JP2008241614A - 磁歪式応力センサおよびその製造方法 - Google Patents

磁歪式応力センサおよびその製造方法 Download PDF

Info

Publication number
JP2008241614A
JP2008241614A JP2007085531A JP2007085531A JP2008241614A JP 2008241614 A JP2008241614 A JP 2008241614A JP 2007085531 A JP2007085531 A JP 2007085531A JP 2007085531 A JP2007085531 A JP 2007085531A JP 2008241614 A JP2008241614 A JP 2008241614A
Authority
JP
Japan
Prior art keywords
stress
magnetic member
magnetostrictive
magnetic
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007085531A
Other languages
English (en)
Other versions
JP5233141B2 (ja
Inventor
Nobuo Kawashita
宜郎 川下
Kiyohiro Uramoto
清弘 浦本
Toshimitsu Matsuoka
敏光 松岡
Nariyuki Nakagawa
成幸 中川
Munekatsu Shimada
宗勝 島田
Hiroshi Sakurai
寛 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007085531A priority Critical patent/JP5233141B2/ja
Publication of JP2008241614A publication Critical patent/JP2008241614A/ja
Application granted granted Critical
Publication of JP5233141B2 publication Critical patent/JP5233141B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】高感度で良好なセンサ特性を有する磁歪式応力センサおよびその製造方法を提供する。
【解決手段】応力検知対象部材100に接合されかつ磁歪を有する磁性部材111(112A,112B,113)、および、磁性部材111に負荷される応力を検知するための応力検知手段116,118を有し、磁性部材111は、引張あるいは圧縮の応力が付与された状態にある。
【選択図】図2

Description

本発明は、磁歪式応力センサおよびその製造方法に関する。
弾性を有する部材に負荷される応力を検出する方法としては、歪ゲージを貼る方法が一般によく知られている。しかし、自動車等の足回り部材に負荷される応力(引張応力および圧縮応力)をモニターするためには、ロバスト性が要求されるため、歪ゲージによる方法は、問題を有する。
そのため、磁歪の逆効果を利用した応力センサ(磁歪式応力センサ)が、提案されている(例えば、非特許文献1参照。)。
Garshelis, Ivan J.,「New types of Magnetoelastic Transducers for Sensing Force Related Parameters」,「SAE Paper」,No.910856,「Sensors and Actuators」,1991年
しかし、従来の磁歪式応力センサの感度およびセンサ特性は、問題を有する。例えば、高範囲応力において、外力ゼロ付近の感度は低いが、外力が高くなると感度は増し、飽和してくる。また、小振幅において、外力ゼロ付近では感度も低く、ヒステリシスを描き、センサ特性がよくない。
本発明は、上記従来技術に伴う課題を解決するためになされたものであり、高感度で良好なセンサ特性を有する磁歪式応力センサおよびその製造方法を提供することを目的とする。
上記目的を達成するための請求項1に記載の発明は、
応力検知対象部材に接合されかつ磁歪を有する磁性部材、および、
前記磁性部材に負荷される応力を検知するための応力検知手段を有し、
前記磁性部材は、引張あるいは圧縮の応力が付与された状態にある
ことを特徴とする磁歪式応力センサである。
上記目的を達成するための請求項14に記載の発明は、
請求項1〜13のいずれか1項に記載の磁歪式応力センサの製造方法であって、
前記磁性部材を前記応力検知対象部材に接合する際に、前記磁性部材に応力を付与することで、前記磁性部材を、前記引張あるいは圧縮の応力が付与された状態とすることを特徴とする磁歪式応力センサの製造方法である。
上記目的を達成するための請求項15に記載の発明は、
請求項1〜13のいずれか1項に記載の磁歪式応力センサの製造方法であって、
前記磁性部材を前記応力検知対象部材に接合した後において、前記磁性部材に応力を付与することで、前記磁性部材を、前記引張あるいは圧縮の応力が付与された状態とすることを特徴とする磁歪式応力センサの製造方法である。
請求項1に記載の発明によれば、応力検知対象部材に接合された磁性部材が、引張あるいは圧縮の応力が付与された状態にあるため、応力検知対象部材に対して応力が負荷された場合、磁歪式応力センサは、高感度で良好なセンサ特性を発揮する。つまり、高感度で良好なセンサ特性を有する磁歪式応力センサを提供することが可能である。
請求項14および請求項15に記載の発明によれば、応力検知対象部材に接合された磁性部材が、引張あるいは圧縮の応力が付与された状態にある磁歪式応力センサを製造することが可能である。したがって、製造された磁歪式応力センサは、応力検知対象部材に対して応力が負荷された場合、高感度で良好なセンサ特性を発揮する。つまり、高感度で良好なセンサ特性を有する磁歪式応力センサの製造方法を提供することが可能である。
以下、本発明の実施の形態を、図面を参照しつつ説明する。
図1および図2は、実施の形態1に係る磁歪式応力センサを説明するための平面図および側面図である。
