JP6677048B2 - 可動コイル型リニアモータ - Google Patents

可動コイル型リニアモータ Download PDF

Info

Publication number
JP6677048B2
JP6677048B2 JP2016069281A JP2016069281A JP6677048B2 JP 6677048 B2 JP6677048 B2 JP 6677048B2 JP 2016069281 A JP2016069281 A JP 2016069281A JP 2016069281 A JP2016069281 A JP 2016069281A JP 6677048 B2 JP6677048 B2 JP 6677048B2
Authority
JP
Japan
Prior art keywords
hole
coil
refrigerant
mold member
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069281A
Other languages
English (en)
Other versions
JP2017184492A (ja
Inventor
幸英 赤木
幸英 赤木
浩昭 宗像
浩昭 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016069281A priority Critical patent/JP6677048B2/ja
Publication of JP2017184492A publication Critical patent/JP2017184492A/ja
Application granted granted Critical
Publication of JP6677048B2 publication Critical patent/JP6677048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可動子がコイルを有する可動コイル型リニアモータに関する。
半導体製造装置、液晶製造装置、又は半導体素子や液晶ディスプレイ等の検査装置においては、各種部品の搬送装置として2軸のステージ装置、いわゆるX−Yステージが使用されている。X−Yステージは、定盤に対して所定方向(Y方向)に移動するYステージと、Y方向に直交する方向(X方向)に移動するXステージとを備える。Xステージ、Yステージそれぞれは、駆動部により移動するキャリッジを含む。当該キャリッジをY方向又はX方向に直線移動させる手段として、リニアモータが使用されている。リニアモータは、N極とS極が対向するように、ヨークに支持された永久磁石を有する磁界発生部材と、その磁界内を横切る電流が流れるコイルを有するコイル部材とを備え、磁界発生部材とコイル部材との相対移動が行えるように構成される。
上記のリニアモータは、例えば、ヨークに支持された永久磁石を有する磁界発生部材と、磁界発生部材が発生する磁界内にコイルを有するコイル部材とを備え、磁界発生部材を固定子、コイル部材を可動子とした構造のものが使用されている。この種のリニアモータでは、搬送装置の高性能化(高速化)を図るために、コイルに流す電流(通電電流)を増加させることが一般的に行われている。コイルへの通電電流が増加すると、発熱量が増大する(電流の二乗に比例する)。そして、発した熱により、周辺部材が熱変形し、位置決め精度が低下する。そのため、コイルを内包するモールド部材の両面に空間が形成されるようにジャケット部材を取付け、形成された空間に冷媒を供給することにより、コイルを冷却することが行われている(特許文献1参照)。
特開2008−245492号公報
しかしながら、従来の冷却方法では、冷媒が流れる面に対向するコイルの表面、裏面部分は冷却されるが、コイルの側面は冷却されず、コイル全体を効率的に冷却できない場合があった。
本発明は、このような事情に鑑みてなされたものであり、コイルを効率よく冷却することが可能な可動コイル型リニアモータを提供することを目的とする。
本発明に係る可動コイル型リニアモータは、所定方向に磁界が発生する磁気空隙を有する磁界発生部材と、前記磁界を横切る方向に電流が流れるコイルが複数個直列に接続されたコイル列、前記コイル列を内包し、矩形状断面を有するモールド部材、及び前記モールド部材の前記磁界発生部材に対向する側の面に固定されるジャケット部材を有し、前記モールド部材及び前記ジャケット部材との間に冷媒が流動可能な空間が形成されている可動コイル部材とを備え、前記モールド部材は、一面から他面へ貫通する貫通孔を有することを特徴とする。
本発明にあっては、モールド部材に貫通孔を設けたことにより、コイルの側面から発せられる熱を、貫通孔を流動する冷媒により、取り去ることが可能となる。
本発明に係る可動コイル型リニアモータは、前記貫通孔は、前記コイル列の周縁であって、コイルの並設方向に交差する方向の一端部に設けてあることを特徴とする。
