JP2008240816A - 摺動式トリポード形等速ジョイント - Google Patents

摺動式トリポード形等速ジョイント Download PDF

Info

Publication number
JP2008240816A
JP2008240816A JP2007079698A JP2007079698A JP2008240816A JP 2008240816 A JP2008240816 A JP 2008240816A JP 2007079698 A JP2007079698 A JP 2007079698A JP 2007079698 A JP2007079698 A JP 2007079698A JP 2008240816 A JP2008240816 A JP 2008240816A
Authority
JP
Japan
Prior art keywords
roller
tripod
tripod shaft
shaft portion
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007079698A
Other languages
English (en)
Other versions
JP4973930B2 (ja
Inventor
Kazuyuki Ichikawa
和之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007079698A priority Critical patent/JP4973930B2/ja
Publication of JP2008240816A publication Critical patent/JP2008240816A/ja
Application granted granted Critical
Publication of JP4973930B2 publication Critical patent/JP4973930B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

【課題】内ローラとトリポード軸部との接触面圧を低減しつつ、楕円状の接触範囲を狭くするとともに、内ローラとトリポード軸部との間で軸方向に摺動できる摺動式トリポード形等速ジョイントを提供する。
【解決手段】トリポード軸部22の外周面22aを、ボス部21の径方向断面において弧凸状に形成する。ローラ30の内ローラ32は、筒状からなり、その最大内径D1がトリポード軸部22の延伸直交方向断面における最大外接円の直径d1より大きく設定され、トリポード軸部22に対してトリポード軸部22の延伸方向に相対移動可能となるように、その内周面32aの軸方向断面形状が弧凹状に形成され、外ローラ31に対して相対回転可能であり外ローラ31の径方向内方に同軸的に配置され且つ外ローラ31に対する軸方向移動を規制される。
【選択図】図1

Description

本発明は、摺動式トリポード形等速ジョイントに関するものである。
従来の摺動式トリポード形等速ジョイントとして、誘起スラスト力を低減するために、ローラがトリポード軸部に対して揺動可能としたものがある。例えば、特開平3−172619号公報(特許文献1)には、ローラを構成する内ローラの内周面を円筒状とし、トリポード軸部の外周面を球面凸状にしている。これにより、ローラがトリポード軸部に対して揺動可能となり、且つ、内ローラとトリポード軸部との間で軸方向に摺動可能となる。ローラを構成する外ローラがローラ溝を転動しようとする方向と、ローラ溝の延びる方向とが常に一致するようになる。これにより、外ローラとローラ溝との間で滑りが発生せず、誘起スラスト力を低減できる。この誘起スラスト力は、車体の振動や騒音の発生原因となり、車両のNVH性能に影響を与える。
また、特開2000−320563号公報(特許文献2)には、内ローラの内周面の軸方向断面形状を円弧凸状とし、トリポード軸部の外周面を楕円柱状としている。これにより、ローラがトリポード軸部に対して揺動可能となり、且つ、内ローラとトリポード軸部との間で軸方向に摺動可能となるとされている。
また、特開2002−213478号公報(特許文献3)および特開2002−327773号公報(特許文献4)には、内ローラの内周面の軸方向断面形状を円弧凹状とし、トリポード軸部の外周面を球面凸状とすることで、内ローラがトリポード軸部に対して揺動可能となる。ただし、内ローラとトリポード軸部とは軸方向への相対移動を規制されているため、内ローラが、ニードルローラおよび外ローラに対して軸方向に相対移動可能な構成としている。
特開平3−172619号公報 特開2000−320563号公報 特開2002−213478号公報 特開2002−327773号公報
ここで、特許文献1に記載の摺動式トリポード形等速ジョイントにおいては、内ローラの円筒状内周面の内径と、トリポード軸部の球面凸状の外径とは、ほぼ同一する。このため、当該等速ジョイントが回転する際に、円筒状内周面の内ローラと球面凸状のトリポード軸部との接触部位は、周方向に長い楕円状の範囲となる。この楕円状の接触範囲が広いほど、ローラがトリポード軸部に対して揺動する際に、ローラとトリポード軸部との間に生じる摩擦により大きなモーメントが作用する。この摩擦モーメントは、ローラがトリポード軸部に対して揺動しにくくなるように作用する。つまり、摩擦モーメントが大きいほど、ローラがトリポード軸部に連れて移動する可能性が高くなる。その結果、外ローラがローラ溝を転動しようとする方向と、ローラ溝の延びる方向とが一致しない状態が発生する可能性がある。そうすると、外ローラとローラ溝との間に滑りが発生し、誘起スラスト力が生じる可能性がある。従って、楕円状の接触範囲を狭くすることが求められる。
また、特許文献2に記載の摺動式トリポード形等速ジョイントにおいては、内ローラの内周面の軸方向断面形状が円弧凸状であり、トリポード軸部が楕円柱状からなる。このため、内ローラとトリポード軸部とのトルク伝達部位において、凸状同士の接触となる。従って、内ローラとトリポード軸部との接触面圧が大きくなり、寿命が低下するおそれがある。つまり、内ローラとトリポード軸部との接触部位の面圧を低減することが可能な構成が望まれる。
また、特許文献3および4に記載の摺動式トリポード形等速ジョイントでは、内ローラとトリポード軸部との接触範囲は、上述した特許文献1と同様である。従って、その楕円状の接触範囲を狭くすることが求められる。さらに、特許文献3および4においては、内ローラとトリポード軸部との軸方向への相対移動が規制されているため、内ローラがニードルローラおよび外ローラに対して軸方向へ相対移動可能な構成としている。しかし、この場合、一部のニードルローラにて内ローラとの間で滑り摩擦が発生する。このことにより、ニードルローラ全体の周方向への転動に悪影響を及ぼすおそれがある。従って、軸方向への摺動は、特許文献1または2のように、内ローラとトリポード軸部との間で行われることが望まれる。
本発明は、このような事情に鑑みてなされたものであり、内ローラとトリポード軸部との接触面圧を低減しつつ、楕円状の接触範囲を狭くするとともに、内ローラとトリポード軸部との間で軸方向に摺動できる摺動式トリポード形等速ジョイントを提供することを目的とする。
本発明の摺動式トリポード形等速ジョイントは、筒状からなり、内周面にその軸方向に延びる3本のローラ溝が形成された外輪と、シャフトに連結されるボス部、および、ボス部の外周面からそれぞれボス部の径方向外方に延びるように立設されそれぞれのローラ溝に挿入される3本のトリポード軸部を備えるトリポードと、環状からなり、トリポード軸部に対して回転且つ揺動可能でありトリポード軸部の延伸方向に摺動可能にトリポード軸部に支持されるとともに、ローラ溝に転動可能に嵌挿されるローラとを備える。
そして、トリポード軸部の外周面は、ボス部の径方向断面において弧凸状に形成され、ローラは、その軸心がローラ溝の延伸方向に直交するようにローラ溝に嵌挿される外ローラと、筒状からなり、その最大内径D1がトリポード軸部の延伸直交方向断面における最大外接円の直径d1より大きく設定され、トリポード軸部に対してトリポード軸部の延伸方向に相対移動可能となるように、その内周面の軸方向断面形状が弧凹状に形成され、外ローラに対して相対回転可能であり外ローラの径方向内方に同軸的に配置され且つ外ローラに対する軸方向移動を規制される内ローラとを備える。
本発明の摺動式トリポード形等速ジョイントによれば、内ローラがトリポード軸部に対してトリポード軸部の延伸方向に相対移動可能となるように、内ローラの内周面の軸方向断面形状が弧凹状に形成されている。従って、内ローラとトリポード軸部とがその軸方向に相対移動が可能となる。一方、内ローラは、外ローラに対して軸方向への移動が規制されている。
さらに、本発明の摺動式トリポード形等速ジョイントによれば、内ローラの内周面の軸方向断面形状を弧凹状とし、トリポード軸部の外周面の延伸方向断面形状を弧凸状としている。さらに、内ローラの最大内径D1が、トリポード軸部の延伸直交方向断面における最大外接円の直径d1より大きく形成されるように設定されている。つまり、内ローラとトリポード軸部との軸方向相対位置に応じて、内ローラとトリポード軸部とが接触する楕円状範囲の周方向長さ(楕円状の接触範囲の長径に相当する長さ)が異なることになる。従って、特許文献1に比べて、楕円状の接触範囲の周方向長さが短くなる場合が必ず存在する。これにより、等速ジョイントが回転する際に生じる摩擦モーメントを低減でき、結果として誘起スラスト力の低減を図ることができる。
さらに、内ローラとトリポード軸部は、一方が凹状で、他方が凸状であり、特許文献2のような凸状同士の接触ではない。従って、特許文献2に比べて、両者の面圧を低減でき、寿命の向上を図ることができる。
ここで、トリポード軸部の延伸直交方向断面における最大外接円が位置する延伸方向位置を軸部基準位置と定義し、軸部基準位置からトリポード軸部の先端側への距離に対する軸部基準位置から先端側へ向かって縮径する外接円の縮径量を軸部第一縮径率と定義し、軸部基準位置からトリポード軸部の基端側への距離に対する軸部基準位置から基端側へ向かって縮径する外接円の縮径量を軸部第二縮径率と定義する。内ローラの内周面のうち最大内径が位置する軸方向位置をローラ基準位置と定義し、ローラ基準位置からトリポード軸部の先端側に対応する内ローラの一端側への距離に対するローラ基準位置から一端側へ向かって縮径する内径の縮径量をローラ第一縮径率と定義し、ローラ基準位置からトリポード軸部の基端側に対応する内ローラの他端側への距離に対するローラ基準位置から他端側へ向かって縮径する内径の縮径量をローラ第二縮径率と定義する。
そして、本発明の摺動式トリポード形等速ジョイントにおいて、軸部第一縮径率は、ローラ第一縮径率より大きく設定し、軸部第二縮径率は、ローラ第二縮径率より大きく設定するとよい。これにより、内ローラとトリポード軸部とを確実に軸方向へ相対移動できる。
また、本発明の摺動式トリポード形等速ジョイントにおいて、トリポード軸部の外周面におけるボス部の径方向断面形状は、円弧凸状からなり、内ローラの内周面における前記内ローラの軸方向断面形状は、円弧凹状からなり、トリポード軸部の外周面におけるボス部の径方向断面の半径raと、内ローラの内周面における内ローラの軸方向断面の半径Raとは、式(1)の関係を満たすとよい。これにより、確実に、内ローラが、トリポード軸部に対してトリポード軸部の延伸方向に相対移動可能となる。
Figure 2008240816
このように、トリポード軸部の外周面側を円弧凸状とし、内ローラの内周面側を円弧凹状とする場合、内ローラの内周面における内ローラの軸方向断面の半径Raと、内ローラの内周面の最大内径D1とは、式(2)の関係を満たすとよい。これにより、トリポード軸部と内ローラとの、トリポード軸部の延伸方向への相対移動量を十分に大きく確保できる。さらに、内ローラの開口直径を比較的大きくできる。従って、トリポード軸部を内ローラの内周側に挿入し易くなる。
Figure 2008240816
また、トリポード軸部の外周面側を円弧凸状とし、内ローラの内周面側を円弧凹状とする場合、トリポード軸部の外周面におけるボス部の径方向断面の半径raと、内ローラの内周面の最大内径D1とは、式(3)の関係を満たすとよい。これにより、トリポード軸部と内ローラとの、トリポード軸部の延伸方向への相対移動量を十分に大きく確保できる。
Figure 2008240816
また、トリポード軸部の外周面側を円弧凸状とし、内ローラの内周面側を円弧凹状とする場合、トリポード軸部の外周面におけるボス部の径方向断面の半径raと、内ローラの内周面における内ローラの軸方向断面の半径Raと、内ローラの内周面の最大内径D1とは、式(4)の関係を満たすとより。これにより、トリポード軸部と内ローラとの、トリポード軸部の延伸方向への相対移動量をより確実に確保できる。さらに、内ローラの開口直径を比較的大きくできる。従って、トリポード軸部を内ローラの内周側に挿入し易くなる。
Figure 2008240816
上述した本発明の摺動式トリポード形等速ジョイントにおいて、トリポード軸部の外周面側を円弧凸状とし、内ローラの内周面側を円弧凹状としたが、この他に以下のようにしてもよい。すなわち、本発明の摺動式トリポード形等速ジョイントにおいて、トリポード軸部の外周面におけるボス部の径方向断面形状は、トリポード軸部の延伸方向が短径となる楕円状に形成され、内ローラの内周面における内ローラの軸方向断面形状は、円弧凹状からなるようにしてもよい。この場合にも、確実に、内ローラが、トリポード軸部に対してトリポード軸部の延伸方向に相対移動可能となる。
また、上記の他に、本発明の摺動式トリポード形等速ジョイントにおいて、トリポード軸部の外周面におけるボス部の径方向断面形状は、円弧凸状からなり、内ローラの内周面における内ローラの軸方向断面形状は、内ローラの軸方向が長径となる楕円状に形成されるようにしてもよい。この場合にも、確実に、内ローラが、トリポード軸部に対してトリポード軸部の延伸方向に相対移動可能となる。さらに、内ローラの開口直径を比較的大きくできる。従って、トリポード軸部を内ローラの内周側に挿入し易くなる。
また、上記の他に、本発明の摺動式トリポード形等速ジョイントにおいて、トリポード軸部の外周面におけるボス部の径方向断面形状は、トリポード軸部の延伸方向が短径となる楕円状に形成され、内ローラの内周面における内ローラの軸方向断面形状は、内ローラの軸方向が長径となる楕円状に形成されるようにしてもよい。この場合にも、確実に、内ローラが、トリポード軸部に対してトリポード軸部の延伸方向に相対移動可能となる。さらに、内ローラの開口直径を比較的大きくできる。従って、トリポード軸部を内ローラの内周側に挿入し易くなる。
ここで、上述においては、トリポード軸部の延伸方向断面形状および内ローラの軸方向断面形状について説明した。次に、トリポード軸部の延伸直交方向断面形状および内ローラの径方向断面形状について説明する。
すなわち、本発明の摺動式トリポード形等速ジョイントにおいて、トリポード軸部の外周面におけるトリポード軸部の延伸直交方向断面形状は、真円に形成されるようにしてもよい。これにより、トリポード軸部の外周面の加工が容易となり、低コスト化を図ることができる。
また、真円の他に、トリポード軸部の外周面におけるトリポード軸部の延伸直交方向断面形状は、ボス部の軸方向側が短径となりボス部の周方向側が長径となる楕円状に形成されるようにしてもよい。これにより、内ローラとトリポード軸部とが接触する楕円状範囲の周方向長さを、より短くできる。従って、等速ジョイントが回転する際に生じる摩擦モーメントをより低減でき、結果として誘起スラスト力のさらなる低減を図ることができる。
また、真円、楕円の他に、トリポード軸部の外周面におけるトリポード軸部の延伸直交方向断面形状は、ボス部の軸方向側が短手方向でありボス部の周方向側が長手方向であって、長手方向の両端面におけるトリポード軸部の延伸直交方向断面形状は、円弧凸状からなり、当該長手方向の両端面におけるトリポード軸部の延伸直交方向断面の半径rbと、トリポード軸部の延伸直交方向断面における最大外接円の直径d1とは、式(5)の関係を満たすようにしてもよい。
Figure 2008240816
rb=d1/2の場合には、上述した真円の場合とほぼ同様となる。そして、rb<d1/2の場合には、内ローラとトリポード軸部とが接触する楕円状範囲の周方向長さを、より短くできる。従って、等速ジョイントが回転する際に生じる摩擦モーメントをより低減でき、結果として誘起スラスト力のさらなる低減を図ることができる。
なお、上記における円弧凹状、円弧凸状、楕円、真円などの形状に形成されるとは、設計上、該当形状に設計されて、その設計寸法に基づいて形成されることを意味する。従って、製造誤差などにより、結果的に該当形状に形成されることを意味するものではない。例えば、楕円に形成されるとは、楕円に設計されて、その設計寸法に基づいて加工されることを意味する。つまり、楕円に形成されるとは、真円に形成されるつもりで、製造誤差などにより、結果的に楕円に形成されるものを含むものではない。
本発明の摺動式トリポード形等速ジョイントによれば、内ローラとトリポード軸部との接触面圧を低減しつつ、楕円状の接触範囲を狭くするとともに、内ローラとトリポード軸部との間で軸方向に摺動できる。
次に、実施形態を挙げ、本発明をより詳しく説明する。ここで、本実施形態の摺動式トリポード型等速ジョイント(以下、単に「等速ジョイント」と称する。)は、車両の動力伝達シャフトの連結に用いる場合を例に挙げて説明する。例えば、ディファレンシャルギヤに連結された軸部とドライブシャフトなどのシャフトとの連結部位に用いる場合である。
<第一実施形態>
(等速ジョイント1の構成)
第一実施形態の等速ジョイント1の構成について、図1を参照して説明する。図1は、等速ジョイント1の一部を径方向に切断した断面図(径方向断面図)である。
この等速ジョイント1は、図1に示すように、ディファレンシャルギヤ(図示せず)に連結される外輪10と、シャフト(図示せず)に連結されるトリポード20と、外輪10とトリポード20との間に介在するローラ30とから構成される。
外輪10は、筒状(例えば、有底筒状)に形成されており、一端側がディファレンシャルギヤに連結されている。そして、外輪10の筒状部分の内周面には、外輪軸方向(図1の前後方向)に延びるローラ溝11が、外輪軸の周方向に等間隔に3本形成されている。
トリポード20は、外輪10の筒状部分の内側に配置されている。このトリポード20は、ボス部21と、3本のトリポード軸部22とを備える。ボス部21は、円筒状からなり、内周側には内周スプライン21aが形成されている。この内周スプライン21aは、ドライブシャフト(図示せず)の端部の外周スプラインに嵌合連結される。
それぞれのトリポード軸部22は、ボス部21の外周面からそれぞれボス部21の径方向外方に延びるように立設されている。これらのトリポード軸部22は、ボス部21の周方向に等間隔(120度間隔)に形成されている。そして、それぞれのトリポード軸部22の先端部は、外輪10のそれぞれのローラ溝11内に挿入されている。なお、トリポード軸部22の詳細形状については、後述する。
ローラ30は、全体形状としては、環状からなる。このローラ30は、トリポード軸部22の外周側に配置されている。このローラ30は、トリポード軸部22に対して回転且つ揺動可能に、トリポード軸部22に支持されている。さらに、ローラ30は、トリポード軸部22の延伸方向に摺動可能となるように、トリポード軸部22に支持されている。そして、ローラ30は、ローラ溝11に転動可能に嵌挿されている。このローラ30は、外ローラ31と、内ローラ32と、ニードルローラ33と、止め輪34、35とから構成される。
外ローラ31は、円筒状に形成されている。この外ローラ31の外周面は、ローラ溝11に対応する形状、すなわちローラ溝11を反転した形状からなる。そして、外ローラ31は、その軸心がローラ溝11の延伸方向に直交するように、ローラ溝11に嵌挿されている。また、外ローラ31の内周面は、円筒状、すなわち、外ローラ31の軸方向に亘ってほぼ同径に形成されている。ただし、外ローラ31の内周面の両開口側には、全周に亘って止め輪溝31a、31bが形成されている。
内ローラ32は、筒状に形成されている。内ローラ32の軸方向長さは、外ローラ31に形成された止め輪溝31a、31b間の離間距離に相当する。内ローラ32の外周面は、円筒状、すなわち、内ローラ32の軸方向全体に亘って同径に形成されている。この内ローラ32の外径は、外ローラ31の内径より小さな外径に形成されている。そして、内ローラ32は、外ローラ31の径方向内方に離隔して配置されている。この内ローラ32と外ローラ31との隙間には、全周に亘って、複数のニードルローラ33が配置されている。そして、このニードルローラ33を介することで、内ローラ32は、外ローラ31に対して相対回転可能とされている。さらに、内ローラ32は、外ローラ31に対して、径方向内方に同軸的に配置されている。また、内ローラ32の内周面32aにおける内ローラ32の軸方向断面形状が、円弧凹状に形成されている。この内ローラ32の内周面32aの詳細については、後述する。
止め輪34、35は、切り込み部分が形成されたC字型状からなる。つまり、止め輪34、35は、縮径可能な形状からなる。これらの止め輪34、35は、外ローラ31の止め輪溝31a、31bにそれぞれ嵌め込まれる。そして、止め輪34、35は、内ローラ32およびニードルローラ33に対して、ローラ30の軸心方向に係合するようにされている。つまり、止め輪34、35は、内ローラ32およびニードルローラ33が、外ローラ31に対して、軸方向に相対的に移動することを規制している。
(トリポード軸部22の詳細形状)
次に、トリポード軸部22の詳細形状について、図2(a)(b)を参照して説明する。図2は、トリポード軸部22と内ローラ32のみに関する図である。具体的には、図2(a)は、トリポード軸部22および内ローラ32の、トリポード軸部22の延伸方向断面図(内ローラ32の軸方向断面図でもある)である。図2(b)は、図2(a)のA−A断面図である。すなわち、図2(b)は、トリポード軸部22および内ローラ32の、トリポード軸部22の延伸直交方向断面図(内ローラ32の軸直交方向断面図でもある)である。
ここで、以下、図2(a)に示すようなトリポード軸部22の外周面22aにおけるボス部21の径方向断面を、「トリポード軸部22の第一縦断面」と称する。また、図示しないが、トリポード軸部22の外周面22aにおけるシャフト軸方向の断面を、「トリポード軸部22の第二縦断面」と称する。また、図2(b)に示すようなトリポード軸部22の外周面22aにおけるトリポード軸部22の延伸直交方向断面を、「トリポード軸部22の横断面」と称する。また、トリポード軸部22の軸心を通り、トリポード軸部22の延伸方向の中央部を、o1とする。
図2(b)に示すように、トリポード軸部22は、頂面22bを有し、ボス部21側には、くびれ部22cを有する。
このトリポード軸部22の横断面形状は、真円の図2(b)の上下面を切り取った形状からなる。すなわち、トリポード軸部22の横断面形状は、ボス部21の軸方向側(シャフト軸方向側)が短手方向であり、ボス部21の周方向側(トルク伝達方向側)が長手方向となる。そして、この短手方向幅は、トリポード軸部22の延伸方向全体に亘って、w1である。
一方、長手方向幅は、図2(a)に示すように、トリポード軸部22の延伸方向中央部が最も大きなd1である。つまり、トリポード軸部22の横断面の最大外接円の直径がd1となる。従って、このトリポード軸部22の横断面において、短手方向幅w1と、長手方向の最大幅d1とは、式(6)の関係となる。
そして、長手方向幅は、トリポード軸部22の延伸方向中央部から先端側に向かって小さくなり、且つ、当該中央部から基端側に向かって小さくなる。具体的には、トリポード軸部22の横断面形状の長手方向の両端面は、円弧凸状からなる。この横断面形状の円弧凸状の半径rbと、トリポード軸部22の最大外接円の直径d1との関係は、式(7)の関係となる。さらに、トリポード軸部22の頂面22bにおける外接円の直径d2、および、トリポード軸部22の下面22dにおける外接円の直径d3は、同一としている。つまり、トリポード軸部22の最大外接円の直径d1、頂面22bの外接円の直径d2、および、下面22dの外接円の直径d3の関係は、式(8)の関係となる。ここで、頂面22bと下面22dとの軸方向距離は、t1である。なお、トリポード軸部22の頂面22bは、実際には、僅かに凸状に湾曲した曲面からなり、当該頂面22bの外接円とは、頂面22bとトリポード軸部22の外周面22aとの境界部における外径に相当する。
また、トリポード軸部22の第一縦断面形状は、円弧凸状に形成されている。この第一縦断面形状の円弧凸状の半径raと、トリポード軸部22の最大外接円の直径d1との関係は、式(9)の関係となる。つまり、図2(a)に示すように、第一縦断面形状の円弧凸状の中心点o3は、トリポード軸部22の中心点o1より、該当外周面22a側にずれている。
Figure 2008240816
また、図2(b)に示すように、トリポード軸部22の横断面形状が真円の図2(b)の上下面を切り取った形状からなるため、トリポード軸部22の第二縦断面形状は、直線状となる。
(内ローラ32の詳細形状)
次に、内ローラ32の詳細形状について、図2(a)(b)を参照して説明する。ここで、以下、図2(a)に示すような内ローラ32の内周面32aにおける内ローラ32の軸方向断面を、「内ローラ32の縦断面」と称する。また、図2(b)に示すような内ローラ32の内周面32aにおける内ローラ32の径方向断面を、「内ローラ32の横断面」と称する。また、内ローラ32の軸心を通り、内ローラ32の軸方向の中央部を、O2とする。
内ローラ32の横断面形状は、内ローラ32の軸方向全体に亘って、真円状に形成されている。この内ローラ32の横断面形状は、図2(a)に示すように、内ローラ32の軸方向中央部が最も大きなD1である。つまり、内ローラ32の最大内径が、D1となる。この内ローラ32の最大内径D1は、トリポード軸部22の最大外接円の直径d1より大きくされている。つまり、内ローラ32の最大内径D1と、トリポード軸部22の最大外接円の直径d1との関係は、式(10)の関係となる。
Figure 2008240816
そして、内ローラ32の縦断面形状は、内ローラ32の軸方向中央部から一方開口32b(図2(a)の下方開口)に向かって小さくなり、且つ、当該中央部から他方開口32c(図2(a)の上方開口)に向かって小さくなる。具体的には、内ローラ32の縦断面形状は、円弧凹状からなる。この内ローラ32の縦断面形状の円弧凹状の半径Raと、内ローラ32の最大内径D1との関係は、式(11)の関係となる。つまり、図2(a)に示すように、内ローラ32の縦断面形状の円弧凹状の中心点O4は、内ローラ32の中心点o2より、該当内周面から遠い側にずれている。
さらに、内ローラ32の一方開口32bの直径D2、および、他方開口32cの直径D3とは、同一としている。さらに、内ローラ32の開口32b、32cの直径D2、D3は、トリポード軸部22の最大外接円の直径d1より小さくされている。さらに、内ローラ32の開口32b、32cの直径D2、D3は、トリポード軸部22の横断面形状の短手方向幅w1より大きくされている。つまり、トリポード軸部22の最大外接円の直径d1、トリポード軸部22の横断面形状の短手方向幅w1、一方開口32bの直径D2、および、他方開口32cの直径D3の関係は、式(12)の関係となる。
