JP2008287884A - 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法 - Google Patents

情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法 Download PDF

Info

Publication number
JP2008287884A
JP2008287884A JP2008223174A JP2008223174A JP2008287884A JP 2008287884 A JP2008287884 A JP 2008287884A JP 2008223174 A JP2008223174 A JP 2008223174A JP 2008223174 A JP2008223174 A JP 2008223174A JP 2008287884 A JP2008287884 A JP 2008287884A
Authority
JP
Japan
Prior art keywords
record carrier
information
information record
data
meandering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223174A
Other languages
English (en)
Other versions
JP4614145B2 (ja
Inventor
Tetsuya Kondo
哲也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2008223174A priority Critical patent/JP4614145B2/ja
Publication of JP2008287884A publication Critical patent/JP2008287884A/ja
Application granted granted Critical
Publication of JP4614145B2 publication Critical patent/JP4614145B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】隣接する溝のピッチを狭くしても、非平行蛇行溝の側壁に多重記録したデータを少ないクロストークで良好に再生しうる情報記録担体を提供する。
【解決手段】異なる変調手段により変調したデータを、二つの側壁201A、201Bにそれぞれ記録してある非平行蛇行溝201を少なくとも有する情報記録担体1であって、複数の前記非平行蛇行溝201と複数の直線溝203とを、交互に近接配置して微細パターン100を構成している。
【選択図】図4

Description

本発明は、特に光学的手段によって情報を記録及び/又は再生するシステムに使用される情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法に関するものである。
従来、情報記録担体と情報記録再生手段とを相対運動させて、情報の記録担体に記録された情報を読み出すシステムがある。その記録再生手段としては、光学的手段、磁気的手段、静電容量的手段などが用いられている。このうち光学的手段によって記録及び/又は再生を行うシステムは、広範に使用されている(ここで、「記録及び/又は再生」は記録だけ、再生だけ、記録及び再生の3態様を意味する。)。例えば、波長λ=650nmのレーザ光、及び開口数NA=0.6の対物レンズからなるピックアップを利用した記録再生型情報記録担体としては4.7GBの容量を持つ、DVD−RAMやDVD−RWなどがある(「DVD」はデジタルバーサタイル(多用途)ディスクを意味する。)。
ここで、次世代の情報記録担体を考えたときには、光ピックアップのレーザ波長λを短くする、対物レンズのNAを大きくする以外に、高密度化する手段が見出されていない。例えば、ブルーレイディスクと呼ばれる実用化間近な高密度ディスクでは、波長λ=405nm、対物レンズNA=0.85を使用して、23.3GBの容量を実現している。
しかしながら、レーザ波長の短縮化は、適切なバンドギャップを有するレーザ発振材料が見つかっていないこと、及び情報記録担体のレーザ透過面の材料は400nm以下のいわゆる紫外線領域では透過率が極端に落ちることなどから、事実上望めない。また、対物レンズのNAに関しても、レンズの曲率を上げる等により、NAを上げる設計はある程度可能であるものの、情報記録担体の反りに著しく敏感になることや、レンズと情報記録担体の距離が接近せざるを得なくなるために、これらが相対運動する際に、衝突破壊する危険性が急増するので、NAの更なる向上は望めない。
従って、次世代の情報記録担体、特に記録密度を更に上げた情報記録担体においては、レーザや対物レンズの改善ではなく、情報を多重化することにより、記録密度を上げることが必要となる。例えば情報記録担体の溝に、データを多重化して記録することが考えられる。
この例として、情報記録担体の溝の両側壁に異なるデータを記録した情報記録担体知られている(例えば、特許文献1及び特許文献2参照。)。
具体的には、図17に代表して示すように、情報記録担体に形成された微細パターン900を構成する溝G2の側壁G2Aと側壁G2Bに異なるデータを変調記録するものである。その結果、両側壁は互いに非並行になるが、側壁G2Aにはアドレス情報、側壁G2Bには暗号キー情報、のように多重したデータが記録できるものである。
特開昭61−151843号公報 特許第2869146号公報
ところで、このような情報記録担体を作製し、情報の再生を行ったところ、側壁G2Aと側壁G2Bの信号が一緒に混信して取り出されるが、夫々の側壁について、互いに異なる変調方式を使用する、または基本周波数を異ならせて使用する、または4分割フォトディテクタを使用し、4成分の信号の演算を最適化する等によって、両側壁からの信号を分離して再生することが可能であり、原理的にこの手法は実現可能であることが確認できた。
しかしながら、情報記録担体を更に高密度にすべく、溝のピッチを狭くする、すなわち溝G2と隣接する例えば溝G3の距離を狭くすると、著しくノイズが発生して、側壁G2A及び側壁G2Bからの信号がどちらも乱され、再生不可能になるという問題がある。この原因としては、溝G2の再生時に、再生光のスポットの圏内に隣接溝G3が接近することにより、例えば側壁G2Bを再生時に、隣接の側壁G3Aの信号が混信するためと考えられる。また、同様に、側壁G2Aを再生時に、隣接の側壁G1Bの信号が混信するためと考えられる。
そこで本発明は、上記の問題に鑑み、溝のピッチを狭くしても、溝の側壁に多重記録したデータを少ないクロストークで良好に再生しうる情報記録担体を提供することを目的とする。
上記目的を達成するための手段として、第1の発明は、異なる変調手段により変調したデータを、二つの側壁201A、201Bにそれぞれ記録してある非平行蛇行溝201を少なくとも有する情報記録担体であって、
複数の前記非平行蛇行溝201と複数の直線溝203とを、交互に近接配置して微細パターン100を構成していることを特徴とする情報記録担体である。
また、第2の発明は、第1の発明において、前記変調手段は、振幅変移変調、周波数変移変調、位相変移変調から選ばれた変調手段であることを特徴とするものである。
また、第3の発明は、第1の発明において、前記変調手段は、位相変移変調を少なくとも含み、前記二つの側壁に時間同期をかけて記録を行う変調手段であることを特徴とするものである。
また、第4の発明は、第3の発明において、前記二つの側壁の、一方にcos波を基本波とする位相変移変調で変調したデータを記録し、他方にsin波を基本波とする位相変移変調で変調したデータを記録して構成したことを特徴とするものである。
また、第5の発明は、第3の発明において、前記二つの側壁の、一方にαsinωt+βcosωtを基本波とする位相変移変調(α、βはそれぞれ1又は−1)で変調したデータを記録し、他方にγsinωt+δcosωtを基本波とする位相変移変調(γ、δはそれぞれ1又は−1)で変調したデータを記録して構成したことを特徴とするものである。
また、第6の発明は、第1乃至第5の発明において、前記非平行蛇行溝201と、前記直線溝203とが互いに接続することなく、共に円周状に交互に隣接配置されて、微細パターン101を構成していることを特徴とするものである。
また、第7の発明は、第1乃至第5の発明において、前記非平行蛇行溝201が円周状に360度連続し、前記直線溝203が円周状に360度連続し、前記非平行蛇行溝201と、前記直線溝203とが360度の角度間隔で交互に接続された一連のトラックとして形成されて、微細パターン102を構成していることを特徴とするものである。
また、第8の発明は、第1乃至第7の発明において、少なくとも支持体13と、記録層12と、通光層11とから少なくともなり、前記微細パターン100、101、102は前記支持体13上に、記録層12と対峙して設けられていることを特徴とするものである。
また、第9の発明は、第1乃至第8の発明のいずれかの情報記録担体を製造する情報記録担体の製造装置であって、
記録すべきデータを生成するデータ生成ユニット501と、
前記データを変調した被変調データを出力する信号変調ユニット502と、
ブランク状態の前記情報記録担体を支持する支持ユニット554と、
前記支持ユニットの回転をモニタする回転モニタ553と、
前記支持ユニットに支持されている前記情報記録担体の半径位置を変更するために、前記支持ユニットに対して相対運動を付与する相対運動付与ユニット552と、
エネルギー線を生成して出射するエネルギー線源550と、
前記エネルギー線を前記被変調データで偏向した偏向エネルギー線を前記支持ユニット側へ出射する偏向器551とから少なくともなり、
前記信号変調ユニットは、前記回転モニタからの回転角度情報に基づき、前記偏向器へ供給する変調信号の送出タイミングを制御するものであることを特徴とする情報記録担体の製造装置である。
また、第10の発明は、第1乃至第8の発明のいずれかの情報記録担体を製造する情報記録担体の製造方法であって、
記録すべきデータを生成する第1工程と、
前記データを変調した被変調データを出力する第2工程と、
ブランク状態の前記情報記録担体を支持する第3工程と、
支持されている前記情報記録担体の半径位置を変更するために、前記情報記録担体に対して相対運動を付与する第4工程と、
エネルギー線を生成出射する第5工程と、
前記エネルギー線を被変調データで偏向した偏向エネルギー線を前記支持されている前記情報記録担体側へ出射する第6工程とから少なくともなり、
前記第6工程は、前記支持されている前記情報記録担体が回転する回転角度情報に基づき、前記被変調データの送出タイミングを制御して前記エネルギー線を偏向する工程であることを特徴とする情報記録担体の製造方法である。
本発明の情報記録担体によれば、非平行蛇行溝と、直線溝とが順次交互に隣接して配置されており、特にディスク状情報記録担体の場合は、これらが半径方向に順次交互に隣接して設けられている。このため、情報記録担体の再生にあたっては、隣接トラックのクロストークがほとんどなくなるので、ピッチを小さくして高密度化を達成できる。
以下、本発明の実施の形態につき、図面を参照して説明する。
図1は、本発明に係る情報記録担体の実施の形態である円形情報記録担体を示す図である。図2は、本発明に係る情報記録担体の実施の形態であるカード状情報記録担体を示す図である。図3は、本発明に係る情報記録担体の実施の形態である円形情報記録担体を示す図である。
本発明の実施形態の情報記録担体1、1A、1Bは、記録、再生の少なくとも1つが主に光学的な手段により行われる情報記録担体である。例えば反射材料による光反射で再生される反射型再生専用情報記録担体、相変化型記録、色素型記録、光磁気型記録、光アシスト磁気型記録などによる録再可能な記録型情報記録担体である。
図1に示すように、情報記録担体1の表面(レーザ光照射面)または内部には、その記録再生領域として複数の溝を有する凹凸状の微細パターン100が構成されている。図1の例では微細パターン100をそのごく一部について円弧状に描いているが、この円弧が同心円状あるいは螺旋状に360度以上連続したものであってもよい。
また図1では、円形情報記録担体1が描かれているが、本発明はその形状に限定されるものではなく、図2に記載されたカード状の情報記録担体1Aであってもよく、特に微細パターン100がカードの一辺に対して平行に形成されていてもよい。また図3に記載されたカード状の情報記録担体1Bであってもよく、図1と同様に、微細パターン100が円状に形成されていてもよいものである。この他、図示はしないが、情報記録担体1がテープ状であっても構わないし、穴が開けられていてもよいものである。
なお、本発明の実施の形態で記録しようとするデータはデジタルデータであり、微細パターン100の一部に、溝の形状として記録される。再生専用情報記録担体の場合には、データは書き換えのできない再生専用の永久データであり、データの種類は特に問わず、音楽、画像、データファイルなど幅広く用いることができる。
また、記録型情報記録担体の場合には、購入したユーザが記録を行う際の補助データを永久データとして記録しておく。例えば、アドレス情報、複製防止情報、暗号化した情報、暗号鍵などを扱うが、これに限るものではない。
なお、ここで、アドレス情報とは、情報記録担体1、1A、1B全面に対して割り当てられた絶対アドレス、部分領域について割り当てられた相対アドレス、トラック番号、セクタ番号、フレーム番号、フィールド番号、時間情報、エラー訂正コードなどから選ばれるデータであり、例えば10進法または16進法によって記述されたものを2進法(BCDコードやグレイコードの例を含む)に変換したデータである。
次に、微細パターン100を説明する。
図4は、本発明に係る情報記録担体の微細パターンの平面微細構造を説明するための平面拡大図である。
同図に示すように、微細パターン100は、非平行蛇行溝201と、直線溝203からなり、これらはマクロ的には略平行に、そして互いに交互に構成されている。非平行蛇行溝201と直線溝203との間は、溝間部202である。そして非平行蛇行溝201と直線溝203とは、高さが同じであり、溝間部202の高さとは異なっている。その高さの差は、情報記録担体1、1A、1Bのトラッキング性能を得るために、再生光学系のλ、NAを考慮して、λ/(28k)〜λ/(4.6k)、望ましくはλ/(18k)〜λ/(6k)の範囲にあることが望ましい。特にλ/(16k)〜λ/(8k)が好適である。ここで、λは情報記録担体1、1A、1Bを再生する再生光の波長であり、NAは対物レンズの開口数であり、kはレーザ光の入射する通光層(後述する通光層11、14、17)のλにおける屈折率を表す。
ここで、非平行蛇行溝201と、直線溝203とのピッチPに関しては、特に制限がないが、トラッキングの容易な代表的なピッチPの値としては、情報記録担体1、1A、1Bを再生する再生光の波長をλ、対物レンズの開口数をNAとする時、P<λ/NAの関係を有して構成されている。例えばDVD同様、λ=650nm、NA=0.6としたときは、P<1083nmで構成されている。また例えば窒化ガリウム系化合物半導体発光素子と高NAピックアップを使用し、λ=405nm、NA=0.85としたときは、P<476nmで構成されている。また非平行蛇行溝201の溝蛇行の振幅ΔとピッチPとの間には、Δ<Pの関係がある。
なお、非平行蛇行溝201と直線溝203のそれぞれの溝幅に制限はない。すなわち非平行蛇行溝201の幅と、直線溝203の幅は、同じであっても、異なっていてもよい。
また非平行蛇行溝201及び直線溝203は共にライン状、同芯円状、スパイラル状のいずれであってもよい。特に、図1及び図3に示す円形または円弧状の微細パターン100の場合、非平行蛇行溝201は角速度一定(Constant Angular Velocity:CAV)や線速度一定(Constant Linear Velocity:CLV)の様式、あるいは半径毎に異なるゾーンを形成し、各ゾーン毎で制御が異なるZCAV(Zone Constant Angular Velocity)やZCLV(Zone Constant Linear Velocity)の様式により記録されている。
いずれおいても、非平行な蛇行溝201と、直線溝203とが順次交互に隣接して配置されている。特にディスク状情報記録担体1の場合は、これらが半径方向に順次交互に隣接して配置されている。このため、情報記録担体1の再生にあたっては、隣接トラックのクロストークがほとんどなくなる。すなわち、直線溝203から非平行蛇行溝201への漏れ込みは、DC成分であり、信号検出の際には非平行蛇行溝201から得られる信号波形を乱すことを避けることができる。すなわち、高密度な情報記録担体とするべく、ピッチPを小さくする場合であっても、クロストークの増加は少ないので、高密度化が達成できる。このように微細パターン100を有した情報記録担体1は、従来の情報記録担体にはない優れた品質のアドレスデータの再生が可能な記録担体である。
次に、非平行蛇行溝201について、さらに説明する。
図4に示すように、非平行蛇行溝201は、2つの側壁201A、201Bから構成される。これら2つの側壁201A、201Bには、データが夫々異なる変調手段によって記録されており、そのため2つの側壁201A、201Bは平行になっていない。
次に2つの側壁201A、201Bに、データを記録する記録方法、及び側壁201A、201Bに記録されたデータを再生する方法について説明する。
例えば、一方の側壁201Aは、データAを振幅変移変調(ASK変調)することによって記録された側壁であり、他方の側壁201BはデータBを周波数変移変調(FSK変調)することによって記録された側壁である。また別の例としては、側壁201Aは、データAを振幅変移変調(ASK変調)することによって記録された側壁であり、側壁201Bは、データBを位相変移変調(PSK変調)することによって記録された側壁である。また別の例としては、例えば、側壁201Aは、データAを位相変移変調(PSK変調)することによって記録された側壁であり、側壁201Bは、データBを周波数変移変調(FSK変調)することによって記録された側壁である。
ここで、振幅変移変調(ASK変調)、周波数変移変調(FSK変調)、位相変移変調(PSK変調)について、説明する。これら変調方式による形状記録は、データを2値(バイナリ)としても、多値としてもよいが、ここでは説明を簡単にするために、バイナリであるとして説明する。
まず、ASK変調の具体的な記録について説明する。
図5は、振幅変移変調されたデジタルデータを示す図であり、データ1、0、1、1、0をASK変調により形状記録した例を示す。このデータの記録された側壁は一定の周期で蛇行させた振幅部分321と蛇行させない非振幅部分320とからなる。そして、振幅部分321と非振幅部分320とはデータビットの1と0にそれぞれ対応する。
同図には、振幅部分321を3波から構成した場合を示してあるが、その数には制限がない。しかし波が多すぎると非振幅部分320の長さも必然的に長くなるので、再生時にゲートを生成する基本波を検出しにくくなる。従って2〜100波、望ましくは3〜30波が適当である。
また、振幅部分321と非振幅部分320のそれぞれの長さや、振幅部分321の振幅の大きさについて制限を与えるものではない。
図5に示したように、振幅部分321の振幅が、各々揃っており、且つ振幅部分321の長さが非振幅部分320の長さと同じとすると、再生時に0、1判定を充分な振幅閾値で行うことができ、且つシリーズ化したデータを1つの時間閾値で読み取ることができるので、再生回路が簡単になる。再生データにジッタ(時間軸方向の揺らぎ)があった場合にも、その影響を最小にできるというメリットもある。また記録するコードが理想的に対称であったとすると、振幅部分321の総計長さと非振幅部分320の総計長さは等しくなり、再生信号に直流成分がないことになる。これはデータのデコード及びサーボに負担がかからないことになり、有利である。
次に、FSK変調の具体的な記録について説明する。
図6は、周波数変移変調されたデジタルデータを示す図である。
同図には、データ1、0、1、1、0をFSK変調により形状記録した例を示す。このデータの記録された側壁は高周波数部分301と低周波数部分300とからなる。そして高周波数部分301と低周波数部分300とはデータビットの1と0にそれぞれ対応し、1データビット毎に周波数が切り替わってデジタル記録されている。
ここで、高周波数部分301及び低周波数部分300を構成する波の数に制限はなく、夫々異なる1波以上の波で構成される。しかし再生装置において周波数を正しく検知すること、及びデータ転送速度をある程度得るため、冗長になりすぎないことを考慮すると、1〜100波、望ましくは1〜30波の範囲で、前記した各データビットに対応した周波数部分をそれぞれ構成するのが望ましい。また高周波数部分301と低周波数部分300とのそれぞれの振幅は一致していてよい。しかし振幅比に制限はなく、再生装置の周波数特性を考慮して、高周波数部分301の振幅を、低周波数部分300よりも大きく形成してもよい。また高周波数部分301及び低周波数部分300で構成されるデータビットの物理長さや、その振幅の大きさについて制限はない。
ここで、図6に示したように、高周波数部分301と低周波数部分300の振幅が、各々揃っており、且つ高周波数部分301の長さが、低周波数部分300の長さと同じになっていてもよいものである。このようにすると、再生時に0、1判定を充分な振幅閾値で行うことができ、なおかつシリーズ化したデータを1つの時間閾値で読み取ることができるので、再生回路が簡単になる。また再生データにジッタ(時間軸方向の揺らぎ)があった場合にも、その影響を最小にできるというメリットがある。また、記録するコードが理想的に対称であったとすると、高周波数部分301の長さ総計と低周波数部分302の長さ総計は等しくなり、再生信号に直流成分がないことになる。これはデータのデコード及びサーボに負担がかからないことになり、有利である。
また、高周波数部分301と低周波数部分300のデータビットの切り替え点における位相は任意に設定してよいが、位相ジャンプの発生を防止すべく、図6に示すように、データビットの切り替え点で位相連続性が保たれるように、高周波数部分301と低周波数部分300を配置してもよい。すなわち高周波数部分301の終了と低周波数部分300の開始が同じ位相方向になるように低周波数部分300の開始位相を選択する。また逆も同じで、低周波数部分300の終了と高周波数部分301の開始が同じ位相方向になるように高周波数部分301の開始位相を選択する。このように選択すると、位相の連続性は保たれ、電力効率が向上するとともに、再生エンベロープが一定となるので情報記録担体1のデータエラーレートが向上する。
また高周波数部分301と低周波数部分300の周波数の選択は任意であるが、情報記録担体1にユーザがデータを記録する周波数帯との干渉を避けるために、高周波数部分301は低周波数部分300と比べ、著しく高い周波数にならないことが求められる。一方、アドレスデータの再生エラーレートを良好にするために高周波数部分301と低周波数部分300の周波数差はある程度有し、分離性を良好に保つことが望ましい。これらの観点から、高周波数部分301と低周波数部分300の周波数比(高周波数/低周波数)は、1.09〜1.67の範囲内であることが望ましい。すなわち、2つの周波数の位相差は、±π/12〜±π/2(ωt±15度〜±90度)の範囲とすることが望ましい。
ここで、図6に示すように、周波数比(高周波数/低周波数)を1.5倍とすると、2つの周波数は単一波の位相を−π/2.5と+π/2.5にずらした関係となる。すなわち、位相を±72度にずらした関係となる。これら2つの周波数は単一の周波数(ここでは0.5)の整数倍(ここでは3倍と2倍)で表現できる。従って復調回路を簡単化できるという利点が生じる。また0.5のウインドを持った回路により、クロックの生成も容易になる。また、復調を同期検波回路により行うこともでき、その場合はエラーレートを著しく減少させることができる。
次に、PSK変調の具体的な記録について説明する。
図7は、位相変移変調されたデジタルデータを示す図であり、データ1、0、1、1、0を位相変移変調により形状記録した例を示す。このデータの記録された側壁は、前進位相部分311と後進位相部分310とからなる。そして前進位相部分311と後進位相部分310はデータビットの1と0にそれぞれ対応し、1データビット毎に位相が切り替わってデジタル記録されている。具体的には、前進位相部分311は正弦波のsin(ωt)で表され、後進位相部分310は正弦波のsin(ωt−π)で表される。前進位相部分311と後進位相部分310はそれぞれ1波で構成されているが、位相差はπであるので、エンベロープ検波や同期検波によって充分分離再生することができる。
ここで、前進位相部分311と後進位相部分310の周波数はいずれも同じであるが、それぞれを構成する波の数に制限はなく、1波以上の波で構成される。しかし、再生装置において位相を正しく検知すること、及びデータ転送速度をある程度得るため、冗長になりすぎないことを考慮すると、1〜100波、望ましくは1〜30波の範囲で、前記した各データビットに対応した周波数部分のそれぞれを構成するのが望ましい。
また前進位相部分311と後進位相部分310とのそれぞれの物理長さは、同じであっても異なっていてもよい。それぞれの物理長さを同じとすると、再生時にシリーズ化したデータ1つ1つを一定の時間(クロック)で区切ることができるので、再生回路が簡単になる。また、再生データにジッタ(時間軸方向の揺らぎ)があった場合にも、その影響を最小にできるというメリットがある。なお位相変移変調は、公知の同期検波回路によって低いエラーレートで再生できる。
また前進位相部分311と後進位相部分310それぞれの振幅は一致していても異なっていてもよいが、再生のしやすさを考慮すると一致していることが望ましい。
また前進位相部分311と後進位相部分310の位相差であるが、情報記録担体1に適応して、実験的にその分離限界を求めたところ、位相差がπ/8まで分離できることを確かめた。すなわち、最小位相差をπ/8〜πの範囲で設定することが可能である(πはバイナリの最小位相差に相当)り、多値記録の場合には2値から16値のデータまで扱うことができる。
以上、本実施の形態で用いる変調方式について説明してきた。
以上説明したように、側壁201A、201Bに対して、データがASK変調、FSK変調、PSK変調から選ばれた1の又は組み合わせた変調方式を用いて変調されることによって、永久情報として形状記録される。溝の蛇行、具体的には周波数の変化、位相の変化、振幅の変化に対応してデジタル記録するので、再生時のデータ判別能力には優れたものがある。従って、比較的少ないC/Nであっても低いエラーレートを得ることができる。例えば、微細パターン100と接する記録層に、相変化や色素や光磁気による記録マークを記録して、ユーザデータが重畳されたとしても、予め非平行蛇行溝の側壁に形状記録したデータが乱されることはない。
このように側壁それぞれに異なる変調手段によって記録し、非平行蛇行溝201が実現されるものであり、変調手段は上記の例に限るものではなく、互いの要素を入れ替えてもよい。また各変調方式から任意選択して、複数の変調方式の合成波を側壁201A或いは側壁201Bに当てはめても良い。
また、異なる変調手段ではあっても、それぞれが一定の時間同期関係を有した異なる変調手段であっても良い。一例としては、PSK変調を少なくとも含んだ変調手段であって、2つの側壁に時間同期をかけて記録を行うことがあげられる。例えば、具体的には、側壁201Aは、データAをcos波を元にしたPSK変調することによって記録した側壁であり、側壁201Bは、データBをsin波を元にしたPSK変調することによって記録した側壁であり、互いに時間同期しているものがあげられる。例えば、側壁201Aをcosω(ta)波を基本波として記録した側壁、側壁201Bをsinω(tb)波を基本波として記録した側壁としたものであり、時間(ta)=(tb)のように、互いに時間同期して記録する方法があげられる。sin波とcos波がこのように時間同期している場合には、互いに干渉することがない(位相平面上で直交する)から、2つの異なるデータ列を同時に良好なエラーレートで再生することができる。
そのさらに具体的な例としては、sin波により記録した側壁で2値(例えばsin(ω(ta)±π/2))、cos波により記録した側壁で2値(例えばcos(ω(tb)±π/2))を選択し、時間(ta)=(tb)のように時間同期記録を行った場合、4値のデータを記録することができる。そして再生にあたっては、非平行蛇行溝201の中央(2つの側壁201A、201Bの中間)に再生ビームを絞り込み、反射光を分割ディテクターで受光する。さらに分割ディテクターからの溝横断差分信号(プッシュプル信号、DVD−R規格(JIS・X6245)記載の(Ia+Ib)−(Ic+Id)出力に同じ)に対し、sin波を乗算する回路、及び分割ディテクターからの差分信号にcos波を乗算する回路をそれぞれ用意し、これらの回路からの出力を判定器によってデータ変換することにより、異なる2つのデータ列を生成することができる。そしてそれぞれが2値を有するので、4値のデータを復元することができる。
また、別の具体的な例としては、同様に、sin波により記録した側壁で4値、cos波により記録した側壁で4値を選択し、時間同期記録した場合、8値のデータが記録できる。そして同様な再生方法によって、8値のデータを復元することができる。なおここで、記録にあたって、2つのデータ列の組み合わせによる二次元符号化を用いるならば、4×4=16値のデータを記録することができる。また、符号化の逆の手段による複合化手段、すなわち二次元復号化手段によって、16値のデータを復元することができる。
また、更に別の具体的な例としては、PSK変調とASK変調を組み合わせることで、高度な記録を行う方法がある。例えば、側壁201Aはαsinω(ta)+βcosω(ta)波により記録した側壁とし、側壁201Bはγsinω(tb)+δcosω(tb)波により記録した側壁とし、これらを時間(ta)=(tb)のように時間同期して記録する。そして、振幅情報であるα、β、γ、δがそれぞれ1または−1を取るようにすると、側壁201Aで4値、側壁201Bで4値を取ることができる。この時、記録にあたって、2つのデータ列の組み合わせによる二次元符号化を用いるならば、4×4=16値のデータを記録することができる。そして再生にあたっては、非平行蛇行溝201の中央(2つの側壁201A、201Bの中間)に再生ビームを絞り込み、反射光を分割ディテクターで受光する。そして同様な復号化手段、すなわち二次元復号化手段を用いることによって、16値のデータを復元することができる。
なお、以上の説明で、再生方法は、非平行蛇行溝201の中央(2つの側壁201A、201Bの中間)に再生ビームを絞り込む例で説明してきたが、これに限るものではなく、溝間部202に再生ビームを絞り込んで再生を行うことも可能である。この場合でも、直線溝203が存在することにより、隣接トラック(溝)のクロストークがほとんどなくなるので、エラーの少ない再生が可能である。また、側壁201A、または201Bに再生ビームを絞り込んで再生を行うことも可能である。この場合でも、直線溝203が存在することにより、隣接トラック(溝)のクロストークがほとんどなくなるので、エラーの少ない再生が可能である。
次に、本実施の形態の微細パターンを、図1、図3に示したような円周状の微細パターンを有する情報記録担体に適用する場合の適用例を説明する。
図8は、本発明に係る情報記録担体の平面微細構造を説明するための平面図である。
同図には、本実施の形態の情報記録担体1、1Bに形成される円周状微細パターン101が示されている。ここで微細パターン101とは、上述した非平行蛇行溝201と直線溝203とからなり、一点鎖線で図示する非平行蛇行溝201と、実線で図示する直線溝203とが交互に配置されている。
ここで、非平行蛇行溝201の2つの側壁には、2つの異なる変調手段によってデータが記録されている(図示せず)。さらに、非平行蛇行溝201と、直線溝203とは互いに接続することなく、共に円周状に交互に隣接配置されて、微細パターン101を構成している。言い換えれば、非平行な蛇行溝201と、直線溝203とは共にマクロには平行な関係を保ったまま、螺旋を形成している。すなわち、それぞれは互いに接続することなく、ダブルスパイラルとして内周から外周に(または外周から内周に)わたって形成されている。情報記録担体1、1Bにおける微細パターン101をこのように構成することによって、非並行蛇行溝として記録された多重化データを、エラーなく、高品質に再生することができる。
なお、非平行な蛇行溝201に記録するデータは、冒頭で述べたように、書き換えのできない永久データであるが、その性質を利用して、情報記録担体1をDVD−RWのような記録再生型ディスクとすることができる。すなわち、非平行な蛇行溝201の少なくとも一方に記録するのはアドレスデータとし、再生専用のインクリメントまたはデクリメントする数字列(または文字列)として使用する。そして、情報記録担体1を使用するユーザによる記録は、このアドレスデータの再生により正確な位置決めを行ったのち、微細パターン101上に形成された記録層(後述する記録層12、17,15)に対して、熱、光、磁気のいずれかの記録手段、あるいはこれらの組み合わせによって行われる。
ここで、記録は、非平行蛇行溝201、または溝間部202(202Aまたは202B)のいずれかに行われる。非平行蛇行溝201に記録を行う場合には、記録を行う場所と、アドレスが記録された場所とが正確に同じであるので、アドレスに関しては良好な再生特性が得られる。一方、溝間部202(202Aまたは202B)に記録を行った場合には、記録を行う場所とアドレスが記録された場所がずれているので、アドレスの再生出力はやや小さくなるうえ、2つの側壁(201Aまたは201B、図示せず)のうち、溝間部(202Aまたは202B)に接した側壁の方の出力が優勢となる。しかしながら非平行な蛇行溝201に記録するアドレスデータは、基本的には少量で済むデータであるので、2つの側壁のうち、再生上優勢な側壁にアドレスデータ、再生上不利な側壁にその他の付属データを割り当てるということが可能である。従って非平行蛇行溝201、溝間部202(202Aまたは202B)のいずれに記録を行っても、事実上問題はない。
しかしながら、このようなダブルスパイラル型微細パターン101の欠点としては、面積の利用効率が悪いということがあげられる。すなわち、非平行な蛇行溝201に対してユーザ記録を行うとすると、直線溝203に対してはユーザ記録が行われないことになる。また溝間部202Aにユーザ記録を行った場合には、溝間部202Bに対しては、ユーザ記録が行われないことになる。
前者の場合には、このような問題を解決することはできないが、溝間部202(202Aまたは202B)を選択した場合には、解決することが可能である。すなわち、例えば溝間部202Aを選択し、内周から外周に向かってユーザ記録を行い、最外周まで記録を行った後、再度内周に戻って記録を再開する。この時、先とは異なる溝間部、すなわち溝間部202Bを選択し、内周から外周に向かってユーザ記録を行う。このように記録を行うならば、すべての溝間部を記録に供することになるので、面積利用効率は良い。なお、このユーザ記録は、内周から外周に向かい、続いて、外周から内周に向かって記録することも可能である。
このように、溝間部202A、202Bの両方を記録に用いる場合には、非平行蛇行溝201の側壁201A、201Bに記録するデータは、共にアドレスデータであることが望ましい。再生時に一方の側壁が有利となるので片側にだけ記録することにすると、溝間部の極性が変更となった時、すなわち例えば内周から外周に向かって記録し、続いて外周から内周に向かって記録する時に、対応が取れなくなるからである。従って、例えば側壁201Aには、隣接する第1の溝間部(例えば第1の溝間部202A)用アドレスデータをcos波を元にしたPSK変調することによって記録し、側壁201Bには、隣接する溝間部(例えば第2の溝間部202A)用アドレスデータをsin波を元にしたPSK変調することによって記録する。この時、これらcos波、sin波は、互いに時間同期していることが必要である。
次に、面積利用効率を上げる別の記録方法を説明する。
図9は、本発明に係る情報記録担体の記録再生方法を説明するための平面図である。
同図に示すように、最内周から外周に向かって記録を行うときに、まず溝間部202Aを選択して、360度の記録を行う。続いて、直線溝203を飛び越すようにして1トラック内周にジャンプし、溝間部202Bを選択する。そして記録を再開して、360度の記録を行う。続いて、再び直線溝203を飛び越すようにして1トラック内周にジャンプし、溝間部202Aを選択し、記録を再開する。このような手順を繰り返し行うことによって、内周から外周に向かって、連続して記録を行うことができる。
このような記録方法の利点としては、時間履歴と、情報記録担体1の半径の対応が比較的よいことから、任意の場所のサーチが早くなるという利点がある。しかしながら、欠点としては、1回転ごとに極性を切り替えなければならないことがあり、1回転に1回、図9ではPXと記した回転位相において、記録再生ピックアップのジャンプを行う必要が生ずる。このように微細パターン101では、一周に一回の不連続点を有しているので、微細パターン101には極性の変更点であるラインPXを事前に指示する信号をあらかじめ記録しておくことが望ましい。またこのジャンプ動作によって、アドレスデータに不具合が生じないよう、ラインPX周辺でアドレスデータセクタが分断されないように、整合調整用予備領域を設けておくのが望ましい。
次にこのような不連続問題を解決する別の手段について、図10を用いて説明する。
図10は、本発明に係る情報記録担体の平面微細構造を説明するための平面図であり、微細パターン102を構成する非平行蛇行溝201を1点鎖線で、直線溝203を実線で示してある。ここで、非平行蛇行溝201が円周状に360度連続している。そして直線溝203が円周状に360度連続している。さらにこれら2種類の溝は、360度毎に互いに接続されて、1つのスパイラルを構成している。すなわち、非平行蛇行溝201と直線溝203とが360度の角度間隔で交互に配列された一連のトラックとして螺旋状に形成されて、微細パターン101を構成する。従って、これら2種類の溝201、203の接続点は、1方向に揃うことになり、図10ではその接続点を接続ラインCXとして図示されている。また溝間部202も円周状に360度連続しているが、そのまま360度以上についても連続し、1つのスパイラルを構成している。すなわち前述の微細パターン101のように、溝間部202が2つのスパイラル(202A、202B)を構成することはない。
微細パターン102はこのような構成であるので、溝間部202をユーザが使用するならば、例えば内周から外周に向かって、または外周から内周に向かって途切れることなく連続して記録再生を行うことが可能になる。なお非平行蛇行溝201に記録するアドレスは、例えば側壁201Aは、最初の360度分のアドレスを有し、側壁201Bが、次の360度分のアドレスを有するようにすれば、再生信号から極性を切り替えたデータ取得をするのみで、連続したアドレスを生成することができる。
次に、微細パターン102の記録再生を説明する。
図11は、本発明に係る情報記録担体の記録再生方法を説明するための平面図であり、非平行蛇行溝201を1点鎖線、直線溝203を実線で図示してある。
上述したように、溝間部202は連続した1つのスパイラルを構成しているので、図11において点線矢印で示したように溝間部202にトラッキングを取り、トレースする限り連続した再生または記録再生が可能である。すなわち、最内周から再生すると、最初のトラック(溝間部)では、外周側に非平行蛇行溝201が見られ、内周側に直線溝203が見られるが、360度回転したCX以降は外周側に直線溝203が見られ、内周側に非平行蛇行溝201が見られることになる。以降はこれを繰り返すことになるが、1つのスパイラルで構成されているので、ジャンプ動作を伴うことなく、連続して記録再生を行うことが可能になる。従って、微細パターン101において必要であった極性の変更点であるラインCXを指示する信号の記録は不要であり、またアドレスデータセクタやユーザデータセクタが分断されない工夫も不要になり、情報記録担体の記録容量は高くできることになる。
次に本実施の形態における情報記録担体の構成について、図12及び図13を用いてさらに詳しく説明する。
図12は、本発明に係る情報記録担体を示す断面構成図である。
同図に示すように、本発明に係る実施の形態の情報記録担体1、1A、1Bは、支持体13、記録層12、通光層11から少なくともなる。そして支持体13の記録層12と接する側に、上述した微細パターン100、101、102(非平行蛇行溝201と溝間部202と直線溝203とからなる)が凹凸形状として形成されている。
そして再生、または記録を担うレーザ光91は、対物レンズ90を介して、通光層11側から入射される。通光層11を通過したレーザ光91は、記録層12に照射され、再生または記録・再生が行われる。なお、この再生または記録方法を示す図は、対物レンズのNAが例えば0.7以上と大きい場合の図示であり、CDやDVDのように対物レンズのNAが、0.4〜0.65程度の低いものである場合には、支持体13側より、再生または記録を行ってもよい。
なお、使用する支持体13は、この上に形成されている記録層12及び通光層11を機械的に保持する機能を有するベース材料である。
支持体13を構成する材料としては、合成樹脂、セラミックのいずれかが用いられる。合成樹脂の代表例としては、ポリカーボネートやポリメチルメタクリレート、ポリスチレン、ポリカーボネート・ポリスチレン共重合体、ポリビニルクロライド、脂環式ポリオレフィン、ポリメチルペンテンなどの各種熱可塑性樹脂や熱硬化樹脂、各種エネルギー線硬化樹脂(紫外線硬化樹脂、可視光硬化樹脂、電子線硬化樹脂の例を含む)を好適に用いることができる。なお、これらは金属粉またはセラミック粉などを配合した合成樹脂であってもよい。また、セラミックの代表例としてはソーダライムガラス、ソーダアルミノ珪酸ガラス、ホウ珪酸ガラス、石英ガラスなどを用いることができる。また、図12に示したように、通光層11側から再生、または記録をおこなう場合には、アルミニウムのような金属を用いることもできる。なお機械的に保持する必要性から支持体13の厚みは0.3〜3mm、望ましくは0.5〜2mmが好適に用いられる。情報記録担体1が円盤状である場合には、従来の光ディスクとの互換性から、支持体13、記録層12,通光層11等の合計厚みが1.2mmとなるように、支持体13の厚みを設計するのが望ましい。
記録層12は、情報を読み出し、あるいは情報を記録ないしは書き換える機能を有した薄膜層である。この記録層12には、光反射で再生される反射型再生専用情報記録担体の場合には、反射型材料、例えば、アルミニウム、銀、金、白金、銅、シリコン、モリブデン、クロム、チタン、タンタルなどを、単体または合金化して用いることができる(合金とは、酸化物、窒化物、硫化物の例を含む)。またユーザによる記録再生の可能な材料としては、相変化材料に代表される記録前後において反射率変化や屈折率変化を起こす材料、あるいは光磁気材料に代表される記録前後においてカー回転角変化を起こす材料、あるいは色素材料に代表される記録前後において屈折率変化や深さ変化を起こす材料が用いられる。
相変化材料の具体例としては、インジウム、アンチモン、テルル、セレン、ゲルマニウム、ビスマス、バナジウム、ガリウム、白金、金、銀、銅、アルミニウム、シリコン、パラジウム、錫、砒素などの合金(合金とは酸化物、窒化物、炭化物、硫化物、フッ化物の例を含む)を用いることができ、特にGeSbTe系、AgInTeSb系、CuAlSbTe系、AgAlSbTe系などの合金が好適である。これらの合金に微量添加元素としてCu、Ba、Co、Cr、Ni、Pt、Si、Sr、Au、Cd、Li、Mo、Mn、Zn、Fe、Pb、Na、Cs、Ga、Pd、Bi、Sn、Ti、V、Ge、Se、S、As、Tl、In、Pd、Pt、Niの群から選ばれる少なくとも1種以上の元素を合計で0.01原子%以上10原子%未満含有することもできる。なお、相変化材料の組成は、例えばGeSbTe系としては、Ge2Sb2Te5、Ge1Sb2Te4、GeSbTe系にSn、In等の金属を添加した系であり、AgInSbTe系としては、Ag4In4Sb66Te26、Ag4In4Sb64Te28、Ag2In6Sb64Te28、Ag3In5Sb64Te28、Ag2In6Sb66Te26、AgInSbTe系にCu、Fe、Ge等の金属や半導体を添加した系であり、他にCuAlSbTe系、AgAlSbTe系などがある。
また、光磁気材料の具体例としては、テルビウム、コバルト、鉄、ガドリニウム、クロム、ネオジウム、ジスプロシウム、ビスマス、パラジウム、サマリウム、ホルミウム、プロセオジム、マンガン、チタン、パラジウム、エルビウム、イッテルビウム、ルテチウム、錫などの合金(合金とは酸化物、窒化物、炭化物、硫化物、フッ化物の例を含む)を用いることができ、特にTbFeCo、GdFeCo、DyFeCoなどに代表されるように遷移金属と希土類の合金で構成するのが好適である。更に、コバルトと白金の交互積層膜を用いて記録層12としてもよい。
また、色素材料の具体例としては、ポルフィリン色素、シアニン色素、フタロシアニン色素、ナフタロシアニン色素、アゾ色素、ナフトキノン色素、フルギド色素、ポリメチン色素、アクリジン色素などを用いることができる。
なお記録層12には、これら記録を担う材料以外に、記録性能または再生性能を増強する目的で、補助材料を内蔵、または積層をしてもよい。例えばZnS、SiO、SiN、SiC、AlO、AlN、MgF、ZrOなどの誘電体材料を上述の記録材料に積層することによって、再生光量の増大や、書き換え回数の向上をすることができる。
なお、ここで記録層12への記録、すなわちユーザデータ記録に用いる信号方式について触れておくと、例えばいわゆる(d,k)符号と呼ばれる変調信号を用いることができる。ここで(d,k)変調信号は、固定長符号であっても可変長符号であっても用いることができる。例えば固定長符号の(d,k)変調の例としては、d=2、k=10としたEFM、EFMプラス(8−16変調)や特開2000−286709号公報に記載の変調信号(D8−15変調)、d=1、k=9とした特開2002−280907号公報に記載の変調信号(D4、6変調)がある。また可変長符号の(d,k)変調の例としては、d=1、k=7とした特開平11−346154号公報記載の変調信号(1,7PP変調)などを好適に用いることができる。
また通光層11は、収束した再生光を光学的歪みの少ない状態で記録層12に導く機能を有する。通光層11には、例えば、再生波長λにおいて透過率を70%以上、望ましくは80%以上有した材料を好適に用いることができる。この通光層11には、光学的な異方性が少なく、具体的には複屈折が90度(垂直)入射ダブルパスにて±100nm以下、望ましくは±50nm以下、さらに望ましくは±30nm以下とした材料が用いられる。このような特性を有する材料としてポリカーボネート、ポリメチルメタクリレート、三酢酸セルロース、二酢酸セルロース、ポリスチレン、ポリカーボネート・ポリスチレン共重合体、ポリビニルクロライド、脂環式ポリオレフィン、ポリメチルペンテンなどを用いることができる。
なお、通光層11に、記録層12を機械的、化学的に保護する機能を持たせるようにしても良い。このような機能を有する材料として、剛性の高い材料を用いることができ、例えば透明セラミック(例えばソーダライムガラス、ソーダアルミノ珪酸ガラス、ホウ珪酸ガラス、石英ガラス)や熱硬化性樹脂、エネルギー線硬化樹脂(例えば紫外線硬化樹脂、可視光硬化樹脂、電子線硬化樹脂)が好適に用いられる。なお通光層11の厚みは、複屈折(光学異方性)を低減する意味から2mm以下、特に1.2mm以下が望ましい。また対物レンズ90の開口数NAが0.7以上の情報記録担体再生装置に装着して使用する場合には、情報記録担体1、1A、1Bが傾斜した場合の光学収差を抑える観点から0.4mm以下が望ましく、特にNAを0.85以上とする場合には0.12mm以下が望ましい。また記録層12へのスクラッチ傷を防止する観点から0.02mm以上が望ましい。すなわちNAを0.85以上とする場合の望ましい範囲としては0.02〜0.12mmの範囲である。また厚みの一面中でのバラツキは最大で±0.003mm、望ましくは±0.002mm以下とする。更に望ましくは±0.001mm以下とする。なお通光層11は、図12に示したような単層構造に限らず、機能が同様な複数の層の積層であってもよい。
また、本発明の実施の形態の情報記録担体1、1A、1Bを拡張して、多層のスタック状情報記録担体を構成することもできる。
図13は、本発明に係る情報記録担体を示す断面構成図である。
同図に示すように、例えば、情報記録担体1aを支持体13、第1記録層17、第1通光層16、第2記録層15、第2通光層14の順に積層することにより、2層の情報記録担体1aとすることができる。このようにすると第1記録層17と第2記録層15に別々のユーザデータを記録することができ、記録容量を倍増することができる。
以上本発明に係る情報記録担体1、1A、1B、1aの構成及び効果について説明した。
なお本発明は、図1〜図13を用いて説明した情報記録担体1、1A、1B、1aに限定されるものではなく、本発明の趣旨に則った種々の変形、応用が可能である。
また、例えば、これまでの説明では記録方法として、データをそのまま直接記録する方法を用いて説明してきたが、本発明はこの直接記録に限定されない。例えば、記録しようとするデータが、アドレスデータであった場合、データに0が連続する叉は1が連続する可能性があり、再生波形に直流成分が生じる可能性がある。これを回避するためにあらかじめデータをベースバンド変調して記録する方法を取ってもよい。すなわち0と1をあらかじめ別のコードに置き換えて、0と1の連続を一定値以下にする。そのような方法として、マンチェスタ符号、PE変調、MFM変調、M2変調、NRZI変調、NRZ変調、RZ変調、微分変調などを単独または組み合わせて用いることができる。
本実施の形態の情報記録担体1、1A、1B、1aに特に相応しいベースバンド変調の方法として、マンチェスタ符号(バイフェイズ変調)がある。これは記録しようとするデータ1ビットに対して、図14のように2ビットを当てはめる方法である。
図14は、ベースバンド変調前とベースバンド変調後におけるデータの変化を示す図である。
同図に示すように、記録しようとするデータ0に対して00または11を、データ1に対して01または10を割り当てる。そしてデータの接続に際しては、必ず前の符号の反転符号から入るようにする。以下、例を示す。
図15は、ベースバンド変調前とベースバンド変調後におけるデータの変化の具体的な例を示す図である。
同図に示すように、ベースバンド変調により、例えば100001というアドレスデータは、010011001101という符号列になる。オリジナルのアドレスデータは0の連続を4つ含み、また0の出現確率は1の2倍となった非対称なデータである。それに対し変調を行うと、0または1の連続は最大2つで済み、また0と1の出現確率は等しい対称なデータに変換される。このように同一ビットの連続が一定値以下に制限されるようなベースバンド変調は、その読み取りの安定性を向上させる効果があるので、長いアドレスデータを扱う際に好適な前処理となる。
またデータを高度に分解して、分散記録する方法もある。例えばダミーデータと組み合わせて、「10X」(Xは0か1)というデータの組み合わせで記録し、一定間隔毎にこのデータ列を配置する記録方法である。「10」をデータトリガとして、Xのみを抽出すれば、データを復元できる。この方法は、扱うデータ列を時間をかけて読み込んでもよいフォーマットの場合に有効である。
また、データを再生しつつ、なおかつ安定したクロックを同時に取得したい場合には、3つの方法がある。
第1の方法は、非平行蛇行溝201を長手方向に(時間軸方向に)マクロ的に2つの領域に分け、データを記録した領域と、クロックを抽出するための単一変調領域とに分割する方法である。単一変調領域には、例えば1MHzの単一周波数信号が記録される。従って、再生にあたっては、データと、クロックが交互に生成される。なお、この分割の割合を一定値とするならば、再生回路を簡単にできて、効率的にクロックを生成することができる。またこれら2領域の境界には、その区分を明確化するためのスタートビット信号やストップビット信号、同期信号などを記録してもよい。
また、第2の方法としては、非平行蛇行溝201の2つの側壁201A、201Bの一方にデータを、他方にクロック(単一周波数信号)を記録する方法がある。この場合、データ、クロック共には連続して生成できる反面、データにクロックが漏れ込み、信号品質が落ちる可能性がある。しかし、クロックが単一周波数であれば、再生信号にフィルター処理をすることによって、分離再生することが可能となる。
また、第3の方法としては、データそのものにクロック(単一周波数信号)を重畳する方法がある。この場合は、明らかに信号品質が落ちるが、データの周波数スペクトルと、クロックの周波数が大きく異なり、互いに逓倍の関係でないように周波数を設定すれば、分離再生が容易となる。
次に、図4、図8、図10に図示した微細パターン100、101、102を形成するための情報記録担体の製造装置及び製造方法を説明する。ここでは、図10に示した微細パターン102を製造する場合を例に取り、図16を用いて、情報記録担体の製造装置4を説明する。
図16は、本発明に係る情報記録担体の製造装置のブロック構成図である。
同図に示すように、本発明に係る情報記録担体の製造装置4は、データを記録しようとするブランク基体5に対して、エネルギー線を照射して記録を行う製造装置である。具体的にはコントローラ500、データ生成ユニット501、信号変調ユニット502、エネルギー線源550、偏向器551,相対運動付与ユニット552,回転モニタ553、支持ユニット554とから少なくともなるものである。
すなわち、本発明の情報記録担体の製造装置4は、後述するように、記録すべきデータを生成するデータ生成ユニット501と、前記データを変調した被変調データを出力する信号変調ユニット502と、ブランク状態の前記情報記録担体を支持する支持ユニット554と、前記支持ユニット554の回転をモニタする回転モニタ553と、前記支持ユニット554に支持されている前記情報記録担体の半径位置を変更するために前記支持ユニット554に対して相対運動を付与する相対運動付与ユニット552と、エネルギー線を生成して出射するエネルギー線源550と、前記エネルギー線を前記被変調データで偏向した偏向エネルギー線を前記支持ユニット554側へ出射する偏向器551とから少なくともなる。そして、前記信号変調ユニット502は、前記回転モニタ553からの回転角度情報に基づき、前記偏向器551へ供給する変調信号の送出タイミングを制御するものである。
ここで、支持ユニット554はブランク基体5を設置し、少なくともエネルギー線照射により記録を行う間、支持できるユニットである。具体的には高精度に研磨されたテーブルが該当し、それにブランク基体5が設置できるように固定機構(ねじ止め、真空吸着、静電吸着など)が付与されたものである。ここで設置されるブランク基体5は、平坦基体上にエネルギー線感応膜が少なくとも片面に形成されたものであり、情報記録担体1、1A、1B、1aを製造する原盤になる。ここでエネルギー線感応膜は、少なくともエネルギー線照射によって感応し、凹凸のパターンを形成するものであり例えば公知のレジストや色素を用いることができる。また平坦な基体は、表面が光学グレード並みにフラットに仕上げられた基体であり、例えば酸化珪素や、ANガラス(旭硝子(株)製)、7913ガラス(コーニング社製)、シリコン、モリブデン、タングステンやこれらの合金(酸化物、窒化物、炭化物の例を含む)などから選ばれる。
また、相対運動付与ユニット552は、微細パターン100、101、102を記録するにあたって走査するユニットであり、エネルギー線源550(及び偏向器551)または支持ユニット554の少なくとも一方に接続される。その機構としてはモータやリニアドライブなどが用いられ、回転、X移動、Y移動、Z移動またはこれらの複合移動を行う。図16で記載したものは、支持ユニット554の方を動かすもので、回転を与えると共に、X又はY方向に一定速度でスライドさせてスパイラルを形成させるものである。なお、必要に応じて位置モニタを設置し、モニタされた位置に応じて制御を行うようにしてもよい。
また回転モニタ553は、相対運動付与ユニット552の運動を受けて、回転する支持ユニット554の実際の回転をモニタするもので、例えばロータリーエンコーダを用いることができる。少なくとも1周に1回のパルスを発生させるもので、リアルタイムに回転角度を出力するものが最も望ましい。
また、エネルギー線(照射)源550は、波長10〜1500nmの電磁波(γ線、X線、極端紫外線、遠紫外線、紫外線、可視光、赤外線など)や、粒子線(α線、β線、陽子線、中性子線、電子線など)を照射する。簡便には波長150〜500nmの電磁波(光)を用いることができる。
また偏向器551は変調された信号に応じて、エネルギー線の出射角度を可変させるものである。エネルギー線が光である場合には、公知の電気光学結晶素子または音響光学結晶素子を用いることができる。非平行蛇行溝201を形成するには、エネルギー線照射源550の光を分岐し、近接した2つの独立した光ビームにした後、あらかじめ用意した2つの電気光学結晶素子または音響光学結晶素子に入力する。データは2系統で用意されるので、それぞれの系統からのデータを、それぞれの電気光学結晶素子(または音響光学結晶素子)に入力するようにする。このようにすれば、非平行蛇行溝201を一度に形成することができる。
また、2つの独立したエネルギー線ビームを用意することは困難な場合(例えばエネルギー線が電子線の場合)には、1つの細いビームで描くように、ビームを溝横断方向に高速スキャンすることが必要である。この場合には、あらかじめ2系統のデータを、一旦描画処理回路に入力して、形成される非平行蛇行溝201のイメージ図を作成する。そしてその図の輪郭(側壁201A、201B)に合わせて、描画パターンを計算し、溝横断方向のスキャン開始位置、終了位置を決定する。この操作を繰り返すことによって、スキャンデータを生成する。そしてスキャンデータを元に、偏向器(電子線の場合には偏向電極)を走査することによって、非平行蛇行溝201を形成することができる。
なお、直線溝203を形成する際には、偏向器551はビームを偏向しない。
また、データ生成ユニット501は、スタート信号を受けて、記録するデータを時間順に生成し、送信するものである。
また、信号変調ユニット502は、受信したデータに基づいて変調を行い、さらに偏向器551の仕様に合わせて電圧を設定し、信号を送出するものである。
また、コントローラ500は、以上説明してきた部品の一部またはすべてを統括し、ユーザの指示に基づいて命令を与えたり、装置内のモニタ結果に基づいて命令を行ったりするもので、CPUなどを好適に用いることができる。
なおこの他、必要に応じて各種部品を追加してもよく、エネルギー線が光である場合には露光量調節器、エクスパンダー、対物レンズ、シャッターなどを追加してもよい。
次に、情報記録担体製造装置4を用いながら、ブランク基体5に記録を行う具体的な方法について説明する。図16では、エネルギー線の出射を点線矢印、データまたは命令の流れを実線矢印で示している。本実施の形態の情報記録担体1、1A、1B、1aの製造方法では、ユーザの指示に基づきコントローラ500がデータ記録の開始を指示する。具体的にはデータ生成ユニット501と相対運動付与ユニット552が駆動される。データ生成ユニット501では、図10の構造をあらかじめ1つの時間軸上に展開し、例えば内周から時間順にデータを信号変調ユニット502に送信してゆく。また、例えば図4の場合には、直線部分(無信号)からスタートし、続いてデータを送信する。そして再び直線部分(無信号)に戻って、以降はこの動作を繰り返す。
また相対運動付与ユニット552では、データ記録の開始の指示に基づいて、相対運動の付与を開始する。この場合は偏向器551からのエネルギー線がブランク基体5の内周部に照射されるように支持ユニット554の位置決めをし、所定の回転数で回転させる。そして同時に平面上を一方向に移動させることによって、エネルギー線がスパイラルの軌跡を取るように制御する。
データ生成ユニット501からの信号を受信した信号変調ユニット502は、受信したデータに基づいて変調を行い、偏向器551に信号を送出する。非平行蛇行溝201を作るための信号であるから、ここではアナログ信号となる。
なお記録中は回転モニタ553より、回転角度の情報をコントローラ500に供給する。1周に1回転の情報(以下360度情報と呼ぶ)が少なくとも得られるようになっており、コントローラ500に供給される。コントローラ500は信号変調ユニット502に対して、回転角度の情報を連続的に転送、または360度情報のみを転送する。信号変調ユニット502では連続してデータ等を受信しそれを変調するが、その過程で回転角度の情報を参照する。少なくとも360度情報を参照し、無信号とアドレス情報の切り替わり位置を比較する。そして正しい位置で切り替わりが行われるように、信号変調ユニット502内でデータの遅延送信または先行送信を行う。このような方法によって記録され、完成したブランク基体5は、公知の方法でスタンパー化される。さらに、スタンパーを用いた成形工程を経て、情報記録担体1、1A、1B、1aが完成する。
このように、本実施の形態の情報記録担体1、1A、1B、1aの製造方法では、信号変調ユニット502において、回転モニタ553からの回転角度情報に基づき、偏向器551へ送る信号送出のタイミングを調節するので、切り替えラインCXが非常に高い精度で決められた情報記録担体1を製造することができる。
以上、本発明の実施の形態の情報記録担体1、1A、1B、1a及び製造装置4について詳細に説明してきた。本発明は、請求項に記載した範囲以外に、明細書に記載した情報記録担体1の再生方法、記録方法、製造方法についても含むものである。また再生方法、記録方法、製造方法の各ステップを実行するコンピュータプログラムを含むものである。更に、上述した記録方法及び再生方法を兼ねた記録再生方法を含むものである。また、本発明なる情報記録担体、再生方法、記録方法を組み合わせて構成したシステムをも含むものである。
本発明に係る情報記録担体の実施の形態である円形情報記録担体を示す図である。 本発明に係る情報記録担体の実施の形態であるカード状情報記録担体を示す図である。 本発明に係る情報記録担体の実施の形態であるカード状情報記録担体を示す図である。 本発明に係る情報記録担体の微細パターンの平面微細構造を説明するための平面拡大図である。 振幅変移変調されたデジタルデータを示す図である。 周波数変移変調されたデジタルデータを示す図である。 位相変移変調されたデジタルデータを示す図である。 本発明に係る情報記録担体の平面微細構造を説明するための平面図である。 本発明に係る情報記録担体の記録再生方法を説明するための平面図である。 本発明に係る情報記録担体の平面微細構造を説明するための平面図である。 本発明に係る情報記録担体の記録再生方法を説明するための平面図である。 本発明に係る情報記録担体を示す断面構成図である。 本発明に係る情報記録担体を示す断面構成図である。 ベースバンド変調前とベースバンド変調後におけるデータの変化を示す図である。 ベースバンド変調前とベースバンド変調後におけるデータの変化の具体的な例を示す図である。 本発明に係る情報記録担体の製造装置のブロック構成図である。 従来の情報記録担体の平面微細構造を説明するための平面拡大図である。
符号の説明
1,1A,1B,1a…情報記録担体、4…情報記録担体製造装置、5…ブランク基体、11…通光層、12…記録層、13…支持体、14…第2通光層、15…第2記録層、16…第1通光層、17…第1記録層、90…対物レンズ、91…レーザ光、100…微細パターン、101…微細パターン、102…微細パターン、201…非平行蛇行溝、201A,201B…非平行蛇行溝側壁、202…溝間部、203…直線溝、300…低周波部分、301…高周波部分、310…後進位相部分、311…前進位相部分、320…非振幅部分、321…振幅部分、500…コントローラ、501…データ生成ユニット、502…信号変調ユニット、550…エネルギー線源、551…偏向器、552…相対運動付与ユニット、553…回転モニタ、554…支持ユニット、900…微細パターン。

Claims (14)

  1. 互いに対向する2つの側壁がそれぞれ独立して蛇行している蛇行溝と、互いに対向する2つの側壁がそれぞれ蛇行していない非蛇行溝と、が交互に配置された微細パターンを有し、
    前記蛇行溝は、その2つの側壁のうちの一方の側壁の蛇行が第1の情報に対応し、前記2つの側壁のうちの他方の側壁の蛇行が前記第1の情報とは異なる第2の情報に対応し、
    前記一方の側壁の蛇行は、前記第1の情報が、cos波を基本波とする位相変移方式によって変調されて前記蛇行溝の幅方向に振幅を有し、
    前記他方の側壁の蛇行は、前記第2の情報が、sin波を基本波とする位相変移方式によって変調されて前記蛇行溝の幅方向に前記振幅とは異なる他の振幅を有することを特徴とする情報記録担体。
  2. 前記微細パターンは、前記蛇行溝と前記非蛇行溝とが、ライン状、同心円状、または螺旋状に交互に配置されていることを特徴とする請求項1記載の情報記録担体。
  3. 前記微細パターンは、前記蛇行溝と前記非蛇行溝とが、互いに接続することなく、ライン状、同心円状、または螺旋状に交互に配置されていることを特徴とする請求項1記載の情報記録担体。
  4. 前記微細パターンは、前記蛇行溝と前記非蛇行溝とが、交互に配列された一連のトラックとして螺旋状に形成されていることを特徴とする請求項1記載の情報記録担体。
  5. 前記微細パターンは、支持体上に設けられており、
    前記微細パターン上には、記録層及び通光層が順次設けられていることを特徴とする請求項1乃至請求項4のうちのいずれか1項に記載の情報記録担体。
  6. 請求項1乃至請求項5のうちのいずれか1項に記載の情報記録担体を製造する情報記録担体の製造装置であって、
    記録すべきデータを生成するデータ生成ユニットと、
    前記データを変調した被変調データを出力する信号変調ユニットと、
    ブランク状態の前記情報記録担体を支持する支持ユニットと、
    前記支持ユニットの回転をモニタする回転モニタと、
    前記支持ユニットに支持されている前記情報記録担体の半径位置を変更するために、前記支持ユニットに対して相対運動を付与する相対運動付与ユニットと、
    エネルギー線を生成して出射するエネルギー線源と、
    前記エネルギー線を前記被変調データで偏向した偏向エネルギー線を前記支持ユニット側へ出射する偏向器とから少なくともなり、
    前記信号変調ユニットは、前記回転モニタからの回転角度情報に基づき、前記偏向器へ供給する変調信号の送出タイミングを制御するものであることを特徴とする情報記録担体の製造装置。
  7. 請求項1乃至請求項5のうちのいずれか1項に記載の情報記録担体を製造する情報記録担体の製造方法であって、
    記録すべきデータを生成する第1工程と、
    前記データを変調した被変調データを出力する第2工程と、
    ブランク状態の前記情報記録担体を支持する第3工程と、
    支持されている前記情報記録担体の半径位置を変更するために、前記情報記録担体に対して相対運動を付与する第4工程と、
    エネルギー線を生成出射する第5工程と、
    前記エネルギー線を被変調データで偏向した偏向エネルギー線を前記支持されている前記情報記録担体側へ出射する第6工程とから少なくともなり、
    前記第6工程は、前記支持されている前記情報記録担体が回転する回転角度情報に基づき、前記被変調データの送出タイミングを制御して前記エネルギー線を偏向する工程であることを特徴とする情報記録担体の製造方法。
  8. 互いに対向する2つの側壁がそれぞれ独立して蛇行している蛇行溝と、互いに対向する2つの側壁がそれぞれ蛇行していない非蛇行溝と、が交互に配置された微細パターンを有し、
    前記蛇行溝は、その2つの側壁のうちの一方の側壁の蛇行が第1の情報に対応し、前記2つの側壁のうちの他方の側壁の蛇行が前記第1の情報とは異なる第2の情報に対応し、
    前記一方の側壁の蛇行は、前記第1の情報が、(αsinωt+βcosωt)波(α及びβはそれぞれ1または−1)を基本波とする位相変移方式によって変調されて前記蛇行溝の幅方向に振幅を有し、
    前記他方の側壁の蛇行は、前記第2の情報が、(γsinωt+δcosωt)波(γ及びδはそれぞれ1または−1)を基本波とする位相変移方式によって変調されて前記蛇行溝の幅方向に前記振幅とは異なる他の振幅を有することを特徴とする情報記録担体。
  9. 前記微細パターンは、前記蛇行溝と前記非蛇行溝とが、ライン状、同心円状、または螺旋状に交互に配置されていることを特徴とする請求項8記載の情報記録担体。
  10. 前記微細パターンは、前記蛇行溝と前記非蛇行溝とが、互いに接続することなく、ライン状、同心円状、または螺旋状に交互に配置されていることを特徴とする請求項8記載の情報記録担体。
  11. 前記微細パターンは、前記蛇行溝と前記非蛇行溝とが、交互に配列された一連のトラックとして螺旋状に形成されていることを特徴とする請求項8記載の情報記録担体。
  12. 前記微細パターンは、支持体上に設けられており、
    前記微細パターン上には、記録層及び通光層が順次設けられていることを特徴とする請求項8乃至請求項11のうちのいずれか1項に記載の情報記録担体。
  13. 請求項8乃至請求項12のうちのいずれか1項に記載の情報記録担体を製造する情報記録担体の製造装置であって、
    記録すべきデータを生成するデータ生成ユニットと、
    前記データを変調した被変調データを出力する信号変調ユニットと、
    ブランク状態の前記情報記録担体を支持する支持ユニットと、
    前記支持ユニットの回転をモニタする回転モニタと、
    前記支持ユニットに支持されている前記情報記録担体の半径位置を変更するために、前記支持ユニットに対して相対運動を付与する相対運動付与ユニットと、
    エネルギー線を生成して出射するエネルギー線源と、
    前記エネルギー線を前記被変調データで偏向した偏向エネルギー線を前記支持ユニット側へ出射する偏向器とから少なくともなり、
    前記信号変調ユニットは、前記回転モニタからの回転角度情報に基づき、前記偏向器へ供給する変調信号の送出タイミングを制御するものであることを特徴とする情報記録担体の製造装置。
  14. 請求項8乃至請求項12のうちのいずれか1項に記載の情報記録担体を製造する情報記録担体の製造方法であって、
    記録すべきデータを生成する第1工程と、
    前記データを変調した被変調データを出力する第2工程と、
    ブランク状態の前記情報記録担体を支持する第3工程と、
    支持されている前記情報記録担体の半径位置を変更するために、前記情報記録担体に対して相対運動を付与する第4工程と、
    エネルギー線を生成出射する第5工程と、
    前記エネルギー線を被変調データで偏向した偏向エネルギー線を前記支持されている前記情報記録担体側へ出射する第6工程とから少なくともなり、
    前記第6工程は、前記支持されている前記情報記録担体が回転する回転角度情報に基づき、前記被変調データの送出タイミングを制御して前記エネルギー線を偏向する工程であることを特徴とする情報記録担体の製造方法。
JP2008223174A 2008-09-01 2008-09-01 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法 Expired - Fee Related JP4614145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223174A JP4614145B2 (ja) 2008-09-01 2008-09-01 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223174A JP4614145B2 (ja) 2008-09-01 2008-09-01 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003109929A Division JP4356345B2 (ja) 2003-04-15 2003-04-15 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法

Publications (2)

Publication Number Publication Date
JP2008287884A true JP2008287884A (ja) 2008-11-27
JP4614145B2 JP4614145B2 (ja) 2011-01-19

Family

ID=40147444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223174A Expired - Fee Related JP4614145B2 (ja) 2008-09-01 2008-09-01 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法

Country Status (1)

Country Link
JP (1) JP4614145B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040550A (ja) * 1996-07-19 1998-02-13 Sony Corp 記録媒体、アドレス記録装置および方法、並びに、記録再生装置および方法
JPH11120561A (ja) * 1997-10-14 1999-04-30 Victor Co Of Japan Ltd トラッキング情報以外の情報を含んだ状態の光ディスクにおける案内溝情報の記録方法及び記録装置
JP2001167446A (ja) * 1999-11-03 2001-06-22 Samsung Electronics Co Ltd ウォブル信号を用いたpidアドレッシング方法、ウォブルアドレスエンコーディング回路、その検出方法と回路及び記録媒体
JP2003067977A (ja) * 2001-08-29 2003-03-07 Victor Co Of Japan Ltd 情報記録担体及び情報記録担体の再生方法及び情報記録担体の再生装置
JP4356345B2 (ja) * 2003-04-15 2009-11-04 日本ビクター株式会社 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040550A (ja) * 1996-07-19 1998-02-13 Sony Corp 記録媒体、アドレス記録装置および方法、並びに、記録再生装置および方法
JPH11120561A (ja) * 1997-10-14 1999-04-30 Victor Co Of Japan Ltd トラッキング情報以外の情報を含んだ状態の光ディスクにおける案内溝情報の記録方法及び記録装置
JP2001167446A (ja) * 1999-11-03 2001-06-22 Samsung Electronics Co Ltd ウォブル信号を用いたpidアドレッシング方法、ウォブルアドレスエンコーディング回路、その検出方法と回路及び記録媒体
JP2003067977A (ja) * 2001-08-29 2003-03-07 Victor Co Of Japan Ltd 情報記録担体及び情報記録担体の再生方法及び情報記録担体の再生装置
JP4356345B2 (ja) * 2003-04-15 2009-11-04 日本ビクター株式会社 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法

Also Published As

Publication number Publication date
JP4614145B2 (ja) 2011-01-19

Similar Documents

Publication Publication Date Title
US7492698B2 (en) Information recording medium having substrate with microscopic pattern and reproducing apparatus therefor
US7643403B2 (en) Information recording carrier and method of reproducing the same
JP2004013947A (ja) 情報記録担体、再生装置、記録装置、記録再生装置、再生方法、記録方法及び記録再生方法
US7729230B2 (en) Information recording carrier and information reproducing apparatus for the same
JP2002352475A (ja) 情報記録担体
JP4356345B2 (ja) 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法
JPH08235593A (ja) 光記録媒体並びにその記録・再生方法及び装置
JP4614145B2 (ja) 情報記録担体、情報記録担体の製造装置及び情報記録担体の製造方法
JP4038758B2 (ja) 情報記録担体、情報記録担体の再生装置、及び情報記録担体の製造装置
JP2003123321A (ja) 情報記録担体及び情報記録担体の製造装置及び情報記録担体の製造方法
JP2003281739A (ja) 情報記録担体
JP2006172714A (ja) 情報記録担体、その再生装置及びその記録装置
JP2003067977A (ja) 情報記録担体及び情報記録担体の再生方法及び情報記録担体の再生装置
JP2007157329A (ja) 情報記録担体及び情報記録担体の再生方法
JP2007164983A (ja) 情報記録担体及び情報記録担体の再生方法
JP2003085769A (ja) 光記録媒体、光記録媒体記録装置、光記録媒体再生装置
JP2004046910A (ja) 情報記録担体、再生装置、記録装置、再生方法及び記録方法
JP2004005766A (ja) 情報記録担体、再生装置、記録装置、再生方法及び記録方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees