JP2008228545A - 可動磁石型リニアモータ - Google Patents

可動磁石型リニアモータ Download PDF

Info

Publication number
JP2008228545A
JP2008228545A JP2007067747A JP2007067747A JP2008228545A JP 2008228545 A JP2008228545 A JP 2008228545A JP 2007067747 A JP2007067747 A JP 2007067747A JP 2007067747 A JP2007067747 A JP 2007067747A JP 2008228545 A JP2008228545 A JP 2008228545A
Authority
JP
Japan
Prior art keywords
magnet
air
core coil
linear motor
cooling block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067747A
Other languages
English (en)
Inventor
Naomasa Mukaide
尚正 向出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007067747A priority Critical patent/JP2008228545A/ja
Publication of JP2008228545A publication Critical patent/JP2008228545A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)

Abstract

【課題】可動体が軽量で応答性が良く、かつ空芯コイルに与えられる駆動電流による発熱を除去するとともに、渦電流の発生を減少させて効率よく大きな推力を得ることができる可動磁石型リニアモータを提供する。
【解決手段】空芯コイルに沿うように固定子ベースに取り付けられ内部に冷媒が流通されて空芯コイルを冷却する冷却ブロックを備えた可動磁石型リニアモータにおいて、前記冷却ブロックは、高熱伝導非磁性金属製で、その基端側に冷媒が流通される流通路を有するとともに、先端側に前記空芯コイルへの接合部を有し、該冷却ブロックは、マグネットヨークが前記中心軸方向に移動する際に、マグネット構成体が前記空芯コイルに対向して移動する範囲から外れる位置に配され、該位置において前記空芯コイルに熱的に密に接合されていることである。
【選択図】 図1

