JP2008288510A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008288510A
JP2008288510A JP2007134215A JP2007134215A JP2008288510A JP 2008288510 A JP2008288510 A JP 2008288510A JP 2007134215 A JP2007134215 A JP 2007134215A JP 2007134215 A JP2007134215 A JP 2007134215A JP 2008288510 A JP2008288510 A JP 2008288510A
Authority
JP
Japan
Prior art keywords
region
trench
semiconductor device
drift region
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007134215A
Other languages
English (en)
Inventor
Naoki Kumagai
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2007134215A priority Critical patent/JP2008288510A/ja
Publication of JP2008288510A publication Critical patent/JP2008288510A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】ドリフト領域に設けられたトレンチ内に抵抗性フィールドプレートを有し、トレンチ底部近傍の電界強度がトレンチ開口部近傍の電界強度に近く、高耐圧で駆動が可能であり、オン電圧の増加を抑制することができる安価な半導体装置を提供すること。
【解決手段】nドリフト領域3の表面層のpボディ領域4およびnバッファ領域7に挟まれた部分に設けられたトレンチ11に、酸化膜12を介して、抵抗性薄膜13が設けられている。この抵抗性薄膜13に、コレクタ(ドレイン)電極17と、ゲート電極16もしくはエミッタ(ソース)電極15と、を接続させることで抵抗性フィールドプレートとする。これによって、トレンチ11の開口部近傍の電界強度と、トレンチ11の底部近傍の電界強度と、がほぼ同等となるため、nドリフト領域3の電流経路が短くなり、デバイスを高耐圧で駆動する場合にも、オン電圧の増加を抑制することができる。
【選択図】図1

Description

この発明は、横型IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)や横型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のMOS構造(金属−酸化膜−半導体)を有する高耐圧横型半導体装置に関し、特に、ドリフト領域内にトレンチ構造を有する高耐圧横型半導体装置に関する。
一般に、SOI(Silicon On Insulator)基板上に設けられた高電圧スイッチング素子は、プラズマディスプレイ等のフラットパネルディスプレイのドライバーICや車載用ICの出力段に使われている。このような素子のうち、MOS駆動素子とバイポーラトランジスタを融合したIGBTは、MOS駆動素子のように駆動回路の構成が簡素であり、かつ、バイポーラトランジスタのように耐圧部分の導電度変調によりオン抵抗が低いという利点を有する。それゆえ、高耐圧と大電力レベルを必要とする分野で重要視されている。
IGBTの中には、ドリフト領域にトレンチが設けられたトレンチドリフト領域横型IGBTがある。このトレンチドリフト領域横型IGBTによれば、トレンチでドリフト領域を折り曲げた構造になるため、短いデバイスピッチでデバイスの耐圧に必要な沿面距離を確保することができる。
以下に、従来のトレンチドリフト領域横型IGBTの構造について説明する。なお、本明細書において、nまたはpを冠した層または領域は、それぞれ電子、正孔を多数キャリアとする層または領域である。また、n+およびp++は、比較的高濃度であることを意味している。
図9は、従来のトレンチドリフト領域横型IGBTの構造を示す断面図である。図9に示すように、SOI基板は、支持基板1上に埋め込み酸化膜2を介して、活性層となるnドリフト領域3を積層した構成となっている。nドリフト領域3の表面層の一部に、pボディ領域4が設けられている。pボディ領域4の表面層の一部にはn+エミッタ領域5と、これに接するp+コンタクト領域6が設けられている。このp+コンタクト領域6の一部は、n+エミッタ領域5の下側の一部を占めている。