本発明にあっては、貫通孔がコイル列の周縁に設けてあるので、貫通孔を流動する冷媒は、コイルから発せられる熱を効率よく回収することが可能となる。
本発明に係る可動コイル型リニアモータは、前記貫通孔の軸長方向は、前記一面及び前記他面の法線方向に対して傾斜していることを特徴とする。
本発明にあっては、貫通孔を傾斜させていることにより、傾斜していない場合と比較して、冷媒が貫通孔に流れ込む際の摩擦抵抗を低下させることが可能となる。それにより、貫通孔に流れる冷媒の流量が増加し、冷却性能を向上させることが可能となる。
本発明に係る可動コイル型リニアモータは、前記モールド部材は、前記貫通孔の開口近傍に前記一面又は他面より突出し、前記貫通孔に前記冷媒を誘導する誘導突起を有することを特徴とする。
本発明にあっては、貫通孔の開口近傍に突起部を設けたことにより、冷媒を貫通孔に導くことが可能となる。それにより、コイル側面から発した熱を回収するのに十分な量の冷媒を貫通孔に流入させることが可能となる。
本発明に係る可動コイル型リニアモータは、前記貫通孔の周壁には、近接する前記コイルの一部が前記貫通孔の内部に露出することを特徴とする。
本発明にあっては、コイルの一部が貫通孔の内部に露出していることにより、コイルの一部に冷媒が直接、接触することが可能である。それにより、露出孔がない場合と比較して、冷媒は、コイルが発した熱を、より効率的に回収することが可能となる。
本発明に係る可動コイル型リニアモータは、前記ジャケット部材は、前記並設方向の端部の一方に冷媒注入孔が設けてあり、前記端部の他方には冷媒排出孔が設けてあり、前記貫通孔は、前記並設方向に沿って複数設けられ、前記端部の一方から他方へ向かうにしたがい、断面積が増大することを特徴とする。
本発明にあっては、貫通孔の断面積を冷媒排出口に近づくほど大きくしてあるので、冷媒排出口に近い貫通孔ほど、流れる冷媒の量が増大する。冷媒は、熱を回収するに連れて温度が上昇するが、流れる冷媒の量が増大するので、コイルで発した熱を十分に回収することが可能となる。
本発明にあっては、コイルを効率よく冷却することが可能となる。
リニアモータの構成例を示す平面図である。 図1のII−II断面線による断面図である。 コイル部材の一例を示す斜視図である。 コイル部材の一例を示す分解斜視図である。 モールド部材の一例を示す説明図である。 モールド部材の他の例を示す説明図である。 モールド部材の他の例を示す説明図である。 モールド部材の他の例を示す説明図である。 モールド部材の他の例を示す説明図である。 モールド部材の他の例を示す説明図である。 モールド部材の他の例を示す説明図である。 モールド部材の他の例を示す平面図である。 図12のXIII−XIII線による断面図である。 モールド部材の他の例を示す平面図である。 モールド部材の他の例を示す平面図である。
以下、図面を用いて、実施の形態を具体的に説明する。
(実施の形態1)
図1はリニアモータの構成例を示す平面図である。図2は図1のII−II断面線による断面図である。
図1に示すように、リニアモータ10は、固定子1と可動子3とを含む。固定子1は複数の分割ユニット2を有する。固定子1は、複数の分割ユニット2を可動子3のストローク方向に沿って接続したものである。ストローク方向は、例えばX軸方向(図1でXを付した矢印で示す方向)である。各分割ユニット2は同様の構造を有する。但し各分割ユニット2のストローク方向の長さは同一でなくてもよい。図2に示すように、固定子1の断面はU字状をなしている。
固定子1を構成する分割ユニット2は、非磁性フレーム21と磁界発生部材22とを含む。非磁性フレーム21は、ベース部材211、2つのサイド部材212を含む。ベース部材211は、可動子3のストローク方向に長い、角柱状をなす。サイド部材212は平板状をなしている。ベース部材211の短手方向の両側それぞれに、同方向に同じ寸法突出したサイド部材212が固着されている。非磁性フレーム21は断面U字状をなす。ベース部材211、サイド部材212は、アルミニウム合金などの非磁性材料を用いて形成する。
ベース部材211には、ストローク方向(図2の紙面に垂直な方向)に延びる凹溝213が設けられている。凹溝213はベース部材の幅方向の中央に設けられている。凹溝213の深さは、そこに後述する可動コイル部材5の一部(多相コイルのうち推力に寄与しない無効導体部)が入り込むような寸法に設定される。
磁界発生部材22は、ヨーク23、メイン磁石24、スペーサ磁石25を含む。ヨーク23は平板状をなしている。ヨーク23は、鉄鋼材料(例えばSS材)等の強磁性材料を用いて形成する。ヨーク23の一面に、メイン磁石24が複数、可動子3のストローク方向に沿って、所定間隔で固定されている。メイン磁石24の磁化方向は厚さ方向(可動子3のストローク方向と垂直な方向)である。メイン磁石24はそのN極とS極がストローク方向に沿って交互に並んでいる。メイン磁石24の間にスペーサ磁石25が、ヨーク23に固定されている。スペーサ磁石25の磁化方向は、可動子3のストローク方向と平行である。スペーサ磁石25の磁化方向は、メイン磁石24と直交する方向である。また、スペーサ磁石25はメイン磁石24を挟んで同極性の磁極が向き合うように配置されている。メイン磁石24、スペーサ磁石25が対向するように、ヨーク23の他面が非磁性フレーム21のサイド部材212に固定されている。そして、磁気空隙gを挟んで対向するメイン磁石24、スペーサ磁石25は、異極が向き合うように配置されている。メイン磁石24、スペーサ磁石25は、いわゆるハルバッハ配列となっている。磁気空隙gに現出する磁界の向きは、磁石の対向方向である。この対向方向は所定方向の一例である。メイン磁石24、スペーサ磁石25は、公知の永久磁石、例えば希土類磁石で形成する。特にR(Rは、Nd等の希土類元素から選択された一種又は二種以上の元素。)、T(TはFe又はFe及びCo。)及びB(ホウ素)を必須成分とするR−T−B系焼結磁石が、メイン磁石24、スペーサ磁石25として好適である。
可動子3はホルダ4と可動コイル部材5とを含む。可動子3の可動コイル部材5は、固定子1の内部に形成された磁気空隙g内で駆動される。磁気空隙gには磁界が現出する。ホルダ4は被駆動部材(図示しない)に連結される。リニアモータ10は、可動子3に図示しない磁界検出素子(例えばホール素子)を設けて、磁極位置を検出し、各コイルに流れる電流の向きを変えることにより、可動子3をX軸方向に移動することができる。リニアモータ10は可動子3にコイルを含む可動コイル型リニアモータである。
次に可動コイル部材5について、詳細に説明する。図3は可動コイル部材5の一例を示す斜視図である。図4は可動コイル部材5の一例を示す分解斜視図である。可動コイル部材5はモールド部材51、2つのジャケット部材52、多相コイル(コイル列)6を含む。可動コイル部材5は矩形板状なしている。
モールド部材51は、モールド部材51の上側部分は他の部分(本体部51bという)に比べて厚い肉厚部51aが有する。モールド部材51は断面T字状となっている。本体部51bの両面にジャケット部材52が固定されている。モールド部材51は多相コイル6を樹脂でモールドする(鋳ぐるむ)ことにより形成されている。モールド部材51は矩形状断面をもつ本体部51bに多相コイル6を内包している。モールド部材51には、冷媒の注入口511、排出口514が設けてある。注入口511、排出口514は、上下方向に延びている。モールド部材51に用いる樹脂は、剛性が高く、電気的に絶縁性、冷媒に対して耐性を有するものを採用する。例えば、ガラスエポキシ樹脂で、モールド部材51を形成する。
多相コイル6は、例えば3相コイルの場合、6個の偏平形状の空心コイル(磁極幅と同一の開角幅を有する)を、U相コイル(U1〜U2)、V相コイル(V1〜V2)、W相コイル(W1〜W2)が平面からみて有効導体部が重ならないように配設した構造を有する。多相コイル6は空心コイルを複数個直列に接続したものである。なお、図示を省略するが、複数の空心コイルは各相のコイルに通電された時に空心コイルの配列方向の推力が発生するように結線されている。空心コイルに含まれるコイル線の一部は、可動子3のストローク方向に垂直な方向(図2の紙面上下方向)に沿って電流が流れる。すなわち、コイル線の一部は、固定子1に現出する磁界内を横切る向きに電流が流れる。
モールド部材51はさらに、注入孔(冷媒注入孔)512、排出孔(冷媒排出孔)513、6つの貫通孔515を含む。注入孔512、排出孔513は、本体部51bの両面を貫通している。また、注入孔512の天面は注入口511の下端と連通している。注入口511から供給された冷媒は注入孔512から、可動コイル部材5内部に注入される。排出孔513の天面は排出口514の下端と連通している。可動コイル部材5の内部を流動した冷媒は、排出孔513、排出口514を経て、外部に排出される。
貫通孔515は多相コイル6を構成する各コイルの周縁の一部に設けてある。貫通孔515は本体部51bの両面を貫通している。可動コイル部材5の内部を流動する冷媒は、貫通孔515を介して、モールド部材51の一面から他面へ、他面から一面へ流動することが可能である。
モールド部材51は、さらに、嵌合溝部516、ねじ穴517を含む。嵌合溝部516は、平面視で、モールドされている多相コイル6及び注入孔512、排出孔513を囲むように設けてある。嵌合溝部516は閉じた形状となっている。嵌合溝部516に囲まれた領域は角部が丸い矩形状となっている。嵌合溝部516の底部には、複数のねじ穴517が設けてある。ねじ穴517は雌ねじが切られている穴である。
ジャケット部材52は矩形板状をなしている。ジャケット部材52の外形寸法は、モールド部材51の本体部51bとほぼ同一としてある。ジャケット部材52は嵌合凸部521、複数の孔部522を含む。嵌合凸部521は嵌合溝部516と凹凸が逆の同一形状としてある。ジャケット部材52において、嵌合凸部521の外側の厚さは、モールド部材51の肉厚部51aと本体部51bとの厚さの差とほぼ同一としてある。ジャケット部材52において、嵌合凸部521の内側の厚さは、外側よりも薄くしてある。嵌合凸部521に複数の孔部522が設けてある。孔部522は、モールド部材51のねじ穴517と対応するように設けられている。ジャケット部材52は、モールド部材51と同様に、剛性が高く、電気的に絶縁性、耐水性を有する材質で形成する。例えば、ガラスエポキシ樹脂で、ジャケット部材52を形成する。
