JP4905054B2 - 移動体用衛星電波受信機 - Google Patents

移動体用衛星電波受信機 Download PDF

Info

Publication number
JP4905054B2
JP4905054B2 JP2006289014A JP2006289014A JP4905054B2 JP 4905054 B2 JP4905054 B2 JP 4905054B2 JP 2006289014 A JP2006289014 A JP 2006289014A JP 2006289014 A JP2006289014 A JP 2006289014A JP 4905054 B2 JP4905054 B2 JP 4905054B2
Authority
JP
Japan
Prior art keywords
threshold range
code
multipath
satellite
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006289014A
Other languages
English (en)
Other versions
JP2008107160A (ja
Inventor
巌 尾▲崎▼
知洋 宇佐美
秀明 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006289014A priority Critical patent/JP4905054B2/ja
Publication of JP2008107160A publication Critical patent/JP2008107160A/ja
Application granted granted Critical
Publication of JP4905054B2 publication Critical patent/JP4905054B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、衛星からの電波に乗せられた擬似雑音コードに対して、内部で発生させたレプリカ擬似雑音コードを用いて相関値演算を行うことで、衛星と移動体との間の擬似距離を算出する移動体用衛星電波受信機に関する。
従来から、擬似雑音符号または擬似雑音符号により変調された変調信号から擬似雑音符号の位相を検出する際、直接波に対してマルチパスによる反射波が重畳されていても、直接波による擬似雑音符号の位相を正しく検出できるようにする技術が知られている(例えば、特許文献1参照)。
特開2001−36429号公報
ところで、直接波に対してマルチパスによる反射波が重畳された場合には、直接波による擬似雑音符号の位相を正しく検出することが困難であり、擬似雑音符号の位相を正しく検出できていない場合には、算出した擬似距離に誤差が生ずる。これに対して、マルチパスが発生した場合に、一時的に、算出した擬似距離を測位に用いないといった対策も考えられるが、これを実現するためには、マルチパスが発生したか否かを精度良く検出する必要がある。
そこで、本発明は、マルチパスが発生したか否かを精度良く検出することができる移動体用衛星電波受信機の提供を目的とする。
上記目的を達成するため、第1の発明は、衛星からの電波に乗せられた擬似雑音コードに対して、内部で発生させたレプリカ擬似雑音コードを用いて相関値演算を行ってコード同期を取ることで、衛星と移動体との間の擬似距離を算出する移動体用衛星電波受信機であって、
実測ないし推定に基づいて導出される範囲であって、マルチパスが無い状況下での相関ピーク値の取りうる範囲を、第1閾値範囲として設定すると共に、実測ないし推定に基づいて導出される範囲であって、同状況下での擬似雑音コードのコード位相に対するレプリカ擬似雑音コードのコード位相の位相ずれ量の取りうる範囲を、第2閾値範囲として設定する閾値範囲設定手段と、
受信した衛星信号に対して算出された前記相関ピーク値と前記コード位相のずれ量が、前記閾値範囲設定手段で設定された第1閾値範囲及び第2閾値範囲内にそれぞれあるか否かを判定する判定手段と、
前記算出された前記相関ピーク値と前記コード位相のずれ量の少なくともいずれかがそれぞれの閾値範囲内に無いと判定された場合に、マルチパスが発生したと判断するマルチパス検出手段と、を備えることを特徴とする。
第2の発明は、第1の発明に係る衛星電波受信機において、
前記閾値範囲設定手段において、前記第1閾値範囲及び第2閾値範囲が、過去の観測データから算出される前記相関ピーク値の分散値及び前記コード位相のずれ量の分散値に基づいて設定されることを特徴とする。これにより、実稼動時に前記第1閾値範囲及び第2閾値範囲を適合させることができる。
第3の発明は、第2の発明に係る衛星電波受信機において、
前記分散値は、過去の観測データのうち、観測可能な衛星数が所定値以上であり且つマルチパスの発生可能性が低い位置に移動体が位置するときの観測データを用いて、算出されることを特徴とする。これにより、前記第1閾値範囲及び第2閾値範囲を適切に設定することができる。
第3の発明は、第3の発明に係る衛星電波受信機において、
前記マルチパスの発生可能性が低い位置は、マルチパスの原因となりうる周辺建物が存しない開放地域を含むことを特徴とする。
本発明によれば、マルチパスが発生したか否かを精度良く検出することができる移動体用衛星電波受信機が得られる。
以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
図1は、本発明に係る衛星電波受信機が適用されるGPS(Global Positioning System)の全体的な構成を示すシステム構成図である。図1に示すように、GPSは、地球周りを周回するGPS衛星10と、地球上に位置し地球上を移動しうる移動局30とから構成される。ここでは、移動局30は、車両であるとする。但し、移動局30としては、自動二輪車、鉄道、船舶、航空機、ホークリフト、ロボットや、人の移動に伴い移動する携帯電話等の情報端末を含む。