Figure 2008240816
そして、式(9)(10)(11)の関係から、式(13)の関係を導き出すことができる。さらに、内ローラ32の軸方向幅は、T1である。この内ローラ32の軸方向幅T1と、トリポード軸部22の頂面22bと下面22dとの軸方向距離t1との関係は、式(14)の関係となる。
Figure 2008240816
つまり、式(13)の関係から、以下のことが言える。まず、トリポード軸部22の横断面における最大外接円が位置する延伸方向位置を軸部基準位置と定義する。続いて、軸部基準位置からトリポード軸部22の先端側(頂面22b側)への距離に対する、軸部基準位置から先端側へ向かって縮径する外接円の縮径量を軸部第一縮径率と定義する。続いて、軸部基準位置からトリポード軸部22の基端側(下面22d側)への距離に対する、軸部基準位置から基端側へ向かって縮径する外接円の縮径量を軸部第二縮径率と定義する。
さらに、内ローラ32の内周面32aのうち最大内径が位置する軸方向位置をローラ基準位置と定義する。続いて、ローラ基準位置からトリポード軸部22の先端側に対応する一端側(他方開口32c側)への距離に対する、ローラ基準位置から内ローラ32の一端側へ向かって縮径する内径の縮径量をローラ第一縮径率と定義する。続いて、ローラ基準位置からトリポード軸部22の基端側に対応する内ローラ32の他端側(一方開口32b側)への距離に対する、ローラ基準位置から他端側へ向かって縮径する内径の縮径量をローラ第二縮径率と定義する。
このように定義した場合に、式(13)の関係は、軸部第一縮径率が、ローラ第一縮径率より大きく設定される関係となり、軸部第二縮径率が、ローラ第二縮径率より大きく設定される関係となる。
(トリポード軸部22と内ローラ32との組み付け)
次に、トリポード軸部22と内ローラ32との組み付けについて、図3を参照して説明する。図3は、トリポード軸部22に内ローラ32を組み付ける状態を示す図である。ここで、式(12)より、内ローラ32の開口32b、32cの直径D2、D3は、トリポード軸部22の最大外接円の直径d1より小さい。従って、トリポード軸部22と内ローラ32とを同軸上に位置決めした状態で、内ローラ32の内周側にトリポード軸部22を挿入することはできない。そこで、図3に示すように、トリポード軸部22の軸心と内ローラ32の軸心とが、傾斜して交差するように配置するか、もしくは、ねじれるように配置しておく。この状態にて、内ローラ32の内周側にトリポード軸部22を挿入する。
ここで、式(12)より、トリポード軸部22の横断面形状の短手方向幅w1が、内ローラ32の他方開口32cの直径D3より小さくされている。さらに、式(13)より、トリポード軸部22の第一縦断面形状の円弧凸状の半径raは、内ローラ32の横断面形状の円弧凹状の半径Raより小さくされている。さらに、トリポード軸部22の第一縦断面形状の円弧凸状の半径raは、内ローラ32の最大内径D1の半径D1/2より小さく、且つ、内ローラ32の横断面形状の円弧凹状の半径Raは、内ローラ32の最大内径D1の半径D1/2より大きくされている。さらに、トリポード軸部22の頂面22bと下面22dとの軸方向距離t1が、内ローラ32の軸方向幅T1より小さくされている。
そして、トリポード軸部22の外周面22aと内ローラ32の内周面32aを、上記のような形状とすることで、確実に且つ容易に、内ローラ32の内周側にトリポード軸部22を挿入できる。
(等速ジョイント1の動作)
次に、等速ジョイント1の動作 具体的には、トリポード軸部22と内ローラ32との相互動作について説明する。ここで、内ローラ32は、止め輪34、35により、外ローラ31に対して軸方向に相対的に移動できないように規制されている。
一方、式(10)より、内ローラ32の最大内径D1は、トリポード軸部22の最大外接円の直径d1より大きくされている。さらに、式(13)より、軸部第一縮径率が、ローラ第一縮径率より大きく設定される関係となり、軸部第二縮径率が、ローラ第二縮径率より大きく設定される関係となる。つまり、トリポード軸部22が内ローラ32の内周側に挿入された状態において、トリポード軸部22の外周面22aと内ローラ32の内周面32aとの間に、径方向隙間が形成されている。従って、トリポード軸部22は、内ローラ32の内周側において、その軸方向に相対移動可能となる。さらに、トリポード軸部22は、内ローラ32に対して揺動且つ回転可能となる。
そして、式(12)より、内ローラ32の開口32b、32cの直径D2、D3は、トリポード軸部22の最大外接円の直径d1より小さくされている。従って、図1および図2(a)の破線にて示すように、トリポード軸部22は内ローラ32の内周側から離脱することがない。
このように、内ローラ32は、トリポード軸部22に対して回転且つ揺動可能であるとともに、トリポード軸部22の延伸方向に摺動可能に、トリポード軸部22に支持されていることになる。
(トリポード軸部22と内ローラ32との接触状態)
次に、等速ジョイント1が回転する際におけるトリポード軸部22と内ローラ32との接触状態について説明する。図2(b)に示すように、等速ジョイント1が回転する際には、トリポード軸部22の横断面形状の長手方向の両端面が、内ローラ32の内周面32aに接触する。このとき、両者の接触範囲は、内ローラ32の周方向に長い楕円状の範囲となる。ここで、式(7)(10)より、トリポード軸部22の横断面形状の長手方向の両端面である円弧凸状の半径rbは、内ローラ32の最大内径D1の半径D1/2より小さくされている。従って、特許文献1に比べて、両者の楕円状の接触範囲の長径が短くなる。これにより、トリポード軸部22が内ローラ32に対して揺動する際に、トリポード軸部22と内ローラ32との間に生じる摩擦モーメントを低減できる。その結果、誘起スラスト力を低減できる。
さらに、トリポード軸部22の第一縦断面形状を円弧凸状とし、内ローラ32の縦断面形状を円弧凹状とすることで、特許文献2に比べて、トリポード軸部22と内ローラ32との接触面圧が低減される。従って、両者の寿命を向上できる。
<第二実施形態>
次に、第二実施形態の等速ジョイント1について、図4を参照して説明する。図4は、トリポード軸部122および内ローラ32の軸方向断面図である。ここで、第二実施形態における等速ジョイント1は、上記第一実施形態の等速ジョイント1に対して、トリポード軸部122が相違する。より具体的には、トリポード軸部122の外周面122aにおけるボス部21の径方向断面、すなわち、トリポード軸部122の第一縦断面形状のみが相違する。そこで、トリポード軸部122の第一縦断面形状のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
トリポード軸部122の第一縦断面形状は、円弧凸状に形成されている。この第一縦断面形状の円弧凸状の半径raは、トリポード軸部122の最大外接円の直径d1の半分である。つまり、第一縦断面形状の円弧凸状の半径raと、トリポード軸部22の最大外接円の直径d1との関係は、式(15)の関係となる。つまり、図2(a)に示すように、第一縦断面形状の円弧凸状の中心点o3は、トリポード軸部22の中心点o1より、該当外周面22a側にずれている。
Figure 2008240816
このようにした場合であっても、実質的に、第一実施形態と同様の効果を奏することができる。ただし、トリポード軸部122と内ローラ32との組み付けの際に、第一実施形態の場合に比べると組付性が劣る。
<第三実施形態>
次に、第三実施形態の等速ジョイント1について、図5を参照して説明する。図5は、トリポード軸部222および内ローラ32の軸方向断面図である。ここで、第三実施形態における等速ジョイント1は、上記第一実施形態の等速ジョイント1に対して、トリポード軸部222が相違する。より具体的には、トリポード軸部222の外周面222aにおけるボス部21の径方向断面、すなわち、トリポード軸部222の第一縦断面形状のみが相違する。そこで、トリポード軸部222の第一縦断面形状のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
トリポード軸部222の第一縦断面形状は、トリポード軸部222の延伸方向が短径となる楕円状に形成されている。具体的には、当該楕円状の短径d4は、トリポード軸部222の最大外接円の直径、すなわち当該楕円状の長径に相当するd1よりも小さくなる。さらに、当該楕円状の短径d4は、内ローラ32の軸方向幅T1よりも大きく設定されている。つまり、当該楕円状の短径d4、トリポード軸部222の最大外接円の直径d1、および、内ローラ32の軸方向幅T1との関係は、式(16)の関係となる。
Figure 2008240816
このようにした場合であっても、実質的に、第一実施形態と同様の効果を奏することができる。そして、トリポード軸部222と内ローラ32との組み付けの際の組付性についても、第一実施形態と同様である。
<第四実施形態>
次に、第四実施形態の等速ジョイント1について、図6を参照して説明する。図6は、トリポード軸部122および内ローラ332の軸方向断面図である。ここで、第四実施形態における等速ジョイント1は、上記第二実施形態の等速ジョイント1に対して、内ローラ332が相違する。より具体的には、内ローラ332の内周面332aにおける内ローラ332の軸方向断面、すなわち、内ローラ332の縦断面形状のみが相違する。そこで、内ローラ332の縦断面形状のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
内ローラ332の縦断面形状は、内ローラ332の軸方向が長径となる楕円状に形成されている。つまり、当該楕円状の短径は、内ローラ332の最大内径D1となる。
このようにした場合、実質的に、第二実施形態と同様の効果を奏することができる。そして、トリポード軸部122と内ローラ332との組み付けの際の組付性についても、第二実施形態と同様である。
<第五実施形態>
次に、第五実施形態の等速ジョイント1について、図7を参照して説明する。図7は、トリポード軸部422および内ローラ232の軸方向断面図である。ここで、第五実施形態における等速ジョイント1は、上記第三実施形態の等速ジョイント1に対して、内ローラ432が相違する。より具体的には、内ローラ432の内周面432aにおける内ローラ432の軸方向断面、すなわち、内ローラ432の縦断面形状のみが相違する。そこで、内ローラ432の縦断面形状のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
内ローラ432の縦断面形状は、内ローラ432の軸方向が長径となる楕円状に形成されている。つまり、当該楕円状の短径は、内ローラ432の最大内径D1となる。このようにした場合、実質的に、第三実施形態と同様の効果を奏することができる。そして、トリポード軸部222と内ローラ432との組み付けの際の組付性についても、第三実施形態と同様である。
<第六実施形態>
次に、第六実施形態の等速ジョイント1について、図8を参照して説明する。図8は、トリポード軸部522および内ローラ32の径方向断面図である。ここで、第六実施形態における等速ジョイント1は、上記第一実施形態の等速ジョイント1に対して、トリポード軸部522が相違する。より具体的には、トリポード軸部522の外周面532aにおける延伸直交方向断面、すなわち、トリポード軸部522の横断面形状のみが相違する。さらに具体的には、トリポード軸部522の横断面形状における長手方向の両端面のみが相違する。そこで、トリポード軸部522の横断面形状における長手方向の両端面のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
トリポード軸部522の横断面形状における長手方向の両端面は、円弧凸状からなる。この横断面形状における円弧凸状の半径rbは、トリポード軸部522の最大外接円の直径d1よりも小さく設定されている。すなわち、この横断面形状の円弧凸状の半径rbと、トリポード軸部22の最大外接円の直径d1との関係は、式(17)の関係となる。
Figure 2008240816
このようにすることで、内ローラ32とトリポード軸部522とが接触する楕円状範囲の周方向長さを、より短くできる。従って、等速ジョイント1が回転する際に生じる摩擦モーメントをより低減でき、結果として誘起スラスト力のさらなる低減を図ることができる。
<第七実施形態>
次に、第七実施形態の等速ジョイント1について、図9を参照して説明する。図9は、トリポード軸部622および内ローラ32の径方向断面図である。ここで、第七実施形態における等速ジョイント1は、上記第一実施形態の等速ジョイント1に対して、トリポード軸部622が相違する。より具体的には、トリポード軸部622の外周面632aにおける延伸直交方向断面、すなわち、トリポード軸部622の横断面形状における長手方向の両端面のみが相違する。そこで、トリポード軸部622の横断面形状における長手方向の両端面のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
トリポード軸部622の横断面形状における長手方向の両端面は、楕円状に形成されている。具体的には、シャフト軸方向側(ボス部21の軸方向側)が楕円状の短径となり、トルク伝達方向側(ボス部21の周方向側)が楕円状の長径となる。つまり、トリポード軸部622の最大外接円の直径d1が、当該楕円状の長径となり、楕円状の短径w2は、トリポード軸部622の最大外接円の直径d1より小さく設定されている。
このようにすることで、内ローラ32とトリポード軸部622とが接触する楕円状範囲の周方向長さを、より短くできる。従って、等速ジョイント1が回転する際に生じる摩擦モーメントをより低減でき、結果として誘起スラスト力のさらなる低減を図ることができる。
<第八実施形態>
次に、第八実施形態の等速ジョイント1について、図10を参照して説明する。図10は、トリポード軸部722および内ローラ32の径方向断面図である。ここで、第八実施形態における等速ジョイント1は、上記第一実施形態の等速ジョイント1に対して、トリポード軸部722が相違する。より具体的には、トリポード軸部722の外周面732aにおける延伸直交方向断面、すなわち、トリポード軸部722の横断面形状が相違する。そこで、トリポード軸部722の横断面形状のみについて説明し、その他の構成については、同一符号を付して説明を省略する。
トリポード軸部722の横断面形状は、真円状に形成されている。このトリポード軸部722の横断面形状における最大直径は、最大外接円の直径d1となる。
このようにした場合であっても、実質的に、第一実施形態と同様の効果を奏することができる。ただし、トリポード軸部722と内ローラ32との組み付けの際に、第一実施形態の場合に比べると組付性が劣る。
第一実施形態における等速ジョイント1の一部を径方向に切断した断面図(径方向断面図)である。 第一実施形態におけるトリポード軸部22と内ローラ32のみに関する図である。 トリポード軸部22に内ローラ32を組み付ける状態を示す図である。 第二実施形態におけるトリポード軸部122および内ローラ32の軸方向断面図である。 第三実施形態におけるトリポード軸部222および内ローラ32の軸方向断面図である。 第四実施形態におけるトリポード軸部122および内ローラ332の軸方向断面図である。 第五実施形態におけるトリポード軸部422および内ローラ232の軸方向断面図である。 第六実施形態におけるトリポード軸部522および内ローラ32の径方向断面図である。 第七実施形態におけるトリポード軸部622および内ローラ32の径方向断面図である。 第八実施形態におけるトリポード軸部722および内ローラ32の径方向断面図である。
符号の説明
1:等速ジョイント、
10:外輪、 11:ローラ溝、
20:トリポード、 21:ボス部、 21a:内周スプライン、
22、122、222:トリポード軸部、 22a、122a、222a:外周面、
22b:頂面、 22c:くびれ部、 22d:下面、
30:ローラ、 31:外ローラ、 31a、31b:止め輪溝、
32、332、432、522、622、722:内ローラ、
32a、332a、432a、522a、622a、722a:内周面、
32b:一方開口、 32c:他方開口、
33:ニードルローラ、
34、35:止め輪

Claims (12)

  1. 筒状からなり、内周面にその軸方向に延びる3本のローラ溝が形成された外輪と、
    シャフトに連結されるボス部、および、前記ボス部の外周面からそれぞれ前記ボス部の径方向外方に延びるように立設されそれぞれの前記ローラ溝に挿入される3本のトリポード軸部を備えるトリポードと、
    環状からなり、前記トリポード軸部に対して回転且つ揺動可能であり前記トリポード軸部の延伸方向に摺動可能に前記トリポード軸部に支持されるとともに、前記ローラ溝に転動可能に嵌挿されるローラと、
    を備える摺動式トリポード形等速ジョイントであって、
    前記トリポード軸部の外周面は、前記ボス部の径方向断面において弧凸状に形成され、
    前記ローラは、
    その軸心が前記ローラ溝の延伸方向に直交するように前記ローラ溝に嵌挿される外ローラと、
    筒状からなり、その最大内径D1が前記トリポード軸部の延伸直交方向断面における最大外接円の直径d1より大きく設定され、前記トリポード軸部に対して前記トリポード軸部の延伸方向に相対移動可能となるように、その内周面の軸方向断面形状が弧凹状に形成され、前記外ローラに対して相対回転可能であり前記外ローラの径方向内方に同軸的に配置され且つ前記外ローラに対する軸方向移動を規制される内ローラと、
    を備えることを特徴とする摺動式トリポード形等速ジョイント。
  2. 前記トリポード軸部の延伸直交方向断面における最大外接円が位置する延伸方向位置を軸部基準位置と定義し、
    前記軸部基準位置から前記トリポード軸部の先端側への距離に対する前記軸部基準位置から前記先端側へ向かって縮径する外接円の縮径量を軸部第一縮径率と定義し、
    前記軸部基準位置から前記トリポード軸部の基端側への距離に対する前記軸部基準位置から前記基端側へ向かって縮径する外接円の縮径量を軸部第二縮径率と定義し、
    前記内ローラの内周面のうち最大内径が位置する軸方向位置をローラ基準位置と定義し、
    前記ローラ基準位置から前記トリポード軸部の前記先端側に対応する前記内ローラの一端側への距離に対する前記ローラ基準位置から前記一端側へ向かって縮径する内径の縮径量をローラ第一縮径率と定義し、
    前記ローラ基準位置から前記トリポード軸部の前記基端側に対応する前記内ローラの他端側への距離に対する前記ローラ基準位置から前記他端側へ向かって縮径する内径の縮径量をローラ第二縮径率と定義し、
    前記軸部第一縮径率は、前記ローラ第一縮径率より大きく設定し、
    前記軸部第二縮径率は、前記ローラ第二縮径率より大きく設定する請求項1に記載の摺動式トリポード形等速ジョイント。
  3. 前記トリポード軸部の外周面における前記ボス部の径方向断面形状は、円弧凸状からなり、
    前記内ローラの内周面における前記内ローラの軸方向断面形状は、円弧凹状からなり、
    前記トリポード軸部の外周面における前記ボス部の径方向断面の半径raと、前記内ローラの内周面における前記内ローラの軸方向断面の半径Raとは、式(1)の関係を満たす請求項1または2に記載の摺動式トリポード形等速ジョイント。
    Figure 2008240816
  4. 前記内ローラの内周面における前記内ローラの軸方向断面の半径Raと、前記内ローラの内周面の最大内径D1とは、式(2)の関係を満たす請求項3に記載の摺動式トリポード形等速ジョイント。
    Figure 2008240816
  5. 前記トリポード軸部の外周面における前記ボス部の径方向断面の半径raと、前記内ローラの内周面の最大内径D1とは、式(3)の関係を満たす請求項3に記載の摺動式トリポード形等速ジョイント。
    Figure 2008240816
  6. 前記トリポード軸部の外周面における前記ボス部の径方向断面の半径raと、前記内ローラの内周面における前記内ローラの軸方向断面の半径Raと、前記内ローラの内周面の最大内径D1とは、式(4)の関係を満たす請求項3に記載の摺動式トリポード形等速ジョイント。
    Figure 2008240816
  7. 前記トリポード軸部の外周面における前記ボス部の径方向断面形状は、前記トリポード軸部の延伸方向が短径となる楕円状に形成され、
    前記内ローラの内周面における前記内ローラの軸方向断面形状は、円弧凹状からなる請求項1または2に記載の摺動式トリポード形等速ジョイント。
  8. 前記トリポード軸部の外周面における前記ボス部の径方向断面形状は、円弧凸状からなり、
    前記内ローラの内周面における前記内ローラの軸方向断面形状は、前記内ローラの軸方向が長径となる楕円状に形成される請求項1または2に記載の摺動式トリポード形等速ジョイント。
  9. 前記トリポード軸部の外周面における前記ボス部の径方向断面形状は、前記トリポード軸部の延伸方向が短径となる楕円状に形成され、
    前記内ローラの内周面における前記内ローラの軸方向断面形状は、前記内ローラの軸方向が長径となる楕円状に形成される請求項1または2に記載の摺動式トリポード形等速ジョイント。
  10. 前記トリポード軸部の外周面における前記トリポード軸部の延伸直交方向断面形状は、真円に形成される請求項1〜9の何れか一項に記載の摺動式トリポード形等速ジョイント。
  11. 前記トリポード軸部の外周面における前記トリポード軸部の延伸直交方向断面形状は、前記ボス部の軸方向側が短径となり前記ボス部の周方向側が長径となる楕円状に形成される請求項1〜9の何れか一項に記載の摺動式トリポード形等速ジョイント。
  12. 前記トリポード軸部の外周面における前記トリポード軸部の延伸直交方向断面形状は、前記ボス部の軸方向側が短手方向であり前記ボス部の周方向側が長手方向であって、
    前記長手方向の両端面における前記トリポード軸部の延伸直交方向断面形状は、円弧凸状からなり、
    当該長手方向の両端面における前記トリポード軸部の延伸直交方向断面の半径rbと、前記トリポード軸部の延伸直交方向断面における最大外接円の直径d1とは、式(5)の関係を満たす請求項1〜9の何れか一項に記載の摺動式トリポード形等速ジョイント。
    Figure 2008240816
JP2007079698A 2007-03-26 2007-03-26 摺動式トリポード形等速ジョイント Expired - Fee Related JP4973930B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079698A JP4973930B2 (ja) 2007-03-26 2007-03-26 摺動式トリポード形等速ジョイント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079698A JP4973930B2 (ja) 2007-03-26 2007-03-26 摺動式トリポード形等速ジョイント

Publications (2)

Publication Number Publication Date
JP2008240816A true JP2008240816A (ja) 2008-10-09
JP4973930B2 JP4973930B2 (ja) 2012-07-11

Family

ID=39912428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079698A Expired - Fee Related JP4973930B2 (ja) 2007-03-26 2007-03-26 摺動式トリポード形等速ジョイント

Country Status (1)

Country Link
JP (1) JP4973930B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027212A (ja) * 2009-07-28 2011-02-10 Nok Corp 自在継手用ブーツ
WO2011114505A1 (ja) * 2010-03-19 2011-09-22 Ntn株式会社 トリポード型等速自在継手

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172619A (ja) * 1989-11-03 1991-07-26 Gkn Automot Ag 同期回転継ぎ手
JP2002147482A (ja) * 2000-10-16 2002-05-22 Delphi Technologies Inc トリポード型等速ジョイント
JP2002327773A (ja) * 2001-05-07 2002-11-15 Ntn Corp 等速自在継手

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172619A (ja) * 1989-11-03 1991-07-26 Gkn Automot Ag 同期回転継ぎ手
JP2002147482A (ja) * 2000-10-16 2002-05-22 Delphi Technologies Inc トリポード型等速ジョイント
JP2002327773A (ja) * 2001-05-07 2002-11-15 Ntn Corp 等速自在継手

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027212A (ja) * 2009-07-28 2011-02-10 Nok Corp 自在継手用ブーツ
WO2011114505A1 (ja) * 2010-03-19 2011-09-22 Ntn株式会社 トリポード型等速自在継手
CN102859219A (zh) * 2010-03-19 2013-01-02 Ntn株式会社 三球销型等速万向接头

Also Published As

Publication number Publication date
JP4973930B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
JP2011163442A (ja) 摺動式トリポード型等速ジョイント
JP4973930B2 (ja) 摺動式トリポード形等速ジョイント
WO2010146958A1 (ja) トリポード型等速ジョイント
JP5109515B2 (ja) 摺動式トリポード形等速ジョイント
JP4602177B2 (ja) 等速自在継手
JP5625534B2 (ja) 摺動式トリポード型等速ジョイント
JP2010255801A (ja) トリポード型等速ジョイント
JP2011163410A (ja) 摺動式トリポード型等速ジョイント
JP4973929B2 (ja) 摺動式トリポード形等速ジョイントおよびそれを含むジョイント
JP2008261391A (ja) トリポード型等速自在継手
JP5699716B2 (ja) 摺動式トリポード型等速ジョイント
JP2008175371A (ja) 摺動式トリポード形等速ジョイント
JP2007327617A (ja) トリポード型等速ジョイント
JP6707896B2 (ja) 等速ジョイント
JP4745186B2 (ja) 固定式等速自在継手
JP2006283831A (ja) 等速自在継手
JP2007263235A (ja) 等速自在継手
JP2009019676A (ja) 摺動式トリポード形等速ジョイント
JP4896673B2 (ja) 固定式等速自在継手及びその製造方法
JP2008051190A (ja) 固定式等速自在継手
JP2008164129A (ja) 摺動式トリポード形等速ジョイント
JP2008175373A (ja) 摺動式トリポード形等速ジョイント
JP2010144898A (ja) 摺動式トリポード型等速ジョイント及びローラユニット
JP2008019952A (ja) トリポード型等速自在継手
JP2008002567A (ja) トリポード型等速ジョイント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees