位装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138396A JP2008292322A (ja) 2007-05-24 2007-05-24 移動体用測位装置

Publications (1)

Publication Number Publication Date
JP2008292322A true JP2008292322A (ja) 2008-12-04

Family

ID=40167198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138396A Pending JP2008292322A (ja) 2007-05-24 2007-05-24 移動体用測位装置

Country Status (1)

Country Link
JP (1) JP2008292322A (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289117A (ja) * 1993-03-31 1994-10-18 Fujitsu Ten Ltd 推測用センサを有するgps受信機
JPH07198821A (ja) * 1994-01-06 1995-08-01 Japan Radio Co Ltd Gps受信機及びその測位方法
JPH08194052A (ja) * 1995-01-12 1996-07-30 Furuno Electric Co Ltd Gps測距装置およびgps測距方法
JPH11118903A (ja) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd 位置検出装置
JPH11304898A (ja) * 1998-04-21 1999-11-05 Mitsubishi Electric Corp 位置標定方法及びその装置
JP2002196060A (ja) * 2000-12-25 2002-07-10 Furuno Electric Co Ltd キャリアスムージングディファレンシャル測位装置
JP2004239841A (ja) * 2003-02-07 2004-08-26 Furuno Electric Co Ltd 波浪計測システムおよび波浪計測方法
JP2006329766A (ja) * 2005-05-25 2006-12-07 Furuno Electric Co Ltd 測位装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289117A (ja) * 1993-03-31 1994-10-18 Fujitsu Ten Ltd 推測用センサを有するgps受信機
JPH07198821A (ja) * 1994-01-06 1995-08-01 Japan Radio Co Ltd Gps受信機及びその測位方法
JPH08194052A (ja) * 1995-01-12 1996-07-30 Furuno Electric Co Ltd Gps測距装置およびgps測距方法
JPH11118903A (ja) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd 位置検出装置
JPH11304898A (ja) * 1998-04-21 1999-11-05 Mitsubishi Electric Corp 位置標定方法及びその装置
JP2002196060A (ja) * 2000-12-25 2002-07-10 Furuno Electric Co Ltd キャリアスムージングディファレンシャル測位装置
JP2004239841A (ja) * 2003-02-07 2004-08-26 Furuno Electric Co Ltd 波浪計測システムおよび波浪計測方法
JP2006329766A (ja) * 2005-05-25 2006-12-07 Furuno Electric Co Ltd 測位装置

Similar Documents

Publication Publication Date Title
EP2067054B1 (en) Mobile-unit positioning device
US9121940B2 (en) Vehicle navigation using non-GPS LEO signals and on-board sensors
JP4525689B2 (ja) 移動体用測定装置
US7916070B2 (en) Tight coupling of GPS and navigation estimates with reducer or eliminated inertial measurement unit data
US10739471B2 (en) GNSS receiver with a capability to resolve ambiguities using an uncombined formulation
JP4103926B1 (ja) 移動体用測位装置
JP2017173327A (ja) 衛星測位システムを用いた測位方法および測位装置
WO2010073113A1 (en) Gnss receiver and positioning method
JP2010122069A (ja) 移動体位置測位装置
JP4905054B2 (ja) 移動体用衛星電波受信機
JP4424365B2 (ja) 移動体用測位装置及び移動体用測位方法
KR101638210B1 (ko) 이동 수신기에 의해, 위성으로부터의 확산 스펙트럼 신호의 획득을 최적화하는 방법
WO2009115899A2 (en) Moving body positioning device and moving body positioning method
JP4983699B2 (ja) Gnss測位装置及び方法
JP2009121971A (ja) 移動体測位装置
JP2009025045A (ja) 移動体用測位装置
JP2010164496A (ja) Gnss受信装置及び測位方法
JP2010112759A (ja) 移動体位置測位装置
JP2007278708A (ja) 衛星航法装置
JP2008232761A (ja) 移動体用測位装置
JP4470944B2 (ja) 移動体位置測位装置
JP2009098099A (ja) 移動体用測位装置
JP4518096B2 (ja) 移動体測位装置
JP2008139214A (ja) 移動体用測位システム及びこれに用いる装置
JP2008292322A (ja) 移動体用測位装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219