ジャケット部材52は孔部522に通したねじをねじ穴517に固定することにより、モールド部材51に固定される。嵌合溝部516の溝形状と、嵌合凸部521の凸形状とは凹凸が逆の同一形状としてあるので、ジャケット部材52がモールド部材51に固定されることにより、嵌合溝部516と嵌合凸部521は嵌合する。それにより、嵌合凸部521の内部は密封される。また、嵌合凸部521の内側には、ジャケット部材52とモールド部材51との間に空間が形成される。この形成された空間が冷媒の流動経路となる。また、可動コイル部材5において、ジャケット部材52が取付けられている2つの面が、磁界発生部材22と対向する面である。
次にモールド部材51に設けた貫通孔515について、より詳細に説明する。図5は、モールド部材51の一例を示す説明図である。図5以降ではモールド部材51の嵌合溝部516、ねじ穴517を省略している。図5Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図5Bは図5AにおけるB−B線による断面図である。図5に示す例では、貫通孔515は断面矩形形状をなしている。貫通孔515は複数設けられている。貫通孔515は多相コイル6を構成する各空心コイル61に対して設けてある。貫通孔515は空心コイル61の外周面に近接する位置に設けてある。貫通孔515は空心コイル61の並設方向と交差する方向の一端部に設けてある。貫通孔515の軸方向(軸長方向)は、本体部51bの磁界発生部材22との対向面の法線方向としてある。また、各貫通孔515は互いに同一形状、同一断面積としてある。
冷媒は可動コイル部材5を次のように流れる。モールド部材51の注入口511から冷媒が注入される。注入口511から注入された冷媒は、さらに注入孔512から、可動コイル部材5内部に注入される。冷媒は、モールド部材51の一面側と他面側とに分かれる。分かれた冷媒はそれぞれ、モールド部材51とジャケット部材52との間を流動する。モールド部材51の一面側と他面側とを流動した冷媒は、排出孔513で合流し、排出口514を経て、可動コイル部材5の外部に排出される。また、冷媒は注入孔512から流入し、排出孔513から排出されるまでの過程において、その一部が、貫通孔515を通過する。それにより、空心コイル61の外周面から発する熱を回収する。なお、冷媒による冷却能力は、単位時間あたりに流動する冷媒の体積に比例する。したがって、貫通孔515の断面積は、冷媒の流動速度又は流動速度に比例する冷媒の圧力に応じて定めれば良い。貫通孔515はモールド部材51全体の強度、剛性を低下させる要因になるので、これらも考慮の上、断面積を定める必要がある。ここで用いる冷媒は、熱的かつ化学的に安定しており、不燃性、無毒、無臭で、耐環境性に優れた(オゾン破壊係数がゼロ)の液体が好ましい。耐環境性の点から、自然冷媒(水)が好適である。しかし、伝熱性を考慮すると、フッ素系不活性液体が好ましい。なお、注入口511、排出口514の役割を逆にしてもよい。
本実施の形態は次の効果を奏する。空心コイル61の外周面に近接する位置に設けた貫通孔515を流動する冷媒により、空心コイル61の外周面から発する熱を取り去ることが可能となる。それにより、発生した熱をリニアモータ10の外部に伝導することを抑制できる。
なお、貫通孔515は断面矩形状をなしているとしたが、それに限らない。冷媒が流動可能で、空心コイル61の外周面から発生する熱を十分、取り去ることが可能であれば、他の形状でもよい。
(実施の形態2)
本実施の形態は、貫通孔515の軸方向が実施の形態1と異なる点が特徴である。図6はモールド部材51の他の例を示す説明図である。図6Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図6Bは、図6AにおけるB−B線による断面図である。本実施の形態では、貫通孔515の軸方向が、本体部51bの磁界発生部材22との対向面の法線方向から一様に傾斜している。傾斜の方向は、図6Aで見ると、紙面の表から裏へ向かうにしたがい、右へ傾斜している。
本実施の形態において、冷媒が注入孔512から流入し、排出孔513から排出されるまでの過程において、その一部が、貫通孔515を通過する。冷媒は図6Aの紙面の左から右へ流動する。貫通孔515は右へ傾斜しているため、紙面の表から貫通孔515へ冷媒が流入する際の、冷媒と貫通孔515の開口部との摩擦抵抗を、実施の形態1と比較して低減することが可能となる。それにより、冷媒の圧力損失を低減することが可能となる。その結果、貫通孔515を流動する冷媒の流量が増加し、より効率的に空心コイル61の側面を冷却可能となる。また、貫通孔515を流動することによる圧力の低下量を抑制することが可能となる。