nドリフト領域3の表面層の一部に、nバッファ領域7が、pボディ領域4から離れて設けられ、その表面にp+コレクタ領域8が設けられている。また、nドリフト領域3の表面層の、pボディ領域4およびnバッファ領域7に挟まれた部分にトレンチ11が設けられている。n+エミッタ領域5とトレンチ11の間において、pボディ領域4およびnドリフト領域3の表面には、ゲート酸化膜10を介してゲートPoly−Si(多結晶シリコン)9が設けられている。
さらに、nドリフト領域3の表面層には酸化膜14が積層されている。この酸化膜14は、選択的に除去され、開口部が設けられている。また、酸化膜14は、トレンチ11の内部にも充填されている。酸化膜14は、たとえば、SiO2(酸化ケイ素)などである。エミッタ電極15は、この酸化膜14の開口部においてn+エミッタ領域5とp+コンタクト領域6との表面に接するように設けられている。ゲート電極16は、酸化膜14の開口部においてゲートPoly−Si9の表面に接するように設けられている。また、コレクタ電極17は、酸化膜14の開口部においてp+コレクタ領域8の表面に接するように設けられている。
このように、トレンチドリフト領域横型IGBTは、トレンチ11によってnドリフト領域3を折り曲げた構造になる。このため、デバイスピッチが縮小されることで、チャネル密度が増加し、電流密度が増加する。また、電流の経路がゲートPoly−Si9直下のnドリフト領域3表面層から、トレンチ11に沿った縦方向になるためnドリフト領域3表面層付近に電流が集中せず、オン電圧を低減することが可能となる。さらに、p+コレクタ領域8から注入される正孔による電流の経路の縦方向成分が増加し、pボディ領域4中を縦方向に流れてp+コンタクト領域6に流入する成分が増加する。これによって、n+エミッタ領域5直下のpボディ領域4中を横方向に流れる電流の成分が減少するため、ラッチアップが発生し難いという利点がある。
つぎに、図10−1、図10−2を用いて、図9に示した構造を有するトレンチドリフト領域横型IGBTの電位分布シミュレーション結果を示す。図10−1は、深さ8μmのトレンチ11が設けられたトレンチドリフト領域横型IGBTの電位分布シミュレーション結果を示す説明図である。図10−1においては、nドリフト領域3のドーピング濃度は、3×1014cm-3である。図10−1に示すデバイスは、トレンチ11の開口部近傍の等電位線密度に対して、トレンチ11の底部近傍の等電位線密度が数分の1となっている。したがって、トレンチ11の底部近傍では開口部近傍より電界強度および電圧が低くなっている。一般にリサーフ(RESURF)構造を持つ通常の横型IGBTの場合にもドリフト領域の両端の電界強度が高く、中央付近で電界強度が低下する傾向にある。しかしながら、トレンチドリフト領域横型IGBTでは、狭いトレンチ11内の酸化膜14の領域に等電位線が集中するため、この傾向が顕著である。
図10−2は、深さ10μmのトレンチ11が設けられたトレンチドリフト領域横型IGBTの電位分布シミュレーション結果を示す説明図である。図10−2においては、nドリフト領域3のドーピング濃度は、3×1014cm-3である。図10−2に示すデバイスは、図10−1に示したデバイスよりもトレンチ11の底部近傍の電界強度が減少している。トレンチ11の深さが8μmの場合、デバイスの耐圧が190Vなのに対して、トレンチ11の深さが10μmの場合、デバイスの耐圧が200Vである。このように、トレンチ11の深さが8μmから10μmへと25%増加したのに対し、デバイスの耐圧は190Vから200Vへと5%程度増加するのみである。デバイスの耐圧を増加させるためには、デバイスの耐圧を増加する割合よりも大きい割合でトレンチ11の深さを増加しなければならない。
一方、トレンチ11の深さを増加させるとnドリフト領域3表面層のドリフト長が増加するため、オン電圧が増加する。したがって、オン電圧の増加をできるだけ抑えて高耐圧化を図るには、トレンチ11の深さを増加させるよりは、トレンチ11とnバッファ領域7との距離を増加させるのがよい。しかし、そうすると、nドリフト領域3にトレンチが設けられることによる、デバイスのセルピッチ短縮効果が少なくなる。そして、プロセスコストを考慮すると、デバイスにトレンチ11を形成するメリットが少なくなる。
このような問題を解決する方法としては、半導体基板に対して、トレンチの側面を30°〜90°の角度をなすように形成し、ゲート電極をトレンチの上部まで伸張させ、さらに、ソース電極およびドレイン電極をトレンチの上方まで伸張させ、これらにフィールドプレートとしての機能を持たせる構成が提案されている(たとえば、下記特許文献1参照。)。
また、トレンチの開口部近傍の電界を緩和するため、トレンチ内のエミッタ電極側およびコレクタ電極側にさらにトレンチを形成し、このトレンチにそれぞれフィールドプレートを埋め込む構成が提案されている(たとえば、下記特許文献2、下記特許文献3参照。)。
特開2003−31804号公報 特開2006−5175号公報 特開2006−173357号公報
しかしながら、上述の特許文献1〜3の技術では、ラッチアップ耐量を高くして、単位面積あたりのオン抵抗を低くすることはできるが、トレンチの形成工程やフィールドプレートの形成工程が複雑となり、半導体装置の製造にかかるプロセスコストが上昇するという問題が一例として挙げられる。
この発明は、上述した従来技術による問題点を解消するため、ドリフト領域に設けられたトレンチ内に抵抗性フィールドプレートを有し、トレンチ底部近傍の電界強度がトレンチ開口部近傍の電界強度に近く、高耐圧で駆動が可能であり、オン電圧の増加を抑制することができる安価な半導体装置を提供することを目的とする。
上述した課題を解決し、目的を達成するため、請求項1の発明にかかる半導体装置は、第1導電型のドリフト領域と、前記ドリフト領域の表面層の一部に設けられた第2導電型のボディ領域と、前記ボディ領域の一部の表面上にゲート絶縁膜を介して設けられたゲート電極と、前記ボディ領域の一部に設けられた第1導電型のエミッタ領域と、前記ボディ領域の一部に設けられた第2導電型のコンタクト領域と、前記ドリフト領域の表面層の一部に、前記ボディ領域から離れて設けられた第2導電型のコレクタ領域と、前記ボディ領域と前記コレクタ領域との間に設けられたトレンチと、前記トレンチ内の表面に沿って設けられた抵抗性薄膜と、前記エミッタ領域および前記コンタクト領域に接するエミッタ電極と、前記コレクタ領域に接するコレクタ電極と、を備えることを特徴とする。
また、請求項2の発明にかかる半導体装置は、第1導電型のドリフト領域と、前記ドリフト領域の表面層の一部に設けられた第2導電型のボディ領域と、前記ボディ領域の一部の表面上にゲート絶縁膜を介して設けられたゲート電極と、前記ボディ領域の一部に設けられた第1導電型のソース領域と、前記ボディ領域の一部に設けられた第2導電型のコンタクト領域と、前記ドリフト領域の表面層の一部に、前記ボディ領域から離れて設けられた第1導電型のドレイン領域と、前記ボディ領域と前記ドレイン領域との間に設けられたトレンチと、前記トレンチ内の表面に沿って設けられた抵抗性薄膜と、前記ソース領域および前記コンタクト領域に接するソース電極と、前記ドレイン領域に接するドレイン電極と、を備えることを特徴とする。
また、請求項3の発明にかかる半導体装置は、請求項1または2に記載の発明において、前記コレクタ領域の下側に前記ドリフト領域よりも抵抗率の低い第1導電型のバッファ領域が設けられていることを特徴とする。
また、請求項4の発明にかかる半導体装置は、請求項1〜3のいずれか一つに記載の発明において、前記バッファ領域は、前記トレンチと離れて設けられていることを特徴とする。
また、請求項5の発明にかかる半導体装置は、請求項1〜4のいずれか一つに記載の発明において、前記ドリフト領域は、支持基板上に、酸化膜を介して設けられていることを特徴とする。
また、請求項6の発明にかかる半導体装置は、請求項1〜5のいずれか一つに記載の発明において、前記ドリフト領域は、第2導電型の半導体基板の上に設けられていることを特徴とする。
また、請求項7の発明にかかる半導体装置は、請求項1〜6のいずれか一つに記載の発明において、前記抵抗性薄膜は、前記コレクタ電極もしくは前記ドレイン電極と、前記ゲート電極と、に電気的に接続されていることを特徴とする。
また、請求項8の発明にかかる半導体装置は、請求項1〜6のいずれか一つに記載の発明において、前記抵抗性薄膜は、前記コレクタ電極もしくは前記ドレイン領域と、前記エミッタ電極もしくは前記ソース電極と、に電気的に接続されていることを特徴とする。
また、請求項9の発明にかかる半導体装置は、請求項1〜8のいずれか一つに記載の発明において、前記抵抗性薄膜は、前記トレンチ内の表面上に絶縁物を介して設けられていることを特徴とする。
また、請求項10の発明にかかる半導体装置は、請求項1〜9のいずれか一つに記載の発明において、前記抵抗性薄膜は、抵抗性窒化膜であることを特徴とする。
上記各発明によれば、トレンチ内に新たにフィールドプレート用のトレンチを形成することなく、フィールドプレートを設けることができる。したがって、トレンチ内にフィールドプレート用のトレンチを形成しないでフィールドプレートを形成するようにすれば、トレンチの形成工程が複雑にならず、プロセスコストの上昇を抑制することができるので、安価な半導体装置が得られる。
また、上記各発明によれば、ドリフト領域に設けられたトレンチに抵抗性フィールドプレートを設けることで、トレンチに沿った電界強度を均一化することができる。また、このトレンチの深さが浅くても、デバイスを高耐圧で駆動させることが可能となる。これによって、ドリフト領域の電流経路が短くなるため、デバイスを高耐圧で駆動させる場合にも、オン電圧の増加を抑制することができる。
また、上記各発明によれば、バッファ領域がトレンチから離れた領域に設けられることで、ドリフト領域の、トレンチとバッファ領域に挟まれた領域において、デバイスの耐圧を保持することができる。これによって、トレンチを深くするよりも効率よく耐圧を確保できるので、トレンチを深くする場合と比べてドリフト領域の電流経路をさらに短くすることができる。したがって、オン電圧の増加を抑えつつ、高耐圧化を図ることができる。
また、上記各発明によれば、ドリフト領域を、SOI基板もしくはp型半導体基板のどちらの上にも設けることができる。したがって、デバイスの適用範囲を広げることができる。
また、上記各発明によれば、抵抗性薄膜を、コレクタ(ドレイン)電極と、ゲート電極もしくはエミッタ(ソース)電極と、に接続させることで抵抗性フィールドプレートとしての機能を持たせることができる。さらに、抵抗性薄膜を、コレクタ(ドレイン)電極およびエミッタ(ソース)電極に接続させた場合、コレクタ(ドレイン)・ゲート間の帰還容量の増加を抑制することができる。したがって、デバイスに、高周波回路において安定した駆動をおこなわせることができる。
本発明にかかる半導体装置によれば、ドリフト領域に設けられたトレンチ内に抵抗性フィールドプレートを有し、トレンチ底部近傍の電界強度がトレンチ開口部近傍の電界強度に近く、高耐圧で駆動が可能であり、オン電圧の増加を抑制することができる安価な半導体装置を提供することができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。なお、以下の実施の形態の説明およびすべての添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。図1に示すように、実施の形態1にかかる半導体装置は、横型IGBT構造を有している。さらに、詳細には、ドリフト領域にトレンチが設けられたトレンチドリフト領域横型IGBT構造を有している。実施の形態1にかかる半導体装置は、SOI基板を用いて作製されている。SOI基板は、支持基板1の上に埋め込み酸化膜2、nドリフト領域3を、この順に積層した構成となっている。
pボディ領域4は、nドリフト領域3の表面層の一部に設けられている。n+エミッタ領域5は、pボディ領域4の表面の一部に設けられている。n+エミッタ領域5は、nドリフト領域3よりも低い抵抗率を有する。p+コンタクト領域6は、pボディ領域4の表面の一部に、n+エミッタ領域5に接して設けられている。p+コンタクト領域6は、pボディ領域4よりも低い抵抗率を有する。
nバッファ領域7は、nドリフト領域3の表面層の一部に、pボディ領域4から離れて設けられている。nバッファ領域7は、nドリフト領域3よりも低い抵抗率を有する。p+コレクタ領域8は、nバッファ領域7の表面の一部に設けられており、nバッファ領域7によりnドリフト領域3から隔離されている。p+コレクタ領域8は、pボディ領域4よりも低い抵抗率を有する。ゲートPoly−Si9は、pボディ領域4の、n+エミッタ領域5とnドリフト領域3に挟まれた領域と、この領域に接するnドリフト領域3と、の表面に、ゲート酸化膜10を介して設けられている。
トレンチ11は、nドリフト領域3の表面層の、pボディ領域4およびnバッファ領域7に挟まれた部分に設けられている。トレンチ11は、pボディ領域4およびp+コレクタ領域8とは接することなく、nバッファ領域7とは接するように設けられている。また、トレンチ11の側壁および底面には、酸化膜12を介して、抵抗性薄膜13が設けられている。抵抗性薄膜13は、たとえば、抵抗性窒化膜などである。
nドリフト領域3の表面層には、酸化膜14が積層されている。さらに、酸化膜14は、抵抗性薄膜13が設けられたトレンチ11に充填されている。また、酸化膜14は、選択的に削除され、開口部が設けられている。エミッタ電極15は、この酸化膜14の開口部においてn+エミッタ領域5とp+コンタクト領域6の表面に接するように設けられている。また、ゲート電極16は、酸化膜14の開口部においてゲートPoly−Si9の表面に接するように設けられている。また、コレクタ電極17は、酸化膜14の開口部においてp+コレクタ領域8の表面に接するように設けられている。抵抗性薄膜13は、酸化膜14の開口部においてゲート電極16およびコレクタ電極17と接している。これにより、抵抗性薄膜13は、抵抗性フィールドプレートとしての機能を持つことができる。
pボディ領域4に対してトレンチ11とは逆側のpボディ領域4と接しない領域に、nドリフト領域3の表面から底面へ分離トレンチ領域18が設けられている。分離トレンチ領域18には、酸化膜14が充填されている。nドリフト領域3は、分離トレンチ領域18によって、隣接する他の半導体装置のnドリフト領域3と電気的に分離される。抵抗性薄膜13を形成するにあたっては、たとえば、トレンチ11を形成し、熱酸化等によってトレンチ11の内面に酸化膜12を形成し、さらに抵抗性窒化膜を堆積する。そして、この窒化膜をエッチバックして薄膜化した後、トレンチ11内を酸化膜14で埋める。
つぎに、図2を用いて、図1に示したIGBT構造を有する半導体装置の電位分布シミュレーション結果を示す。図2は、実施の形態1にかかる半導体装置の電位分布シミュレーション結果を示す説明図である。図2においては、トレンチ11の深さは、8μmである。また、nドリフト領域3のドーピング濃度は、3×1014cm-3である。図2に示すように、トレンチ11の開口部近傍の等電位線密度およびトレンチ11の底部近傍の等電位線密度は、ほぼ同等となっている。また、デバイスの耐圧は340Vとなる。
上述したように、実施の形態1によれば、トレンチ11の底部近傍の電界強度が、トレンチ11の開口部近傍の電界強度と同等となるため、トレンチ11の深さが比較的浅くても高耐圧を得ることができる。したがって、nドリフト領域3の電流経路が短くなるため、デバイスを高耐圧で駆動する場合にも、オン電圧の増加を抑制することができる。また、上述したようにして抵抗性フィールドプレートを形成することによって、安価なIGBTが得られる。
(実施の形態2)
つぎに、実施の形態2にかかる半導体装置の構造を示す。図3は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置は、実施の形態1にかかる半導体装置と異なり、nバッファ領域7の表面層の一部にp+コレクタ領域8ではなく、n+ドレイン領域19が設けられている。このため、実施の形態2にかかる半導体装置は、横型MOSFET構造となる。ここで、IGBT構造におけるコレクタは、MOSFET構造においては、ドレインと呼ばれる。また、IGBT構造におけるエミッタは、MOSFET構造においては、ソースと呼ばれる。これらは、呼称は異なるが構造は同じであるため、本明細書においては同一の符号を付す。
上述したように、実施の形態2によれば、横型MOSFET構造においても、実施の形態1において示した横型IGBT構造と同様の効果を得ることができる。
つぎに、図4−1〜図4−3を用いて図3に示したMOSFET構造を有する半導体装置の電位分布シミュレーション結果を示す。図4−1〜4−3は、nドリフト領域3のドーピング濃度を変更した場合の、実施の形態2にかかるMOSFET構造を有する半導体装置の電位分布シミュレーション結果を示す説明図である。図4−1〜図4−3においては、トレンチ11の深さは8μmであり、それぞれnドリフト領域3のドーピング濃度が異なる。
図4−1は、nドリフト領域3のドーピング濃度が3×1014cm-3の場合の、電位分布シミュレーション結果である。図4−1に示すデバイスの耐圧は、340Vである。図4−2は、nドリフト領域3のドーピング濃度が5×1014cm-3の場合の、電位分布シミュレーション結果である。図4−2に示すデバイスの耐圧は、350Vである。図4−3は、nドリフト領域3のドーピング濃度が7×1014cm-3の場合の、電位分布シミュレーション結果である。図4−3に示すデバイスの耐圧は、350Vである。
ここで、抵抗性フィールドプレートのない従来の構造においては、nドリフト領域3のドーピング濃度が3×1014cm-3である場合に、デバイスの耐圧が最大値となる。一方、図4−1〜図4−3に示すデバイスの耐圧は、nドリフト領域3のドーピング濃度に対する依存性が少ない。さらに、図4−1〜図4−3に示すように、抵抗性フィールドプレートが設けられている場合、デバイスの耐圧が最大値となるnドリフト領域3のドーピング濃度が、抵抗性フィールドプレートの設けられていない従来の構造よりも高濃度となる。これは、抵抗性フィールドプレートが設けられることで、トレンチ11に沿った電界分布で電流が律速されて、デバイスの耐圧が平面接合の場合より低い耐圧となるためであると考えられる。
なお、図4−1〜図4−3においてはMOSFET構造の場合について示したが、IGBT構造の場合にも同様の効果を得ることができる。ただし、MOSFET構造の場合、少数キャリアの注入がないため、デバイスの耐圧を低下させずにnドリフト領域3のドーピング濃度を増加させて、オン抵抗を下げることができるという点で重要である。
(実施の形態3)
つぎに、実施の形態3にかかる半導体装置の構造を示す。図5は、実施の形態3にかかる半導体装置の構造を示す断面図である。実施の形態3にかかる半導体装置は、実施の形態1または実施の形態2にかかる半導体装置と異なり、nバッファ領域7がトレンチ11に接していない。実施の形態1においては、pボディ領域4からトレンチ11までの距離よりも、nバッファ領域7からトレンチ11までの距離が短い。このため、トレンチ11よりもコレクタ電極17側の電流密度が上昇し、設計にもよるが、コレクタ側ドリフト領域の電圧降下が大きく、オン電圧が増加する。一方、実施の形態3においては、nドリフト領域3の、トレンチ11とnバッファ領域7に挟まれた領域20においてデバイスの耐圧の一部を保持するとともにコレクタ側の電流密度を下げ、コレクタ側の電圧降下を低減することによる、オン電圧の減少効果を期待することができる。
上述したように、実施の形態3によれば、トレンチ11の深さを浅くしても、実施の形態1または2にかかる半導体装置の耐圧と同等の耐圧を確保することができる。したがって、nドリフト領域3の電流経路をさらに短くすることができるため、単に実施の形態1においてコレクタ側の幅を増加させる場合に比較してオン電圧を増加させることなく、デバイスを高耐圧で駆動させることができる。本実施の形態はIGBTの場合を示したが、コレクタ領域をドレイン領域で置き換えたMOSFETの場合にも同様の効果が得られることは言うまでもない。
図6は、実施の形態1、3にかかる半導体装置のI−V特性の傾向を模式的に示した説明図である。図6においては、実施の形態1にかかる半導体装置のI−V特性曲線21と、実施の形態3にかかる半導体装置のI−V特性曲線22と、を示している。また、縦軸は電流Iであり、横軸は電圧Vである。上述したように、実施の形態1にかかる半導体装置は、チャネル密度が高く、ドリフト領域の抵抗が高い。したがって、図6に示すように、実施の形態1にかかる半導体装置のI−V特性曲線21は、実施の形態3にかかる半導体装置のI−V特性曲線22と比べて、活性領域の電流は多いが、飽和領域の電圧が若干高めである。
一方、実施の形態3にかかる半導体装置は、デバイスのセルピッチが増加することで、チャネル密度が低下するが、コレクタ側の電流密度が減少し、コレクタ側の電圧降下が少なくなるためオン電圧の増加を抑制することができる。したがって、図6に示すように、実施の形態3にかかる半導体装置のI−V特性曲線22は、実施の形態1にかかる半導体装置のI−V特性曲線21と比べて、活性領域の電流が少なく、飽和領域の電圧が若干低めである。
これらによって、容量負荷などを急速に充電する必要がある場合は、活性領域の電流が多い実施の形態1または2にかかる半導体装置が適していることがわかる。また、短絡耐量が問題になる場合は、短絡時すなわち活性領域の電流が少なく短絡時の温度上昇が少ない実施の形態3にかかる半導体装置が適していることがわかる。
(実施の形態4)
つぎに、実施の形態4にかかる半導体装置の構造を示す。図7は、実施の形態4にかかる半導体装置の構造を示す断面図である。実施の形態4にかかる半導体装置は、実施の形態1〜3にかかる半導体装置と異なり、nドリフト領域3が、SOI基板ではなくp型半導体基板23の上に設けられている。図7においては、p型半導体基板23の表面層にp+埋め込み層24が設けられ、p+埋め込み層24および酸化膜14に接するようにp+分離拡散領域25が設けられている。
上述したように、実施の形態4によれば、p型半導体基板23を用いて半導体装置が形成される場合にも、実施の形態1〜3と同様の効果を得ることができる。
(実施の形態5)
つぎに、実施の形態5にかかる半導体装置の構造を示す。図8は、実施の形態5にかかる半導体装置の構造を示す断面図である。実施の形態5にかかる半導体装置は、実施の形態1〜4にかかる半導体装置と異なり、抵抗性薄膜13がゲート電極16ではなくエミッタ(ソース)電極15に接続されている。この場合、ゲート電極16は、図示されていない部分でゲートPoly−Si9に接続されている。
上述したように、実施の形態5によれば、抵抗性薄膜13がゲート電極16に接続されていないため、コレクタ(ドレイン)・ゲート間の帰還容量の増加を抑制することができる。したがって、高周波回路において安定して駆動するデバイスが得られる。
以上のように、本発明にかかる半導体装置は、高電圧スイッチング素子に有用であり、特に、プラズマディスプレイ等のフラットパネルディスプレイのドライバーICや車載用ICの出力段に用いる高電圧スイッチング素子に適している。
実施の形態1にかかる半導体装置の構造を示す断面図である。 実施の形態1にかかる半導体装置の電位分布シミュレーション結果を示す説明図である。 実施の形態2にかかる半導体装置の構造を示す断面図である。 実施の形態2にかかる半導体装置の電位分布シミュレーション結果を示す説明図である。 実施の形態2にかかる半導体装置の電位分布シミュレーション結果を示す説明図である。 実施の形態2にかかる半導体装置の電位分布シミュレーション結果を示す説明図である。 実施の形態3にかかる半導体装置の構造を示す断面図である。 実施の形態1〜3にかかる半導体装置のI−V特性の傾向を模式的に示した説明図である。 実施の形態4にかかる半導体装置の構造を示す断面図である。 実施の形態5にかかる半導体装置の構造を示す断面図である。 従来のトレンチドリフト領域横型IGBTの構造を示す断面図である。 図9に示した構造を有するトレンチドリフト領域横型IGBTの電位分布シミュレーション結果を示す説明図である。 図9に示した構造を有するトレンチドリフト領域横型IGBTの電位分布シミュレーション結果を示す説明図である。
符号の説明
1 支持基板
2 埋め込み酸化膜
3 nドリフト領域
4 pボディ領域
5 n+エミッタ領域(n+ソース領域)
6 p+コンタクト領域
7 nバッファ領域
8 p+コレクタ領域(p+ドレイン領域)
9 ゲートPoly−Si
10 ゲート酸化膜
11 トレンチ
12、14 酸化膜
13 抵抗性薄膜
15 エミッタ電極(ソース電極)
16 ゲート電極
17 コレクタ電極(ドレイン電極)
18 分離トレンチ領域

Claims (10)

  1. 第1導電型のドリフト領域と、
    前記ドリフト領域の表面層の一部に設けられた第2導電型のボディ領域と、
    前記ボディ領域の一部の表面上にゲート絶縁膜を介して設けられたゲート電極と、
    前記ボディ領域の一部に設けられた第1導電型のエミッタ領域と、
    前記ボディ領域の一部に設けられた第2導電型のコンタクト領域と、
    前記ドリフト領域の表面層の一部に、前記ボディ領域から離れて設けられた第2導電型のコレクタ領域と、
    前記ボディ領域と前記コレクタ領域との間に設けられたトレンチと、
    前記トレンチ内の表面に沿って設けられた抵抗性薄膜と、
    前記エミッタ領域および前記コンタクト領域に接するエミッタ電極と、
    前記コレクタ領域に接するコレクタ電極と、
    を備えることを特徴とする半導体装置。
  2. 第1導電型のドリフト領域と、
    前記ドリフト領域の表面層の一部に設けられた第2導電型のボディ領域と、
    前記ボディ領域の一部の表面上にゲート絶縁膜を介して設けられたゲート電極と、
    前記ボディ領域の一部に設けられた第1導電型のソース領域と、
    前記ボディ領域の一部に設けられた第2導電型のコンタクト領域と、
    前記ドリフト領域の表面層の一部に、前記ボディ領域から離れて設けられた第1導電型のドレイン領域と、
    前記ボディ領域と前記ドレイン領域との間に設けられたトレンチと、
    前記トレンチ内の表面に沿って設けられた抵抗性薄膜と、
    前記ソース領域および前記コンタクト領域に接するソース電極と、
    前記ドレイン領域に接するドレイン電極と、
    を備えることを特徴とする半導体装置。
  3. 前記コレクタ領域の下側に前記ドリフト領域よりも抵抗率の低い第1導電型のバッファ領域が設けられていることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記バッファ領域は、前記トレンチと離れて設けられていることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  5. 前記ドリフト領域は、支持基板上に、酸化膜を介して設けられていることを特徴とする請求項1〜4のいずれか一つに記載の半導体装置。
  6. 前記ドリフト領域は、第2導電型の半導体基板の上に設けられていることを特徴とする請求項1〜5のいずれか一つに記載の半導体装置。
  7. 前記抵抗性薄膜は、前記コレクタ電極もしくは前記ドレイン電極と、前記ゲート電極と、に電気的に接続されていることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
  8. 前記抵抗性薄膜は、前記コレクタ電極もしくは前記ドレイン領域と、前記エミッタ電極もしくは前記ソース電極と、に電気的に接続されていることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
  9. 前記抵抗性薄膜は、前記トレンチ内の表面上に絶縁物を介して設けられていることを特徴とする請求項1〜8のいずれか一つに記載の半導体装置。
  10. 前記抵抗性薄膜は、抵抗性窒化膜であることを特徴とする請求項1〜9のいずれか一つに記載の半導体装置。
JP2007134215A 2007-05-21 2007-05-21 半導体装置 Pending JP2008288510A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134215A JP2008288510A (ja) 2007-05-21 2007-05-21 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134215A JP2008288510A (ja) 2007-05-21 2007-05-21 半導体装置

Publications (1)

Publication Number Publication Date
JP2008288510A true JP2008288510A (ja) 2008-11-27

Family

ID=40147919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134215A Pending JP2008288510A (ja) 2007-05-21 2007-05-21 半導体装置

Country Status (1)

Country Link
JP (1) JP2008288510A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258226A (ja) * 2009-04-24 2010-11-11 Renesas Electronics Corp 半導体装置およびその製造方法
JP2015167167A (ja) * 2014-03-03 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258226A (ja) * 2009-04-24 2010-11-11 Renesas Electronics Corp 半導体装置およびその製造方法
JP2015167167A (ja) * 2014-03-03 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置

Similar Documents

Publication Publication Date Title
JP6177154B2 (ja) 半導体装置
JP2019054071A (ja) 半導体装置
JP6356803B2 (ja) 絶縁ゲートバイポーラトランジスタ
JP7561928B2 (ja) 半導体装置
JP5492225B2 (ja) 半導体装置、及びそれを用いた電力変換装置
JP2008305998A (ja) 半導体装置
CN108550619B (zh) 具有降低的反馈电容的igbt
WO2018135224A1 (ja) 半導体装置、及びそれを用いた電力変換装置
CN103022095A (zh) 具有横向元件的半导体器件
JP2019503591A (ja) パワー半導体デバイス
JP2012124474A (ja) 横型素子を有する半導体装置
JP2011517511A (ja) 第1絶縁ゲート電界効果トランジスタが第2電界効果トランジスタと直列に接続された半導体デバイス
JP5165995B2 (ja) 半導体装置及びその製造方法
JP7297709B2 (ja) 半導体装置及び半導体回路
JP5874210B2 (ja) ダイオード
US8921945B2 (en) High-voltage power transistor using SOI technology
JP2014154739A (ja) 半導体装置
JP7158317B2 (ja) 半導体装置
JP2008288510A (ja) 半導体装置
JP5519461B2 (ja) 横型半導体装置
JP2009176891A (ja) 半導体装置
WO2021090944A1 (ja) 半導体装置
WO2015145913A1 (ja) 半導体装置
JP2009246037A (ja) 横型半導体装置
WO2011086721A1 (ja) 半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20091112

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20091112

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112