JP2008192973A - 固体撮像素子の製造方法及び拡散領域の形成方法 - Google Patents

固体撮像素子の製造方法及び拡散領域の形成方法 Download PDF

Info

Publication number
JP2008192973A
JP2008192973A JP2007027988A JP2007027988A JP2008192973A JP 2008192973 A JP2008192973 A JP 2008192973A JP 2007027988 A JP2007027988 A JP 2007027988A JP 2007027988 A JP2007027988 A JP 2007027988A JP 2008192973 A JP2008192973 A JP 2008192973A
Authority
JP
Japan
Prior art keywords
semiconductor layer
substrate
solid
forming
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007027988A
Other languages
English (en)
Inventor
Tomohito Nakayama
智史 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007027988A priority Critical patent/JP2008192973A/ja
Publication of JP2008192973A publication Critical patent/JP2008192973A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】長波長成分の感度が高くクロストークが低減された固体撮像素子を製造する。
【解決手段】固体撮像素子は、P型エピタキシャル成長層51と、その上に配置されたP型ウエル52と、ウエル52に配置され光電変換された電荷を蓄積するN型電荷蓄積部53を有する各画素4と、備える。この素子を製造するには、ウエル52を一方の主表面側に有する第1の基板を用意する。次いで、ウエル52の側からイオン注入して、ウエル52に電荷蓄積部53の上側領域53aを形成する。その後、第1の基板のウエル52の側に、第2の基板82を接合した後、第1の基板の側を除去して、当該接合体の全体の厚さを薄くする。次に、接合体の基板82とは反対の側からイオン注入して、ウエル52に電荷蓄積部53の下側領域を形成する。次いで、接合体の基板82とは反対の側に層51を形成した後、基板82を除去する。
【選択図】図12