実施の形態1に係る磁歪式応力センサ110は、磁歪を有する磁性部材111を有し、磁性部材111は、引張の応力が付与された状態にあり、かつ、応力検知の対象部材100に接合されている。そのため、磁歪式応力センサ110は、後述するように、高感度で良好なセンサ特性を有する。対象部材100は、特に限定されないが、自動車の足回り部品に適用する場合、車輌挙動制御の実現に資することとなる。
詳述すると、磁歪式応力センサ110は、磁性部材111、磁気センサ116および磁石118を有する。
磁性部材111は、略コ字状断面を呈し、対象部材100に接合される脚部112A,112Bおよび脚部112A,112Bの間を延長している平板状部113を有する。磁性部材111は、マルエージング鋼を機械加工することによって、形成される。マルエージング鋼の適用は、磁歪式応力センサ110のロバスト性、感度およびセンサ特性に関して好ましい。また、18%Ni系のマルエージング鋼は、磁歪が大きい点で好ましく、時効状態で使用するとヒステリシスのない良好な特性となるため、より好ましい。
平板状部113は、その両端に位置する脚部112A,112Bを介して、対象部材100に接合されるため、対象部材100の変形が不均一であっても、平均的な応力が、平板状部113に負荷される。
磁気センサ116は、磁束の変化を検知するリニアホールICであり、平板状部113における対象部材100に相対する面(内側面)に配置され、平板状部113に垂直な磁束成分を検出するために使用される。
磁石118は、磁束源であり、平板状部113における磁気センサ116が配置される内側面の反対側の面(外側面)に、平板状部113に近接して配置される。磁石118の着磁方向は、平板状部113における応力方向と略直交している。磁石118は、例えば、永久磁石である。永久磁石は、磁束を発生させるための電源および巻き線が不要であり、省電力化、小型化およびコスト低減の点で好ましい。
磁歪式応力センサ110において、対象部材100に引張応力あるいは圧縮応力が負荷されると、脚部112A,112Bを介して対象部材100に接合されている平板状部113に、同様に、引張応力あるいは圧縮応力が負荷される。
例えば、引張応力が平板状部113に負荷される場合、磁石118からの磁束は、平板状部113を透過し易くなるため、漏れ磁束は減少する。一方、圧縮応力が平板状部113に負荷される場合、磁石118からの磁束は、平板状部113を透過し難くなるため、漏れ磁束は増加する。漏れ磁束の減少および増加は、磁気センサ116によって検出することができる。
したがって、磁気センサ116によって検出される磁石118の漏れ磁束の大きさは、磁性部材111が接合される対象部材100に負荷される応力の大きさを反映するため、磁歪式応力センサ110は、対象部材100の応力検知が可能である。つまり、磁気センサ116および磁石118は、磁性部材111に負荷される応力を検知するための応力検知手段を構成する。
次に、磁歪式応力センサ110の製造方法を説明する。
まず、マルエージング鋼を機械加工することによって、略コ字状断面を有する磁性部材111が、形成される。マルエージング鋼は、例えば、日立金属製のYAG300(18%Ni−9%Co−5%Mo)である。磁性部材111の厚さ、幅、長さおよび高さは、0.5mm、10mm、30mmおよび5mmに設定される。
磁性部材111は、その後、固溶化および時効熱処理が施される。固溶化条件は、真空中にて820℃で1時間保持し、その後100℃以下まで冷却である。時効条件は、真空中にて490℃で5時間保持し、その後、空冷である。
磁性部材111が接合される対象部材100は、ステンレス鋼板(SUS303)を切断することによって、形成される。対象部材100の厚さ、幅および長さは、5mm、30mmおよび100mmである。
磁性部材111は、熱膨張させるために、電気炉に配置され、加熱される。加熱条件は、150℃で30分保持である。磁性部材111は、加熱完了後、取出され、125℃になったときに、その脚部112A,112Bが、25℃の対象部材100に、電子ビーム溶接によって、接合される。これにより、磁性部材111は、引張の応力が付与された状態となる。なお、磁性部材111は、板状であるため、接合が容易である。
磁性部材111を熱膨張させるためには、高周波加熱、温浴あるいは通電加熱を適用することも可能である。磁性部材111の脚部112A,112Bと対象部材100との接合には、TIG、MIG、プラズマやレーザ等の高エネルギービーム、摩擦圧接あるいは抵抗溶接を適用することも可能である。
なお、磁性部材111は、マルエージング鋼から形成されているため、温度が高すぎると相変態を起こして感度が劣化する虞がある。したがて、加熱温度は、500℃以下が好ましい。接合する際における磁性部材111と対象部材100との温度差は、小さすぎると応力付与効果が顕著でなくなるため、100℃以上であることが好ましい。
磁石118は、φ3かつ長さ3.5mmのサマリウムコバルト(SmCo)磁石からなる。SmCo磁石は、10Tで着磁後、200℃で1時間熱枯らしされている。磁石118の端面での磁束密度は、約4.1kGである。
図3および図4は、実施の形態1および比較例に係る感度およびセンサ特性を示しているグラフである。縦軸は、センサ出力ΔB[G]であり、横軸は、磁性部材111における応力に換算した外力(応力換算値)[MPa]である。
感度およびセンサ特性は、引張り試験機に対象部材100をセットし、磁性部材111の長手方向に関する引張および圧縮応力を、対象部材100に負荷することで、測定している。引張および圧縮応力の最大値は、100MPa(応力換算値)である。応力が無負荷状態において、磁気センサ116によって検出される漏れ磁束は、約150Gである。
比較例は、磁性部材111を加熱することなく、常温で、その脚部112A,112Bと対象部材100とを接合したものであり、磁性部材111には、引張応力が付与されていない。
実施の形態1は、図3および図4に明確に示されるように、比較例と比べて、約2倍の感度を有しており、かつ、そのセンサ特性は、直線的である。つまり、磁歪式応力センサ110は、高感度で良好なセンサ特性を有している。