(実施の形態3)
本実施の形態は、実施の形態2と同様に貫通孔515の軸方向を、本体部51bの磁界発生部材22との対向面の法線方向から傾斜させている点を特徴とする。実施の形態2と異なる点は、貫通孔515の軸方向を隣接する貫通孔515で互い違いとした点である。図7はモールド部材51の他の例を示す説明図である。図7Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図7Bは図7AにおけるB−B線による断面図である。本実施の形態では、貫通孔515の軸方向が、本体部51bの磁界発生部材22との対向面の法線方向から傾斜している。傾斜の方向は一様ではなく、図7Aで見ると、紙面の表から裏へ向かうにしたがい、左へ傾斜している貫通孔515と右へ傾斜している貫通孔515とが交互に設けられている。
本実施の形態において、冷媒が注入孔512から流入し、排出孔513から排出されるまでの過程において、その一部が、貫通孔515を通過する。冷媒は図7Aの紙面の左から右へ流動する。左へ傾斜している貫通孔515は、図7Aの紙面の裏から貫通孔515へ冷媒が流入する際に、冷媒と貫通孔515の開口部との摩擦抵抗を、実施の形態1と比較して低減することが可能となる。また、右へ傾斜している貫通孔515は、図7Aの紙面の表から貫通孔515へ冷媒が流入する際に、冷媒と貫通孔515の開口部との摩擦抵抗を、実施の形態1と比較して低減することが可能となる。それにより、冷媒の圧力損失を低減することが可能となる。その結果、注入孔512から排出孔513への流動過程における圧力の低下量を抑制することが可能となる。また、傾斜方向が右方向である貫通孔515と、傾斜方向が左方向である貫通孔515を同数としたことにより、図7Aの紙面の表から裏へ流動する冷媒の量と、裏から表へ流動する冷媒の量との差が大きくならないので、注入孔512から流入し、表側を流れて排出孔513から排出する冷媒の量と、注入孔512から流入し、裏側を流れて排出孔513から排出する冷媒の量との差も大きくはならない。そのため、モールド部材51の表側、裏側を偏りなく冷却することが可能となる。
(実施の形態4)
本実施の形態は、貫通孔515の断面積が一様ではない点が、実施の形態1と異なる。図8はモールド部材51の他の例を示す説明図である。図8Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図8Bは図8AにおけるB−B線による断面図である。本実施の形態では、貫通孔515の断面積が、図8Aの紙面左から右へ向かうにしたがい、大きくなっている。すなわち、空心コイル61の並設方向において、注入孔512のある一方から、排出孔513のある他方に向かって、貫通孔515の断面積が増大している。本実施の形態では、図8Bに示すように貫通孔515の開口の長手方向の寸法が大きくなっている。紙面の左右方向最も左側に位置する貫通孔515から順に当該寸法をw1、w2、w3、w4、w5、w6とすると、次の不等式(1)が成り立つ。
w1<w2<w3<w4<w5<w6 …(1)
貫通孔515の断面積を左から右へ向かうにしたがい、大きくしたことにより、貫通孔515を通過する冷媒の量は、左よりも右に位置する貫通孔515の方が大きくなる。
本実施の形態において、冷媒が注入孔512から流入し、排出孔513から排出される。冷媒は多相コイル6を冷却しながら、モールド部材51の内部を流れる。そのため、モールド部材51に流れて行くにしたがい、冷媒の温度は上昇する。また、モールド部材51やジャケット部材52との摩擦などにより圧力が低下する。そのため、冷媒の冷却能力は、注入孔512付近が最も高く、排出孔513付近が最も低くなる。
本実施の形態において、貫通孔515の断面積を左から右へ向かうにしたがい、貫通孔515を通過する冷媒の量が増えるため、冷媒の冷却能力の低下を補うことができる。それにより、貫通孔515の位置に関わらず、空心コイル61を均質に冷却することが可能となる。
なお、貫通孔515の断面積を変化させる方法は、上述の方法に限らない。貫通孔515の開口の短手方向の寸法を変化させても良い。また、断面積をどのような割合で変化させるかについては、冷媒の冷却能力の低下具合に合わせて決めれば良い。
(実施の形態5)
本実施の形態は、実施の形態2に実施の形態4を適用した形態に関する。すなわち、貫通孔515の軸方向が、本体部51bの磁界発生部材22との対向面の法線方向から一様に傾斜している。また、貫通孔515の断面積が一様となっていない。図9はモールド部材51の他の例を示す説明図である。図9Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図9Bは図9AにおけるB−B線による断面図である。本実施の形態では、貫通孔515の軸方向が、本体部51bの磁界発生部材22との対向面の法線方向から一様に傾斜している。傾斜の方向は、図9Aで見ると、紙面の表から裏へ向かうにしたがい、右へ傾斜している。また、貫通孔515の断面積が、図9Aの紙面左から右へ向かうにしたがい、大きくなっている。本実施の形態では、図9Bに示すように貫通孔515の開口の長手方向の寸法が大きくなっている。紙面の左右方向最も左側に位置する貫通孔515から順に当該寸法をw1、w2、w3、w4、w5、w6とすると、上述の不等式(1)が成り立つ。本実施の形態において、冷媒は注入孔512から流入し、排出孔513から排出する。その過程において、その一部が、貫通孔515を通過する。
本実施の形態においては、次の効果を奏する。貫通孔515は右へ傾斜しているため、図9Aの紙面の表から貫通孔515へ冷媒が流入する際の、冷媒と貫通孔515の開口部との摩擦抵抗を、実施の形態1と比較して低減することが可能となる。それにより、冷媒の圧力損失を低減することが可能となる。その結果、貫通孔515を流動する冷媒の流量が増加し、より効率的に空心コイル61の側面を冷却可能となる。注入孔512から排出孔513への流動過程における圧力の低下量を抑制することが可能となる。
また、本実施の形態において、貫通孔515の断面積を左から右へ向かうにしたがい、貫通孔515を流動する冷媒の量が増えるため、冷媒の冷却能力の低下を補うことができる。それにより、貫通孔515の位置に関わらず、空心コイル61を均質に冷却することが可能となる。
実施の形態5において、貫通孔515の傾斜する向きを実施の形態3と同様に互い違いにしても良い。その場合においては、モールド部材51の図10の紙面表側を流れる冷媒の量と、紙面裏側を流れる冷媒の量の差分を互い違いにしない場合よりも、少なくすることが可能となる。
(実施の形態6)
本実施の形態は、貫通孔515の開口近傍に誘導突起518を設けた点が特徴である。図10はモールド部材51の他の例を示す説明図である。図10Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図10Bは図10AにおけるB−B線による断面図である。図10に示すように、貫通孔515それぞれに対して、誘導突起518が設けてある。誘導突起518は平面視円弧状をなしている。誘導突起518は図10Aの紙面左下方向に膨らんだ形状としてある。誘導突起518の一端、紙面右下側は、貫通孔515に最も近接している。実施の形態6において、冷媒は注入孔512から流入し、排出孔513より排出する。すなわち、図10Aの紙面の左から右へ冷媒は流れる。したがって、誘導突起518により、左から右へと流れようしている冷媒の一部が、左上から右下方向に導かれ、誘導突起518の右下端部に近接する貫通孔515へ到達する。そして、導かれた冷媒は、貫通孔515へ流入する。
以上のように、本実施の形態においては、誘導突起518を設けたことにより、冷媒を貫通孔515に導くことが可能となる。それにより、誘導突起518を設けていない場合と比較して、貫通孔515へ流入する冷媒の量を増やすことが可能となる。それにより、空心コイル61の外周面から発する熱を効率的に回収することが可能となる。
なお、実施の形態6においても、貫通孔515を傾斜させたり、貫通孔515の断面積を変化させたりしても良い。
(実施の形態7)
本実施の形態は、実施の形態6と同様に、貫通孔515の開口部近傍に誘導突起518を設けた点が、特徴である。さらに、実施の形態6と異なるのは、誘導突起518を表側と裏側に設けた点である。図11はモールド部材51の他の例を示す説明図である。図11Aはモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図11Bは図11AにおけるB−B線による断面図である。図11に示すように、誘導突起518を図11Aの紙面表側と裏側とに設けてある。そして、図11Aの左から右にかけて、誘導突起518を設ける面を表、裏、表、裏のように、互い違いにしている。
本実施の形態において、冷媒が注入孔512から流入し、排出孔513から排出されるまでの過程において、その一部が、貫通孔515を通過する。冷媒は図11Aの紙面の左から右へ流動する。貫通孔515の開口部において、誘導突起518が設けてある側の方が多くの冷媒が導かれる。そのため、貫通孔515に流れる冷媒の向きは、誘導突起518が設けられている面から、誘導突起518が設けられていない面へ向かう向きとなる。すなわち、図11Aにおいて、最も左に位置する貫通孔515では、紙面の表から裏に向かって冷媒が流れる。その右隣の貫通孔515では、紙面の裏から表に向かって冷媒が流れる。そして、紙面の表側に設けた誘導突起518と、紙面の裏側に設けた誘導突起518とを同数としたことにより、図11Aの紙面の表から裏へ流動する冷媒の量と、裏から表へ流動する冷媒の量との差が大きくならないので、注入孔512から流入し、表側を流れて排出孔513から排出する冷媒の量と、注入孔512から流入し、裏側を流れて排出孔513から排出する冷媒の量との差も大きくはならない。そのため、モールド部材51の表側、裏側を偏りなく冷却することが可能となる。
なお、実施の形態7においても、貫通孔515を傾斜させたり、貫通孔515の断面積を変化させたりしても良い。
(実施の形態8)
本実施の形態は、コイルの一部が冷媒に触れるようにしてある点が、実施の形態1と異なる。図12はモールド部材51の他の例を示す平面図である。図12はそれぞれ、図5Aと同様な方向から見た平面図である。図13は図12のXIII−XIII線による断面図である。図12、図13に示すように、本実施の形態においては、貫通孔515の空心コイル61側の周壁に、開口515aが設けてある。そして、当該開口515aから空心コイル61の側面の一部(露出部61a)が貫通孔515の内部に露出している。その他の構成は、実施の形態1と同様であるので、説明を省略する。
本実施の形態においては、貫通孔515の内壁に開口515aを設けることにより、空心コイル61の側面の一部を貫通孔515の内部に露出させている。貫通孔515を流動する冷媒は、直接、空心コイル61の露出部61aに触れる。それにより、空心コイル61の側面を、モールド部材51を介した場合と比較して、より効果的に冷却することが可能となる。また、空心コイル61が発熱により熱膨張した場合、空心コイル61の一部が貫通孔515の開口515aより突出することも可能である。それにより、空心コイル61が膨張したことにより、空心コイル61がモールド部材51に与える圧力の一部を開口から逃がすことが可能となる。
なお、上述の他の実施の形態においても、本実施の形態と同様に貫通孔515の周壁に開口515aを設けても良い。
(実施の形態9)
本実施の形態は、各空心コイル61に2つの貫通孔515を設けた点が、実施の形態1と異なる。図14はモールド部材51の他の例を示す平面図である。図14はモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図14に示すように、本実施の形態においては、各空心コイル61に2つの貫通孔515を設けている。
本実施の形態においては、空心コイル61に対応する貫通孔515を増やしたので、冷媒は、空心コイル61から発する熱を、さらに効果的に回収することが可能となる。
なお、上述の他の実施の形態においても、本実施の形態と同様に貫通孔515の数を増やしても良い。
(実施の形態10)
本実施の形態は、モールド部材51に設ける貫通孔515のうち、肉厚部51a側の貫通孔515の形状と設ける位置とが、実施の形態9と異なる。図15はモールド部材51の他の例を示す平面図である。図15はモールド部材51を磁界発生部材22と対向する方向から見た平面図である。図15に示すように、本実施の形態においては、貫通孔515のうち、肉厚部51a側の貫通孔515は、断面が円形状をなしている。断面円形状の貫通孔515は、隣接する2つ空心コイル61の角部と角部との間に形成された空間に配置してある。このような位置に、貫通孔515を配置することにより、多相コイル6と多相コイル6を制御する制御回路とを接続するリード線や、空心コイル61間を接続する接続線といった配線と干渉することになく、貫通孔515を設けることが可能となる。
本実施の形態においては、貫通孔515の総数を増やしたので、冷媒は、空心コイル61の側面を、さらに効果的に冷却することが可能となる。
各実施の形態で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10 リニアモータ
1 固定子
2 分割ユニット
22 磁界発生部材
3 可動子
5 可動コイル部材
51 モールド部材
51a 肉厚部
511 注入口
514 排出口
51b 本体部
512 注入孔(冷媒注入孔)
513 排出孔(冷媒排出孔)
515 貫通孔
515a 開口(露出孔)
518 誘導突起
52 ジャケット部材
6 多相コイル(コイル列)
61 空心コイル(コイル)
61a 露出部

Claims (5)

  1. 所定方向に磁界が発生する磁気空隙を有する磁界発生部材と、
    前記磁界を横切る方向に電流が流れるコイルが複数個直列に接続されたコイル列、前記コイル列を内包し、矩形状断面を有するモールド部材、及び前記モールド部材の前記磁界発生部材に対向する側の面に固定されるジャケット部材を有し、前記モールド部材及び前記ジャケット部材との間に冷媒が流動可能な空間が形成されている可動コイル部材と
    を備え、
    前記モールド部材は、前記コイル列の周縁であって、コイルの並設方向に交差する方向の一端部に、一面から他面へ貫通する貫通孔を有する
    ことを特徴とする可動コイル型リニアモータ。
  2. 前記貫通孔の軸長方向は、前記一面及び前記他面の法線方向に対して傾斜している
    ことを特徴とする請求項1に記載の可動コイル型リニアモータ。
  3. 前記モールド部材は、前記貫通孔の開口近傍に前記一面又は前記他面より突出し、前記貫通孔に前記冷媒を誘導する誘導突起を有する
    ことを特徴とする請求項1又は請求項2に記載の可動コイル型リニアモータ。
  4. 前記貫通孔の周壁には、近接する前記コイルの一部が前記貫通孔の内部に露出する
    ことを特徴とする請求項1から請求項のいずれか一項に記載の可動コイル型リニアモータ。
  5. 前記モールド部材は、前記並設方向の端部の一方に冷媒注入孔が設けてあり、前記端部の他方には冷媒排出孔が設けてあり、
    前記貫通孔は、前記並設方向に沿って複数設けられ、前記端部の一方から他方へ向かうにしたがい、断面積が増大する
    ことを特徴とする請求項1から請求項のいずれか一項に記載の可動コイル型リニアモータ。
JP2016069281A 2016-03-30 2016-03-30 可動コイル型リニアモータ Active JP6677048B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069281A JP6677048B2 (ja) 2016-03-30 2016-03-30 可動コイル型リニアモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069281A JP6677048B2 (ja) 2016-03-30 2016-03-30 可動コイル型リニアモータ

Publications (2)

Publication Number Publication Date
JP2017184492A JP2017184492A (ja) 2017-10-05
JP6677048B2 true JP6677048B2 (ja) 2020-04-08

Family

ID=60006558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069281A Active JP6677048B2 (ja) 2016-03-30 2016-03-30 可動コイル型リニアモータ

Country Status (1)

Country Link
JP (1) JP6677048B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398304B (zh) * 2020-11-23 2022-04-01 清华大学 一种磁悬浮平面电机

Also Published As

Publication number Publication date
JP2017184492A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5292707B2 (ja) 可動磁石型リニアモータ
US8110950B2 (en) Coreless linear motor having a non-magnetic reinforcing member
US8198760B2 (en) Linear motor
EP2784920A2 (en) Linear motor
JP2001238428A (ja) キャンド・リニアモータ
JP2016086628A (ja) リニアモータ
JP2001218444A (ja) 高推力リニアモータ及びその製造方法
JP6677048B2 (ja) 可動コイル型リニアモータ
TWI505608B (zh) Linear motors and platform devices
JP5126652B2 (ja) 可動コイル型リニアモータ
JP5369265B2 (ja) リニアモータ及びリニア移動ステージ装置
US11735342B2 (en) Method for manufacturing magnet module
JP2016059117A (ja) リニアモータ用電機子
JP5347596B2 (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2010148233A (ja) リニアモータ駆動送り装置
WO2014141887A1 (ja) リニアモータ
EP3695495A1 (en) Linear motor with armature cooling channels
JP2007068326A (ja) リニアモータユニット及びその組み合わせ方法
JPH059183U (ja) 同期リニアモータ
JPH11127569A (ja) リニアモータ
KR100966949B1 (ko) 냉각 기능을 갖는 보이스 코일형 리니어 모터
JP2011160632A (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2023011178A (ja) リニアモータ
JP2022099892A (ja) リニアモータの冷却構造及び該冷却構造を備えた可動コイル型リニアモータ
JP6764797B2 (ja) リニアモータ及びリニアモータの冷却方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6677048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350