Description

本発明は、固体撮像素子の製造方法、及び、この製造方法などに用いられる拡散領域の形成方法に関するものである。
近年、ビデオカメラや電子スチルカメラなどが広く一般に普及している。これらのカメラには、CCD型固体撮像素子や増幅型固体撮像素子が使用されている。このような固体撮像素子は、画素が2次元状に複数配置された画素領域を有している。そして、固体撮像素子は、各画素に配置される光電変換部にて、入射光に応じた電荷を生成し蓄積する。光電変換部は、光電変換された電荷を蓄積する拡散領域からなる電荷蓄積部を有している。各画素は、周辺回路からの駆動信号に従って前記電荷に応じた信号を出力する。
CCD型固体撮像素子は、前記電荷を電荷結合素子(CCD)によって転送し、最終段に設けられた出力アンプで増幅して外部に出力する。
増幅型固体撮像素子は、画素の光電変換部にて生成・蓄積された信号電荷を画素に設けられた画素アンプ部に導き、信号電荷に対応した電気信号を画素から出力する。増幅型固体撮像素子の主なものとして、画素アンプ部にMOSトランジスタを用いたCMOS型固体撮像素子(下記特許文献1,2)が提案されている。
多くの固体撮像素子では、特許文献1に示されているように、N型基板上に画素領域となるP型ウエルが形成され、その中にN型の電荷蓄積部を有する光電変換部を持つ画素が2次元状に複数作り込まれている。光電変換部は、電荷蓄積層の基板表面側にP型の空乏化防止層が形成され、暗電流を低減するための埋め込み型構造となっているものがほとんどである。
このような固体撮像素子では、光電変換領域において基板表面側からPNPN構造となっている。したがって、シリコン内部で光電変換されて発生する正孔−電子対のうち信号電荷としての役割を果たす電子は、ドリフトにより電位の高い方へ引き寄せられる。比較的浅い場所で発生した電子は、当該画素の電荷蓄積部に直接引き寄せられるが、深部で発生した電子は電位の最も高いN型基板方面に吸い寄せられる成分が多い。一度N型基板に辿り着いた電子は、P型ウエルとN型基板との間に存在する空乏層による電位障壁のため、再びP型ウエルに上がってくることはない。すなわち、隣接画素の電荷蓄積部に蓄積されてしまうことは少なく、クロストークを防止できる構造となっている。しかし、その反面、入射光のうち深部でしか吸収されない赤色等の長波長成分を蓄積することが難しく、長波長成分の感度を上げることが困難であった。
一方、P型基板を用いたCMOS固体撮像素子が特許文献2に示されている。一般的に、現在の標準CMOSプロセスはP型基板を用いる場合がほとんどであるため、P型基板を使用した固体撮像素子の製造では専用のプロセスを必要とすることが無く、低コスト化が可能となる。このような固体撮像素子では、光電変換領域において基板表面側からPNP構造となっている。したがって、深部で発生した電子は、電位の最も高いN型の電荷蓄積部に吸い寄せられる。つまり、P型基板を用いると、赤色などの長波長成分に対しても感度を高められるという利点がある。しかし、その反面、N型基板を用いた固体撮像素子と異なり基板とウエルとの間に電位障壁が存在しないため、当該画素の電荷蓄積部に蓄積されなかった成分が、隣接画素の電荷蓄積部に混入してしまい、クロストークが生じ易かった。
そして、N型基板及びP型基板のいずれを用いた固体撮像素子を製造する場合であっても、従来の固体撮像素子製造方法では、電荷蓄積部は、基板の一方の主表面側からのみイオン注入されることによって形成されていた。
特開2003−258231号公報 米国特許第5,898,196号明細書
先の説明からわかるように、従来の固体撮像素子では、入射光の長波長成分の感度向上とクロストーク低減とはトレードオフの関係にあり、入射光の長波長成分の感度を高めると同時にクロストークを低減することはできなかった。
本発明は、このような事情に鑑みてなされたもので、入射光の長波長成分の感度が高いとともにクロストークが低減された固体撮像素子を製造することができる固体撮像素子の製造方法、及び、この製造方法などに用いることができる拡散領域の形成方法を提供することを目的とする。
前記課題を解決するため、本発明の第1の態様による固体撮像素子の製造方法は、第1導電型の第1の半導体層と、前記第1の半導体層の上に配置された前記第1導電型の第2の半導体層と、複数の画素であって、各々の画素が、前記第2の半導体層に配置され光電変換された電荷を蓄積する第2導電型の電荷蓄積部を有し、前記電荷に応じた信号を出力する複数の画素と、を備えた固体撮像素子を製造する製造方法である。この製造方法は、前記第2の半導体層を一方の主表面側に有する第1の基板を用意する工程と、前記第2の半導体層の側からイオン注入して、前記第2の半導体層に前記電荷蓄積部の一方側領域を形成する一方側領域形成工程と、前記一方側領域形成工程の後に、前記第2の半導体層を有する前記第1の基板の前記第2の半導体層の側に、第2の基板を接合する接合工程と、前記接合工程の後に、前記第1及び第2の基板の接合体の前記第1の基板の側を除去して、当該接合体の全体の厚さを薄くする工程と、前記薄くする工程の後に、前記接合体の前記第2の基板とは反対の側からイオン注入して、前記第2の半導体層に前記電荷蓄積部の他方側領域を形成する他方側領域形成工程と、前記他方側領域形成工程の後に、前記接合体の前記第2の基板とは反対の側に前記第1の半導体層を形成する工程と、前記第1の半導体層を形成する前記工程の後に、前記接合体から前記第2の基板を除去する工程と、を備える。
