JP2008157305A - 圧力制御弁および超臨界冷凍サイクル - Google Patents
圧力制御弁および超臨界冷凍サイクル Download PDFInfo
- Publication number
- JP2008157305A JP2008157305A JP2006344469A JP2006344469A JP2008157305A JP 2008157305 A JP2008157305 A JP 2008157305A JP 2006344469 A JP2006344469 A JP 2006344469A JP 2006344469 A JP2006344469 A JP 2006344469A JP 2008157305 A JP2008157305 A JP 2008157305A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pressure
- outlet
- inlet
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/33—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
- F25B41/335—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/063—Feed forward expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Temperature-Responsive Valves (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】複数の蒸発器を備える超臨界冷凍サイクルの大型化を招くことなく、適切に高圧側冷媒圧力を制御できる圧力制御弁を提供する。
【解決手段】放熱器出口側冷媒の全流量を流入口40aから弁室40eへ流入させて、弁室40eと連通するように配置された感温部42に対して、弁室40eへ流入した全流量の冷媒の温度を伝える。これにより、圧力制御弁4の周囲温度の影響を受けにくくして、適切に高圧側冷媒圧力を制御する。さらに、流入口40aから流入した高圧冷媒の流れを分岐して第2蒸発器側へ流出することで、圧力制御弁4から第2蒸発器へ至る配管容積を小さくして、サイクル全体としての大型化を回避する。
【選択図】図2
【解決手段】放熱器出口側冷媒の全流量を流入口40aから弁室40eへ流入させて、弁室40eと連通するように配置された感温部42に対して、弁室40eへ流入した全流量の冷媒の温度を伝える。これにより、圧力制御弁4の周囲温度の影響を受けにくくして、適切に高圧側冷媒圧力を制御する。さらに、流入口40aから流入した高圧冷媒の流れを分岐して第2蒸発器側へ流出することで、圧力制御弁4から第2蒸発器へ至る配管容積を小さくして、サイクル全体としての大型化を回避する。
【選択図】図2
Description
本発明は、高圧側冷媒圧力を目標高圧に制御する圧力制御弁、および、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルに関する。
従来、特許文献1、2に、冷媒として二酸化炭素(以下、CO2と略す。)を採用し、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルが開示されている。この特許文献1、2の超臨界冷凍サイクルでは、サイクル効率(COP)を向上させるために圧力制御弁(特許文献1の第1減圧手段、特許文献2の膨張装置)を設けて高圧側冷媒圧力を目標高圧に制御している。
さらに、特許文献1、2の超臨界冷凍サイクルは複数の蒸発器を備えており、特許文献1のサイクルでは圧力制御弁の上流側で高圧冷媒の流れを分岐し、また、特許文献2の冷凍サイクルでは圧力制御弁の下流側で低圧冷媒の流れを分岐して、それぞれ分岐された一方の冷媒を第1蒸発器へ流入させ、他方の冷媒を第2蒸発器へ流入させて、双方の蒸発器で冷凍能力を発揮させている。
特開2000−35250号公報
特開2005−106318号公報
ところで、特許文献1、2には、圧力制御弁として、機械式の圧力制御弁を採用できることが記載されている。この機械式の圧力制御弁は、冷媒が封入された密閉空間を有する感温部を備えており、高圧側冷媒温度に対応する圧力を密閉空間内に発生させて、密閉空間の内圧と高圧側冷媒圧力とのバランスで弁体部を変位させ、絞り通路の通路面積を調整する構成になっている。
また、超臨界冷凍サイクルを車両用空調装置に適用した場合、一般的に、圧力制御弁は高圧冷媒を放熱させる放熱器の近傍、すなわち、エンジンルーム内に配置される。そのため、冷媒としてCO2が採用されるサイクルでは、CO2の臨界温度は31℃程度なので、エンジンルーム内温度(圧力制御弁の周囲温度)が高くなると、密閉空間に封入されたCO2は超臨界状態となりやすい。
そして、密閉空間内のCO2が超臨界状態になると、周囲温度が更に上昇してもCO2が液化しないので、密閉空間の内圧は、周囲温度の影響を受けて高圧側冷媒温度に対応する圧力よりも上昇しやすくなってしまう。
特に、特許文献1のサイクルのように、圧力制御弁の上流側で高圧冷媒の流れを分岐するサイクルでは、高圧冷媒の流れを分岐しないサイクルよりも感温部を通過する高圧冷媒流量が減少してしまうので、周囲温度の影響を受けやすくなる。そのため、密閉空間の内圧も上昇しやすくなり、適切に高圧側冷媒圧力を制御できなくなってしまう。
さらに、特許文献1のサイクルでは、サイクルの起動時に密閉空間内のCO2が超臨界状態になって内圧が上昇していると、弁体部が絞り通路を閉弁してしまい、圧力制御弁下流側の蒸発器へ冷媒を流入させることができなくなる。そのため、圧力制御弁下流側の蒸発器で冷凍能力を発揮できないという問題が生じる。
この問題を解決するためには、弁体部が絞り通路を閉弁しているときでも圧力制御弁の下流側へ冷媒を微小に漏らすブリード部を設ける手段が考えられるが、前述の如く、特許文献1のサイクルでは感温部を通過する冷媒流量が少ないので、ブリード部から漏れる冷媒流量も少なくなる。そのため、密閉空間内のCO2を冷却するための時間が長くなり、圧力制御弁下流側の蒸発器で冷凍能力を発揮させるまでの時間も長くなってしまう。
また、ブリード部から漏れる冷媒量を確保するためブリード部の流路面積を大きくすると、冷房負荷が小さくサイクルの冷媒流量が少ない時に、不必要に冷媒を漏らすことになりサイクルの効率が低下してしまうことになる。
一方、特許文献2のサイクルのように、圧力制御弁の下流側で低圧冷媒の流れを分岐する場合は、圧力制御弁の下流側が低圧となるので、分岐部から双方の蒸発器に至る配管として、高圧配管よりも配管容積の大きい低圧配管を採用する必要があり、サイクル全体が大型化してしまう。
一方、特許文献2のサイクルのように、圧力制御弁の下流側で低圧冷媒の流れを分岐する場合は、圧力制御弁の下流側が低圧となるので、分岐部から双方の蒸発器に至る配管として、高圧配管よりも配管容積の大きい低圧配管を採用する必要があり、サイクル全体が大型化してしまう。
さらに、特許文献2のサイクルでは、一方の蒸発器のみに冷媒を流入させるように流量調整弁を作動させると、流量調整弁から他方の蒸発器までの冷媒が気相状態となるので、サイクル内の余剰な液相冷媒を蓄えるアキュムレータの大型化が必要となり、一層サイクル全体が大型化してしまう。
本発明は、上記点に鑑み、複数の蒸発器を備える超臨界冷凍サイクルの大型化を招くことなく、適切に高圧側冷媒圧力を制御できる圧力制御弁を提供することを第1の目的とする。
また、本発明は、複数の蒸発器を備える超臨界冷凍サイクルにおいて、大型化を招くことなく、適切に高圧側冷媒圧力を制御できる冷凍サイクルを提供することを第2の目的とする。
上記の目的を達成するため、本発明では、臨界圧力以上に昇圧された高圧冷媒を放熱させる放熱器(3)および低圧冷媒を蒸発させる第1、2蒸発器(5、9)を有する超臨界冷凍サイクルに適用されて、放熱器(3)下流側冷媒温度に応じて放熱器(3)出口側冷媒圧力を制御する圧力制御弁であって、
放熱器(3)下流側冷媒を流入させる流入口(40a)、第1蒸発器(5)入口側へ冷媒を流出させる第1流出口(40b)、および、第2蒸発器(9)入口側へ冷媒を流出させる第2流出口(40c)が形成されたハウジング(40)と、流入口(40a)から流入した冷媒の温度に応じて変位する感温部(42)と、感温部(42)の変位に連動して流入口(40a)から流入した冷媒を減圧膨張させる絞り通路(40d)の通路面積を変化させる弁体部(41)と、絞り通路(40d)上流側冷媒の流れを分岐する分岐部(A)とを備え、第1流出口(40b)は、分岐部(A)で分岐された一方の冷媒であって、かつ、絞り通路(40d)下流側冷媒を流出させるようになっており、第2流出口(40c)は、分岐部(A)で分岐された他方の冷媒を流出させるようになっている圧力制御弁を第1の特徴とする。
放熱器(3)下流側冷媒を流入させる流入口(40a)、第1蒸発器(5)入口側へ冷媒を流出させる第1流出口(40b)、および、第2蒸発器(9)入口側へ冷媒を流出させる第2流出口(40c)が形成されたハウジング(40)と、流入口(40a)から流入した冷媒の温度に応じて変位する感温部(42)と、感温部(42)の変位に連動して流入口(40a)から流入した冷媒を減圧膨張させる絞り通路(40d)の通路面積を変化させる弁体部(41)と、絞り通路(40d)上流側冷媒の流れを分岐する分岐部(A)とを備え、第1流出口(40b)は、分岐部(A)で分岐された一方の冷媒であって、かつ、絞り通路(40d)下流側冷媒を流出させるようになっており、第2流出口(40c)は、分岐部(A)で分岐された他方の冷媒を流出させるようになっている圧力制御弁を第1の特徴とする。
これによれば、放熱器(3)出口側冷媒の全流量を流入口(40a)に流入させることができるので、感温部(42)が高圧側冷媒温度に応じて変位しやすくなる。その結果、複数の蒸発器を備える超臨界冷凍サイクルに適用した際に、特許文献1のサイクルに対して、感温部(42)が周囲温度の影響を受けにくくなり、適切に高圧側冷媒圧力を制御できる。また、ブリード部の流路面積を大きくする必要がないため、サイクルの効率を低下させることがない。
しかも、流入口(40a)から流入した高圧冷媒の流れを分岐できるので、複数の蒸発器を備える超臨界冷凍サイクルに適用した際に、特許文献2のサイクルに対して、分岐部(A)から第2蒸発器(9)へ至る配管容積を小さくでき、アキュムレータを大型化する必要もない。従って、サイクル全体としての大型化を回避できる。
その結果、複数の蒸発器を備える超臨界冷凍サイクルに適用した際に、サイクルの大型化を招くことなく、適切に高圧側冷媒圧力を制御できる。
なお、本発明における放熱器(3)下流側冷媒とは、放熱器(3)出口冷媒のみを意味するものではなく、例えば、放熱器(3)から流出した冷媒と、超臨界冷凍サイクルにおいて冷媒を吸入して圧縮、吐出する圧縮機へ吸入される冷媒とを熱交換させる内部熱交換器を備えるサイクルにおいては、内部熱交換器から流出した冷媒も含まれる意味である。
また、本発明では、臨界圧力以上に昇圧された高圧冷媒を放熱させる放熱器(3)および低圧冷媒を蒸発させる第1、2蒸発器(5、9)を有する超臨界冷凍サイクルに適用されて、放熱器(3)出口側冷媒温度に応じて放熱器(3)出口側冷媒圧力を制御する圧力制御弁であって、
放熱器(3)出口側冷媒を流入させる第1流入口(50a)、第1流入口(50a)から流入した冷媒を流出させる第1流出口(50b)、第1流出口(50b)下流側冷媒を流入させる第2流入口(50c)、第1蒸発器(5)入口側へ冷媒を流出させる第2流出口(50d)および第2蒸発器(9)入口側へ冷媒を流出させる第3流出口(50e)を有するハウジング(50)と、第1流入口(50a)から流入した冷媒の温度に応じて変位する感温部(52)と、感温部(52)の変位に連動して第2流入口(50c)から流入した冷媒を減圧膨張させる絞り通路(50h)の通路面積を変化させる弁体部(51)と、絞り通路(50h)上流側の冷媒の流れを分岐する分岐部(A)とを備え、第2流出口(50d)は、分岐部(A)で分岐された一方の冷媒であって、かつ、絞り通路(50h)下流側冷媒を流出させるようになっており、第3流出口(50e)は、分岐部(A)で分岐された他方の冷媒を流出させるようになっている圧力制御弁を第2の特徴とする。
放熱器(3)出口側冷媒を流入させる第1流入口(50a)、第1流入口(50a)から流入した冷媒を流出させる第1流出口(50b)、第1流出口(50b)下流側冷媒を流入させる第2流入口(50c)、第1蒸発器(5)入口側へ冷媒を流出させる第2流出口(50d)および第2蒸発器(9)入口側へ冷媒を流出させる第3流出口(50e)を有するハウジング(50)と、第1流入口(50a)から流入した冷媒の温度に応じて変位する感温部(52)と、感温部(52)の変位に連動して第2流入口(50c)から流入した冷媒を減圧膨張させる絞り通路(50h)の通路面積を変化させる弁体部(51)と、絞り通路(50h)上流側の冷媒の流れを分岐する分岐部(A)とを備え、第2流出口(50d)は、分岐部(A)で分岐された一方の冷媒であって、かつ、絞り通路(50h)下流側冷媒を流出させるようになっており、第3流出口(50e)は、分岐部(A)で分岐された他方の冷媒を流出させるようになっている圧力制御弁を第2の特徴とする。
これによれば、放熱器(3)下流側冷媒の全流量を第1流入口(50a)に流入させることができるので、感温部(52)が高圧側冷媒温度に応じて変位しやすくなる。その結果、第1の特徴の圧力制御弁と同様に、複数の蒸発器を備える超臨界冷凍サイクルに適用した際に、適切に高圧側冷媒圧力を制御できる。また、不必要に冷媒を漏らしてサイクルの効率を低下させることがない。
しかも、第2流入口(50c)から流入した高圧冷媒の流れを分岐できるので、第1の特徴の圧力制御弁と同様に、サイクル全体としての大型化を回避できる。その結果、複数の蒸発器を備える超臨界冷凍サイクルにおいて、大型化を招くことなく、適切に高圧側冷媒圧力を制御できる。
また、本発明では、第1、2の特徴の圧力制御弁(4、45)を備える超臨界冷凍サイクルを第3の特徴とする。これによれば、適切に高圧側冷媒圧力を制御して、超臨界冷凍サイクルのサイクル効率を高い値に維持することができる。
また、本発明では、第2の特徴の圧力制御弁(45)と、冷媒を吸入して圧縮する圧縮機(2)と、圧縮機(2)吸入冷媒と第1流出口(50b)下流側冷媒とを熱交換させる内部熱交換器(13)とを備える超臨界冷凍サイクルであって、内部熱交換器(13)の高圧冷媒出口は、第2流入口(50c)に接続されている超臨界冷凍サイクルを第4の特徴とする。
これによれば、第2の特徴の圧力制御弁(45)を備えているので、適切に高圧側冷媒圧力を制御して、超臨界冷凍サイクルのサイクル効率を高い値に維持することができる。さらに、内部熱交換器(13)の作用によって、サイクル効率をより一層向上できる。
また、本発明では、冷媒を吸入して圧縮する圧縮機(2)と、圧縮機(2)吐出冷媒を冷却する放熱器(3)と、放熱器(3)出口側冷媒の温度に応じて放熱器(3)出口側冷媒の圧力を制御する圧力制御手段(46)と、低圧冷媒を蒸発させる第1、2蒸発器(5、9)とを備え、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルであって、
圧力制御手段(46)は、放熱器(3)下流側冷媒を流入させる第1流入口(50a)、第1流入口(50a)から流入した冷媒を流出させる第1流出口(50b)、第1流出口(50b)下流側冷媒を流入させる第2流入口(50c)、および、第1蒸発器5入口側へ冷媒を流出させる第2流出口(50d)が形成されたハウジング(50)と、第1流入口(50a)から流入した冷媒の温度に応じて変位する感温部(52)と、感温部(52)の変位に連動して第2流入口(50c)から流入した冷媒を減圧膨張させる絞り通路(50h)の通路面積を変化させる弁体部(51)とを有し、第2流入口(50c)には、流出口(50b)下流側冷媒の流れを分岐する分岐部(A)で分岐された一方の冷媒が流入し、第1蒸発器(5)には、絞り通路(50h)下流側冷媒が流入し、第2蒸発器(9)には、分岐部(A)で分岐された他方の冷媒が流入するようになっている超臨界冷凍サイクルを第5の特徴とする。
圧力制御手段(46)は、放熱器(3)下流側冷媒を流入させる第1流入口(50a)、第1流入口(50a)から流入した冷媒を流出させる第1流出口(50b)、第1流出口(50b)下流側冷媒を流入させる第2流入口(50c)、および、第1蒸発器5入口側へ冷媒を流出させる第2流出口(50d)が形成されたハウジング(50)と、第1流入口(50a)から流入した冷媒の温度に応じて変位する感温部(52)と、感温部(52)の変位に連動して第2流入口(50c)から流入した冷媒を減圧膨張させる絞り通路(50h)の通路面積を変化させる弁体部(51)とを有し、第2流入口(50c)には、流出口(50b)下流側冷媒の流れを分岐する分岐部(A)で分岐された一方の冷媒が流入し、第1蒸発器(5)には、絞り通路(50h)下流側冷媒が流入し、第2蒸発器(9)には、分岐部(A)で分岐された他方の冷媒が流入するようになっている超臨界冷凍サイクルを第5の特徴とする。
これによれば、放熱器(3)出口側冷媒の全流量を第1流入口(50a)に流入させることができるので、感温部(52)が高圧側冷媒温度に応じて変位しやすくなる。その結果、特許文献1のサイクルに対して、感温部(52)が周囲温度の影響を受けにくくなり、適切に高圧側冷媒圧力を制御できる。また、不必要に冷媒を漏らしてサイクルの効率を低下させることがない。
しかも、第1流入口(50a)から流入した高圧冷媒の流れを分岐できるので、特許文献2のサイクルに対して、分岐部(A)から第2蒸発器(9)へ至る配管容積を小さくでき、アキュムレータを大型化する必要もない。従って、サイクル全体としての大型化を回避できる。
その結果、複数の蒸発器を備える超臨界冷凍サイクルにおいて、サイクルの大型化を招くことなく、適切に高圧側冷媒圧力を制御できる。
さらに、圧縮機(2)吸入冷媒と流出口(50b)下流側冷媒とを熱交換させる内部熱交換器(13、15)を備え、分岐部(A)では、内部熱交換器(13、15)で熱交換された高圧冷媒の流れを分岐するようになっていてもよい。これによれば、上述の第4の特徴の超臨界冷凍サイクルと同様の効果を得ることができる。
また、内部熱交換器(13、15)を備える第5の特徴の超臨界冷凍サイクルにおいて、分岐部(A)は、内部熱交換器(13、15)と第2流入口(50c)とを接続する接続部(14、15d)に設けられていてもよい。さらに、具体的に、接続部(15d)は、内部熱交換器(15)に一体に設けられていてもよい。
また、上述の第3〜5の特徴の超臨界冷凍サイクルにおいて、さらに、分岐部(A)から第2蒸発器(9)へ至る冷媒流路(10)を開閉する開閉弁(7)と、感温部(52)を構成する密閉空間(B)の内圧値に関連する物理量(Tam)を検出する物理量検出手段(11a)と、開閉弁(7)の作動を制御する制御手段(11)とを備え、密閉空間(B)は、第1流入口(50a)から流入した冷媒の温度に応じて内圧が変化するようになっており、制御手段(11)は、サイクル起動時であって、かつ、物理量(Tam)に基づいて決定される内圧値が冷媒の臨界圧力以上になっているとき、開閉弁(7)を開弁させるようになっていてもよい。
これによれば、前述の如く、サイクル起動時に密閉空間(B)に封入された冷媒が超臨界状態となって、弁体部(51)が絞り通路(50h)を閉じてしまっても、開閉弁(7)が開弁しているので、放熱器(3)下流側の冷媒が第2蒸発器(9)側へ流れる。従って、感温部(52)へ確実に冷媒を流通させて、密閉空間(B)に封入された冷媒を短時間で冷却できる。その結果、短時間で高圧側冷媒圧力を制御することができる。
さらに、具体的に、物理量は、外気温(Tam)であってもよいし、第1蒸発器(5)下流側空気温度および第2蒸発器(9)下流側空気温度のうち、いずれか一方、あるいは両者の組合せであってもよい。
また、上述の第3〜5の特徴の超臨界冷凍サイクルにおいて、ハウジング(40、50)には、弁体部(41、51)が絞り通路(40d、50h)を閉弁した際に、絞り通路(40d、50h)上流側から下流側へ冷媒を漏らすブリード部(40g、50j)が形成されており、ブリード部(40g、50j)から漏れる冷媒流量は、直径0.8mmのオリフィスに相当する冷媒流量以下になっていてもよい。
これによれば、ブリード部(40g、50j)によって、冷媒を漏らすことができるので、感温部(42、52)へ冷媒を流通させて、密閉空間(B)に封入された冷媒を冷却できるとともに、ブリード部(40g、50j)から漏れる冷媒流量が、直径0.8mmのオリフィスに相当する冷媒流量以下になっているので、不必要に冷媒を漏らすことを回避してサイクル効率の低下を抑制できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1、2により、本発明の第1実施形態を説明する。図1は、本実施形態の超臨界冷凍サイクル1の全体構成図である。なお、本実施形態では、上述の第1の特徴の圧力制御弁4を採用した第3の特徴の超臨界冷凍サイクルを車両用空調装置に適用している。
図1、2により、本発明の第1実施形態を説明する。図1は、本実施形態の超臨界冷凍サイクル1の全体構成図である。なお、本実施形態では、上述の第1の特徴の圧力制御弁4を採用した第3の特徴の超臨界冷凍サイクルを車両用空調装置に適用している。
まず、超臨界冷凍サイクル1において、圧縮機2は図示しない車両走行用エンジンから電磁クラッチ2aを介して駆動力を得て冷媒を吸入して圧縮するものである。本実施形態では、冷媒としてCO2を採用しており、圧縮機2はCO2を臨界圧力以上に昇圧する。
この圧縮機2としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを採用してもよい。また、圧縮機2として電動圧縮機を採用して、電動モータの回転数調整により冷媒吐出能力を調整してもよい。
圧縮機2の冷媒吐出側には、放熱器3が接続されている。放熱器3は、圧縮機2から吐出された高圧冷媒と冷却ファン3aにより送風される外気(車室外空気)とを熱交換させて、高圧冷媒を放熱させる放熱用熱交換器である。なお、超臨界冷凍サイクル1では、冷媒は超臨界状態のまま放熱するので、放熱器3において凝縮することはない。
放熱器3の下流側には、圧力制御弁4が接続されている。圧力制御弁4は、超臨界サイクル1の高圧側冷媒圧力を目標高圧に制御するもので、放熱器3とともにエンジンルーム内に配置されている。圧力制御弁4の詳細については、図2により説明する。なお、図2は、圧力制御弁4の断面図である。
まず、圧力制御弁4は、ハウジング40、弁体部41、感温部42等を有して構成される。ハウジング40は、円柱状あるいは角柱状の金属ブロックに穴開け加工等を施して形成したもので、圧力制御弁4の外殻を形成する。ハウジング40には、冷媒流入口・流出口40a〜40c、絞り通路40d、弁室40e、感温部42を取り付ける取付穴40f等が形成されている。
具体的には、放熱器3出口側に接続されて放熱器3下流側冷媒を流入させる流入口40a、後述する第1蒸発器5入口側へ冷媒を流出させる第1流出口40b、後述する第2蒸発器6入口側へ冷媒を流出させる第2流出口40cが形成される。
また、図2に示すように、ハウジング40の内部には、弁体部41が収容される弁室40eが形成され、流入口40aおよび第2流出口40cは、弁室40eを介して連通している。絞り通路40dは、流入口40aから流入した冷媒を減圧膨張させるもので、第1流出口40bは、絞り通路40dを介して、弁室40eに連通している。
従って、流入口40aから流入した冷媒の流れは弁室40e内で分岐されて、第2流出口40c側および絞り通路40dを介して第1流出口40b側へ流れる。つまり、本実施形態では、この弁室40eの内部に分岐部Aが形成される。さらに、取付穴40fも弁室41eと連通するように形成されている。
また、絞り通路40dには、溝40gが形成されており、弁体部41が絞り通路40dを閉弁した状態になっても、溝40gを介して弁室40e側から第1流出口40b側へ冷媒が漏れるようになっている。なお、本実施形態の溝40gから漏れる冷媒流量は、直径0.8mmのオリフィスに相当する冷媒流量以下になっている。
弁体部41は、絞り通路40dの通路面積を調整するもので、感温部42に連結される円盤状の連結部41a、一方の端部が円錐形状となった円筒状の弁41bおよび連結部41aと弁41bとを連結する棒状の作動棒41cとを有している。つまり、弁体部41のうち弁41bが変位することによって、絞り通路40dの通路面積が調整される。
感温部42は、流入口40aから流入した冷媒の温度に応じて変位するもので、取付穴40fに取り付けられている。具体的には、感温部42は、密閉空間Bを形成するようにカバー42aとシート42bとの間にダイアフラム42cを挟み込んで構成したもので、密閉空間Bには、冷媒と少量の不活性ガスが封入されている。この不活性ガスとしては、ヘリウム等を採用できる。
ダイアフラム42cは、密閉空間Bの内圧に応じて、変位する圧力応動部材を構成しており、金属製であってもゴム製であってもよい。さらに、ダイアフラム42cは、弁体部41の連結部41aに溶接等の手段で連結されており、ダイアフラム42cの変位に応じて、弁体部41が変位して、弁41bによって絞り通路40dの通路面積が調整される。
具体的には、密閉空間Bの内圧が上昇すると、弁体部41は絞り通路40dの通路面積を縮小する方向に変位し、密閉空間Bの内圧が低下すると、弁体部41は絞り通路40dの通路面積を拡大する方向に変位する。さらに、本実施形態では、密閉空間Bに不活性ガスを封入して内圧を高めることによって、弁体部41に対して絞り通路40dを閉弁する側に付勢する荷重をかけている。
圧力制御弁4の第1流出口40bには、図1に示すように、第1蒸発器5が接続されている。第1蒸発器5は、第1流出口40bから流出した低圧冷媒と、送風ファン5aによって送風された空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
なお、本実施形態では、第1蒸発器5は、車両前席(運転席および助手席)側領域の空調に用いられる。第1蒸発器5の出口側には、冷媒の気液を分離して余剰冷媒を蓄えるアキュムレータ6が接続されている。さらに、アキュムレータ6の気相冷媒出口には、圧縮機2吸入口が接続されている。
一方、圧力制御弁4の第2流出口40cは、第2蒸発器9入口側へ接続されており、第2流出口40cから第2蒸発器9入口へ至る冷媒配管10には、開閉弁7および膨張弁8が設けられている。開閉弁7は冷媒配管10を開閉する電磁弁であり、膨張弁8は第2蒸発器9へ流入する冷媒を減圧膨張させる周知の温度式膨張弁である。
具体的には、膨張弁8は、第2蒸発器9下流側に配置された感温部8aを有しており、第2蒸発器9下流側冷媒の温度と圧力とに基づいて第2蒸発器9下流側冷媒の過熱度を検出し、第2蒸発器9下流側冷媒の過熱度が予め設定された所定値となるように弁開度を調整して、冷媒流量を調整するものである。
第2蒸発器9は、膨張弁8下流側の低圧冷媒と、送風ファン9aによって送風された空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。なお、本実施形態では、第2蒸発器9は車両後席側領域の冷却に用いられる。第2蒸発器9の出口側は、第1蒸発器5とアキュムレータ6との間に接続されている。
次に、本実施形態の電気制御部の概要を説明すると、空調制御装置11は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この空調制御装置11は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上記した各種の電気式のアクチュエータ2a、3a、5a、7、9a等の作動を制御する。
空調制御装置11には、各種センサ群からの検出信号、および操作パネル12からの各種操作信号が入力される。センサ群としては、具体的に、外気温(車室外温度)Tamを検出する外気センサ11a等が設けられる。
また、操作パネル12には、車両用空調装置の作動要求信号を出力する作動スイッチ12a、車両後席側の空調要求信号を出力する後席空調スイッチ12b、車室内の目標温度を設定する温度設定スイッチ12c等が設けられる。
次に、上記構成における本実施形態の作動を説明する。まず、車両前席側領域の空調を行う前席側空調モードの作動について説明する。この前席側空調モードは、作動スイッチ12aが投入された際に、後席空調スイッチ12bがOFFになっている場合に実行される。なお、後席空調スイッチ12bがOFFになっている場合は、第2蒸発器9にて冷凍能力を発揮させる必要がないため、空調制御装置11は、通常、開閉弁7を閉弁させる。
作動スイッチ12aが投入されて、圧縮機2が車両エンジンの駆動力により回転駆動されると、圧縮機2により圧縮された高温高圧の冷媒は、臨界圧力よりも圧力が高い超臨界状態となって放熱器3内に流入する。ここで、高温高圧の超臨界状態の冷媒は冷却ファン3aにより送風された外気と熱交換して放熱する。
放熱器3から流出した全流量の冷媒は、圧力制御弁4の流入口40aから弁室40eへ流入する。前述の如く、感温部42が弁室40eに連通する取付穴40fに取り付けられているので、弁室40eへ流入した全流量の冷媒の温度を感温部42に伝えることができる。
これにより、感温部42の密閉空間B内のCO2は、弁室40eへ流入した冷媒の温度に対応する内圧となる。そして、密閉空間Bの内圧と流入口40aから流入した冷媒圧力とのバランスに応じて、感温部42のダイアフラム42cが変位する。
さらに、ダイアフラム42cの変位に連動して、弁体部41の弁41bも変位して、絞り通路40dの通路面積を調整される。その結果、流入口40aから弁室40eへ流入した冷媒の温度、すなわち、放熱器3出口側冷媒温度に応じて決定される目標高圧に近づくように、放熱器3出口側冷媒圧力が制御される。
より具体的には、実際の高圧側冷媒圧力が目標高圧よりも低い場合には、圧力制御弁4では絞り通路40dの通路面積を縮小させ、逆に、実際の高圧側冷媒圧力が目標高圧よりも高い場合には、圧力制御弁4は絞り通路40dの通路面積を拡大させる。これにより、サイクル効率(COP)が高い値になるように高圧側冷媒圧力が制御される。
なお、前述の如く、前席側空調モードでは、通常、開閉弁7が閉弁しているので、弁室40eへ流入した冷媒は、絞り通路40dで減圧されて、第1流出口40bから流出して、第1蒸発器5へ流入する。
第1蒸発器5へ流入した冷媒は、送風ファン5aによって送風された空気から吸熱して蒸発する。さらに、第1蒸発器5から流出した冷媒は、アキュムレータ6で気液分離され、分離された気相冷媒は、圧縮機1に吸入されて再び圧縮される。
一方、送風ファン5aによって送風された空気は、第1蒸発器5にて冷却され、さらに、第1蒸発器5の空気流れ下流側に配置された図示しない加熱手段(例えば、温水ヒータコア等)によって、温度設定スイッチ12cによって設定された目標温度まで温調されて、車両前席側領域に吹き出される。
ところで、上述の如く、サイクルの起動時に圧力制御弁4の周囲温度が、CO2の臨界温度以上となると、密閉空間B内のCO2は超臨界状態となって高圧となる。このため弁体部41の弁41bが絞り通路40dを閉弁してしまい、第1蒸発器5へ冷媒を流入させることができなくなる。さらに、開閉弁7が閉弁していると冷媒が弁室40eへ流入できなくなり、適切に高圧側冷媒圧力を制御できなくなる。
これに対して、圧力制御弁4の絞り通路40dには、ブリード部を構成する溝40gが形成されているので、絞り通路40d上流側から下流側へ確実に冷媒を漏らすことができ、感温部42へ確実に冷媒を流通させて、密閉空間B内のCO2を冷却できる。
さらに、本実施形態では、空調制御装置11は前席側空調モードの起動時に、外気温センサ11aの検出値に基づいて、密閉空間B内のCO2が臨界圧力以上になっているか否かを判定する。具体的には、外気温センサ11aが検出した外気温Tamが所定値以上になっている場合は、密閉空間B内のCO2が臨界圧力以上になっているものと判定する。
従って、本実施形態では、外気温センサ11aが物理量検出手段であり、外気温Tamが密閉空間Bの内圧値に関連する物理量となる。そして、空調制御装置11は、密閉空間B内のCO2が臨界圧力以上になっていると判定すると、予め定めた時間だけ、開閉弁7を開弁させる。
これにより、サイクル起動時に弁41bが絞り通路40dを閉じていても、開閉弁7が開弁しているので、放熱器3下流側冷媒が圧力制御弁4の流入口40a→弁室40e→第2流出口40cの順に流れる。
その結果、感温部42へ確実に冷媒を流通させて、密閉空間B内のCO2を短時間で冷却できるので、短時間で通常の前席側空調モードに移行できる。すなわち、サイクルを起動してから、適切に高圧側冷媒圧力を制御するまでに要する時間を短縮できる。
次に、車両前席側領域および車両後席側領域の空調を行う前後席側空調モードの作動について説明する。この前後席側空調モードは、作動スイッチ12aが投入された状態で、後席空調スイッチ12bがONになっている場合に実行される。なお、後席空調スイッチ12bがONになっている場合は、空調制御装置11は、開閉弁7を開弁させる。
作動スイッチ12aが投入されると、前席側空調モードと同様に、圧縮機2→放熱器3→圧力制御弁4の順で冷媒が流れ、圧力制御弁4の作用によって、放熱器3出口側冷媒圧力が目標高圧に制御される。これにより、サイクル効率が高い値になるように高圧側冷媒圧力が制御される。
圧力制御弁4に流入した冷媒の流れは、弁室40e内の分岐部Aで分岐され、分岐された一方の冷媒は、絞り通路40dで減圧されて、第1流出口40bから流出して、第1蒸発器5へ流入する。そして、第1蒸発器5へ流入した冷媒は、前席側空調モードと同様に、送風ファン5aの送風空気を冷却する。
また、分岐部Aで分岐された他方の冷媒は、高圧のまま第2流出口40cから冷媒配管10へ流入する。前後側空調モードでは、開閉弁7が開弁しているので、冷媒配管へ流入した冷媒は、膨張弁8にて減圧膨張されるとともに、第2蒸発器9下流側冷媒の過熱度が予め定めた所定値となるように流量調整される。そして、第2蒸発器9へ流入する。
第2蒸発器9へ流入した冷媒は、送風ファン9aによって送風された空気から吸熱して蒸発する。さらに、第2蒸発器9から流出した冷媒は、第1蒸発器5下流側冷媒と合流してアキュムレータ6へ流入する。
一方、送風ファン9aによって送風された空気は、第2蒸発器9にて冷却され、さらに、第2蒸発器9の空気流れ下流側に配置された図示しない加熱手段(例えば、電気ヒータ等)によって、温度設定スイッチ12cによって設定された目標温度まで温調されて、車両後席側領域に吹き出される。
本実施形態では、第1、2蒸発器5、9の両者に冷媒が流れている時も、全冷媒流量が感温部を通るため、サイクル起動時にブリード部から漏れる冷媒量が減少しても密閉空間B内のCO2を短時間に冷却することができる。
本実施形態の超臨界冷凍サイクルは、上記の如く作動する。そして、圧力制御弁4において、放熱器3出口側冷媒の全流量を流入口40aから弁室40eへ流入させているので、弁室40eへ流入した全流量の冷媒の温度を感温部42に伝えることができる。その結果、前述の特許文献1のサイクルに対して、感温部42が周囲温度に相等するエンジンルーム内温度の影響を受けにくくなり、適切に高圧側冷媒圧力を制御できる。
しかも、弁室40eに形成された分岐部Aにて、流入口40aから流入した高圧冷媒の流れを分岐しているので、前述の特許文献2のサイクルに対して、分岐部Aから第2蒸発器9へ至る配管容積を小さくでき、アキュムレータを大型化する必要もない。従って、サイクル全体としての大型化を回避できる。
以上の如く、本実施形態では、サイクルの大型化を招くことなく、適切に高圧側冷媒圧力を制御して、超臨界冷凍サイクル1に高いサイクル効率を発揮させることができる。
(第2実施形態)
本実施形態は、第1実施形態の超臨界冷凍サイクル1に対して、図3に示すように、放熱器3下流側冷媒と圧縮機2吸入側冷媒とを熱交換させて放熱器3下流側冷媒を冷却する内部熱交換器13を設けている。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。これは以下の実施形態でも同様である。
本実施形態は、第1実施形態の超臨界冷凍サイクル1に対して、図3に示すように、放熱器3下流側冷媒と圧縮機2吸入側冷媒とを熱交換させて放熱器3下流側冷媒を冷却する内部熱交換器13を設けている。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。これは以下の実施形態でも同様である。
内部熱交換器13は、放熱器3下流側冷媒を流入させて圧力制御弁4の流入口40a側へ流出させる高圧側冷媒通路13aとアキュムレータ6にて分離された気相冷媒を流入させて圧縮機2吸入側へ流出させる低圧側冷媒流路13bとを有している。
この内部熱交換器13としては種々の構成を採用できる。具体的には、高圧側冷媒流路13aと低圧側冷媒流路13bとを形成する冷媒配管同士をろう付け接合して熱交換させる構成や、高圧側冷媒流路13aを形成する外側管の内側に低圧側冷媒流路13bを配置する二重管方式の熱交換器構成を採用できる。
また、本実施形態では、流入口40aより流入する内部熱交換器出口の冷媒温度に応じて感温部42が変位することにより高圧圧力を制御しており、第2蒸発器9の出口側は、内部熱交換器13の低圧側冷媒流路13bと圧縮機2吸入口との間に接続されている。その他の構成は、第1実施形態と同様である。
本実施形態の超臨界冷凍サイクル1によれば、第1実施形態と同様の効果を得られるだけでなく、内部熱交換器13の作用によって、放熱器3下流側冷媒を冷却することができるので、第1、2蒸発器5、9における冷媒入口・出口間の冷媒のエンタルピ差(冷凍能力)を増大させて、より一層、サイクル効率を向上できる。
(第3実施形態)
本実施形態では、第1実施形態の圧力制御弁4に対して、図4に示すように、圧力制御弁43を設けている。なお、図4は、圧力制御弁43の断面図である。圧力制御弁43の基本的構成は、第1実施形態の圧力制御弁4と同様である。
本実施形態では、第1実施形態の圧力制御弁4に対して、図4に示すように、圧力制御弁43を設けている。なお、図4は、圧力制御弁43の断面図である。圧力制御弁43の基本的構成は、第1実施形態の圧力制御弁4と同様である。
圧力制御弁4では、流入口40aと第2流出口40cを弁室40eに対して略対象に配置して、流入口40aから弁室40eへ流入する冷媒の流れ方向と弁室40eから第2流出口40cへ流出する冷媒の流れ方向がほぼ同一方向になるように構成されている。
これに対して、圧力制御弁43では、流入口40aから弁室40eへ流入する冷媒の流れ方向と弁室40eから第2流出口40cへ流出する冷媒の流れ方向が垂直方向になるように構成されている。その他の構成は第1実施形態と同様である。
本実施形態の圧力制御弁43によれば、超臨界冷凍サイクル1として第1実施形態と同様の効果を得られるだけでなく、第1流出口40bから流出する冷媒の流れ方向と第2流出口40cから流出する冷媒の流れ方向とを異なる方向に向けることができるので、圧力制御弁43から第1、2蒸発器5、9へ至る冷媒配管の取回し自由度を向上できる。
もちろん、冷媒配管の取回しに有利になるように、流入口40aから弁室40eへ流入する冷媒の流れ方向と弁室40eから第2流出口40cへ流出する冷媒の流れ方向が、適切な角度となるように構成してもよい。さらに、流入口40aから弁室40eへ流入する冷媒の流れ方向と第1流出口40bから流出する冷媒の流れ方向が適切な角度となるように構成してもよい。
(第4実施形態)
本実施形態では、第2の特徴の圧力制御弁45を採用した第3、4の特徴の超臨界冷凍サイクルを車両用空調装置に適用した例を説明する。図5は、本実施形態の超臨界冷凍サイクル1の全体構成図である。
本実施形態では、第2の特徴の圧力制御弁45を採用した第3、4の特徴の超臨界冷凍サイクルを車両用空調装置に適用した例を説明する。図5は、本実施形態の超臨界冷凍サイクル1の全体構成図である。
圧力制御弁45の詳細については、図6により説明する。なお、図6は、圧力制御弁45の断面図である。本実施形態の圧力制御弁45も第1実施形態の圧力制御弁4と同様の機能を有するもので、圧力制御弁4とほぼ同様のハウジング50、弁体部51、感温部52等を有して構成される。
ハウジング50には、放熱器3出口側に接続されて放熱器3下流側冷媒を流入させる第1流入口50a、第1流入口50aから流入した冷媒を流出させる第1流出口50b、第1流出口50b下流側冷媒を再びハウジング50内へ流入させる第2流入口50c、第1蒸発器5入口側へ冷媒を流出させる第2流出口50dおよび第2蒸発器9入口側へ冷媒を流出させる第3流出口50eが形成される。
また、図6に示すように、ハウジング50の内部には、弁体部51が収容される感温室50fおよび弁室50gが形成され、第1流入口50aおよび第1流出口50bは、感温室50fを介して連通している。
さらに、第2流入口50cおよび第3流出口50eは、弁室50gを介して連通している。弁室50gには第2流入口50cから流入した冷媒を減圧膨張させる絞り通路50hが形成されており、第2流出口50dは、絞り通路50hを介して、弁室50gに連通している。
従って、第2流入口50cから流入した冷媒の流れは弁室50g内で分岐されて、第3流出口50e側および絞り通路50hを介して第2流出口50d側へ流れる。つまり、本実施形態では、弁室50gの内部に分岐部Aが形成される。また、感温部52が取り付けられる取付穴50iは感温室50fと連通するように形成されている。
さらに、ハウジング50には、第2流入口50cと第2流出口50dとを直接連通させてブリード部として機能する連通穴50jが形成されており、弁体部51が絞り通路50hを閉弁した状態になっても、連通穴50jを介して第2流入口50c側から第2流出口50d側へ冷媒が漏れるようになっている。なお、本実施形態の連通穴50jから漏れる冷媒流量は、直径0.8mmのオリフィスに相当する冷媒流量以下になっている。
弁体部51は、絞り通路50hの通路面積を調整するもので、感温部52に連結される円盤状の連結部51a、一方の端部が円錐形状となった円筒状の弁51b、連結部51aと弁51bとを連結する棒状の感温棒51cおよび弁51bから感温棒51cの反対側へ感温棒51cと同軸上に延びる作動棒51dを有している。具体的には、弁体部51のうち弁51bが変位することによって、絞り通路50hの通路面積が調整される。
なお、本実施形態では、前述の如く、感温部52が取り付けられる取付穴50iは感温室50fと連通するように形成されているので、感温部52に連結される連結部51aも感温室50fに配置する必要がある。さらに、絞り通路50hは、弁室50gに形成されているので、弁51bも弁室50gに配置する必要がある。
そこで、ハウジング50には、弁体部51の軸方向に延びて感温室50fと弁室50gとを貫通する弁配置穴50kが設けられており、弁体部51は弁配置穴50kを貫通するように配置されている。なお、弁配置穴50kと弁体部51との隙間は、O−リング51eによってシールされており、弁体部51が変位しても感温室50fと弁室50gとが連通することはない。
さらに、作動棒51dはバネ受け53aを介してバネ53に連結されており、このバネ53によって、弁51bには作動棒51dを介して絞り通路50hを閉弁する側に付勢する荷重がかけられている。
感温部52は、第1流入口50aから流入した冷媒の温度に応じて変位するもので、ハウジング50の取付穴50iに取り付けられている。なお、感温部52の基本的構成は、第1実施形態の感温部42と同様で、カバー52a、シート52b、ダイアフラム52cによって密閉空間Bを形成し、密閉空間BにはCO2が封入されている。さらに、ダイアフラム52cには、弁体部51の連結部51aに連結されている。
また、図5に示すように、圧力制御弁45の第1流出口50bは、第2実施形態と同様の内部熱交換器13の高圧冷媒流路13a入口側に接続され、高圧側冷媒流路13a出口側は第2流入口50cに接続され、第2流出口50dは第1蒸発器5の入口側に接続され、第3流出口50eは第2蒸発器9の入口側に接続されている。その他の構成は、第2実施形態と同様である。
次に、上記構成における本実施形態の作動を説明する。第1実施形態と同様に、前席側空調モードでは、圧縮機2→放熱器3→圧力制御弁45の順で冷媒が流れる。放熱器3から流出した全流量の冷媒は、圧力制御弁45の第1流入口50aから感温室50fへ流入する。
前述の如く、感温部52は感温室50fに連通する取付穴50iに取り付けられているので、感温室50fへ流入した全流量の冷媒の温度を感温部52に伝えることができる。これにより、感温部52の密閉空間B内のCO2は、第1流入口50aから感温室50fへ流入した冷媒の温度に対応する圧力となる。
そして、密閉空間Bの内圧と第1流入口50aから流入した冷媒圧力とのバランスに応じて、感温部52のダイアフラム52cが変位する。さらに、ダイアフラム52cの変位に連動して、弁体部51の弁51bも変位して、絞り通路50hの通路面積が調整される。
その結果、第1実施形態と同様に、第1流入口50aから感温室50fへ流入した冷媒の温度、すなわち、放熱器3出口側冷媒温度に応じて決定される目標高圧に近づくように、放熱器3出口側冷媒圧力が制御される。これにより、サイクル効率が高い値になるように高圧側冷媒圧力が制御される。
感温室50fへ流入した冷媒は、第1流出口50bから内部熱交換器13の高圧側冷媒通路13aへ流入して冷却され、再び第2流入口50cから圧力制御弁45の弁室50gへ流入する。なお、前席側空調モードでは、通常、開閉弁7が閉弁しているので、弁室50gへ流入した冷媒は、絞り通路50hで減圧されて、第1流出口50dから第1蒸発器5へ流入する。
その他の前席側空調モードの作動、および、起動時の制御については、第1実施形態と同様である。
次に、車両前席側領域および車両後席側領域の空調を行う前後席側空調モードでは、前席側空調モードと同様に、圧縮機2→放熱器3→圧力制御弁45の順で冷媒が流れ、圧力制御弁45の作用によって、放熱器3出口側冷媒圧力が目標高圧に制御される。そして、この高圧制御により、サイクル効率を高い値に維持する。
圧力制御弁45流入した冷媒の流れは、弁室50g内の分岐部Aで分岐され、分岐された一方の冷媒は、絞り通路50hで減圧されて、第2流出口50dから流出して、第1蒸発器5へ流入する。そして、第1蒸発器5へ流入した冷媒は、前席側空調モードと同様に、送風ファン5aの送風空気を冷却する。
また、分岐部Aで分岐された他方の冷媒は、高圧のまま第3流出口50eから冷媒配管10へ流入する。その他の前後席側空調モードの作動については、第1実施形態と同様である。
本実施形態では、上記の如く作動するので、圧力制御弁45において、放熱器3出口側冷媒の全流量を第1流入口50aから感温室50fへ流入させているので、感温室50fへ流入した全流量の冷媒の温度を感温部52に伝えることができる。さらに、弁室50gに形成された分岐部Aにて、第2流入口50cから流入した高圧冷媒の流れを分岐できる。その結果、第1、2実施形態と全く同様の効果を得ることができる。
(第5実施形態)
本実施形態では、第5の特徴の超臨界冷凍サイクルを車両用空調装置に適用した例を説明する。図7は、本実施形態の超臨界冷凍サイクル1の全体構成図である。
本実施形態では、第5の特徴の超臨界冷凍サイクルを車両用空調装置に適用した例を説明する。図7は、本実施形態の超臨界冷凍サイクル1の全体構成図である。
図7に示すように、本実施形態では第4実施形態のサイクルに対して、圧力制御弁46を採用するとともに、内部熱交換器13と圧力制御弁46との接続部に接続ブロック14を設けている。
圧力制御弁46の詳細については、図8により説明する。なお、図8は、圧力制御弁46の断面図である。図8に示すように、圧力制御弁46は、第4実施形態の圧力制御弁45と基本的に同様の構成であり、ハウジング50に第3流出口50eが形成されていない点が相違する。従って、分岐部Aも圧力制御弁46の弁室50g内には形成されない。
接続ブロック14は、内部熱交換器13の高圧側冷媒流路13a出口側と第2流入口50cとを接続する接続部であり、円柱状あるいは角柱状の金属ブロックに穴開け加工等を施して形成したものである。
接続ブロック14には、内部熱交換器13から冷媒を流入させる流入ポート14a、圧力制御弁46側へ冷媒を流出させる第1流出ポート14b、および、第2蒸発器9側へ冷媒を流出させる第2流出ポート14cが形成されている。
従って、流入ポート14aから流入した冷媒の流れは接続ブロック14内で分岐されて、第1流出ポート14b側および第2流出ポート14c側へ流れる。つまり、本実施形態では、接続ブロック14の内部に分岐部Aが形成される。
上記構成の本実施形態の超臨界冷凍サイクル1を作動させても、圧力制御弁46において、放熱器3出口側冷媒の全流量を第1流入口50aから感温室50fへ流入させているので、感温室50fへ流入した全流量の冷媒の温度を感温部52に伝えることができる。さらに、接続ブロック14内に形成された分岐部Aにて、内部熱交換器13下流側の高圧冷媒の流れを分岐できる。その結果、第4実施形態と同様の効果を得ることができる。
また、圧力制御弁46のハウジング50に第3流出口50eを形成する必要がないので、第4実施形態の圧力制御弁45に対して、ハウジング50の加工も容易となる。
(第6実施形態)
第5実施形態では、接続ブロック14を介して、圧力制御弁46と内部熱交換器13とを接続しているが、本実施形態では、図9に示すように接続ブロック14を廃止するとともに、内部熱交換器15を採用している。内部熱交換器15の詳細については図10により説明する。図10(a)は内部熱交換器15の全体正面図であり、図10(b)は、図10(a)の側面図である。
第5実施形態では、接続ブロック14を介して、圧力制御弁46と内部熱交換器13とを接続しているが、本実施形態では、図9に示すように接続ブロック14を廃止するとともに、内部熱交換器15を採用している。内部熱交換器15の詳細については図10により説明する。図10(a)は内部熱交換器15の全体正面図であり、図10(b)は、図10(a)の側面図である。
この内部熱交換器15は、高圧側冷媒流路を形成する外側管の内側に低圧側冷媒流路を配置する二重管方式の熱交換部15cと、第5実施形態の接続ブロック14に対応するジョイント部15dとを有する。すなわち、熱交換部15cとジョイント部15dが一体に構成されたものである。
ジョイント部15dには、圧力制御弁46の第1流出口50bに接続される高圧側冷媒流路入口15e、圧力制御弁46の第2流入口50cに接続される高圧側冷媒流路出口15f、冷媒配管10に接続される分岐出口15gが形成されている。従って、本実施形態では、ジョイント部15d内に分岐部Aが形成される。
また、熱交換部15cには、高圧側冷媒流路を通過する高圧冷媒と低圧側冷媒流路を通過する低圧冷媒とが、対向流となるように、低圧側冷媒流路入口15h、低圧側冷媒流路出口15iが形成されている。これにより、高圧冷媒と低圧冷媒との温度差を確保して効率的に熱交換できるようになっている。
本実施形態の超臨界冷凍サイクルを作動させても、第5実施形態と全く同様の効果を得ることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(1)上述の実施形態では、密閉空間Bの内圧値に関連する物理量として外気温Tamを採用し、物理量検出手段として、外気温センサ11aを採用した例を説明したが、物理量はこれに限定されない。
例えば、上記の物理量として第1蒸発器5下流側空気温度、第2蒸発器9下流側空気温度を採用してもよい。すなわち、起動直後の第1蒸発器5吹出空気温度、第2蒸発器9吹出空気温度を採用することができる。さらに、圧縮機2に駆動力を与えるエンジンの冷却水温度を採用してもよい。
(2)第3実施形態では、圧力制御弁4について、冷媒配管の取回しに有利になるように、各流入・流出口流入口40a〜40cにおける冷媒の流れ方向を変更しても良いことを説明したが、これは、第4〜6実施形態の圧力制御弁45、46についても同様である。すなわち、圧力制御弁45、46の各流入・流出口50a〜50eにおける冷媒の流れ方向を適切な向きに変更してもよい。
(3)上述の実施形態では、溝40gおよび連通穴50jによってブリード部を構成しているが、このブリード部は廃止してもよい。上述の各実施形態では、起動時に開閉弁7を開弁させる制御を行って密閉空間Bを冷却できるからである。
(4)上述の実施形態では、第2蒸発器9の上流側に、膨張弁8を配置しているが、膨張弁8を廃止して、オリフィス、キャピラリチューブ等の固定絞り、電気式の流量制御弁等を採用してもよい。なお、固定絞りを採用する場合は、第2蒸発器9の下流側をアキュムレータ6に接続しておくことが望ましい。
(5)上述の実施形態では、放熱器3を冷媒と外気とを熱交換させる室外側熱交換器とし、第1、2蒸発器5、9を室内側熱交換器として車室内の冷却用に適用しているが、逆に、第1、2蒸発器5、9を外気等の熱源から吸熱する室外側熱交換器として構成し、放熱器3を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本発明を適用してもよい。
2…圧縮機、3…放熱器、4、45、46…圧力制御弁、5…第1蒸発器、
7…開閉弁、9…第2蒸発器、10…冷媒通路、11…空調制御装置、
11a…外気温センサ、13、15…内部熱交換器、14…接続ブロック、
15d…接続部、40、50…ハウジング、40a…流入口、40b…第1流出口、
40c…第2流出口、40d、50h…絞り通路、40g、50j…ブリード部、
41、51…弁体部、42、52…感温部、50a…第1流入口、50b…第1流出口、
50c…第2流入口、50d…第2流出口、50e…第3流出口、50j…ブリード部。
7…開閉弁、9…第2蒸発器、10…冷媒通路、11…空調制御装置、
11a…外気温センサ、13、15…内部熱交換器、14…接続ブロック、
15d…接続部、40、50…ハウジング、40a…流入口、40b…第1流出口、
40c…第2流出口、40d、50h…絞り通路、40g、50j…ブリード部、
41、51…弁体部、42、52…感温部、50a…第1流入口、50b…第1流出口、
50c…第2流入口、50d…第2流出口、50e…第3流出口、50j…ブリード部。
Claims (12)
- 臨界圧力以上に昇圧された高圧冷媒を放熱させる放熱器(3)および低圧冷媒を蒸発させる第1、2蒸発器(5、9)を有する超臨界冷凍サイクルに適用されて、前記放熱器(3)下流側冷媒温度に応じて前記放熱器(3)出口側冷媒圧力を制御する圧力制御弁であって、
前記放熱器(3)下流側冷媒を流入させる流入口(40a)、前記第1蒸発器(5)入口側へ冷媒を流出させる第1流出口(40b)、および、前記第2蒸発器(9)入口側へ冷媒を流出させる第2流出口(40c)が形成されたハウジング(40)と、
前記流入口(40a)から流入した冷媒の温度に応じて変位する感温部(42)と、
前記感温部(42)の変位に連動して前記流入口(40a)から流入した冷媒を減圧膨張させる絞り通路(40d)の通路面積を変化させる弁体部(41)と、
前記絞り通路(40d)上流側冷媒の流れを分岐する分岐部(A)とを備え、
前記第1流出口(40b)は、前記分岐部(A)で分岐された一方の冷媒であって、かつ、前記絞り通路(40d)下流側冷媒を流出させるようになっており、
前記第2流出口(40c)は、前記分岐部(A)で分岐された他方の冷媒を流出させるようになっていることを特徴とする圧力制御弁。 - 臨界圧力以上に昇圧された高圧冷媒を放熱させる放熱器(3)および低圧冷媒を蒸発させる第1、2蒸発器(5、9)を有する超臨界冷凍サイクルに適用されて、前記放熱器(3)出口側冷媒温度に応じて前記放熱器(3)出口側冷媒圧力を制御する圧力制御弁であって、
前記放熱器(3)出口側冷媒を流入させる第1流入口(50a)、前記第1流入口(50a)から流入した冷媒を流出させる第1流出口(50b)、前記第1流出口(50b)下流側冷媒を流入させる第2流入口(50c)、前記第1蒸発器(5)入口側へ冷媒を流出させる第2流出口(50d)、および、前記第2蒸発器(9)入口側へ冷媒を流出させる第3流出口(50e)を有するハウジング(50)と、
前記第1流入口(50a)から流入した冷媒の温度に応じて変位する感温部(52)と、
前記感温部(52)の変位に連動して前記第2流入口(50c)から流入した冷媒を減圧膨張させる絞り通路(50h)の通路面積を変化させる弁体部(51)と、
前記絞り通路(50h)上流側の冷媒の流れを分岐する分岐部(A)とを備え、
前記第2流出口(50d)は、前記分岐部(A)で分岐された一方の冷媒であって、かつ、前記絞り通路(50h)下流側冷媒を流出させるようになっており、
前記第3流出口(50e)は、前記分岐部(A)で分岐された他方の冷媒を流出させるようになっていることを特徴とする圧力制御弁。 - 請求項1または2に記載の圧力制御弁(4、45)を備えることを特徴とする超臨界冷凍サイクル。
- 請求項2に記載の圧力制御弁(45)と、
冷媒を吸入して圧縮する圧縮機(2)と、
前記圧縮機(2)吸入冷媒と前記第1流出口(50b)下流側冷媒とを熱交換させる内部熱交換器(13)とを備える超臨界冷凍サイクルであって、
前記内部熱交換器(13)の高圧冷媒出口は、前記第2流入口(50c)に接続されていることを特徴とする超臨界冷凍サイクル。 - 冷媒を吸入して圧縮する圧縮機(2)と、
前記圧縮機(2)吐出冷媒を冷却する放熱器(3)と、
前記放熱器(3)出口側冷媒の温度に応じて前記放熱器(3)出口側冷媒の圧力を制御する圧力制御手段(46)と、
低圧冷媒を蒸発させる第1、2蒸発器(5、9)とを備え、
高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルであって、
前記圧力制御手段(46)は、前記放熱器(3)下流側冷媒を流入させる第1流入口(50a)、前記第1流入口(50a)から流入した冷媒を流出させる第1流出口(50b)、前記第1流出口(50b)下流側冷媒を流入させる第2流入口(50c)、および、第1蒸発器5入口側へ冷媒を流出させる第2流出口(50d)が形成されたハウジング(50)と、前記第1流入口(50a)から流入した冷媒の温度に応じて変位する感温部(52)と、前記感温部(52)の変位に連動して前記第2流入口(50c)から流入した冷媒を減圧膨張させる絞り通路(50h)の通路面積を変化させる弁体部(51)とを有し、
前記第2流入口(50c)には、前記流出口(50b)下流側冷媒の流れを分岐する分岐部(A)で分岐された一方の冷媒が流入し、
前記第1蒸発器(5)には、前記絞り通路(50h)下流側冷媒が流入し、
前記第2蒸発器(9)には、前記分岐部(A)で分岐された他方の冷媒が流入するようになっていることを特徴とする超臨界冷凍サイクル。 - さらに、前記圧縮機(2)吸入冷媒と前記流出口(50b)下流側冷媒とを熱交換させる内部熱交換器(13、15)を備え、
前記分岐部(A)では、前記内部熱交換器(13、15)で熱交換された高圧冷媒の流れを分岐するようになっていることを特徴とする請求項5に記載の超臨界冷凍サイクル。 - 前記分岐部(A)は、前記内部熱交換器(13、15)と前記第2流入口(50c)とを接続する接続部(14、15d)に設けられていることを特徴とする請求項6に記載の超臨界冷凍サイクル。
- 前記接続部(15d)は、前記内部熱交換器(15)に一体に設けられていることを特徴とする請求項7に記載の超臨界冷凍サイクル。
- さらに、前記分岐部(A)から前記第2蒸発器(9)へ至る冷媒流路(10)を開閉する開閉弁(7)と、
前記感温部(52)を構成する密閉空間(B)の内圧値に関連する物理量(Tam)を検出する物理量検出手段(11a)と、
前記開閉弁(7)の作動を制御する制御手段(11)とを備え、
前記密閉空間(B)は、前記第1流入口(50a)から流入した冷媒の温度に応じて内圧が変化するようになっており、
前記制御手段(11)は、サイクル起動時であって、かつ、前記物理量(Tam)に基づいて決定される前記内圧値が冷媒の臨界圧力以上になっているとき、前記開閉弁(7)を開弁させるようになっていることを特徴とする請求項3ないし8のいずれか1つに記載の超臨界冷凍サイクル。 - 前記物理量は、外気温(Tam)であることを特徴とする請求項9に記載の超臨界冷凍サイクル。
- 前記物理量は、前記第1蒸発器(5)下流側空気温度および前記第2蒸発器(9)下流側空気温度のうち、いずれか一方、あるいは両者の組合せであることを特徴とする請求項9に記載の超臨界冷凍サイクル。
- 前記ハウジング(40、50)には、前記弁体部(41、51)が前記絞り通路(40d、50h)を閉弁した際に、前記絞り通路(40d、50h)上流側から下流側へ冷媒を漏らすブリード部(40g、50j)が形成されており、
前記ブリード部(40g、50j)から漏れる冷媒流量は、直径0.8mmのオリフィスに相当する冷媒流量以下になっていることを特徴とする請求項3ないし11のいずれか1つの超臨界冷凍サイクル。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006344469A JP2008157305A (ja) | 2006-12-21 | 2006-12-21 | 圧力制御弁および超臨界冷凍サイクル |
DE102007061030A DE102007061030A1 (de) | 2006-12-21 | 2007-12-18 | Drucksteuerventil und Kältekreislaufvorrichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006344469A JP2008157305A (ja) | 2006-12-21 | 2006-12-21 | 圧力制御弁および超臨界冷凍サイクル |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008157305A true JP2008157305A (ja) | 2008-07-10 |
Family
ID=39477859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006344469A Pending JP2008157305A (ja) | 2006-12-21 | 2006-12-21 | 圧力制御弁および超臨界冷凍サイクル |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008157305A (ja) |
DE (1) | DE102007061030A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101762125A (zh) * | 2008-11-21 | 2010-06-30 | 浙江三花股份有限公司 | 一种电动节流分配机构及其空调系统和流量控制方法 |
KR101340470B1 (ko) * | 2010-11-30 | 2013-12-12 | 한라비스테온공조 주식회사 | 차량용 공조장치 |
CN106662380A (zh) * | 2014-06-26 | 2017-05-10 | 法雷奥空调系统有限责任公司 | 用于致冷剂回路中的致冷剂流的分支装置 |
CN111854239A (zh) * | 2019-04-25 | 2020-10-30 | 株式会社鹭宫制作所 | 膨胀阀以及冷冻循环系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4045654B2 (ja) | 1998-07-15 | 2008-02-13 | 株式会社日本自動車部品総合研究所 | 超臨界冷凍サイクル |
JP4348610B2 (ja) | 2003-09-29 | 2009-10-21 | 株式会社ヴァレオサーマルシステムズ | 冷凍サイクル |
-
2006
- 2006-12-21 JP JP2006344469A patent/JP2008157305A/ja active Pending
-
2007
- 2007-12-18 DE DE102007061030A patent/DE102007061030A1/de not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101762125A (zh) * | 2008-11-21 | 2010-06-30 | 浙江三花股份有限公司 | 一种电动节流分配机构及其空调系统和流量控制方法 |
KR101340470B1 (ko) * | 2010-11-30 | 2013-12-12 | 한라비스테온공조 주식회사 | 차량용 공조장치 |
CN106662380A (zh) * | 2014-06-26 | 2017-05-10 | 法雷奥空调系统有限责任公司 | 用于致冷剂回路中的致冷剂流的分支装置 |
CN111854239A (zh) * | 2019-04-25 | 2020-10-30 | 株式会社鹭宫制作所 | 膨胀阀以及冷冻循环系统 |
Also Published As
Publication number | Publication date |
---|---|
DE102007061030A1 (de) | 2008-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4408413B2 (ja) | 冷凍装置及びこれを用いた空気調和機 | |
EP2796308B1 (en) | Automotive air conditioner | |
JP2011178372A (ja) | 車両用空気調和装置及びその運転切替方法 | |
JP5544469B2 (ja) | 複合弁および車両用冷暖房装置 | |
JP2008157305A (ja) | 圧力制御弁および超臨界冷凍サイクル | |
JP2018146219A (ja) | エジェクタモジュール | |
JP6582800B2 (ja) | 熱交換システム | |
JP4400533B2 (ja) | エジェクタ式冷凍サイクル | |
JP5604626B2 (ja) | 膨張弁 | |
JP2008164239A (ja) | 圧力制御弁 | |
JP2004175232A (ja) | 車両用空調装置 | |
JP2012061911A (ja) | 車両用冷暖房装置および制御弁 | |
JP5499299B2 (ja) | 制御弁および車両用冷暖房装置 | |
JP2008196774A (ja) | 圧力制御弁 | |
US11597258B2 (en) | Air conditioning device | |
JP2018013248A (ja) | エジェクタ式冷凍サイクル | |
JP2009204183A (ja) | 冷凍サイクル装置 | |
JP2008164256A (ja) | 冷凍サイクル装置 | |
WO2019167822A1 (ja) | 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置 | |
JP2008008505A (ja) | エジェクタ式冷凍サイクル | |
JP3924935B2 (ja) | 温度式膨張弁 | |
WO2018159321A1 (ja) | エジェクタモジュール | |
JP2005201484A (ja) | 冷凍サイクル | |
JP2008075926A (ja) | エジェクタ式冷凍サイクル | |
JP2004354042A (ja) | 冷凍サイクルの安全弁装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110823 |