Description

本発明は、例えば工作機械、電気部品実装装置或いは半導体関連装置などの各種産業機械に使われるリニアモータに関し、特に界磁を可動子とし、電機子を固定子として構成する可動磁石型リニアモータに関する。
磁石の方を可動子とし電機子(空芯コイル)を固定子とする可動磁石型リニアモータとして、特許文献1に記載されるものが知られている。これは、穴あき柱状永久磁石に貫通軸体を貫通させて固定して磁石可動体を構成し、前記貫通軸体を軸受部材で摺動自在に支持して当該軸受部材に対し固定した位置関係にある空芯コイルの内側に前記磁石可動体を移動自在に設けたものである。この場合、磁石可動体に発生する推力は、基本的にはフレミングの左手の法則に準ずるものである。(ただし、フレミングの左手の法則は空芯コイルに対して適用されるが、ここでは空芯コイルが固定のため、磁石可動体に空芯コイルに作用する力の反力としての推力が発生する。)そして、推力に寄与するのは、磁石可動体が有する永久磁石の磁束の垂直成分(永久磁石の軸方向に直交する成分)である。
また、可動磁石型のリニアモータとして、特許文献2に記載されるものが知られている。これは固定子側の複数の空芯コイルで可動子側の磁石に推力を与える多相タイプであるが、移動方向に配列される空芯コイルの両側を棒状の支持部材で固定し、空芯コイルの両側を固定する支持部材間に磁石を対向させて配置し、前記支持部材の内部には冷媒を流すための管路を移動方向に沿って設けることとしたものである。この管路に冷媒を循環させることにより、空芯コイルに生ずる駆動電流による発熱を除去することを可能とするものである。
実開平7−30585号公報 特開平1−270763号公報
しかし、上記特許文献1の技術では、貫通軸体の外周をぐるりと廻る柱状の永久磁石で可動体を構成しているため、磁石可動体の質量が大きくなり応答性が悪いという不具合があった。また、特許文献2の技術では、冷媒を流す管路を固定する支持部材の断面積が大きく空芯コイルの熱が支持部材全体に拡散してしまい、空芯コイルと冷媒との間の熱の伝導効率が悪いという不具合があった。また、磁束を金属が横切ると、渦電流が発生して可動体の推力を減少させるという普遍的な問題も考慮する必要があった。
本発明は係る従来の問題点に鑑みてなされたものであり、可動体が軽量で応答性が良く、かつ空芯コイルに与えられる駆動電流による発熱を除去するとともに、渦電流の発生を減少させて効率よく大きな推力を得ることができる可動磁石型リニアモータを提供することである。
上述した課題を解決するために、請求項1に係る発明の構成上の特徴は、複数平面壁により偶数多角筒状を成し、該偶数多角筒状の中心軸方向に可動するマグネットヨークと、該マグネットヨークの各平面壁の外壁に取り付けられ複数の永久磁石から構成される複数のマグネット構成体と、前記マグネットヨークを取り囲むように設けられた固定子ベースと、該固定子ベースに取り付けられ前記複数のマグネット構成体に夫々磁気的空隙を介して対向するように配置された複数の空芯コイルと、該空芯コイルに沿うように前記固定子ベースに取り付けられ内部に冷媒が流通されて前記空芯コイルを冷却する冷却ブロックと、を備えた可動磁石型リニアモータにおいて、前記冷却ブロックは、高熱伝導非磁性金属製で、その基端側に冷媒が流通される流通路を有するとともに、先端側に前記空芯コイルへの接合部を有し、該冷却ブロックは、前記マグネットヨークが前記中心軸方向に移動する際に、前記マグネット構成体が前記空芯コイルに対向して移動する範囲から外れる位置に配され、該位置において前記空芯コイルに熱的に密に接合されていることである。
請求項2に係る発明の構成上の特徴は、請求項1において、前記移動する範囲から外れる位置は、前記空芯コイルが前記中心軸方向に平行な方向に延在する部分であることである。
請求項3に係る発明の構成上の特徴は、請求項1又は2において、前記マグネット構成体は、前記中心軸方向に直角な方向に着磁された第1の永久磁石と、該第1の永久磁石の着磁方向に平行な方向であって、第1の永久磁石とは反対の磁極で着磁され、前記第1の永久磁石に前記中心軸方向に所定の間隔を設けて対向する第2の永久磁石と、を有し、これらのマグネット構成体は、前記マグネットヨークの周方向に隣り合う永久磁石の磁極が互いに反対の極であることである。
請求項1に係る発明によると、空芯コイルに熱的に密に接合された冷却ブロックには、冷媒が送られて流通路内を循環するので、空芯コイルに生じる駆動電流による発熱は、効率よく除去することができる。そして、冷却ブロックは、空芯コイルに接合する部分と冷媒を流通させる部分とが一体の部品であるので、迅速かつ容易にコイルヨークに組付けることができ、生産効率を向上させて生産コストの低減を図ることができる。また、空芯コイルを横切るマグネット構成体からの磁束は、マグネットヨークが中心軸方向に移動する際に、冷却ブロックを横切らないので、推力を生じさせる際に抵抗力となる渦電流を発生させることなく、マグネットヨークに効率よく大きな推力を発生させることができる。
請求項2に係る発明によると、マグネット構成体からの磁束が冷却ブロックを横切ることによる渦電流の発生を、冷却ブロックを空芯コイルがマグネットヨークの中心軸と平行に延在する部分に接合するように配置するという簡単な構成で防止できるので、空芯コイルの冷却機能を有する可動磁石型リニアモータを極めて低コストで生産することができる。
請求項3に係る発明によると、マグネット構成体のそれぞれの永久磁石の磁極から発生する磁束は隣り合う反対の磁極に向かって流れる。そのため、マグネットヨークの周面に沿った2方向及びそれに直角な方向に分流して、マグネットヨークを通る磁束を3つに分散することができ、これによって、飽和磁束密度を生じさせることなくマグネットヨークの肉厚を薄くでき、可動磁石型でありながら、リニアモータを小型化かつ軽量化することができるので、可動するマグネットヨークの応答精度を高めることができる。また、1つの磁極から上記のように3つに分流された磁束は、夫々異なった3つの反対の磁極を通過する。そして、1つの反対の磁極では、異なった3つの磁極からの磁束が1つにまとまって通過することとなる。このように、空芯コイルを横切る磁束は、上記分流によって減少することが無いので、マグネットヨークの軽量化を図りながら強い推力を発揮させることができる。
本発明に係る可動磁石型リニアモータを備えた工具移動装置の実施形態を図面に基づいて以下に説明する。図1は工具移動装置の構造を断面で示した正面からの概念図であり、図2は同断面で示す側面からの概念図である。前記リニアモータ2は、固定側の一次側要素と、一次側要素に対して相対移動可な可動側の二次側要素とから構成されている。
この工具移動装置4は、図1に示すように、例えば磁性体である鉄製からなる中空箱型形状のマグネットヨーク6と、マグネットヨーク6の外周面に取り付けられた永久磁石からなる複数のマグネット構成体8と、マグネットヨークの両端開口部に夫々取付けられた角型の支持部10,12とからなる可動体14を備え、この可動体14によりリニアモータ2の二次側要素を構成している。この可動体14の一方の支持部10の端部(先端側端部)には、工作物を高精度に切削加工するバイト等を保持する工具保持装置16が取り付けられている。他方の支持部12の端部(基端側端部)にはリニアスケール(位置検出装置)17が設けられ、可動体14の後述する支持台18に対する相対的な移動位置を検出するようになっている。
また、工具移動装置4は、可動体14に対して相対移動可能に固定設置された非磁性体からなる支持台18を備えている。支持台18は、図2に示すように、可動体14の4面に対向する平壁部を図略のフレーム部材により連結させて、可動体14を囲むように設けられている。支持台18には、図1に示すように、可動体14の各支持部10,12を油の静圧力によってX軸方向(可動体14の中空軸線方向)に摺動のみ可能に支持する流体軸受20,22と、マグネットヨーク6を取り囲むように配設された例えば磁性体である鉄製のコイルヨーク24と、コイルヨーク24の内壁面に、各マグネット構成体8に夫々対向して取り付けられた空芯コイル26が設けられている。空芯コイル26は、例えばガラスエポキシからなる被巻回部30に平角線により略矩形状に複数巻回されて形成される。空芯コイル26とコイルヨーク24との間には、例えばガラスエポキシ等による絶縁板28が挿入されて電気的絶縁が図られている。空芯コイル26を取り付けたコイルヨーク24によって、リニアモータ2の一次側要素を構成している。また、空芯コイル26は図略の直流電源に連結される電流制御回路50に接続され、図7に示すように、電流制御回路50は前記リニアスケール17からの信号が制御装置(CPU)52からの信号によって、直流電源からの電流値が制御されるようになっている。電流制御回路50として、例えばIGBT(Inerted Gate Bipolar Transistor)等のスイッチング素子から構成されるアンプが考えられる。
各空芯コイル26には、図3及び図4に示すように、前記X軸方向に平行な方向に夫々延在する2箇所において、冷却ブロック32が空芯コイル26の平坦な外側面に接するように一対(図3においては上下一対)配置されている。冷却ブロック32は、例えば銅製で略四角柱状に形成され、コイルヨーク24に図略のボルト等により螺子止めされている。冷却ブロック32は基端側に冷媒(冷水)が流通する流通路34が夫々形成され、各流通路34は支持台18に設けられた貫通口を介して冷却パイプ36及び図略のポンプに連通されている。冷却ブロック32の先端側は、空芯コイル26の外側面に倣う形状に先端が形成され、各先端は高熱伝導性接着剤39により空芯コイル26の平坦な外側面にて熱的に密に接合されている。
また、多角筒状のマグネットヨーク6は、実施形態においては4つの平面壁38により4角筒状に構成され、図2及び図6に示すように、平面壁38の外周面には第1乃至第4のマグネット構成体8a〜8dが、夫々取り付けられている。マグネット構成体8a〜8dは、第1及び第2の永久磁石40,42と補助磁石44とから構成される。第1及び第2の永久磁石40,42は、例えば希土類より直方体形状に形成され、これらの永久磁石は着磁方向(単体の磁石において対応する反対の極の中心を結ぶ線の方向)が、前記X軸方向に直角な方向となるよう配置されている。そして、図1及び図5に示すように、マグネットヨーク6上部の先端部側(図1及び図5において右側)には、第1の永久磁石40の外側(図1において上側)がS極、内側がN極に、同基端部側(図1及び図5において左側)には、第2の永久磁石の外側がN極、内側がS極になるよう配設されている。また、第1の永久磁石40と第2の永久磁石42との間には直方体形状の補助磁石44が、着磁方向を前記X軸方向に平行にして配設されている。各補助磁石44は、例えば、先端部側(図5において右側)がS極、基端部側(図5において左側)がN極という具合に、前記第1及び第2の永久磁石40,42の内側の磁極と反対の磁極が接近するように並べられて固定されている。このように補助磁石44配置することにより、図5に示すように、磁束の漏洩を防止すると共に、空芯コイル26を横切る磁束数を増加させて、大きな推力を発揮させるようになっている。また、マグネット構成体8の永久磁石40,42は、図2及び図6に示すように、マグネットヨーク6の周方向に隣り合う永久磁石40,42の磁極が互いに反対の極となるよう配設されている。また、本実施形態では、永久磁石40,42,44及び空芯コイル26の取付け誤差によるサイドフォースの影響を受けないように、永久磁石40,42,44のX軸方向に直角な方向の幅を空芯コイル26の同方向の内寸よりも小さく構成している。ただし、推力を重視して永久磁石40,42,44の同幅を空芯コイル26の同内寸よりも大きくしてもよい。
次に、上記のように構成された可動磁石型リニアモータの作動について、以下に説明する。図5において、空芯コイル26にマグネットヨーク6から見て時計回りに電流を流すと、フレミングの左手の法則に従い空芯コイル26には先端部側(図5において右側)への力が生じ、マグネット構成体8aにはその反作用として基端部側(図5において左側)への力が加わる。他のマグネット構成体8b,8c,8dにも同様にして、基端部側への力が加わるように対向する空芯コイル26に夫々通電することにより、マグネットヨーク6には基端部側へ移動させる推力が働き、マグネットヨーク6は電流量に応じた距離だけ基端部側(図1及び図5において左側)へ移動する。また、前記IGBT等により逆向き回りの通電をすると、マグネットヨーク6は、図1及び図5において右側へ移動する。この移動位置はリニアスケール17により検出され、検出位置の信号がCPU52に送られて、前記IGBT等により通電方向及び通電量が定められてマグネットヨーク6の移動量が制御される。このようにマグネットヨーク6が構成する可動体14は、空芯コイル26に供給される電流の方向及び大きさに応じて発生する推力により、X軸方向に移動されるとともに、リニアスケール17の検出信号に基づいて位置制御され、可動体14に取り付けられた工具保持部16に保持されたバイト等を微細にかつ高速で移動させ、工作物を高精度に切削加工する。この際可動体14は、流体軸受20,22によって静圧支持されているので、バイト等を微細かつ高速でかつ安定的に移動制御できるようになり、工作物の加工精度を向上させることができる。
本実施形態では、空芯コイル26に通電されてリニアモータ2が駆動される際に、空芯コイル26に高熱伝導性接着剤39を介して熱的に密に接合された冷却ブロック32には、前記ポンプから冷媒(冷水)が送られて流通路34内を循環するので、空芯コイル26に生じる駆動電流による発熱は、効率よく除去することができる。そして、冷却ブロック32は、空芯コイル26に接合する部分と冷媒を流通させる部分とが一体の部品であるので、迅速かつ容易にコイルヨーク24に組付けることができ、生産効率を向上させて生産コストの低減を図ることができる。
また、冷却ブロック32は、マグネットヨーク6がその中心軸方向に移動する際に、空芯コイル26に対抗するマグネット構成体8の移動範囲MAから外れる位置にあり、空芯コイル26を横切るマグネット構成体8からの磁束は、冷却ブロック32を横切ることはないので、推力を生じさせる際に抵抗力となる大きな渦電流を発生させることなく、可動体14に効率よく大きな推力を発生させることができる。このようにマグネット構成体8からの磁束が冷却ブロック32を横切ることによる渦電流の発生を、冷却ブロック32を空芯コイル26がマグネットヨーク6の中心軸と平行に延在する部分に接合するように配置するという簡単な構成で防止できるので、空芯コイル26を冷却する機能を有する可動磁石型リニアモータ2を極めて低コストで生産することができる。
マグネット構成体8のそれぞれの永久磁石40,42から発生する磁束を、図6に示すように、マグネットヨーク6の周面に沿った2方向B,C及びそれに直角な方向Aに分流して、マグネットヨーク6を通る磁束を3つに分散することができ、これによって、飽和磁束密度を生じさせることなくマグネットヨーク6の肉厚を3分の1程度に薄くでき、可動磁石型でありながら、リニアモータ2を小型化かつ軽量化することができる。そして、可動体14の応答精度を高めることができる。また、1つのN極から3つに分流された磁束は、夫々別の3つのS極を通過する。一方、1つのS極においては、別の3つのN極からの磁束a,b,cが1つにまとまって通過することとなる。そのため、空芯コイル26を横切る磁束は、上記分流によって減少することが無いので、マグネットヨーク24を軽量としながら強い推力を発揮させることができる。
なお、冷却ブロックは、空芯コイルの前記X軸方向に平行な方向に延在する部分に接合するものとしたが、これに限定されず、例えば、該X軸方向に直角な方向に延在する部分であっても、マグネット構成体が移動する範囲から外れる部分であればよい。
また、空芯コイルは、実施形態において平角線としたが、これに限定されず、例えば丸線でもよい。この場合は、高熱伝導部材はかかる丸線の外側面に倣う形状に形成される。
冷却ブロックは、銅製に限定されず、熱伝導率が高く非磁性材料であればよい。
マグネットヨークは、4角筒状に限定されず、例えば6角、8角等の偶数多角筒状であればよい。また、偶数多角筒状のマグネットヨークの強度向上のため、中空部に梁部材を設ける構造としてもよい。
また、本実施形態においては、第1及び第2の永久磁石の間に補助磁石を配置する構成としたが、これに限定されず、補助磁石はなくてもよい。
コイルヨークは、支持台に個別に取り付けるものとしたが、これに限定されず、例えばマグネットヨークの形状に対応する偶数多角筒状のものでもよい。
本発明に係る可動磁石型リニアモータの正面からの断面図。 同側面からの断面図。 空芯コイルと冷却ブロックとの取付け状態を示す図。 同断面図。 マグネット構成体と空芯コイルとの間の磁束の流れを示す概念図。 マグネットヨークにおける磁束の流れを示す概念図。 移動位置制御を示すブロック図。
符号の説明
2…リニアモータ、6…マグネットヨーク、8…マグネット構成体、18…固定ベース(支持台)、24…固定ベース(コイルヨーク)、26…空芯コイル、32…冷却ブロック、34…流通路、38…平面壁、40…第1の永久磁石、42…第2の永久磁石。

Claims (3)

  1. 複数平面壁により偶数多角筒状を成し、該偶数多角筒状の中心軸方向に可動するマグネットヨークと、該マグネットヨークの各平面壁の外壁に取り付けられ複数の永久磁石から構成される複数のマグネット構成体と、前記マグネットヨークを取り囲むように設けられた固定子ベースと、該固定子ベースに取り付けられ前記複数のマグネット構成体に夫々磁気的空隙を介して対向するように配置された複数の空芯コイルと、該空芯コイルに沿うように前記固定子ベースに取り付けられ内部に冷媒が流通されて前記空芯コイルを冷却する冷却ブロックと、
    を備えた可動磁石型リニアモータにおいて、
    前記冷却ブロックは、高熱伝導非磁性金属製で、その基端側に冷媒が流通される流通路を有するとともに、先端側に前記空芯コイルへの接合部を有し、
    該冷却ブロックは、前記マグネットヨークが前記中心軸方向に移動する際に、前記マグネット構成体が前記空芯コイルに対向して移動する範囲から外れる位置に配され、該位置において前記空芯コイルに熱的に密に接合されていることを特徴とする可動磁石型リニアモータ。
  2. 請求項1において、前記移動する範囲から外れる位置は、前記空芯コイルが前記中心軸方向に平行な方向に延在する部分であることを特徴とする可動磁石型リニアモータ。
  3. 請求項1又は2において、前記マグネット構成体は、前記中心軸方向に直角な方向に着磁された第1の永久磁石と、
    該第1の永久磁石の着磁方向に平行な方向であって、第1の永久磁石とは反対の磁極で着磁され、前記第1の永久磁石に前記中心軸方向に所定の間隔を設けて対向する第2の永久磁石と、を有し、
    これらのマグネット構成体は、前記マグネットヨークの周方向に隣り合う永久磁石の磁極が互いに反対の極であることを特徴とする可動磁石型リニアモータ。
JP2007067747A 2007-03-16 2007-03-16 可動磁石型リニアモータ Pending JP2008228545A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067747A JP2008228545A (ja) 2007-03-16 2007-03-16 可動磁石型リニアモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067747A JP2008228545A (ja) 2007-03-16 2007-03-16 可動磁石型リニアモータ

Publications (1)

Publication Number Publication Date
JP2008228545A true JP2008228545A (ja) 2008-09-25

Family

ID=39846490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067747A Pending JP2008228545A (ja) 2007-03-16 2007-03-16 可動磁石型リニアモータ

Country Status (1)