前記薄くする工程は、例えば、前記接合体の前記第1の基板の側を研磨することにより行うことができる。
本発明の第2の態様による固体撮像素子の製造方法は、前記第1の態様において、前記第1の半導体層を形成する前記工程は、前記第1の半導体層をエピタキシャル成長により形成するものである。
本発明の第3の態様による拡散領域の形成方法は、第1導電型の半導体層中に第2の導電型の拡散領域を形成する形成方法であって、前記半導体層の一方の主表面側からイオン注入して前記拡散領域の一方側領域を形成する工程と、前記半導体層の他方の主表面側からイオン注入して前記拡散領域の他方側領域を形成する工程と、を備えたものである。
本発明の第4の態様による拡散領域の形成方法は、第1導電型の第1の半導体層の上に配置された前記第1導電型の第2の半導体層に配置された第2導電型の拡散領域を形成する形成方法であって、前記第2の半導体層を一方の主表面側に有する第1の基板を用意する工程と、前記第2の半導体層の側からイオン注入して、前記第2の半導体層に前記拡散領域の一方側領域を形成する一方側領域形成工程と、前記一方側領域形成工程の後に、前記第2の半導体層を有する前記第1の基板の前記第2の半導体層の側に、第2の基板を接合する接合工程と、前記接合工程の後に、前記第1及び第2の基板の接合体の前記第1の基板の側を除去して、当該接合体の全体の厚さを薄くする工程と、前記薄くする工程の後に、前記接合体の前記第2の基板とは反対の側からイオン注入して、前記第2の半導体層に前記拡散領域の他方側領域を形成する他方側領域形成工程と、前記他方側領域形成工程の後に、前記接合体の前記第2の基板とは反対の側に前記第1の半導体層を形成する工程と、前記第1の半導体層を形成する前記工程の後に、前記接合体から前記第2の基板を除去する工程と、を備えたものである。
入射光の長波長成分の感度が高いとともにクロストークが低減された固体撮像素子を製造することができる固体撮像素子の製造方法、及び、この製造方法などに用いることができる拡散領域の形成方法を提供することができる。
以下、本発明による固体撮像素子の製造方法及び拡散領域の形成方法について、図面を参照して説明する。
図1は、本発明の一実施の形態による製造方法により製造される固体撮像素子1の一例を示す概略構成図である。この固体撮像素子1は、CMOS型固体撮像素子として構成されている。
図1に示すように、この固体撮像素子1は、一般的なCMOS型固体撮像素子と同様に、垂直走査回路2と、水平走査回路3と、2次元状に配置された複数の単位画素4と、周知のCDS回路等を含む読み出し回路5と、出力アンプ6とを有している。各画素4のフォトダイオード15(図1では図示せず。後述する図2参照)が出力する電気信号が垂直走査回路2によって読み出し回路5に行単位で取り出され、水平走査回路3によって列単位で出力アンプ6を介して出力端子7に画像信号として出力されるようになっている。このように、垂直走査回路2及び水平走査回路3は、画素4を駆動する回路を構成している。画素4が2次元状に配置された領域が画素領域10である。この固体撮像素子1では、垂直走査回路2、水平走査回路3、読み出し回路5及び出力アンプ6が周辺回路を構成している。周辺回路が配置された領域が周辺回路領域である。周辺回路領域は、画素領域10の周辺に配置されている。
図2は、図1中の単位画素4を示す回路図である。各画素4は、図2に示すように、選択トランジスタ11と、ゲートの電位に応じた信号を出力する増幅トランジスタ(画素アンプ)12と、リセットトランジスタ13と、転送トランジスタ14と、光電変換部としてのフォトダイオード15と、フローティングディフュージョン16とを有している。図2において、VDDは電源である。
図1及び図2に示すように、画素4の選択トランジスタ11のゲートは行毎に選択線20に共通に接続されている。画素4のリセットトランジスタ13のゲートは、行毎にリセット線21に共通に接続されている。画素4の転送トランジスタ14のゲートは、行毎に転送線22に共通に接続されている。画素4の選択トランジスタ11のソースは、列毎に垂直信号線23に共通に接続されている。選択線20、リセット線21及び転送線22は、垂直走査回路2に接続されている。垂直信号線23は、読み出し回路5に接続されている。
図3は、図1中の互いに隣り合う2つの画素4を模式的に示す概略平面図である。図4は、図3中のA−A’線に沿った概略断面図である。図3及び図4では、一部の配線層等は省略して示している。また、図4では、電極等も省略している。さらに、実際には、フォトダイオード15の上部にはカラーフィルタやマイクロレンズが配置されるが、ここでは省略する。なお、図4には、入射光により深部で発生した電子eの様子も模式的に示している。
図3において、符号16a,16b,31〜33は、第1の半導体層としてのP型のエピタキシャル成長層51上に形成された第2の半導体層としてのP型ウエル52(図4参照)に形成されたN型不純物拡散領域である。なお、P型ウエル52に代えて、P型エピタキシャル成長層を形成してもよい。また、拡散領域33は、図示しない配線により電源電圧VDDが印加される電源拡散部である。拡散領域16a,16bは、配線41によって接続され、全体としてフローティングディフュージョン16を構成している。符号34〜37は、ポリシリコンで構成された前記各トランジスタのゲート(電極)である。
フォトダイオード15は、図4に示すように、P型ウエル52にN型の電荷蓄積層53が形成されることで構成されている。この例では、フォトダイオード15は、空乏化防止層をなす高濃度のP型層54を表面側に付加した構造として、埋め込みフォトダイオードとして構成されている。フォトダイオード15は、入射する光を光電変換し、生じた電荷を電荷蓄積層53に蓄積する。フォトダイオード15の電荷蓄積層53に蓄積された電荷は、転送トランジスタ14がオン状態とされることによってフローティングディフュージョン16(拡散領域16a,16b)に転送される。
転送トランジスタ14は、フォトダイオード15の電荷蓄積層53をソース、フローティングディフュージョン16の拡散領域16aをドレインとするMOSトランジスタである。転送トランジスタ14は、そのゲート34に印加される駆動信号により駆動される。
フローティングディフュージョン16(拡散領域16a,16b)は、配線41によって、増幅トランジスタ12のゲート36に電気的に接続されている。
増幅トランジスタ12は、電源拡散部33をドレイン、拡散領域32をソースとするMOSトランジスタである。前述したように、増幅トランジスタ12のゲート36は、フローティングディフュージョン16(拡散領域16a,16b)に接続されている。そして、増幅トランジスタ12は、そのゲート36の電圧に応じた電気信号を出力する。したがって、増幅トランジスタ12は、フォトダイオード15で生成・蓄積された電荷の量に応じた電気信号を出力する。
選択トランジスタ11は、拡散領域32をドレイン、拡散領域31をソースとするMOSトランジスタである。選択トランジスタ11は、オン状態にされることで、増幅トランジスタ12の出力を垂直信号線23に出力する。すなわち、増幅トランジスタ12と選択トランジスタ11によって、ソースフォロワによる読み出しが可能となっている。
リセットトランジスタ13は、電源拡散部33をドレイン、フローティングディフュージョン16の拡散領域16bをソースとするMOSトランジスタである。リセットトランジスタ13は、オン状態にされることで、フローティングディフュージョン16に蓄積されている電荷をリセットする。
図4において、55は高濃度のP型の素子分離領域である。図面には示していないが、この固体撮像素子1では、P型層54や素子分離領域55上には、層間絶縁膜や配線等が形成され、さらに、その上に必要に応じてカラーフィルタやマイクロレンズ等が設けられている。
この固体撮像素子1では、前述したように、P型ウエル52の下側の層がP型エピタキシャル成長層51とされている。そして、N型拡散領域からなる電荷蓄積部53は、上側からイオン注入するだけでは形成することが困難である深い位置にまで及ぶように、形成されている。すなわち、電荷蓄積部53の下面がシリコン表面から深い位置に達している。固体撮像素子1は、これらの点を除いて、一般的な固体撮像素子と同様に形成されている。
図5は、この固体撮像素子1の光電変換領域における各深さ位置の電位を示す図である。
この固体撮像素子1では、P型ウエル52の下側の層がP型層51とされているので長波長成分の感度が高まると同時に、電荷蓄積部53が深い位置にまで及ぶように形成されているのでクロストークが低減される。この点について、以下に、比較例と比較しつつ説明する。
図6は、図1乃至図5に示す固体撮像素子1と比較される第1の比較例による固体撮像素子101を示す概略断面図であり、図4に対応している。図7は、この固体撮像素子101の光電変換領域における各深さ位置の電位を示す図であり、図5に対応している。図6及び図7において、図4及び図5中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
この第1の比較例による固体撮像素子101が図1乃至図5に示す固体撮像素子1と異なる所は、P型ウエル52の下側の層がN型基板151とされている点と、電荷蓄積部53が上側からイオン注入するだけで形成されていて浅い位置までにしか及んでいない点のみである。この固体撮像素子101は、特許文献1に開示されているような従来の固体撮像素子に相当している。この固体撮像素子101では、光電変換領域において上側から各要素54,53,52,151からなるPNPN構造となっている。したがって、シリコン内部で光電変換されて発生する正孔−電子対のうち信号電荷としての役割を果たす電子は、ドリフトにより電位の高い方へ引き寄せられる。比較的浅い場所で発生した電子は、当該画素4の電荷蓄積部53に直接引き寄せられるが、深部で発生した電子は電位の最も高いN型基板151方面に吸い寄せられる成分が多い。一度N型基板151に辿り着いた電子は、P型ウエル52とN型基板151との間に存在する空乏層による電位障壁のため、再びP型ウエル52に上がってくることはない。すなわち、隣接画素4の電荷蓄積部53に蓄積されてしまうことは少なく、クロストークを防止できる構造となっている。しかし、その反面、入射光のうち深部でしか吸収されない赤色等の長波長成分を蓄積することが難しく、長波長成分の感度を上げることが困難である。
一方、図8は、図1乃至図5に示す固体撮像素子1と比較される第2の比較例による固体撮像素子201を示す概略断面図であり、図4に対応している。図9は、この固体撮像素子201の光電変換領域における各深さ位置の電位を示す図であり、図5に対応している。図8及び図9において、図4及び図5中の要素と同一又は対応する要素には同一符号を付し、その重複する説明は省略する。
この第2の比較例による固体撮像素子201が図1乃至図5に示す固体撮像素子1と異なる所は、P型ウエル52の下側の層がP型基板251とされている点と、電荷蓄積部53が上側からイオン注入するだけで形成されていて浅い位置までにしか及んでいない点のみである。この固体撮像素子201は、特許文献2に開示されているような従来の固体撮像素子に相当している。この固体撮像素子201では、光電変換領域において上側から各要素54,53,52,251からなるPNP構造となっている。したがって、深部で発生した電子は、電位の最も高いN型の電荷蓄積部53に吸い寄せられる。つまり、P型基板251を用いると、赤色などの長波長成分に対しても感度を高められるという利点がある。しかし、その反面、図6及び図7に示すN型基板151を用いた固体撮像素子101と異なり基板251とウエル52との間に電位障壁が存在しないため、当該画素4の電荷蓄積部53に蓄積されなかった成分が、隣接画素4の電荷蓄積部53に混入してしまい、クロストークが生じ易い。
このように、第1の比較例による固体撮像素子101では、クロストークは低減されるものの入射光の長波長成分の感度が低下してしまう一方、第2の比較例による固体撮像素子201では、入射光の長波長成分の感度は高いもののクロストークが生じ易く、いずれの比較例も一長一短である。
これに対し、本発明の一実施の形態により製造される図1乃至図5に示す固体撮像素子1では、P型ウエル52の下側の層がP型層51とされているので、前記第2の比較例による固体撮像素子201と同様に、入射光の長波長成分の感度が高まる。そして、固体撮像素子1では、電荷蓄積部53が前記第2の比較例による固体撮像素子101に比べて深い位置にまで及んでいるため、入射光により当該画素4の深部で発生した電子(信号電荷)は、隣接画素4に拡散してしまう前に当該画素4の電荷蓄積部53に吸い込まれ易くなり、これにより、クロストークが低減される。このように、図1乃至図5に示す固体撮像素子1によれば、長波長成分の感度が高まると同時にクロストークが低減されるのである。
なお、長波長成分の感度をより高めるためには、P型のエピタキシャル成長層51の不純物濃度をP型ウエル52の不純物濃度よりも濃くすることが好ましい。また、エピタキシャル成長層51があまりに厚すぎると、再びクロストーク悪化の原因となる可能性があるため、その厚さは適切に設定する。
ここで、本発明の一実施の形態による製造方法として、前述した固体撮像素子1の製造方法の一例を、図10乃至図13を参照して説明する。この製造方法は、本発明の一実施の形態による拡散領域の形成方法を用いたものである。図10乃至図13は、本実施の形態による製造方法の主要な工程を模式的に示す概略断面図であり、図4に対応している。なお、以下に説明する各材料は例示であり、その材料に限定されるものではない。
まず、P型シリコン基板(第1の基板)81を用意し、その上面側にP型ウエル52を形成する。P型シリコン基板81に代えて、N型シリコン基板を用意し、その上面側(一方の主表面の側)にP型ウエル52を形成してもよい。本実施の形態では、P型ウエル52よりも下側の部分は、後述する工程で除去されるためである。なお、ここでは、P型ウエル52を形成したが、その代わりにP型エピタキシャル成長層を形成してもよい。次いで、上側からイオン注入することで、P型ウエル52にP型の素子分離領域55を形成する。図10(a)はこの状態を示している。なお、イオン注入に際しては、周知のように、予め保護用の酸化膜の形成やマスク用のレジストパターンの形成などが行われることは、言うまでもない。後述する他の拡散領域形成時のイオン注入の際についても同様である。
次に、上側(P型ウエル52の側)からイオン注入することで、電荷蓄積部53の上側領域53a、及び、その他のN型拡散領域16a,16b,31〜33(図10(b)には現れていない。)を形成する。引き続いて、上側からイオン注入することで、高濃度のP型の空乏化防止層54を形成する。図10(b)はこの状態を示している。
その後、図10(b)に示す状態の構造体の上側(P型ウエル52の側)に、シリコン基板等の支持基板(第2の基板)82を接合する。図11(a)はこの状態を示している。この接合は、一時的なものであり、後に剥離する。
次に、図11(a)に示す状態の接合体の下側(基板81の側)を研磨等により除去することで、接合体全体の厚さを薄くする。図11(b)はこの状態を示している。このとき、支持基板82により機械的な強度が保持されているので、破損等が防止される。本実施の形態では、基板81及びP型ウエル52の下側の一部が除去されているが、これに限定されず、後述する図12(a)に示す工程で電荷蓄積部53の下側領域53bを上側領域53aと厚さ方向に重なるように形成し得る程度に、当該接合体を薄くすればよい。したがって、場合によっては、P型基板81の上側の一部が残る程度に当該接合体を薄くするだけでもよい。
次いで、図11(b)に示す状態の接合体に対して下側(支持基板82とは反対側)からイオン注入を行うことで、P型ウエル52に電荷蓄積部53の下側領域53bを形成する。図12(a)はこの状態を示している。理解を容易にするため、図12では、この下側領域53bにはドットパターンを付している。なお、この工程では、転送トランジスタ14の転送特性に支障を及ぼさないために、電荷蓄積部53の下側領域53aを形成する際に、その転送特性に支障の無い注入条件を満足しておくことが好ましい。
引き続いて、図12(a)に示す状態の接合体のP型ウエル52の下面に、エピタキシャル成長により、P型のエピタキシャル成長層51を形成する。図12(b)はこの状態を示している。このとき、前述したように、P型のエピタキシャル成長層51の不純物濃度は、P型ウエル52の不純物濃度よりも濃い方が好ましい。
次に、図12(b)に示す状態の接合体から支持基板82を除去する。図13はこの状態を示している。その後、従来の固体撮像素子101,201を製造する場合と同様に、層間絶縁膜、ゲート電極34〜37、アルミニウム等からなる配線層、カラーフィルタ及びマイクロレンズなどを図13に示す状態の構造体の上面側に形成するなどして、図1乃至図5に示す固体撮像素子1が完成する。
なお、エピタキシャル成長層51を成長させる際の処理温度は比較的高いため、本実施の形態のように、配線層の形成は、エピタキシャル成長層51を形成した後に行うことが好ましい。もっとも、エピタキシャル成長層51の形成を例えば分子線エキタキシィ法(MBE)により行う場合には、その処理温度は比較的低いので、図10(b)に示す工程の後でかつ図11(a)に示す工程の前に配線層及びそれに付随する層間絶縁膜を形成しておくことも可能である。
前述した従来の固体撮像素子101,202を製造する場合には、上側からイオン注入するだけで電荷蓄積部53が形成されていたので、イオン注入機の加速エネルギーの上限等で制約を受けてしまい、電荷蓄積部53を比較的浅い位置にまでしか形成することはできない。これに対し、本実施の形態によれば、上下両側からイオン注入することで電荷蓄積部53を形成するので、イオン注入機の加速エネルギーの上限等による制約を超えて、電荷蓄積部53を深い位置にまで及ぶように形成することができる。
したがって、本実施の形態によれば、入射光の長波長成分の感度が高いとともにクロストークが低減された固体撮像素子1を製造することができる。
以上、本発明の一実施の形態について説明したが、本発明はこの実施の形態に限定されるものではない。
例えば、前述した実施の形態はCMOS型固体撮像素子の製造方法の例であったが、本発明による固体撮像素子の製造方法は、CCD型固体撮像素子などの他の固体撮像素子の製造方法にも適用することができる。
また、前述した実施の形態は、本発明による拡散領域の形成方法を固体撮像素子1における電荷蓄積部53の形成方法に適用した例であったが、本発明による拡散領域の形成方法は他の拡散領域の形成方法にも適用することができる。
本発明の一実施の形態による製造方法により製造される固体撮像素子の一例を示す概略構成図である。 図1中の単位画素を示す回路図である。 図1中の互いに隣り合う2つの画素を模式的に示す概略平面図である。 図3中のA−A’線に沿った概略断面図である。 図1乃至図5に示す固体撮像素子の光電変換領域における各深さ位置の電位を示す図である。 第1の比較例による固体撮像素子を示す概略断面図である。 図6に示す固体撮像素子の光電変換領域における各深さ位置の電位を示す図である。 第2の比較例による固体撮像素子を示す概略断面図である。 図8に示す固体撮像素子の光電変換領域における各深さ位置の電位を示す図である。 本発明の一実施の形態による製造方法の主要な工程を模式的に示す概略断面である。 図10に示す工程に引き続く工程を模式的に示す概略断面である。 図11に示す工程に引き続く工程を模式的に示す概略断面である。 図12に示す工程に引き続く工程を模式的に示す概略断面である。
符号の説明
1 固体撮像素子
4 画素
51 P型エピタキシャル成長層(第1の半導体層)
52 P型ウエル(第2の半導体層)
53 N型の電荷蓄積部
81 第1の基板
82 支持基板(第2の基板)