図5および図6は、比較例に係る高範囲応力および小振幅における感度およびセンサ特性を説明するためのグラフ、図7は、実施の形態1に係る感度およびセンサ特性を説明するためのグラフである。縦軸は、センサ出力ΔBであり、横軸は、磁性部材111における応力に換算した外力である。
図5に示されるように、比較例に係る高範囲応力における感度およびセンサ特性は、外力ゼロ付近の感度は低いが、外力が高くなると感度は増し、飽和してくる。また、図6に示されるように、小振幅における感度およびセンサ特性は、外力ゼロ付近では感度も低く、ヒステリシスを描き、感度およびセンサ特性がよくないが、外力が高い場合には、感度およびセンサ特性も良好である。
一方、実施の形態1に係る感度およびセンサ特性は、図6に示される状態を回避することが可能である。すなわち、外力ゼロ付近での特性において、感度が上がりかつセンサ特性も良好となる。これは、図5において、縦軸を引張応力側にシフトした特性にほぼなっていると定性的にみなせる(図7参照)。
次に、変形例1を説明する。
変形例1においては、対象部材100の温度を、磁性部材111の温度より100℃高い温度に保持した状態で、その脚部112A,112Bを対象部材100に接合している。つまり、磁性部材111の代わりに、対象部材100を熱膨張させており、磁性部材111は、圧縮の応力が付与された状態となっている。
変形例1のセンサ感度の測定結果は、実施の形態1の場合と比較し、約2割向上した。この効果は、付与される応力が、圧縮であるためと推定される。
次に、変形例2を説明する。
変形例2においては、磁性部材111と対象部材100との接合に、焼ばめが適用されており、炭素鋼(S45C材)から形成される対象部材100の上面に、磁性部材111を配置するための溝部が形成される。溝部は、深さが1mmであり、かつ、磁性部材111の長手寸法から、−0.5mmの公差を有する。焼ばめの際の対象部材100の温度は、350℃である。
変形例2のセンサ感度の測定結果は、変形例1の場合と同等であった。
図8は、実施の形態1に係る変形例3を説明するための概略図である。
変形例3においては、製造装置120を適用することによって、磁性部材111の熱膨張および磁性部材111の脚部112A,112Bと対象部材100との接合が、連続的に実施される。製造装置120は、電源122、通電加熱回路124、電気抵抗溶接回路126および回路切換えスイッチ128を有する。
通電加熱回路124は、電源122および磁性部材111を接続しており、磁性部材111に通電し、磁性部材111の熱膨張を引き起こすジュール熱を、発生さるために使用される。電気抵抗溶接回路126は、電源122、磁性部材111および対象部材100を接続しており、磁性部材111の脚部112A,112Bと対象部材100とを接合(スポット溶接)するために使用される。回路切換えスイッチ128は、通電加熱回路124と電気抵抗溶接回路126との間で、電源122を共有するために使用される。
製造装置120における熱膨張は、回路切換えスイッチ128によって電源122と通電加熱回路124とを接続し、磁性部材111に通電することで実施される。通電条件は、例えば、100Aで15秒であり、磁性部材111の温度は、約200℃に到達した。
製造装置120における接合(スポット溶接)は、回路切換えスイッチ128によって、電源122と通電加熱回路124との接続を解除する一方、電源122と電気抵抗溶接回路126とを接続し、磁性部材111および対象部材100を加圧しながら通電することで実施される。通電条件は、例えば、5000Aで0.5秒である。
変形例3のセンサ感度の測定結果は、実施の形態1の場合と同等であった。
図9〜12は、実施の形態1に係る変形例4〜7を説明するための概略図である。
変形例4において、磁性部材111は、図9に示される製造装置130によって、引張の応力が付与された状態とされる。
製造装置130は、対象部材100の長手方向に圧縮力を付与するための加圧手段132、および、対象部材100の座屈を防止し過剰な塑性変形を避けるためのスペーシング部材134を有する。加圧手段132は、例えば、油圧シリンダである。スペーシング部材134は、例えば、Φ10×98mmのシャフトであり、加圧手段132の間に配置され、対象部材100の長手方向に平行に位置決めされる。
製造装置130における磁性部材111に対する引張応力の付与は、加圧手段132によって対象部材100に圧縮力を付与した状態で、磁性部材111の脚部112A,112Bと対象部材100とを接合することで、実施される。加圧条件は、例えば、200MPaである。
変形例4のセンサ感度の測定結果は、実施の形態1の場合と同等であった。
なお、応力付与は、磁性部材111と対象部材100と接合時における相対的な伸び縮みに起因する関係である。したがって、接合の際に、図10(変形例5)に示されるように、磁性部材111に圧縮力を付与したり、図11(変形例6)あるいは図12(変形例7)に示されるように、磁性部材111あるいは対象部材100を機械的に引張ったりしたりすることで磁性部材111に引張または圧縮応力を付与することも可能である。
以上のように、実施の形態1は、高感度で良好なセンサ特性を有する磁歪式応力センサおよびその製造方法を提供することが可能である。
なお、磁性部材に対する応力の付与は、製品ごとの感度のばらつきを抑制することが可能である点でも好ましい。
磁性部材を応力検知対象部材に接合する前に、磁性部材に応力を付与し、予め応力が付与された状態の磁歪式応力センサを、応力検知対象部材に取り付けることも可能である。しかし、生産性の観点からは、応力の付与を、磁性部材と対象部材との接合時に実施することが、好ましい。
磁性部材の平板状部は、例えば、0.5mm以下の薄肉であり、かつ、引張の応力が付与された状態になっており、弛緩することにより、応力検知対象部材に負荷される圧縮力(応力)を検出する形態が好ましい。この場合、平板状部は、付与されている引張の応力の範囲内にある圧縮の応力が負荷されても、正味の圧縮応力が負荷されないので、座屈することはない。また、平板状部は、薄肉であるので、高い引張の応力が付与された状態に設定することが容易であり、磁歪式応力センサとしての実質的な感度を向上させることが可能である。