GPS衛星10は、航法メッセージを地球に向けて常時放送する。航法メッセージには、対応するGPS衛星10に関する衛星軌道情報(エフェメリスやアルマナク)、時計の補正値、電離層の補正係数が含まれている。航法メッセージは、C/Aコードにより拡散されL1波(周波数:1575.42MHz)に乗せられて、地球に向けて常時放送されている。尚、L1波は、C/Aコードで変調されたSin波とPコード(Precision Code)で変調されたCos波の合成波であり、直交変調されている。C/Aコード及びPコードは、擬似雑音(Pseudo Noise)符号であり、−1と1が不規則に周期的に並ぶ符号列である。
尚、現在、24個のGPS衛星10が高度約20,000kmの上空で地球を一周しており、各4個のGPS衛星10が55度ずつ傾いた6つの地球周回軌道面に均等に配置されている。従って、天空が開けている場所であれば、地球上のどの場所にいても、常時、少なくとも5個以上のGPS衛星10が観測可能である。
移動局30には、衛星電波受信機としてのGPS受信機1が搭載される。GPS受信機1は、以下で詳説する如く、GPS衛星10からの衛星信号に基づいて、移動局30の位置を測位する。
図2は、図1の移動局30に搭載されるGPS受信機1の一実施例を示す概略的なシステム構成図である。図2には、説明の複雑化を避けるため、GPS衛星10(下付きの符号は、衛星識別番号)が1つだけ示されている。GPS衛星10からの衛星信号に関する信号処理は、他のGPS衛星10,10等からの衛星信号に関する信号処理と実質的に同じである。従って、以下では、特に言及しない限り、GPS衛星10に係る信号処理を想定して説明を続ける。尚、以下で説明する信号処理は、観測可能な各GPS衛星10,10,10等からの衛星信号に対して並列的(同時)に実行される。
本実施例のGPS受信機1は、図2に示すように、GPSアンテナ20と、高周波回路22と、A/D(analog-to-digital)変換回路24と、信号処理回路100と、INSセンサ26と、各種センサ28と、地図DB(データベース)29と、演算部32とを備える。演算部32は、信号処理回路100と、測位演算回路200とを備える。
GPSアンテナ20は、GPS衛星10から発信されている衛生信号を受信し、受信した衛星信号を電圧信号(本例では、周波数1.5GHz)に変換する。1.5GHzの電圧信号をRF(radio frequency)信号と称する。
高周波回路22は、GPSアンテナ20を介して供給される微弱なRF信号を後段でA/D変換できるレベルまで増幅すると共に、RF信号の周波数を信号処理できる中間周波数(典型的には、1MHz〜20MHz)に変換する。尚、このようにRF信号をダウンコンバートして得られる信号を、IF(Intermediate frequency)信号と称する。
A/D変換回路24は、高周波回路22から供給されるIF信号(アナログ信号)を、デジタル信号処理ができるようにデジタルIF信号に変換する。
信号処理回路100は、A/D変換回路24から供給されるデジタルIF信号からC/Aコード同期(後述)を行い、航法メッセージを取り出すと共に、GPS衛星10と移動局30との間の擬似距離を算出する。擬似距離の算出方法については後に詳説する。擬似距離とは、GPS衛星10と移動局30との間の真の距離とは異なり、時計誤差(クロックバイアス)や電波伝搬速度変化による誤差を含む。
ここで、GPS衛星10に対する擬似距離ρは、以下のように表せる。
ρ=c・τu+b 式(1)
ここで、cは光速であり、bは、誤差成分であり、主に、時計誤差による距離誤差に対応する。τuは、GPS衛星10から移動局30(GPSアンテナ20)までのトラベル時間を示す。
測位演算回路200は、航法メッセージの衛星軌道情報及び現在の時間に基づいて、GPS衛星10の、ワールド座標系での現在位置(X、Y、Z)を計算する。尚、GPS衛星10は、人工衛星の1つであるので、その運動は、地球重心を含む一定面内(軌道面)に限定される。また、GPS衛星10の軌道は地球重心を1つの焦点とする楕円運動であり、ケプラーの方程式を逐次数値計算することで、軌道面上でのGPS衛星10の位置が計算できる。また、GPS衛星10の位置(X、Y、Z)は、GPS衛星10の軌道面とワールド座標系の赤道面が回転関係にあることを考慮して、軌道面上でのGPS衛星10の位置を3次元的な回転座標変換することで得られる。尚、ワールド座標系とは、図3に示すように、地球重心を原点として、赤道面内で互いに直交するX軸及びY軸、並びに、この両軸に直交するZ軸により定義される。
測位演算回路200は、衛星位置の算出結果と、信号処理回路100から供給される擬似距離の算出結果に基づいて、移動体30の位置(X,Y,Z)を測位し、例えば図2に示すようにナビゲーションシステムに出力する。移動体30の位置は、3つのGPS衛星10に対して得られるそれぞれの擬似距離及び衛星位置を用いて、三角測量の原理で導出されてよい。この場合、擬似距離は上述の如く時計誤差を含むので、4つ目のGPS衛星10に対して得られる擬似距離及び衛星位置を用いて、時計誤差成分が除去される。尚、移動体30の位置の測位方法としては、上述のような単独測位に限られず、干渉測位(既知の点に設置された固定局での受信データを併用する方式)であってもよい。干渉測位の場合、上述の如く固定局及び移動体30にてそれぞれ得られる擬似距離の一重位相差や2重位相差等を用いて移動体30の位置が測位されることになる。
測位演算回路200は、必要に応じて、移動体30の移動態様を検出するINS(inertial navigation system)センサ26、車速センサ、舵角センサ、方位角計等のような各種センサ28や、地図DB(データベース)29からの情報を用いて、測位結果を補正してよい。INSセンサ26は、ジャイロセンサやG(加速度)センサを含んでよい。例えば、測位演算回路200は、地図DB29からの地図情報を用いたマップマッチングにより測位結果を補正してよく、或いは、トンネル走行中などのように衛星信号が受信できない間、INSセンサ26や各種センサ28に基づいて推定される移動体30の移動態様に基づいて、移動体30の位置情報(慣性航法による位置情報)を生成してもよい。尚、例えば車両(移動体30)の速度ベクトル(Vx、Vy)は、車体を基準としたボディ座標系(図3参照)に基づいているため、測位演算回路200は、速度ベクトル(Vx、Vy)を、ローカル座標系を介してワールド座標系へと座標変換する。通常、座標の回転変換は、オイラー角を用いて実現できるが、ボディ座標系からローカル座標系への変換に関しては、ロール角及びピッチ角が小さいとしてヨー角ψのみで実現することとしてよい(但し、ロール角及びピッチ角を考慮することも、ヨー角を無視することも当然に可能である。)。また、ローカル座標系からワールド座標系への変換に関しては、車両位置の経度及び緯度を用いた変換で実現される。
次に、上述の信号処理回路100の詳細な構成について説明する。
図4は、信号処理回路100の主要機能を概略的に表す機能ブロックを示す図である。以下では、説明の複雑化を避けるため、ある1つのGPS衛星10からの衛星信号に関する信号処理(1チャンネルの信号処理)を代表して説明する。以下で説明する信号処理は、観測周期毎(例えば1ms)に、観測可能な各GPS衛星10,10,10等からの衛星信号に対して並列的(同時)に実行される。
信号処理回路100は、図4に示すように、DDL(Delay―Locked
Loop)110、PLL(Phase−Locked Loop)120、及び、フィルタ130を含む。また、信号処理回路100は、相関ピーク値演算部119、閾値範囲設定部140、判定部142、及び、マルチパス検出部144を含む。閾値範囲設定部140、判定部142、及びマルチパス検出部144は、例えばDSP(Digital Signal Processor)等のような適切なプロセッサないしマイクロコンピューターにより実現されてよい。信号処理回路100の他の部は、ICで構成されたロジック回路により実現されてよい。尚、これらのハードウェア構成の分類はあくまで一例である。
DDL110は、相互相関演算部111,112、位相進め部113、位相遅れ部114、位相ずれ計算部115、位相補正量計算部116、レプリカC/Aコード生成部117、及び、擬似距離算出部118を含む。
レプリカC/Aコード生成部117では、レプリカC/Aコードが生成される。レプリカC/Aコードとは、GPS衛星10からの衛星信号に乗せられるC/Aコードに対して、+1、−1の並びが同一のコードである。
相互相関演算部111には、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードが、位相進め部113を介して入力される。即ち、相互相関演算部111には、Earlyレプリカ符号が入力される。位相進め部113では、レプリカC/Aコードが所定の位相だけ進められる。位相進め部113で進められる位相進み量をθとする。
相互相関演算部111には、また、デジタルIF信号が、図示しないミキサにより、PLL120で生成されるレプリカキャリアが乗算されてから入力される。
相互相関演算部111では、入力されるデジタルIF信号と、位相進み量θのEarlyレプリカ符号を用いて、相関値(Early相関値ECA)が演算される。Early相関値ECAは、例えば以下の式で演算される。
Early相関値ECA=Σ{(デジタルIF)×(Earlyレプリカ符号)}
相互相関演算部112には、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードが、位相遅れ部114を介して入力される。即ち、相互相関演算部112には、Lateレプリカ符号が入力される。位相遅れ部114では、レプリカC/Aコードが所定の位相だけ遅らされる。位相遅れ部114で遅らされる位相遅れ量は、位相進み量θと大きさ同一で符号が異なる。
相互相関演算部112には、また、デジタルIF信号が、図示しないミキサにより、PLL120で生成されるレプリカキャリアが乗算されてから入力される。
相互相関演算部112では、入力されるデジタルIF信号と、位相遅れ量−θのLateレプリカ符号を用いて、相関値(Late相関値LCA)が演算される。Late相関値LCAは、例えば以下の式で演算される。
Late相関値LCA1=Σ{(デジタルIF)×(Lateレプリカ符号)}
このようにして、相互相関演算部111、112では、コリレータ間隔d(“スペーシング”とも称される)を2θとした相関値演算が実行される。相互相関演算部111、112にてそれぞれ演算されたEarly相関値ECA及びLate相関値LCAは、位相ずれ計算部115に入力される。
位相ずれ計算部115では、デジタルIF信号と、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードとの間に、どの程度位相のずれがあるかが算出される。即ち、位相ずれ計算部115では、受信したC/Aコードに対するレプリカC/Aコードの位相ずれ量Δφが算出(推定)される。レプリカC/Aコードの位相ずれ量Δφは、例えば以下の式で演算される。
(位相ずれ量Δφ)=(ECA−LCA)/2(ECA+LCA
このようにして算出された位相ずれ量Δφは、位相補正量計算部116、後述の閾値範囲設定部140及び判定部142に入力される。
位相補正量計算部116では、位相ずれ量Δφを無くすべく、適切な位相補正量が算出される。適切な位相補正量が、例えば以下の演算式に従って、算出される。
(位相補正量)=(Pゲイン)×(位相ずれ量Δφ)+(Iゲイン)×Σ(位相ずれ量Δφ)
この式は、PI制御を利用したフィードバック制御を表す式であり、Pゲイン及びIゲインは、それぞれバラツキと応答性の兼ね合いから実験的に決定される。このようにして算出された位相補正量は、レプリカC/Aコード生成部117に入力される。
レプリカC/Aコード生成部117では、生成されるレプリカC/Aコードの位相が、位相補正量計算部116により算出された位相補正量だけ補正される。即ち、レプリカC/Aコードの追尾点が補正される。かくして生成されたレプリカC/Aコードは、上述の如く位相進め部113及び位相遅れ部114を介して相互相関演算部111、112に入力されると共に、擬似距離算出部118及び相関ピーク値演算部119に入力される。尚、相互相関演算部111、112では、このようにして生成されたレプリカC/Aコードは、次回の観測周期で入力されるIFデジタル信号に対する相関値演算に用いられることになる。
擬似距離算出部118では、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードに基づいて、擬似距離ρ’CAが、例えば以下の式により演算される。尚、符号の意味として、擬似距離ρCAに付された「’」は、後述のフィルタ処理が実行されていないことを示し、「CA」は、C/Aコードに基づいて算出された擬似距離ρであることを示す。
ρ’CA=NCA×300
ここで、NCAは、GPS衛星10と移動局30との間のC/Aコードのビット数に相当し、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードの位相及び受信機1内部の受信機時計に基づいて算出される。尚、数値300は、C/Aコードが、1ビットの長さが1μsであり、1ビットに相当する長さが約300m(1μs×光速)であることに由来する。このようにして算出された擬似距離ρ’CAを表す信号は、DDL110からフィルタ130に入力される。
PLL120では、内部で発生させたキャリアレプリカ信号を用いて、ドップラーシフトした受信搬送波(受信キャリア)のドップラー周波数変化量ΔfL1が測定される。ドップラー周波数変化量ΔfL1の測定方法は、内部で発生させたレプリカキャリアを用いた相関値演算により実現されてよい。尚、PLL12に入力されるデジタルIF信号は、図示しないミキサにより、DDL110から供給されるレプリカC/Aコードが乗算されたものである。PLL120からのドップラー周波数変化量Δfを表す信号は、フィルタ130に入力される。
フィルタ130では、ドップラー周波数変化量Δfを用いて、擬似距離ρ’CAのフィルタ処理が実行される。フィルタ処理は、本分野で知られているキャリアスムージングと呼ばれる処理であってよく、ハッチフィルタやカルマンフィルタを用いても実現可能である。フィルタ処理後の擬似距離ρCAを表す信号は、測位演算回路200(図2参照)に供給され、移動体30の位置の測位演算に用いられることになる。
相関ピーク値演算部119には、レプリカC/Aコード生成部117で生成されるレプリカC/Aコードが入力される。即ち、相関ピーク値演算部119には、Promptレプリカ符号が入力される。また、相関ピーク値演算部119には、デジタルIF信号が、図示しないミキサにより、PLL120で生成されるレプリカキャリアが乗算されてから入力される。
相関ピーク値演算部119では、入力されるデジタルIF信号と、位相遅れ量0のPromptレプリカ符号を用いて、相関ピーク値が演算される。相関ピーク値PCAは、例えば以下の式で演算される。
相関ピーク値PCA=Σ{(デジタルIF)×(Promptレプリカ符号)}
尚、相関ピーク値PCAは、上記式からも明らかなように、あくまでC/Aコードの追尾が正確にできているとの仮定の下で算出される値であり、実際の相関値のピーク値と異なる場合もありうる。相関ピーク値演算部119からの相関ピーク値PCAを表す信号は、閾値範囲設定部140及び判定部142に入力される。
閾値範囲設定部140では、マルチパスが無い状況下での相関ピーク値PCAの取りうる範囲が、第1閾値範囲として設定される。また、閾値範囲設定部140では、マルチパスが無い状況下での位相ずれ量Δφの取りうる範囲が、第2閾値範囲として設定される。
具体的には、閾値範囲設定部140では、マルチパスが無いと想定される状況下で得られたN数の観測データに基づいて、相関ピーク値PCAの平均値及び分散σが算出される。そして、第1閾値範囲は、平均値±3σとして設定される。同様に、閾値範囲設定部140では、マルチパスが無いと想定される状況下で得られたN数の観測データに基づいて、位相ずれ量Δφの平均値及び分散σΔφが算出される。そして、第2閾値範囲は、平均値±3σΔφとして設定される。閾値範囲設定部140では、第1閾値範囲及び第2閾値範囲は、実稼動時に得られる観測データに基づいて定期的に変化される。これは、天候条件、ハードウェア構成の特性差(例えばGPSアンテナ20や、高周波回路22の個体の相違による特性差)、ハードウェア構成の経時的劣化等の影響を受けて、適切な閾値範囲が変化するからである。尚、閾値範囲設定部140における閾値範囲の変化タイミングや、マルチパスが無いと想定される状況での観測データの取得方法については、後述する。
判定部142では、閾値範囲設定部140で設定された第1閾値範囲を用いて、今回の観測周期で得られる相関ピーク値PCAが第1閾値範囲内にあるか否かが判定される。この判定結果は、マルチパス検出部144に出力される。また、判定部142では、閾値範囲設定部140で設定された第2閾値範囲を用いて、今回の観測周期で得られる位相ずれ量Δφが第2閾値範囲内にあるか否かが判定される。この判定結果は、マルチパス検出部144に出力される。
マルチパス検出部144では、判定部142からの上述の2種類の判定結果に基づいて、マルチパスが発生したか否かが判定される。具体的には、マルチパス検出部144では、今回の観測周期で得られる相関ピーク値PCAが第1閾値範囲内に無いとの判定、及び、今回の観測周期で得られる位相ずれ量Δφが第2閾値範囲内に無いとの判定の少なくともいずれかが判定部142から供給された場合に、マルチパスが発生したと判断される。尚、今回の観測周期で得られる相関ピーク値PCAが第1閾値範囲内に無いとの判定、及び、今回の観測周期で得られる位相ずれ量Δφが第2閾値範囲内に無いとの判定の少なくともいずれかが、所定数の処理周期で連続して、判定部142から供給された場合に、マルチパスが発生したと判断してもよい。
マルチパスが発生したと判断された場合、マルチパス検出部144では、その旨を表す信号(以下、マルチパス検出信号という)が生成される。マルチパス検出信号は、例えば測位演算回路200(図2参照)に供給され、移動体30の位置の測位演算に用いられてよい。この場合、測位演算回路200では、マルチパスが検出されたGPS衛星10に対する擬似距離ρCAを用いずに、測位演算が実行されてよい。或いは、測位演算回路200では、マルチパスが検出されたGPS衛星10に対する擬似距離ρCAを用いずに、マルチパス検出前の測位演算回路200の測位結果とINSセンサ26からの情報に基づいて推定される擬似距離(慣性航法により導出された擬似距離)を用いて、測位演算が実行されてよい。或いは、マルチパス検出部144でマルチパスの発生可能性が評価される場合、マルチパスの発生可能性に応じた重み付け係数を付与して、測位演算が実行されてよい。この場合、マルチパスの発生可能性が低い場合には、重み付け係数を例えば0.8とし、マルチパスの発生が確実である場合には、重み付け係数を例えば0.2としてもよい。マルチパスの発生可能性は、相関ピーク値PCA及び位相ずれ量Δφがそれぞれの閾値範囲に対してどの程度近似又は乖離しているかに基づいて評価されてもよい。
図5は、上述のマルチパス検出方法を説明するための概念図である。図5では、横軸にCAコードのコード位相が示され、縦軸に相関値が示されている。図5には、第1閾値範囲及び第2閾値範囲により画成される2次元の閾値領域が、ハッチングにより示されている。
マルチバスが発生していない状況では、GPS衛星10から直接波だけが受信されることになるので、図5にて直接波の直線で示すように、相関ピーク値を中心とした左右対称の相関値特性を示す。一方、マルチバスが発生した場合には、図5にて反射波の直線で示すように、直接波に係る相関ピーク値のコード位相からずれたコード位相で相関ピーク値を有する反射波が受信される。従って、マルチバスが発生した場合には、図5にて受信波の直線で示すような直接波と反射波の合成波が受信される。尚、図5に示す例では、反射波は上に凸の相関値特性を有しているが、下に凸の相関値特性を有する場合もある。いずれにしても、マルチバスが発生した場合には、受信波の相関値特性において、直接波に係る相関ピークが明瞭に現れなくなるので、相関ピーク値PCAを取るコード位相を検出し難くなる。この結果、位相ずれ量Δφが大きく変化しうる。また、マルチバスが発生した場合には、受信波の相関ピーク値は、マルチバスが発生していない状況での相関ピーク値に対して大きく変化する。
本実施例では、今回の観測周期でマルチバスが発生した場合には、今回の観測周期の相関ピーク値PCA及び位相ずれ量Δφが前回の観測周期に比べて大きく変化することに着目して、図5に示すように、相関ピーク値PCA及び位相ずれ量Δφにより画成される2次元の閾値領域(第1閾値範囲及び第2閾値範囲により画成される2次元の閾値領域)を設定し、今回の観測周期の相関ピーク値PCA及び位相ずれ量Δφが当該閾値領域から逸脱した場合に、マルチバスが発生したと判定している。これにより、マルチバスの有無を精度良く判定することができる。
次に、閾値範囲設定部140による2次元の閾値領域(第1閾値範囲及び第2閾値範囲)の更新方法の好ましい具体例について説明する。
図6は、閾値範囲設定部140により実現される閾値領域更新方法を示すフローチャートである。以下の処理ルーチンは、所定の処理周期で実行される。
ステップ100では、現在の移動体30周辺地域の天候が良好であるか否かが判定される。この判定は、例えばレインセンサや日照センサ等のような移動体30に搭載される各種センサに基づいて実現されてもよいし、外部の情報提供センターから通信を介して得られる天候情報に基づいて実現されてもよい。天候が良好である場合には、ステップ110に進み、それ以外の場合には、ステップ105に進む。
ステップ105では、連続観測データ数Mがゼロに初期化される。連続観測データ数Mは、以下の説明からも理解できるように、マルチバスが発生していないと推定される状況が継続しているときの処理周期数に相当する。
ステップ110では、現在の移動体30の存在する位置が開放地域に属するか否かが判定される。開放地域とは、マルチパスの原因となりうる周辺建物が存しない地域をいう。例えば高層建物が周辺に存在する地域が、開放地域ではない地域の典型例である。また、周辺に高層建物が無く天空が開けている地域が、開放地域の典型例である。より具体的には、開放地域は、田畑や空き地が広がる地域や、低層住宅が散在するだけの地域、地上から高い位置にある高速道路上で周辺に大きな建物が無い地域を含む。開放地域に属するか否かは、典型的には、移動体30の位置情報と、地図DB29の地図情報とに基づいて判定されてよい。この場合、地図DB29の地図情報において、建物の情報に基づいて予め開放地域が登録されていてもよい。移動体30の位置情報は、測位演算回路200の測位結果に基づくものであってよい。現在の移動体30の存在する位置が開放地域に属する場合には、ステップ120に進み、それ以外の場合には、ステップ105に進む。
ステップ120では、現在観測可能なGPS衛星10の数が所定数以上であるか否かが判定される。所定数は、例えば10であってよい。また、観測可能なGPS衛星10の数には、受信感度が良好であるGPS衛星10だけが算入されることとしてよい。現在観測可能なGPS衛星10の数が所定数以上ある場合には、ステップ130に進み、それ以外の場合には、ステップ105に進む。
ステップ130では、連続観測データ数Mがインクリメントされる。連続観測データ数Mの初期値はゼロであり、上記ステップ100,110,120の条件が連続した処理周期で満たされる毎に、連続観測データ数Mが1ずつインクリメントされる。尚、連続観測データ数Mのカウンタは、一時的な短い周期で上記ステップ100,110,120の条件の不成立が生じた場合にもカウンタ値を保持するフィルタを有していてもよい。
ステップ140では、連続観測データ数Mが所定値以上であるか否かが判定される。所定値は、本処理の処理周期に依存するが、例えば100ms分(N=100)の観測データの相当する値であってよい。
ステップ150では、上記ステップ100,110,120の条件が満たされた状況下で取得された観測データを用いて、2次元の閾値領域(第1閾値範囲及び第2閾値範囲)の更新が実行される。即ち、上述の如く、上記ステップ100,110,120の条件が満たされた状況下で算出された相関ピーク値PCAの平均値及び分散σに基づいて、第1閾値範囲が更新されてよい。同様に、上記ステップ100,110,120の条件が満たされた状況下で算出された位相ずれ量Δφの平均値及び分散σΔφに基づいて、第2閾値範囲が更新されてよい。
このように、図6に示す処理によれば、マルチバスが発生していない状況を精度良く推定して、実稼動時に2次元閾値領域を更新できるので、例えばハードウェア構成の経時的劣化等により相関値の特性に変化が生じた場合であっても、それに応じた適切な2次元閾値領域を設定することができる。
尚、図6に示す処理は、例えばイグニッションスイッチがオンにされてからオフにされるまでの1トリップの間、一回の閾値領域の更新処理が実現されるまで実行されてもよい。尚、この場合、場合によっては、1トリップの間に条件が満たされずに更新が一回もされない場合もありうる。或いは、図6に示す処理は、ある期間毎(例えば1週間毎や1ヶ月毎)に実行されてもよい。
以上説明した本実施例によれば、以下のような優れた効果が奏される。
上述の如く、相関ピーク値PCA及び位相ずれ量Δφにより画成される2次元閾値領域(第1閾値範囲及び第2閾値範囲)を用いて、マルチバスの有無を検出することで、マルチバスの検出精度を高めることができる。
また、2次元閾値領域を実稼動時にも更新することで、例えばハードウェア構成の経時的劣化等により相関値特性に変化が生じた場合であっても、マルチバスの良好な検出精度を維持することができる。また、マルチバスが発生していない状況を精度良く推定して、実稼動時に2次元閾値領域を更新するので、2次元閾値領域を適切に変化させることができる。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
例えば、上述の実施例では、相関ピーク値PCAとして、実測による相関ピーク値PCAを導出しているが、INSセンサ26からの情報に基づいて慣性航法により導出される擬似距離に基づいて推測により相関ピーク値PCAを導出してもよい。この場合、慣性航法により導出される擬似距離に対応するコード位相の相関値が、推測による相関ピーク値PCAとして用いられてよい。尚、慣性航法による擬似距離ρ推測は、慣性航法により導出されるGPS衛星10とGPS受信機1間の幾何学的な距離であってもよいし、例えば、以下の式のように、当該距離に、時計誤差ρerrを付加したものであってもよい。
ρ推測=sqrt{(Xu推定(i)−X(i))+(Yu推定(i)−Y(i))+(Zu推定(i)−Z(i))}+ρerr
ここで、推定位置[Xu推定(i)、Yu推定(i)、Zu推定(i)]は、慣性航法により導出される測位結果であり、前回観測周期(i−1)における測位演算回路200の測位結果である移動局30の位置[X(i−1)、Y(i−1)、Z(i−1)]と、INSセンサ26からの前回観測周期(i−1)から今回観測周期(i)までの移動局30の移動情報とに基づいて算出される。時計誤差ρerrは、例えば以下の式で算出されてよい。
ρ’err=ρCA(i−1)−sqrt{(X(i−1)−X(i−1))+(Y(i−1)−Y(i−1))+(Z(i−1)−Z(i−1))} 式(1)
ρerr=1/n×Σρ’err 式(2)
また、上述の実施例では、位相ずれ量Δφとして、実測による位相ずれ量Δφを導出しているが、INSセンサ26からの情報に基づいて慣性航法により導出される擬似距離に基づいて推測により位相ずれ量Δφを導出してもよい。この場合、慣性航法により導出される擬似距離に対応するコード位相と、相関ピーク値PCAを取るコード位相との差が、推測による位相ずれ量Δφとして用いられてよい。
また、上述の実施例では、位相ずれ量Δφに対して第2閾値範囲を設定しているが、それに代えて、位相ずれ量Δφに実質的に等価のパラメータに対して同様の第2閾値範囲を設定してもよい。例えば、位相ずれ量Δφに基づいて算出される上述の位相補正量に対して同様の第2閾値範囲を設定してもよい。また、位相ずれ量Δφの変化割合(単位時間当たりの位相ずれ量Δφの変化量)に対して同様の第2閾値範囲を設定してもよい。これは、位相ずれ量Δφの変化割合が、マルチバスが発生した際に大きな値となることを利用したものである。また、ドップラー周波数変化量Δf、光速c及び既知の搬送波周波数f(1575.42MHz)に基づいて、GPS衛星10と移動体30との間の相対速度ΔVを、例えばΔf=ΔV・f/(c−ΔV)の関係式を用いて、算出し、観測周期毎に、擬似距離ρ’CAから、観測周期間の擬似距離変化量(GPS衛星10に対する移動体30の相対移動量であり、ΔVの時間積分値に相当。)を差し引いて得られる擬似距離ρ”CAを導出し、観測周期毎の擬似距離ρ”CAの変化量又は変化割合(単位時間当たりの擬似距離ρ”CAの変化量)に対して、同様の第2閾値範囲を設定してもよい。この場合、擬似距離ρ”CAは、擬似距離ρ’CAに代えて、上述の慣性航法による擬似距離ρ推測を用いて導出されてもよい。
また、上述の実施例では、相関ピーク値PCAに対して第1閾値範囲を設定しているが、相関ピーク値PCAと実質的に等価のパラメータに対して同様の第1閾値範囲を設定してもよい。例えば、相関ピーク値PCAの変化割合(単位時間当たりの位相ずれ量Δφの変化量)に対して同様の第2閾値範囲を設定してもよい。これは、相関ピーク値PCAの変化割合についても、マルチバスが発生した際に大きな値となることを利用したものである。
また、上述の実施例では、相関ピーク値PCA及び位相ずれ量Δφに対する閾値判定によりマルチパスの有無を判断しているが、他のマルチパス検出方法と組み合わせて、マルチパス検出精度を高めることも可能である。例えば、上記の閾値判定結果に加えて、INSセンサ26からの情報に基づいて慣性航法により導出される車両位置(又は擬似距離)と、上述の衛星航法により導出される車両位置(又は擬似距離)との差分を評価して、差分が所定値より大きい場合に、マルチパスが検出されたと判定してもよい。これは、慣性航法により導出される車両位置は、上述の衛星航法により導出される車両位置とは異なり、マルチパスの影響を受けないことを利用したものである。
また、上述の実施例では、好ましい実施例として、2次元閾値領域(第1閾値範囲及び第2閾値範囲)を適宜更新しているが、第1閾値範囲及び第2閾値範囲は、マルチパスが無い状況下で観測された観測データに基づいて予め決定される固定値であってもよい。この場合、閾値範囲設定部140は、当該記憶された固定値を読み出して設定すればよく、閾値範囲設定部140への各種入力(相関ピーク値PCA及び位相ずれ量Δφ)は不要である。
また、図6に示す処理は、好ましい例として、3つの条件(上記ステップ100,110,120の条件)が所定時間継続して満たされた場合に、その間に取得された観測データに基づいて2次元閾値領域を更新しているが、例えば上記ステップ100、上記ステップ110,120のいずれか1つの条件又は2つの条件(組み合わせは任意)が所定時間継続して満たされた場合に、その間に取得された観測データに基づいて2次元閾値領域を更新することとしてもよい。
或いは、3つの条件(上記ステップ100,110,120の条件)に加えて、又はこれらのいずれか1つの条件又は2つの条件に加えて、他の条件を付加してもよい。例えば、マルチバスが発生していない状況でも、実際には、熱雑音がデジタルIF信号に重畳されて相関値がばらつくことを考慮して、算出される擬似距離ρ’CA又はρCAが収束していることを、他の条件として付加してもよい。尚、擬似距離ρ’CA又はρCAが収束しているか否かは、観測周期毎に、擬似距離ρ’CAから、観測周期間の擬似距離変化量を差し引いて得られる擬似距離ρ”CAを導出し、擬似距離ρ”CAが所定のバラツキ度合い内に収まっているか否かに基づいて判断されてよい。
また、上述の実施例では、GPSに本発明が適用された例を示したが、本発明は、GPS以下の衛星システム、例えばガリレオ等の他のGNSS(Global Navigation Satellite System)にも適用可能である。
また、上述の実施例では、C/Aコードを用いているが、本発明は、L1波のPコード及び/又はL2波のPコードに基づいて、同様に、GPS衛星10に対する擬似距離ρを算出する構成にも適用可能である。尚、Pコードの場合、Wコードで暗号化されているので、Pコード同期を行う際に、クロス相関方式を利用したDLLにより、Pコードを取り出すこととしてよい。Pコードに基づく擬似距離ρ’は、GPS衛星10でPコードが0ビット目であるとしてPコードのMビット目が移動局30にて受信されているかを計測することで、ρ’=M×30として求めることができる。
本発明に係る衛星電波受信機が適用されるGPSの全体的な構成を示すシステム構成図である。 図1の移動局30に搭載される衛星電波受信機の一実施例を示す概略的なシステム構成図である。 ワールド座標系とローカル座標系との関係、及び、ローカル座標系とボディ座標との関係を示す図である。 信号処理回路100の主要機能を表す機能ブロックを示す図である。 マルチパス検出方法を説明するための概念図である。 閾値範囲設定部140により実現される閾値領域更新方法を示すフローチャートである。
符号の説明
1 GPS受信機
10 GPS衛星
20 GPSアンテナ
22 高周波回路
24 A/D変換回路
26 INSセンサ
28 各種センサ
29 地図DB
30 移動体
32 演算部
100 信号処理回路
119 相関ピーク値演算部
140 閾値範囲設定部
142 判定部
144 マルチパス検出部
110 DDL
120 PLL
130 フィルタ
200 測位演算回路

Claims (4)

  1. 衛星からの電波に乗せられた擬似雑音コードに対して、内部で発生させたレプリカ擬似雑音コードを用いて相関値演算を行ってコード同期を取ることで、衛星と移動体との間の擬似距離を算出する移動体用衛星電波受信機であって、
    実測ないし推定に基づいて導出される範囲であって、マルチパスが無い状況下での相関ピーク値の取りうる範囲を、第1閾値範囲として設定すると共に、実測ないし推定に基づいて導出される範囲であって、同状況下での擬似雑音コードのコード位相に対するレプリカ擬似雑音コードのコード位相の位相ずれ量の取りうる範囲を、第2閾値範囲として設定する閾値範囲設定手段と、
    受信した衛星信号に対して算出された前記相関ピーク値と前記コード位相のずれ量が、前記閾値範囲設定手段で設定された第1閾値範囲及び第2閾値範囲内にそれぞれあるか否かを判定する判定手段と、
    前記算出された前記相関ピーク値と前記コード位相のずれ量の少なくともいずれかがそれぞれの閾値範囲内に無いと判定された場合に、マルチパスが発生したと判断するマルチパス検出手段と、を備えることを特徴とする、衛星電波受信機。
  2. 前記閾値範囲設定手段において、前記第1閾値範囲及び第2閾値範囲が、過去の観測データから算出される前記相関ピーク値の分散値及び前記コード位相のずれ量の分散値に基づいて設定される、請求項1に記載の衛星電波受信機。
  3. 前記分散値は、過去の観測データのうち、観測可能な衛星数が所定値以上であり且つマルチパスの発生可能性が低い位置に移動体が位置するときの観測データを用いて、算出される、請求項2に記載の衛星電波受信機。
  4. 前記マルチパスの発生可能性が低い位置は、マルチパスの原因となりうる周辺建物が存しない開放地域を含む、請求項3に記載の衛星電波受信機。
JP2006289014A 2006-10-24 2006-10-24 移動体用衛星電波受信機 Expired - Fee Related JP4905054B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289014A JP4905054B2 (ja) 2006-10-24 2006-10-24 移動体用衛星電波受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289014A JP4905054B2 (ja) 2006-10-24 2006-10-24 移動体用衛星電波受信機

Publications (2)

Publication Number Publication Date
JP2008107160A JP2008107160A (ja) 2008-05-08
JP4905054B2 true JP4905054B2 (ja) 2012-03-28

Family

ID=39440631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289014A Expired - Fee Related JP4905054B2 (ja) 2006-10-24 2006-10-24 移動体用衛星電波受信機

Country Status (1)

Country Link
JP (1) JP4905054B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417987A (zh) * 2018-02-01 2018-08-17 北京爱科迪通信技术股份有限公司 一种用于卫星天线系统的信标门限确定方法
US11441907B2 (en) * 2017-01-30 2022-09-13 Mitsubishi Electric Corporation Positioning device and positioning method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077063B2 (ja) * 2008-05-15 2012-11-21 トヨタ自動車株式会社 車両位置検出装置、車両位置検出方法
GB2493161B (en) * 2011-07-26 2017-05-10 Stmicroelectronics (Research & Development) Ltd Multi-path detection
JP5510492B2 (ja) * 2012-05-01 2014-06-04 トヨタ自動車株式会社 車両位置検出装置、車両位置検出方法
JP6260983B2 (ja) * 2013-05-24 2018-01-17 株式会社Ihi 自己位置推定装置及び方法
GB2566748B (en) 2017-09-26 2022-08-17 Focal Point Positioning Ltd A method and system for calibrating a system parameter
US11808865B2 (en) 2016-03-24 2023-11-07 Focal Point Positioning Limited Method and system for calibrating a system parameter
CN109239744B (zh) * 2018-10-19 2020-10-09 杭州电子科技大学 一种基于复信号相位的快速抗比特反转快速捕获方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782085B2 (ja) * 1986-06-27 1995-09-06 日本無線株式会社 衛星航法装置
JP2001036429A (ja) * 1999-07-19 2001-02-09 Furuno Electric Co Ltd 擬似雑音符号位相検出装置
JP4257045B2 (ja) * 2001-05-08 2009-04-22 パイオニア株式会社 Gps測位方法及び装置、ナビゲーションシステム並びにコンピュータプログラム
JP2003057327A (ja) * 2001-08-09 2003-02-26 Matsushita Electric Ind Co Ltd 航法衛星信号受信機
JP4243992B2 (ja) * 2003-07-14 2009-03-25 ソニー株式会社 マルチパス誤差補正装置、マルチパス誤差補正方法及びナビゲーション装置
JP2007107928A (ja) * 2005-10-11 2007-04-26 Seiko Epson Corp 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441907B2 (en) * 2017-01-30 2022-09-13 Mitsubishi Electric Corporation Positioning device and positioning method
CN108417987A (zh) * 2018-02-01 2018-08-17 北京爱科迪通信技术股份有限公司 一种用于卫星天线系统的信标门限确定方法

Also Published As

Publication number Publication date
JP2008107160A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4905054B2 (ja) 移動体用衛星電波受信機
CN103744096B (zh) 一种多信息融合的定位方法和装置
EP2733505B1 (en) Positioning determinations of receivers
JP4103926B1 (ja) 移動体用測位装置
JP4525689B2 (ja) 移動体用測定装置
US8035554B2 (en) Device for measuring a position of a mobile station
CN109313272B (zh) 使用速度积分的改进gnss接收器
WO2017029042A1 (en) Antenna pattern data mining for automotive global navigation satellite system receivers
JP4424365B2 (ja) 移動体用測位装置及び移動体用測位方法
US12061275B2 (en) Enhancing sensitivity to reflected GNSS signals
JP7111298B2 (ja) 衛星選択装置、及びプログラム
JP2009229065A (ja) 移動体用測位装置
JP2008139105A (ja) 移動体位置測位装置
JP2010223684A (ja) 移動体用測位装置
JP5163511B2 (ja) Gnss受信装置及び測位方法
Xu et al. NLOS detection and compensation using a vector tracking-based GPS software receiver
JP2008051573A (ja) ナビゲーション装置及び、その方法、並びにそのプログラム
JP2009025045A (ja) 移動体用測位装置
JP2010112759A (ja) 移動体位置測位装置
JP2008232761A (ja) 移動体用測位装置
JP4470944B2 (ja) 移動体位置測位装置
JP5157998B2 (ja) 移動体用測位装置
JP2009098099A (ja) 移動体用測位装置
JP2019168257A (ja) 移動体情報推定装置及びプログラム
JP2008139214A (ja) 移動体用測位システム及びこれに用いる装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees