JP2008177183A - 超電導電磁石装置およびそれを用いたmri装置 - Google Patents

超電導電磁石装置およびそれを用いたmri装置 Download PDF

Info

Publication number
JP2008177183A
JP2008177183A JP2007006513A JP2007006513A JP2008177183A JP 2008177183 A JP2008177183 A JP 2008177183A JP 2007006513 A JP2007006513 A JP 2007006513A JP 2007006513 A JP2007006513 A JP 2007006513A JP 2008177183 A JP2008177183 A JP 2008177183A
Authority
JP
Japan
Prior art keywords
superconducting
circuit
magnetic field
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007006513A
Other languages
English (en)
Inventor
Akihiko Ariyoshi
昭彦 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007006513A priority Critical patent/JP2008177183A/ja
Publication of JP2008177183A publication Critical patent/JP2008177183A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】MRI装置の超電導電磁石装置において、漏洩磁場分布を設置環境許容範囲内に収めるとともに、クエンチが発生した場合に、漏洩磁場分布に大きな変動を生じない装置を提供する。
【解決手段】複数の超電導主コイル1a〜1gと、超電導シールドコイル2a、2bとで構成される超電導コイル群80に、クエンチ発生時のコイルを保護するダイオード素子51、52とこのダイオード素子51、52に直列に接続された調整用抵抗61、62とを有する少なくとも2つの回路が設けられ、超電導コイル群80のいずれかのコイルにクエンチ発生時に電流減衰の時定数がほぼ同じとなるよう、調整用抵抗61、62の値を設定する。
【選択図】図2

Description

この発明は、超電導電磁石装置に関するものであり、特に生体の画像診断に利用されるMRI(Magnetic Resonance Imaging)装置の超電導電磁石装置に係るものである。
MRI装置は、主に水素原子の核磁気共鳴現象を利用し、被検体の断層映像を取る装置であり、そのために、検査部位を配置する空間に均一な磁場が必要になる。磁場はppm(百万分1)レベルの均一性が要求される。静磁場強度は概2.0T(2テスラ)程度までが用いられている。用いられる磁石装置としては超電導電磁石が一般的に使用され、電磁石の形態としては、円筒状で開口の中央に均一空間を提供する開口内に被検体を挿入するソレノイドタイプと、上下2つの容器にコイル群を収納し、その容器が対抗する空間に均一空間を提供し、発生磁場と垂直に被検体を配置するオープンタイプのものがある。
このような強い磁場を発生するMRI装置では、磁石装置からの漏洩磁場が問題となる。漏洩磁場の大きさは、0.5mT(5ガウス)の広さで評価され、病院等に電磁石装置を設置する場合には、心臓ペースメーカへの影響から0.5mTライン(通称5ガウスライン)内に納めることが要求されている。なお、この漏洩磁場制限要求は、超電導電磁石の定常運転時、および超電導電磁石のクエンチ時等通電状態におけるすべての場合に適用される。
漏洩磁場を押さえる方式として、磁石に対し強磁性体で磁気回路を構成するパッシブシールド方式、磁場を発生する主コイルと逆向きの磁場を発生するシールドコイルを配置し外部漏洩磁場を押さえるアクティブシールド方式等が利用されている。これらの方式を採用し、漏洩磁場を環境に合わせて必要な磁場強度に低減する方法がある。
アクティブシールド方式を採用した超電導電磁石装置のクエンチ時における漏洩磁場分布を抑えるために、主コイルとシールドコイルを含むように2回路にわけて、各回路に保護ダイオードを接続することが示されている(例えば、特許文献1)。
特開平05−090023号公報(図1)
しかしながら、前記特許文献1に示された技術では、メインコイルとシールドコイルを分けた構成である場合であっても、各回路のメインコイル群とシールドコイル群で発生する漏洩磁場の和がその磁石装置の漏洩磁場を決定する。すなわち2回路の内1方の回路を構成するコイル群により生じる漏洩と、他方の回路を構成するコイル群により生じる漏洩磁場により装置全体の漏洩磁場分布が決まる。
前記特許文献1では、メインコイルとシールドコイルで回路が構成されており定常運転状態では、各回路に流れる電流は同じであるがクエンチが生じた回路ではその電流は減衰していく。他方の回路でもクエンチによる熱伝播等によりクエンチが発生し電流減衰が生じる。クエンチ時には、各回路は独立した回路として動作するので回路の回路定数で電流が異なる。その電流により漏洩磁場が発生するので2個の回路電流の違いにより漏洩磁場が広がるという問題がある。
前記特許文献1に示されたクエンチ時における漏洩磁場の広がりを参考図7により同一符号を用いて説明する。
図7において、メインコイル11〜13と、シールドコイル21、22とによって左側のグループとし、メインコイル14〜16とシールドコイル23、24とによって右側のグループとしている。
定常運転状態における漏洩磁場を領域50であるとする。前記特許文献1に記載されているように、左側のグループのメインコイル12にクエンチが発生すると左側のグループのコイルから発生していた磁場は急速に減衰する。これに対して右側グループのコイルに流れていた電流は非常に緩やかに減衰する。つまりクエンチ発生時にはこの右側のグループに属するコイルからの磁場は残ることになり、前記通常運転状態における漏洩磁場領域50より図7で示すように軸方向右側に広がりのある漏洩磁場領域50aとなる。
この発明は、前記のような課題を解決するためのものであって、クエンチ時の電流減衰が時間的に各回路でアンバランスを生じないよう、各回路のインダクタンスLの比率と同等の比率となる抵抗を回路毎に設けることにより、電流減衰の時定数がほぼ同じとなり、その結果漏洩磁場変化を同じにすることができて、漏洩磁場の広がりを少なくするものである。
この発明の超電導電磁石装置は、複数の超電導主コイルと、この超電導主コイルの作る磁場とは逆方向の磁場を発生する複数の超電導シールドコイルとを有する超電導コイル群を備えており、超電導コイル群には、クエンチ発生時に超電導コイル群を保護するように、ダイオード素子とこのダイオード素子に直列に接続された抵抗とよりなる回路が、少なくとも2つ有するように設けられており、いずれかの回路のコイルにクエンチが発生した時、各回路の電流減衰の時定数がほぼ同じとなるように、各回路毎の抵抗の値が設定されているものである。
この発明による超電導電磁石装置は、複数の超電導主コイルと、この超電導主コイルの作る磁場とは逆方向の磁場を発生する複数の超電導シールドコイルとを有する超電導コイル群を備えており、超電導コイル群には、クエンチ発生時に超電導コイル群を保護するように、ダイオード素子とこのダイオード素子に直列に接続された抵抗とよりなる回路が、少なくとも2つ有するように設けられており、いずれかの回路のコイルにクエンチが発生した時、各回路の電流減衰の時定数がほぼ同じとなるように各回路毎の抵抗の値が設定されているので、超電導コイル群にクエンチが発生した場合にも漏洩磁場分布に大きな変動が生じることなく、設置環境で許容される範囲内に収めることが可能となるという効果がある。
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1は水平型磁気共鳴イメージング装置(MRI)用超電導電磁石装置100の主要部構成の一例を示す縦断側面図である。
図1において、超電導電磁石は主コイル1a、1b、1c、1d、1e、1f、1gと、前記主コイルとは逆の磁場を発生する超電導シールドコイル2a、2bから構成される。この超電導主コイル1a〜1gと超電導シールドコイル2a、2bとで超電導コイル群80を形成する。この超電導コイル群80はヘリウム槽31内に収納され液体ヘリウムにより4.2Kまで冷却されている。ヘリウム槽31はその周りを、熱シールド32、真空槽33で取り囲んだ断熱構造となっており、液体ヘリウムの消費を低減するためにコールドヘッド34とコンプレッサ35が接続されている。
以上の各要素によって超電導電磁石装置100が構成されている。
このアクティブシールド方式を用いた超電導電磁石装置100は、図1のように画像データを収集する磁場均一空間内30で磁場均一度を上げるため、円筒巻枠に複数の超電導コイル群の集合60として配置される。ここでは7個の超電導主コイル1a〜1gを円筒巻枠(図示せず)に巻線するようにし軸方向に同軸に配列されている。その外側の円筒巻枠(図示せず)に複数個(ここでは2個)の超電導シールドコイル2a、2bが主コイル円筒巻枠と同軸に配列される。これらの超電導コイル群80は磁場均一空間30に対して対称的に配置される。ここでは磁場均一空間30を横切る中央面に関して対称と配置されている。コイルクエンチによる保護として超電導コイル毎にダイオード素子を設置し電圧を抑制する方法が採用される。
この場合に超電導コイル群80をいくつかの回路に分けて、各回路をダイオードで接続する方法が採用される。これは回路を分けることによりクエンチ部で消費されるエネルギーを磁石全体でのエネルギーではなく、回路内だけのエネルギーに減らすことで、クエンチ部分の焼損、発生電圧を抑制できるからである。
次に2回路の場合の回路構成図を図2に示す。
図2において、均一磁場領域30へ主磁場を超電導主コイル1a、1b、1c、1d、1e、1f、1gで発生し、その漏洩磁場を低減するために超電導シールドコイル2a、2bで前記主コイルと逆の電流を通電することにより、逆の磁場を発生させ、外部の漏洩磁場を低減する。回路1は超電導シールドコイル2a、2bを逆並列のダイオード素子51で接続した構成とし、回路2は超電導主コイル1a、1b、1c、1d、1e、1f、1g群を逆並列のダイオード素子52で接続した構成としている。このとき、回路1の中に、クエンチ時の磁場減衰速度を調整する抵抗61を、回路2の中に同様の抵抗62を配置し、抵抗61と、抵抗62の比率が、回路1と回路2のインダクタンスの比率とほぼ同等にすることで回路電流I1,I2の減衰を同じにでき、クエンチ発生時の漏洩磁場の広がりを低減することが出来る。なお、回路電流I1,I2は永久電流スイッチ90を介して循環する。
このように超電導コイル群80にダイオード保護を行う際に各保護回路に調整用抵抗61、62を配置し、回路に流れる電流の減衰をほぼ同等にすることにより、クエンチが発生した場合にも装置の漏洩磁場分布が広がることない。この場合に配置される抵抗61、62の大きさは各回路のインダクタンスの比率とほぼ同等の比率とされる。以下、その詳細を述べる。
回路1、回路2の電流減衰は回路定数から決まり、インダクタンスLと抵抗Rで決まる。クエンチにより発生する超電導コイルの抵抗は時間の関数でα(t)とするとクエンチが発生した回路内の電流減衰の時定数τはτ=L/α(t)となる。このとき回路抵抗はクエンチによる抵抗であるが、同じコイル構造であればほぼ同じとみなすことができる。よって回路1、回路2の電流減衰は時定数の比、すなわちインダクタンスLの比で電流差が生じることとなる。
そこで時定数をほぼ同等にするために各回路に各回路のインダクタンスLの比率とほぼ同等の比率となる磁場減衰速度調整用の抵抗を回路毎に配置することで、各回路の時定数をほぼ同等とすることができ電流減衰すなわち回路が発生する漏洩磁場変化を同じにすることにより漏洩磁場の広がりをなくすことができる。
すなわち、図2の回路1の超電導シールドコイル2a、2bの抵抗をα(t)、インダクタンスをL、磁場減衰速度調整用の抵抗61をRとし、回路2の超電導主コイル1a〜1gの抵抗をα(t)、インダクタンスをL、磁場減衰速度調整用の抵抗62をRとすると、クエンチ時の電流減衰の時定数は、回路1ではτ=L/α(t)+R、回路2ではτ=L/α(t)+Rで示され、L/L≒α(t)+R/α(t)+Rとすることによって、τ≒τとなり、前記漏洩磁場変化を同じとすることができ、漏洩磁場の広がりを防ぐ。
また、この実施の形態1に係る超電導電磁石装置100は、回路の超電導コイル群80を均一度領域を挟んで対称になるように構成しているので、超電導コイル間の電磁力や低温容器に発生する電磁力も対称的に発生させることが可能となり、電磁力の偏りを少くなくすことが出来、破損の可能性を小さく出来る。
実施の形態2.
以下、この発明の実施の形態2を図3で説明する。図3において前記実施の形態1の図2と同一又は相当する部分には同一符号を付してある。この実施の形態2では、保護回路を回路1〜回路3の3回路の場合を示したものである。磁場減衰速度を調整する抵抗61〜63を各回路に配置したもので、このように3回路にした場合にしても、各回路にインダクタンスの比率とほぼ同等の抵抗61、抵抗62、抵抗63を配置することにより、各回路の時定数をほぼ同等とし漏洩磁場の広がりを防ぐことが出来る。また回路2を構成する超電導コイルは主コイル1b、1c、1e、1f、回路3を構成する超電導コイルは主コイル1a、1d、1gと均一度領域を挟んで対称に配置されたコイルから構成されており、このコイル構成とすると軸方向には均一領域に対称に電磁力が働くようにできる。
実施の形態3.
この実施の形態3では、実施の形態1で示した2つの回路構成において、図4に示すように磁場減衰速度を調整する抵抗61、62を、超電導コイル群80の近傍に配置したものである。このように超電導コイル群80の近傍に抵抗61、62を配置することにより、超電導コイル群80のいずれかの超電導コイルにクエンチが発生した場合に、抵抗61、62による発熱によって回路を構成する前記クエンチを発生したコイル以外の超電導コイルにクエンチを発生させる。これにより各超電導コイルで回路のエネルギ消費が分担されることにより、クエンチによるコイル焼損の可能性を小さく出来るとともに、漏洩磁場の広がりをなくすることができる。
実施の形態4.
この実施の形態4では、2つの回路構成において、磁場減衰速度を調整する抵抗61、62を他方の回路を構成する超電導コイルの近傍に配置することにしたものである。すなわち、図5に示すように、回路1に設けられた抵抗61を超電導コイル1a〜1gの近傍に配置するとともに、回路2に設けられた抵抗62を超電導シールドコイル2a、2bの近傍に配置したものである。
このような回路構成を採用すると、超電導コイル群80の内のいずれかのコイル、例えば回路2の超電導主コイル1dにクエンチが発生した場合、回路1のクエンチによる電流減衰開始による電流の違いを小さくすることができて、クエンチスタートを早めることとなり、漏洩磁場の広がりの変動をより小さくすることが出来るとともに、前述した実施の形態3の効果も合わせて奏する。
実施の形態5.
この実施の形態5では、実施の形態3、及び実施の形態4の抵抗61、62の取り付け方を示したものである。超電導コイル群80の近傍に配置する調整用抵抗61、62は超電導コイル群80の運転電流である数百Aの電流が流れる。回路を構成する超電導コイル群80上に巻線する方法が従来より採用されているが、この実施の形態5では図6(a)に示すように抵抗61a、62aをグリッド状とし、無誘導に往復した形状としたコイルを超電導コイル群80の生成する磁場方向と同じ向きに設置したものである。つまり、図1に示すX軸方向であって、超電導主コイル1a〜1gの近傍にグリッド状調整用抵抗62aを、超電導シールドコイル2a、2bの近傍にグリッド状調整用抵抗61aを配置している。この場合にも実施の形態3と同様の効果を得られるだけでなく、抵抗自体に電磁力が発生することがないので抵抗が破損する可能性を小さく出来る。
なお、図6(a)では、超電導主コイル1a〜1gの近傍に、あるいは超電導シールドコイル2a、2bの近傍に、前記グリッド状調整用抵抗61a、62aを配置する例を示したが、図6(b)に示すように前記グリッド状調整用抵抗61a、62aを各超電導主コイル1a〜1gのそれぞれのコイル近傍に配置した構成であっても同様の効果を奏する。
この発明は、生体の画像診断に利用されるMRI装置等に利用可能である。
実施の形態1〜実施の形態5のMRI用超電導電磁石装置の主要部構成を示す図である。 実施の形態1の回路構成を示す図である。 実施の形態2の回路構成を示す図である。 実施の形態3の回路構成を示す図である。 実施の形態4の回路構成を示す図である。 実施の形態5の回路構成とグリッド状抵抗を示す図である。 漏洩磁場領域を説明する参考図である。
符号の説明
1a〜1g 超電導主コイル、2a,2b 超電導シールドコイル、
51,52,53 ダイオード素子、61,61a,62,62a,63 調整用抵抗、
80 超電導コイル群、100 超電導電磁石装置。

Claims (7)

  1. 複数の超電導主コイルと、この超電導主コイルの作る磁場とは逆方向の磁場を発生する複数の超電導シールドコイルとを有する超電導コイル群を備えた超電導電磁石装置において、前記超電導コイル群には、クエンチ発生時に前記超電導コイル群を保護するように、ダイオード素子とこのダイオード素子に直列に接続された抵抗とよりなる回路が、少なくとも2つ有するように設けられており、前記いずれかの回路のコイルにクエンチが発生した時、各回路の電流減衰の時定数がほぼ同じとなるように、前記各回路毎の抵抗の値が設定されていることを特徴とする超電導電磁石装置。
  2. 前記超電導コイル群は、該超電導コイル群が生成する均一磁場領域を挟んで、対称に配置されていることを特徴とする請求項1に記載の超電導電磁石装置。
  3. 前記各回路毎の抵抗の値が、前記各回路のインダクタンスの比率と同等の比率となるよう設定されていることを特徴とする請求項1に記載の超電導電磁石装置。
  4. 前記抵抗は、クエンチ発生時に前記超電導コイル群のコイルを加熱するよう配置されていることを特徴とする請求項3に記載の超電導電磁石装置。
  5. 前記抵抗は、該回路の超電導コイル群とは相互電磁誘導を生じないような形状を有して配置されていることを特徴とする請求項3に記載の超電導電磁石装置。
  6. 前記超電導主コイルを保護する回路に設けられた抵抗は、前記超電導シールドコイルを加熱するよう、前記超電導シールドコイルを保護する回路に設けられた抵抗は、前記超電導主コイルを加熱するよう配置されていることを特徴とする請求項1に記載の超電導電磁石装置。
  7. 前記請求項1に記載の超電導電磁石装置を用いたことを特徴とするMRI装置。
JP2007006513A 2007-01-16 2007-01-16 超電導電磁石装置およびそれを用いたmri装置 Pending JP2008177183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006513A JP2008177183A (ja) 2007-01-16 2007-01-16 超電導電磁石装置およびそれを用いたmri装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006513A JP2008177183A (ja) 2007-01-16 2007-01-16 超電導電磁石装置およびそれを用いたmri装置

Publications (1)

Publication Number Publication Date
JP2008177183A true JP2008177183A (ja) 2008-07-31

Family

ID=39704023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006513A Pending JP2008177183A (ja) 2007-01-16 2007-01-16 超電導電磁石装置およびそれを用いたmri装置

Country Status (1)

Country Link
JP (1) JP2008177183A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274039A (ja) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp 超電導マグネット装置
JP2011071515A (ja) * 2009-09-23 2011-04-07 General Electric Co <Ge> 超伝導磁石用の受動性クエンチ保護回路
WO2013099702A1 (ja) * 2011-12-28 2013-07-04 ジャパンスーパーコンダクタテクノロジー株式会社 磁場中熱処理装置
JP2017045866A (ja) * 2015-08-27 2017-03-02 株式会社日立製作所 超電導磁石装置
JP2020031160A (ja) * 2018-08-23 2020-02-27 住友重機械工業株式会社 超伝導磁石冷却装置および超伝導磁石冷却方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274039A (ja) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp 超電導マグネット装置
JP2011071515A (ja) * 2009-09-23 2011-04-07 General Electric Co <Ge> 超伝導磁石用の受動性クエンチ保護回路
WO2013099702A1 (ja) * 2011-12-28 2013-07-04 ジャパンスーパーコンダクタテクノロジー株式会社 磁場中熱処理装置
JP2013137131A (ja) * 2011-12-28 2013-07-11 Japan Superconductor Technology Inc 磁場中熱処理装置
JP2017045866A (ja) * 2015-08-27 2017-03-02 株式会社日立製作所 超電導磁石装置
JP2020031160A (ja) * 2018-08-23 2020-02-27 住友重機械工業株式会社 超伝導磁石冷却装置および超伝導磁石冷却方法

Similar Documents

Publication Publication Date Title
US7098663B1 (en) Systems, methods and apparatus of an actively shielded superconducting magnet drift compensation coil
JP4542573B2 (ja) アクティブシールド型の超電導電磁石装置および磁気共鳴イメージング装置
US6563316B2 (en) Magnet arrangement comprising an actively shielded superconducting magnet coil system and an additional current path for stray field suppression in case of a quench
US7135948B2 (en) Dipole shim coil for external field adjustment of a shielded superconducting magnet
EP0817211A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
JPH04287903A (ja) 磁石組立体
US20100060282A1 (en) Three-dimensional asymmetric transverse gradient coils
JP5322780B2 (ja) 超電導マグネット装置
JPH0669027A (ja) 磁場発生装置
JP2008177183A (ja) 超電導電磁石装置およびそれを用いたmri装置
JP3447090B2 (ja) 超電導性磁石を有する磁気共鳴装置
Slade et al. Test results for a 1.5 T MRI system utilizing a cryogen-free YBCO magnet
EP1340456A1 (en) Low-leakage magnetic-field magnet and shield coil assembly
US20090103217A1 (en) System and apparatus for limiting current in a superconducting coil
US6909347B2 (en) Magnet for magnetic resonance imaging apparatus
JP4179358B2 (ja) 超電導マグネット及びmri装置
JP2007335616A (ja) 超電導マグネット
Zevenhoven Solving transient problems in ultra-low-field MRI
JP3715442B2 (ja) 永久電流超電導磁石装置
JP5301871B2 (ja) 超電導マグネットおよびそれを備えたマグネット装置
JP4886482B2 (ja) 超電導磁石装置及び核磁気共鳴イメージング装置
JP2009141255A (ja) 超電導電磁石
Abele Generation and confinement of uniform magnetic fields with surface currents
JPH06132120A (ja) 超電導マグネット装置
GB2426059A (en) Generating Magnetic Fields for Magnetic Resonance Imaging