Claims (4)

  1. 第1導電型の第1の半導体層と、
    前記第1の半導体層の上に配置された前記第1導電型の第2の半導体層と、
    複数の画素であって、各々の画素が、前記第2の半導体層に配置され光電変換された電荷を蓄積する第2導電型の電荷蓄積部を有し、前記電荷に応じた信号を出力する複数の画素と、
    を備えた固体撮像素子を製造する製造方法であって、
    前記第2の半導体層を一方の主表面側に有する第1の基板を用意する工程と、
    前記第2の半導体層の側からイオン注入して、前記第2の半導体層に前記電荷蓄積部の一方側領域を形成する一方側領域形成工程と、
    前記一方側領域形成工程の後に、前記第2の半導体層を有する前記第1の基板の前記第2の半導体層の側に、第2の基板を接合する接合工程と、
    前記接合工程の後に、前記第1及び第2の基板の接合体の前記第1の基板の側を除去して、当該接合体の全体の厚さを薄くする工程と、
    前記薄くする工程の後に、前記接合体の前記第2の基板とは反対の側からイオン注入して、前記第2の半導体層に前記電荷蓄積部の他方側領域を形成する他方側領域形成工程と、
    前記他方側領域形成工程の後に、前記接合体の前記第2の基板とは反対の側に前記第1の半導体層を形成する工程と、
    前記第1の半導体層を形成する前記工程の後に、前記接合体から前記第2の基板を除去する工程と、
    を備えたことを特徴とする固体撮像素子の製造方法。
  2. 前記第1の半導体層を形成する前記工程は、前記第1の半導体層をエピタキシャル成長により形成することを特徴とする請求項1記載の固体撮像素子の製造方法。
  3. 第1導電型の半導体層中に第2の導電型の拡散領域を形成する形成方法であって、
    前記半導体層の一方の主表面側からイオン注入して前記拡散領域の一方側領域を形成する工程と、
    前記半導体層の他方の主表面側からイオン注入して前記拡散領域の他方側領域を形成する工程と、
    を備えたことを特徴とする拡散領域の形成方法。
  4. 第1導電型の第1の半導体層の上に配置された前記第1導電型の第2の半導体層に配置された第2導電型の拡散領域を形成する形成方法であって、
    前記第2の半導体層を一方の主表面側に有する第1の基板を用意する工程と、
    前記第2の半導体層の側からイオン注入して、前記第2の半導体層に前記拡散領域の一方側領域を形成する一方側領域形成工程と、
    前記一方側領域形成工程の後に、前記第2の半導体層を有する前記第1の基板の前記第2の半導体層の側に、第2の基板を接合する接合工程と、
    前記接合工程の後に、前記第1及び第2の基板の接合体の前記第1の基板の側を除去して、当該接合体の全体の厚さを薄くする工程と、
    前記薄くする工程の後に、前記接合体の前記第2の基板とは反対の側からイオン注入して、前記第2の半導体層に前記拡散領域の他方側領域を形成する他方側領域形成工程と、
    前記他方側領域形成工程の後に、前記接合体の前記第2の基板とは反対の側に前記第1の半導体層を形成する工程と、
    前記第1の半導体層を形成する前記工程の後に、前記接合体から前記第2の基板を除去する工程と、
    を備えたことを特徴とする拡散領域の形成方法。
JP2007027988A 2007-02-07 2007-02-07 固体撮像素子の製造方法及び拡散領域の形成方法 Pending JP2008192973A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027988A JP2008192973A (ja) 2007-02-07 2007-02-07 固体撮像素子の製造方法及び拡散領域の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027988A JP2008192973A (ja) 2007-02-07 2007-02-07 固体撮像素子の製造方法及び拡散領域の形成方法

Publications (1)

Publication Number Publication Date
JP2008192973A true JP2008192973A (ja) 2008-08-21

Family

ID=39752762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027988A Pending JP2008192973A (ja) 2007-02-07 2007-02-07 固体撮像素子の製造方法及び拡散領域の形成方法

Country Status (1)

Country Link
JP (1) JP2008192973A (ja)

Similar Documents

Publication Publication Date Title
US20210335875A1 (en) Solid-state imaging element, manufacturing method, and electronic device
US6885047B2 (en) Solid-state image sensing device having pixels with barrier layer underneath transistor regions and camera using said device
US7217961B2 (en) Solid-state image pickup device and method for producing the same
JP5100988B2 (ja) イメージセンサー及びその製造方法
JP5487798B2 (ja) 固体撮像装置、電子機器および固体撮像装置の製造方法
JP2011114302A (ja) 半導体素子の製造方法及び半導体素子、並びに固体撮像素子及び固体撮像装置
JP2003258232A (ja) 固体撮像素子
JP2008004682A (ja) 固体撮像装置、その駆動方法および製造方法
KR102162123B1 (ko) 고체 촬상 소자, 제조 방법, 및 전자 기기
WO2021117523A1 (ja) 固体撮像素子及び電子機器
JP5272281B2 (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2013051327A (ja) 固体撮像素子および電子機器
US20120104464A1 (en) P-pixel cmos imagers using ultra-thin silicon on insulator substrates (utsoi)
JP2013131516A (ja) 固体撮像装置、固体撮像装置の製造方法、及び、電子機器
KR100825803B1 (ko) 커플링 방지용 전극 배선층을 구비한 트랜지스터 및 그제조방법과 상기 트랜지스터를 구비한 이미지 센서
JP2006093175A (ja) 固体撮像素子及びその製造方法
JP2008192973A (ja) 固体撮像素子の製造方法及び拡散領域の形成方法
JP2012204492A (ja) 固体撮像装置
WO2021187422A1 (ja) 固体撮像素子及び電子機器
JP4863517B2 (ja) 光電変換装置及びカメラ
JP4867309B2 (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2010287799A (ja) 固体撮像装置
JP2010135653A (ja) 固体撮像素子及びその製造方法
JP2010171042A (ja) 半導体装置及びその製造方法
JP2011054880A (ja) 固体撮像装置及びその製造方法