Country Link
JP (1) JP2008228545A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084940A1 (ja) * 2009-01-23 2010-07-29 日立金属株式会社 可動子及びリニアモータ
JP2010200522A (ja) * 2009-02-26 2010-09-09 Aisin Seiki Co Ltd 往復動駆動機構とその往復駆動機構を用いた蓄冷型冷凍機及び圧縮機
CN102290924A (zh) * 2010-06-16 2011-12-21 Lg伊诺特有限公司 振动马达制造方法以及使用该方法制造的振动马达
WO2020129747A1 (ja) * 2018-12-18 2020-06-25 株式会社村田製作所 リニア振動モータ、およびそれを用いた電子機器
EP3910769A3 (en) * 2020-05-12 2022-01-26 Hosiden Corporation Electromagnetic actuator and vibration generator including the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9071124B2 (en) 2009-01-23 2015-06-30 Hitachi Metals, Ltd. Mover and linear motor
KR20110107352A (ko) 2009-01-23 2011-09-30 히타치 긴조쿠 가부시키가이샤 가동자 및 리니어 모터
CN102292900A (zh) * 2009-01-23 2011-12-21 日立金属株式会社 动子及线性马达
WO2010084940A1 (ja) * 2009-01-23 2010-07-29 日立金属株式会社 可動子及びリニアモータ
CN102292900B (zh) * 2009-01-23 2014-01-01 日立金属株式会社 动子及线性马达
US8723376B2 (en) 2009-01-23 2014-05-13 Hitachi Metals, Ltd. Mover and linear motor
JP5510338B2 (ja) * 2009-01-23 2014-06-04 日立金属株式会社 リニアモータ
TWI460966B (zh) * 2009-01-23 2014-11-11 Hitachi Metals Ltd Moving elements and linear motors
JP2010200522A (ja) * 2009-02-26 2010-09-09 Aisin Seiki Co Ltd 往復動駆動機構とその往復駆動機構を用いた蓄冷型冷凍機及び圧縮機
CN102290924A (zh) * 2010-06-16 2011-12-21 Lg伊诺特有限公司 振动马达制造方法以及使用该方法制造的振动马达
WO2020129747A1 (ja) * 2018-12-18 2020-06-25 株式会社村田製作所 リニア振動モータ、およびそれを用いた電子機器
JPWO2020129747A1 (ja) * 2018-12-18 2021-10-07 株式会社村田製作所 リニア振動モータ、およびそれを用いた電子機器
JP7207428B2 (ja) 2018-12-18 2023-01-18 株式会社村田製作所 リニア振動モータ、およびそれを用いた電子機器
EP3910769A3 (en) * 2020-05-12 2022-01-26 Hosiden Corporation Electromagnetic actuator and vibration generator including the same
EP3961882A3 (en) * 2020-05-12 2022-06-22 Hosiden Corporation Electromagnetic actuator and vibration generator including the same
US11476744B2 (en) 2020-05-12 2022-10-18 Hosiden Corporation Electromagnetic actuator and vibration generator including the same

Similar Documents

Publication Publication Date Title
JP5292707B2 (ja) 可動磁石型リニアモータ
JP5194472B2 (ja) リニアモータおよびそれを備えた工具移動装置
JPWO2008152876A1 (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2008228545A (ja) 可動磁石型リニアモータ
JP2008061458A (ja) 円筒型リニアモータ
JP2013506394A (ja) リニアモータ
JP2005176464A (ja) リニアモータ
JP5135898B2 (ja) リニアアクチュエータ
JP2008220020A (ja) 可動磁石型リニアモータ
JP2011155757A (ja) リニアモータ
JP2010148233A (ja) リニアモータ駆動送り装置
JP5369265B2 (ja) リニアモータ及びリニア移動ステージ装置
JP5347596B2 (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2008206356A (ja) 可動磁石型リニアアクチュエータ
JPH11243677A (ja) 同軸リニアモータ
JP5447308B2 (ja) リニアモータ
JP5088536B2 (ja) 可動コイル型リニアモータの組立方法
JP3661978B2 (ja) 可動コイル形リニアモータ
JP2002247831A (ja) リニアモータ
JP4563046B2 (ja) リニア同期モータ
JPH01270763A (ja) 可動磁石型多相リニアモータ
JP4721211B2 (ja) コアレス・リニアモータ
JP6677048B2 (ja) 可動コイル型リニアモータ
JP3835946B2 (ja) 可動コイル形リニアモータ
JP2008199727A (ja) リニアモータおよびそれを備えた工具移動装置