図13は、実施の形態2に係る磁歪式応力センサを説明するための側面図である。
実施の形態2に係る磁歪式応力センサ210は、交流高周波方式であり、磁性部材211、インピーダンス検出手段(不図示)、ヨーク218および巻き線219を有する。
磁性部材211は、膜状であり、非磁性基板212に密着して配置される。非磁性基板212は、10mmx30mmの矩形形状であり、厚さ0.5mmのステンレス鋼板(SUS303)を切断することにより、形成される。磁性部材211は、厚みが7μmのFeNi合金からなり、スパッタによって形成される。スパッタの目標組成は、50wt%Ni−Feである(磁歪は正)。スパッタエリアは、5mmx10mmであり、基板の中央に位置決めされており、かつ、その長手方向は、非磁性基板212のの長手方向と一致させている。
非磁性基板212の両端部は、電子ビームによる溶接によって、応力検知の対象部材200に接合される。この際、非磁性基板212および磁性部材211は、対象部材200に比べて100℃高い状態に加熱されることで、引張応力が磁性部材211に付与される。なお、対象部材200は、厚さ2mmのステンレス鋼板(SUS303)を切断することによって、形成される。対象部材200の幅は、20mmである。
ヨーク218は、ソフトフェライト(Mn−Znフェライト)から形成され、磁性部材211に近接させて位置決めされる開口部を有するコ字状である。巻き線219は、0.2mmφのウレタン被覆銅線からなり、ヨーク218に50回巻かれている。
インピーダンス検出手段は、巻き線に交流電流を流して、ヨーク218および巻き線219からなるコアのインピーダンスの変化を検出するために使用される。つまり、インピーダンス検出手段、ヨーク218および巻き線219は、磁性部材211に負荷される応力を検知するための応力検知手段を構成する。
図14および図15は、実施の形態2および比較例に係る感度およびセンサ特性を示しているグラフである。縦軸は、インピーダンスの変化割合(ΔZ/Z)であり、横軸は、磁性部材211における応力に換算した外力(応力換算値)[MPa]である。
感度およびセンサ特性は、引張り試験機に対象部材200をセットし、磁性部材211の長手方向に関する引張および圧縮応力を、対象部材200に負荷することで、得られた。引張および圧縮応力の最大値は、100MPa(応力換算値)である。インピーダンス測定は、15kHzかつ10mAの電流を流すことで実施されている。なお、比較例は、非磁性基板212の両端部と対象部材200とを接続を、非磁性基板212を加熱せずに実施したものであり、磁性部材211に応力が付与されていない。
図14および図15に明確に示されるように、実施の形態2は、比較例と比べて、約倍の感度を有しており、かつ、そのセンサ特性は、直線的である。つまり、磁歪式応力センサ210は、高感度で良好なセンサ特性を有する。
次に、変形例1を説明する。
磁性部材211は、FeNi合金に限定されず、Fe80Ga20を適用することも可能である。
例えば、磁性部材211の厚みを5μmとした場合、感度は約倍であったが、センサ特性は、実施の形態2の場合と同様であった。やはり、引張の応力が付与された状態とした場合には、感度が高く、良好な特性が得られた。
次に、変形例2を説明する。
磁性部材211は、マルエージング鋼を適用することも可能である。マルエージング鋼は、例えば、日立金属製のYAG300(18%Ni−9%Co−5%Mo)である。この場合、厚さ0.5mmのマルエージング鋼を、機械加工することによって、非磁性基板212と同一サイズ、つまり、10mmx30mmの矩形形状に形成される。なお、磁性部材211は、その後、固溶化および時効熱処理が施される。固溶化条件は、真空中にて820℃で1時間保持、その後100℃以下までの冷却である。時効条件は、真空中にて490℃で5時間保持し、その後、空冷である。
変形例2の感度およびセンサ特性の測定結果は、変形例1の場合と同等であった。また、引張の応力が付与された状態とした場合には、感度が高く、良好な特性が得られた。なお、磁歪の大きさはFeGa合金の方がマルエージング鋼より大きいが、感度が略同一なのは、磁性部材211の厚みが薄いためであると考えられる。
以上のように、実施の形態2では、磁歪式応力センサを交流高周波方式とすることが可能である。
図16は、実施の形態3に係る磁歪式応力センサを説明するための側面図、図17は、実施の形態3に係る応力検知の対象部材を説明するための斜視図である。
実施の形態3に係る磁歪式応力センサ310は、磁性部材311、第1磁気センサ316、磁石318、第1〜第3ヨーク320〜322および第2磁気センサ326を有する。
磁性部材311は、略コ字状断面を呈し、対象部材305に設けた平坦部300に接合される脚部312A,312Bおよび脚部312A,312Bの間を延長している平板状部313を有する。磁性部材311は、マルエージング鋼を機械加工することによって、形成される。磁性部材311は、その後、固溶化および時効熱処理が施される。固溶化条件は、真空中にて820℃で1時間保持、その後100℃以下まで冷却である。時効条件は、真空中にて490℃で5時間保持し、その後、空冷である。
平板状部313は、その両端に位置する脚部312A,312Bを介して、対象部材300に接合される。磁性部材311の厚さ、幅、長さおよび高さは、0.5mm、10mm、30mmおよび5mmである。
第1磁気センサ316は、磁束の変化を検知するリニアホールICであり、平板状部313における対象部材300に相対する面(内側面)に配置される。磁石318は、φ3かつ長さ3.5mmのサマリウムコバルト(SmCo)磁石からなる磁束源であり、平板状部313における第1磁気センサ316が配置される内側面の反対側の面(外側面)に、平板状部313に近接して配置される。SmCo磁石は、10Tで着磁後、200℃で1時間熱枯らしされている。磁石318の端面での磁束密度は、約4.1kGである。
第1ヨーク320は、磁石318を取り囲むように、磁性部材311の外側面に配される。第1ヨーク320は、磁石318用であり、マルエージング鋼で作製され、磁性部材311と同様の熱処理が施される。第2磁気センサ326は、リニアホールICからなり、第1ヨーク320における磁石318に相対する面(内側面)の反対側の面(外側面)に、配置され、磁石318の磁束をモニターするために使用される。
第2ヨーク321は、第1磁気センサ316を取り囲むように磁性部材311の内側面に配置される。第3ヨーク322は、第2磁気センサ326を取り囲むように、第1ヨーク320の外側面に、配置される。第2ヨーク321および第3ヨーク322は、PB(Ni−Fe)パーマロイ(軟磁性材)で作製され、集磁効果による感度向上および外部磁界に対する耐性向上を図ることが可能である。また、磁気センサの位置設定に対して磁気センサ特性が鈍感になるというメリットも有する。なお、PBパーマロイヨークには、純水素中、1200℃で2時間熱処理が施されている。
第1磁気センサ316および第2磁気センサ326は、以上のように、対称な環境となっており、磁石318の漏れ磁束は、同じレベルである。したがって、アクティブな第1磁気センサ316と、ダミーである第2磁気センサ326とを差動させ、磁歪式応力センサ出力とすることで、温度特性に優れたセンサ特性を得ることが可能である。
磁性部材311は、図17に示されるディスクブレーキのキャリパーサポート305の圧縮部に設けられた平坦部300に接合される。キャリパーサポートに荷重がかかると、磁歪式応力センサ310は圧縮状態となるため、磁歪式応力センサ310は、ブレーキ力を測定することが可能である。磁歪式応力センサ310の圧縮部への配置は、部材の強度信頼性の低下を避けることが可能であるため、好ましい。キャリパーサポートは、例えば、FCD材(球状黒鉛化鋳鉄)製である。
なお、磁歪式応力センサ310の磁性部材311は、キャリパーサポートに比べて、100℃高い温度に加熱された状態で、電子ビーム溶接によってキャリパーサポートの平坦部に脚部312A,312Bが接合される。
なお、ディスクブレーキにおけるブレーキ動作においては、ブレーキを踏むとキャリパーパッドがデッスクに押し付けられ、キャリパーパッドがディスクを止めようとするとブレーキがかかる。キャリパーパッドはキャリパーサポートを押し、その反力がブレーキ力である。
図18は、実施の形態3およびその変形例1に係る感度およびセンサ特性を示しているグラフである。縦軸は、センサ出力ΔB[G]であり、横軸は、キャリパーサポートに加えられた荷重[kN]である。符号○は、実施の形態3に係る感度およびセンサ特性を示し、符号□は、後述する変形例1に係る感度およびセンサ特性を示している。
実施の形態3は、図18に明確に示されるように、良好な感度を有しており、かつ、そのセンサ特性は、直線的である。つまり、実施の形態3に係る磁歪式応力センサ310は、高感度で良好なセンサ特性を有する。
次に、変形例1を説明する。
磁性部材311の厚さは、0.5mmから0.2mmに変更され、引張応力付与の際の温度差は、100℃から200℃に変更されている。つまり、磁性部材311の厚さを削減しかつ引張応力付与の際の温度差を増加させることで、磁性部材311の引張の応力が付与された状態が、強化されている。したがって、キャリパーパッドがキャリパーサポートを押すと、磁性部材311は弛緩状態になるものと推定される。
変形例1の感度およびセンサ特性の測定結果は、図18の符号□により示されるように、感度が大幅に向上している。
以上で説明したように、磁歪式応力センサの出力は、磁気センサ316と磁気センサ326とを差動させているので、実施の形態3における磁歪式応力センサでは、温度特性を向上させることが可能である。
図19は、実施の形態4に係る磁歪式応力センサを説明するための背面図である。
磁歪式応力センサ410は、実施の形態1と同様な構成を有する磁性部材、磁気センサおよび磁石を有する。応力検知の対象部材400は、平板状であり、その厚さ、幅および長さは、2mm、100mmおよび100mmである。
磁歪式応力センサ410の磁性部材の脚部と対象部材400との接合は、TIG溶接が適用される。この際、磁性部材および対象部材400のいずれも加熱されておらず、磁性部材と対象部材400との間には、温度差を生じさせていない。つまり、接合された時点においては、磁性部材は、応力が付与されていない。
接合後、対象部材400における磁歪式応力センサ410の配置面の反対側に位置する面が、局部加熱される。局部加熱手段は、レーザであり、磁性部材の長手方向に沿って照射される。レーザビーム径は、例えば、Φ10である。
レーザ出力は、磁性部材の脚部における最大温度が200℃になるように、制御される。磁性部材の脚部の温度を検出する手段は、特に限定されないが、例えば、磁性部材の脚部に取付けられる熱電対である。
実施の形態4のセンサ感度の測定結果は、接合の際に応力が付与される実施の形態1の場合と同等であった。
図20は、実施の形態4に係る変形例1を説明するための平面図である。
変形例1においては、接合後、対象部材400における磁歪式応力センサ410が配置されている面が、レーザによって局部加熱される。レーザは、磁歪式応力センサ410の磁性部材から約10mm離間しかつ磁性部材の長手方向に沿って、照射される。レーザ出力は、対象部材400における磁歪式応力センサ410の配置面の反対側に位置する面(背面)における最大温度が100℃になるように、制御される。背面の温度を検出する手段は、例えば、背面に取付けられる熱電対である。
変形例1のセンサ感度の測定結果は、接合の際に応力が付与される実施の形態1の場合と同等であった。
以上のように、実施の形態4は、接合後において、感度およびセンサ特性を向上させる応力を磁性部材に付与することが可能である。
なお、実施の形態4は、既に応力が付与された状態の磁歪式応力センサに適用することも可能である。この場合、付与されている応力が不十分な場合であっても、付加的に応力を付与することで、感度およびセンサ特性の品質を、事後的に一定に保つことが可能である。
本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。
例えば、感度およびセンサ特性を向上させる応力の付与方法、および、磁性部材と応力検知の対象部材との接合方法は、特に制限されず、磁性部材や対象部材の材質に応じて、適宜選択することが可能である。
また、磁気センサは、リニアホールICに限定されず、例えば、省電力化および小型化の観点から、ホール素子やGMR(Giant Magneto Resistance Effect)センサを適用することも可能である。
磁性部材には、マルエージング鋼に限定されず、例えば、良好な磁歪効果を有するFeAl合金(例えば、アルフェル)、FeCoV合金(例えば、パーメンジュール)、FeGa合金、FeGaAl合金(例えば、ガルフェノール)を適用することも可能である。
実施の形態1に係る磁歪式応力センサを説明するための平面図である。 実施の形態1に係る磁歪式応力センサを説明するための側面図である。 実施の形態1に係る感度およびセンサ特性を示しているグラフである。 比較例に係る感度およびセンサ特性を示しているグラフである。 比較例に係る高範囲応力における感度およびセンサ特性を説明するためのグラフである。 比較例に係る小振幅における感度およびセンサ特性を説明するためのグラフである。 実施の形態1に係る感度およびセンサ特性を説明するためのグラフである。 実施の形態1に係る変形例3を説明するための概略図である。 実施の形態1に係る変形例4を説明するための概略図である。 実施の形態1に係る変形例5を説明するための概略図である。 実施の形態1に係る変形例6を説明するための概略図である。 実施の形態1に係る変形例7を説明するための概略図である。 実施の形態2に係る磁歪式応力センサを説明するための側面図である。 実施の形態2に係る感度およびセンサ特性を示しているグラフである。 比較例に係る感度およびセンサ特性を示しているグラフである。 実施の形態3に係る磁歪式応力センサを説明するための側面図である。 実施の形態3に係る応力検知の対象部材を説明するための斜視図である。 実施の形態3およびその変形例1に係る感度およびセンサ特性を示しているグラフである。 実施の形態4に係る磁歪式応力センサを説明するための背面図である。 実施の形態4に係る変形例1を説明するための平面図である。
符号の説明
100・・応力検知対象部材、
110・・磁歪式応力センサ、
111・・磁性部材、
112A,112B・・脚部、
113・・平板状部、
116・・磁気センサ、
118・・磁石、
120・・製造装置、
122・・電源、
124・・通電加熱回路、
126・・電気抵抗溶接回路、
128・・スイッチ、
130・・製造装置、
132・・加圧手段、
134・・スペーシング部材、
200・・応力検知対象部材、
210・・磁歪式応力センサ、
211・・磁性部材、
212・・非磁性基板、
218・・ヨーク、
219・・巻き線、
300・・応力検知対象部材の圧縮部に設けた平坦部、
305・・キャリパーサポート、
310・・磁歪式応力センサ、
311・・磁性部材、
312A,312B・・脚部、
313・・平板状部、
316・・第1磁気センサ、
318・・磁石、
320・・第1ヨーク、
321・・第2ヨーク、
322・・第3ヨーク、
326・・第2磁気センサ、
400・・応力検知対象部材、
410・・磁歪式応力センサ。

Claims (16)

  1. 応力検知対象部材に接合されかつ磁歪を有する磁性部材、および、
    前記磁性部材に負荷される応力を検知するための応力検知手段を有し、
    前記磁性部材は、引張あるいは圧縮の応力が付与された状態にあることを特徴とする磁歪式応力センサ。
  2. 前記磁性部材は、引張の応力が付与された状態にあることを特徴とする請求項1に記載の磁歪式応力センサ。
  3. 前記磁性部材は、板状であることを特徴とする請求項1又は請求項2に記載の磁歪式応力センサ。
  4. 前記磁性部材は、全体が磁歪材料からなることを特徴とする請求項3に記載の磁歪式応力センサ。
  5. 前記磁歪材料は、マルエージング鋼であることを特徴とする請求項4に記載の磁歪式応力センサ。
  6. 前記磁性部材は、膜状であり、非磁性の基板に密着して配置されており、前記基板が、前記応力検知対象部材に接合されていることを特徴とする請求項3に記載の磁歪式応力センサ。
  7. 前記応力検知手段は、前記磁性部材に近接させて位置決めされる開口部を有するコ字状ヨークと前記ヨークに巻かれた巻き線とからなるコア、および、前記巻き線に交流電流を流して、前記コアのインピーダンスの変化を検出するためのインピーダンス検出手段を有することを特徴とする請求項4〜6のいずれか1項に記載の磁歪式応力センサ。
  8. 前記応力検知手段は、磁束源である永久磁石、および、前記永久磁石の磁束の変化を検知する磁気センサを有することを特徴とする請求項4〜6のいずれか1項に記載の磁歪式応力センサ。
  9. 前記磁性部材は、平板状部および前記平板状部の両端部に位置する脚部を有し、
    前記脚部は、前記応力検知対象部材に接合されており、
    前記応力検知手段の検知応力方向は、前記平板状部の長手方向であることを特徴とする請求項1〜3のいずれか1項に記載の磁歪式応力センサ。
  10. 前記応力検知手段は、前記平板状部における前記応力検知対象に相対する第1面の反対側に位置する第2面に配置される磁束源である磁石、および、前記第1面に配置されかつ前記磁石の漏れ磁束を検知する磁気センサを有し、
    前記磁石の着磁方向は、前記平板状部に負荷される応力方向と略直交している
    ことを特徴とする請求項9に記載の磁歪式応力センサ。
  11. 前記応力検知対象部材は、自動車の足回り部品であることを特徴とする請求項1〜10のいずれか1項に記載の磁歪式応力センサ。
  12. 前記足回り部品は、ディスクブレーキのキャリパーサポートであることを特徴とする請求項11に記載の磁歪式応力センサ。
  13. 前記キャリパーサポートに負荷される圧縮力を検知することで、ブレーキ力が測定されることを特徴とする請求項12に記載の磁歪式応力センサ。
  14. 請求項1〜13のいずれか1項に記載の磁歪式応力センサの製造方法であって、
    前記磁性部材を前記応力検知対象部材に接合する際に、前記磁性部材に応力を付与することで、前記磁性部材を、前記引張あるいは圧縮の応力が付与された状態とすることを特徴とする磁歪式応力センサの製造方法。
  15. 請求項1〜13のいずれか1項に記載の磁歪式応力センサの製造方法であって、
    前記磁性部材を前記応力検知対象部材に接合した後において、前記磁性部材に応力を付与することで、前記磁性部材を、前記引張あるいは圧縮の応力が付与された状態とすることを特徴とする磁歪式応力センサの製造方法。
  16. 前記磁性部材と前記応力検知対象部材との温度差に基づく熱膨張を利用し、前記磁性部材に応力を付与することを特徴とする請求項14又は請求項15に記載の磁歪式応力センサの製造方法。
JP2007085531A 2007-03-28 2007-03-28 磁歪式応力センサおよびその製造方法 Expired - Fee Related JP5233141B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085531A JP5233141B2 (ja) 2007-03-28 2007-03-28 磁歪式応力センサおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085531A JP5233141B2 (ja) 2007-03-28 2007-03-28 磁歪式応力センサおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2008241614A true JP2008241614A (ja) 2008-10-09
JP5233141B2 JP5233141B2 (ja) 2013-07-10

Family

ID=39913136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085531A Expired - Fee Related JP5233141B2 (ja) 2007-03-28 2007-03-28 磁歪式応力センサおよびその製造方法

Country Status (1)

Country Link
JP (1) JP5233141B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152977A1 (en) 2005-12-30 2007-07-05 Apple Computer, Inc. Illuminated touchpad
US8743060B2 (en) 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US8820133B2 (en) 2008-02-01 2014-09-02 Apple Inc. Co-extruded materials and methods
US8816967B2 (en) 2008-09-25 2014-08-26 Apple Inc. Capacitive sensor having electrodes arranged on the substrate and the flex circuit

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165717A (en) * 1981-04-03 1982-10-12 Yazaki Corp Detecting device for stress
JPS61275049A (ja) * 1985-05-31 1986-12-05 Akebono Brake Res & Dev Center Ltd トルクセンシングブレ−キ
JPS62220821A (ja) * 1986-03-20 1987-09-29 Aisin Seiki Co Ltd 磁歪式応力測定方法
JPS63309829A (ja) * 1987-06-11 1988-12-16 Matsushita Electric Ind Co Ltd 荷重センサ
JPH049631A (ja) * 1990-04-27 1992-01-14 Nippon Oil & Fats Co Ltd 歪み測定装置
JPH0599760A (ja) * 1991-10-11 1993-04-23 Nippon Steel Corp 帯状体の応力分布付与装置
JPH06148009A (ja) * 1992-11-13 1994-05-27 Aisin Seiki Co Ltd 制動力測定装置
JPH0979922A (ja) * 1995-09-16 1997-03-28 Yaskawa Electric Corp 磁歪式歪センサ
JPH10267055A (ja) * 1997-03-24 1998-10-06 Akebono Brake Ind Co Ltd 制動トルク検出方法及び装置
JP2001174341A (ja) * 1999-12-15 2001-06-29 Hitachi Cable Ltd 圧力分布センサ
JP2001296177A (ja) * 2000-02-13 2001-10-26 Yazaki Corp 車両荷重測定用センサユニット
JP2001296176A (ja) * 2000-02-13 2001-10-26 Yazaki Corp 車両荷重測定用センサユニット及びその取付構造
US20040065156A1 (en) * 2002-10-02 2004-04-08 Delphi Technologies Inc. Magnetostrictive strain sensor with hall effect
JP2005098725A (ja) * 2003-09-22 2005-04-14 Tdk Corp 加速度センサ
JP2007040956A (ja) * 2005-06-29 2007-02-15 Nissan Motor Co Ltd 応力センサ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165717A (en) * 1981-04-03 1982-10-12 Yazaki Corp Detecting device for stress
JPS61275049A (ja) * 1985-05-31 1986-12-05 Akebono Brake Res & Dev Center Ltd トルクセンシングブレ−キ
JPS62220821A (ja) * 1986-03-20 1987-09-29 Aisin Seiki Co Ltd 磁歪式応力測定方法
JPS63309829A (ja) * 1987-06-11 1988-12-16 Matsushita Electric Ind Co Ltd 荷重センサ
JPH049631A (ja) * 1990-04-27 1992-01-14 Nippon Oil & Fats Co Ltd 歪み測定装置
JPH0599760A (ja) * 1991-10-11 1993-04-23 Nippon Steel Corp 帯状体の応力分布付与装置
JPH06148009A (ja) * 1992-11-13 1994-05-27 Aisin Seiki Co Ltd 制動力測定装置
JPH0979922A (ja) * 1995-09-16 1997-03-28 Yaskawa Electric Corp 磁歪式歪センサ
JPH10267055A (ja) * 1997-03-24 1998-10-06 Akebono Brake Ind Co Ltd 制動トルク検出方法及び装置
JP2001174341A (ja) * 1999-12-15 2001-06-29 Hitachi Cable Ltd 圧力分布センサ
JP2001296177A (ja) * 2000-02-13 2001-10-26 Yazaki Corp 車両荷重測定用センサユニット
JP2001296176A (ja) * 2000-02-13 2001-10-26 Yazaki Corp 車両荷重測定用センサユニット及びその取付構造
US20040065156A1 (en) * 2002-10-02 2004-04-08 Delphi Technologies Inc. Magnetostrictive strain sensor with hall effect
JP2005098725A (ja) * 2003-09-22 2005-04-14 Tdk Corp 加速度センサ
JP2007040956A (ja) * 2005-06-29 2007-02-15 Nissan Motor Co Ltd 応力センサ

Also Published As

Publication number Publication date
JP5233141B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5684442B2 (ja) 磁気センサ装置
EP0443873B1 (en) Magnetostriction type actuator
Ueno et al. Magnetic force control based on the inverse magnetostrictive effect
JP5233141B2 (ja) 磁歪式応力センサおよびその製造方法
JP4182121B2 (ja) 磁気変形を利用したねじれ振動発生及び測定方法と、それを利用したねじれ振動発生及び測定装置
JP6653834B2 (ja) エネルギー変換部材、振動発電装置、力センサー装置およびアクチュエータ
Hahnlen et al. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing
JP4512079B2 (ja) 薄鋼板の磁気特性及び機械的強度測定装置並びに測定方法
JP5644032B2 (ja) 強磁性材料の磁気特性測定方法および磁気特性測定装置
JP5332474B2 (ja) 磁気特性測定装置及び磁気特性測定方法
JP4597715B2 (ja) 磁気加熱装置
Hug et al. Effect of internal stresses on the magnetic properties of non-oriented Fe–3wt.% Si and (Fe, Co)–2wt.% V alloys
Yamazaki et al. Microstructure‐Enhanced Inverse Magnetostrictive Effect in Fe–Co Alloy Wires
Liesegang et al. Ultrasonic welding of magnetic hybrid material systems–316L stainless steel to Ni/Cu/Ni-coated Nd 2 Fe 14 B magnets
JP2006300902A (ja) 応力検出方法及び装置
WO2018216603A1 (ja) 比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法
JP2010078481A (ja) 磁歪式応力センサ
JP2938950B2 (ja) 金属材料の劣化損傷検出装置
JP5458473B2 (ja) 応力測定装置およびこれを用いた応力測定方法
JP6659444B2 (ja) 磁気特性測定用プローブ、磁気特性測定システム、磁気特性測定方法及び劣化評価方法
Uchimoto et al. Electromagnetic nondestructive evaluation of graphite structures in flake graphite cast iron
JP5648958B2 (ja) 磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法
JP2616105B2 (ja) 浸炭厚さの測定方法および測定用プローブ
JPH04229085A (ja) 磁歪式アクチュエータ
WO2022124185A1 (ja) 発電用磁歪素子および磁歪発電デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees