JP4348610B2 - 冷凍サイクル - Google Patents

冷凍サイクル Download PDF

Info

Publication number
JP4348610B2
JP4348610B2 JP2003337035A JP2003337035A JP4348610B2 JP 4348610 B2 JP4348610 B2 JP 4348610B2 JP 2003337035 A JP2003337035 A JP 2003337035A JP 2003337035 A JP2003337035 A JP 2003337035A JP 4348610 B2 JP4348610 B2 JP 4348610B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
flow rate
refrigeration cycle
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003337035A
Other languages
English (en)
Other versions
JP2005106318A (ja
Inventor
健次 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2003337035A priority Critical patent/JP4348610B2/ja
Priority to EP20040022996 priority patent/EP1519123A3/en
Publication of JP2005106318A publication Critical patent/JP2005106318A/ja
Application granted granted Critical
Publication of JP4348610B2 publication Critical patent/JP4348610B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、二酸化炭素(CO2 ) などの超臨界流体が冷媒として用いられる冷凍サイクルに関し、特に、ツインエアコンに利用される冷凍サイクルに関する。
二酸化炭素を冷媒に用いた冷凍サイクルは、冷媒を圧縮する圧縮機と、圧縮機から吐出した冷媒を冷却する放熱器と、放熱器から流出した冷媒を減圧する膨張装置と、膨張装置から流出した冷媒を蒸発気化させる蒸発器とを有して構成されるが、このような冷凍サイクルにおいては、膨張装置によって前記放熱器出口側の圧力(高圧圧力)を前記放熱器出口側の冷媒温度に基づいて決定される所定圧力に制御する所謂高圧制御が行われる。
このため、このような構成を2つの蒸発器を備えたツインエアコンに適用し、それぞれの蒸発器の上流側に高圧制御用の膨張装置を設ける構成とした場合には、それぞれの膨張装置が高圧圧力を制御しようとするので、相互に干渉し合って適切に動作しないことが予想される。
このような不都合を避けるには、一方の蒸発器の制御と他方の蒸発器の制御とを異なる方式にすることが有効であり、従来においては、一方の蒸発器の制御に上述した高圧制御用の膨張装置を用い、他方の蒸発器の制御に過熱度制御用の膨張装置を用いたものが考えられている。即ち、冷媒を圧縮する圧縮機と、圧縮機から吐出した冷媒を冷却する放熱器と、放熱器から流出した冷媒を減圧する第1減圧器及び第2減圧器と、第1減圧器から流出した冷媒を蒸発させる第1蒸発器と、第2減圧器から流出した冷媒を蒸発させる第2蒸発器とを設け、第1減圧器により、放熱器出口側圧力を放熱器出口側冷媒温度に基づいて決定される所定圧力に制御し、第2減圧器により、第2蒸発器出口側の冷媒過熱度を所定値とするように制御するものが考えられている(特許文献1)。
特開2000−35250号公報
しかしながら、上述した構成においては、それぞれの蒸発器に対応して膨張装置(第1減圧器、第2減圧器)が設けられているが、膨張装置それ自体は、比較的高価なものであるので、蒸発器毎に膨張弁が設けられると製造コストが高くなる。また、蒸発器毎に膨張弁を設けるニーズがあるにしても、上述した構成においては、それぞれの蒸発器に対して制御方式の異なる膨張装置(第1減圧器、第2減圧器)が設けられているので、部品の共通化を図ることができず、製造コストの増大を招くと共にシステムのチューニング作業が複雑になる。
そこで、この発明においては、膨張弁同士の干渉がないツインエアコン用の冷凍サイクルを構築するにあたり、それぞれの蒸発器に異なる制御方式の膨張装置を設けることに起因する上述した不都合を解消し、製造コストを抑えると共にシステムのチューニング作業を不要又は簡易にすることが可能な冷凍サイクルを提供することを課題としている。
上記課題を達成するために、この発明に係る冷凍サイクルは、冷媒を臨界圧力を超える圧力まで昇圧可能とする圧縮機と、前記圧縮機で圧縮された冷媒を冷却する放熱器と、前記放熱器出口側の圧力を前記放熱器出口側の冷媒温度に基づき決定される所定圧力に制御するためのものであって単体で用いられる膨張装置と、前記膨張装置で減圧された冷媒を蒸発させる第1及び第2の蒸発器と、前記第1及び第2の蒸発器へ供給される冷媒の分配量を当該第1及び第2の蒸発器の双方に対し常に分配するようにしながら調節する流量調整手段とを有して構成されることを特徴としている(請求項1)。
したがって、このような構成によれば、第1及び第2の蒸発器には、共通の膨張装置で減圧されて流量調整手段によって分配された冷媒が供給されるので、膨張装置を1つにした上で、負荷に応じて流量調整手段により分配量を調節することが可能となる。このため、蒸発器毎に膨張装置を設けることなくツインエアコンに対応することが可能となる。
具体的には、前記第1の蒸発器と第2の蒸発器とは前記膨張装置の下流側で直列に接続され、前記流量調整手段は、上流側に配された蒸発器に供給される冷媒量と、下流側に配された蒸発器に供給される冷媒量とを調節するようにしても(請求項2)、第1の蒸発器と第2の蒸発器とを膨張装置の下流側で並列に接続し、流量調整手段によって、それぞれの蒸発器へ供給される冷媒量を調節するようにしてもよい(請求項4)。
特に、前者の構成にあっては、前記流量調整手段は、前記第1の蒸発器と前記第2の蒸発器のうち上流側に配された蒸発器の過熱度が一定となるように分配量を制御してもよく(請求項3)、また、後者の構成においては、前記流量調整手段は、一方の蒸発器の過熱度が一定となるように分配量を制御してもよい(請求項5)。
さらに、前記流量調整手段は、前記第1の蒸発器へ供給される流量と前記第2の蒸発器へ供給される流量とを同時に調節する三方弁によって構成されても(請求項6)、一方の蒸発器へ供給される流量を調節することで他方の蒸発器への供給量を調節する二方弁によって構成されてもよい(請求項7)。ここで、三方弁は、連続的に分配量を調節するものであっても、単純に流れ方向を切り換えるものであってもよい。また、二方弁においても、開度を連続的に調節するものであっても、通路を単純に開閉するものであってもよい。
尚、このような上述した冷凍サイクルは、圧縮機によって臨界圧力以上に昇圧される二酸化炭素などを冷媒とする超臨界蒸気圧縮式冷凍サイクルに適している(請求項8)。
以上述べたように、この発明によれば、冷凍サイクルを、冷媒を自身の臨界圧力を超える圧力まで昇圧可能とする圧縮機と、圧縮機で圧縮された冷媒を冷却する放熱器と、放熱器出口側の圧力を放熱器出口側の冷媒温度に基づき決定される所定圧力に制御する単体の膨張装置と、前記膨張装置で減圧された冷媒を蒸発させる第1及び第2の蒸発器と、かかる第1及び第2の蒸発器の双方に対し常に分配するようにしながらそれぞれの蒸発器へ供給される冷媒の分配量を調節する流量調整手段とを有して構成するようにした。これに伴い、第1の蒸発器の冷房能力が一定になるように流量調整手段の開度が調節されるため、第2の蒸発器の能力に合わせた流量調整を行うことが可能となるので、蒸発器毎に膨張装置を設ける必要がなく、1つの膨張装置で減圧された冷媒を各蒸発器の負荷に応じて分配することが可能となり、1つの膨張装置でツインエアコンに対応することが可能となる。よって、蒸発器毎に比較的高価な膨張装置を複数設ける必要がなくなり、代わりに比較的安価な流量調整手段である流量調整弁を用いるので、製造コストを削減することが可能となる。
以下、この発明の最良の実施形態を添付図面を参照しながら説明する。
図1において、冷凍サイクル1は、冷媒を昇圧する圧縮機2と、圧縮機2で圧縮された冷媒を冷却する放熱器3と、放熱器3により冷却された冷媒を減圧する膨張装置4と、膨張装置4で減圧された冷媒を蒸発気化する第1及び第2の蒸発器5,6と、それぞれの蒸発器に分配する冷媒流量を調節する流量調整弁7と、それぞれの蒸発器5,6から流出した冷媒を気液分離するアキュムレータ8とを有して構成されている。
具体的には、圧縮機2の吐出側が放熱器3を介して膨張装置4に接続され、この膨張装置4の下流側で流量調整弁7を介して第1の蒸発器5と第2の蒸発器6とが直列に接続されている。流量調整弁7は、三方弁によって構成され、膨張装置4から流出した冷媒を流入する流入ポートαと、流入された冷媒を流出する第1流出ポートβ及び第2流出ポートγとを備え、第1流出ポートβから流出する冷媒と第2流出ポートγから流出する冷媒との割合を連続的に可変できるようになっている。流量調整弁7の第1流出ポートβは、第1の蒸発器5の流入側に接続され、第2流出ポートγは、第2の蒸発器6の流入側に接続されている。そして、第2の蒸発器6の流出側は、アキュムレータ8を介して圧縮機2の吸入側に接続されている。
ここで、膨張装置4は、放熱器出口側の圧力を放熱器出口側の冷媒温度に基づいて決定される所定圧力(最大COPが得られる圧力)となるよう放熱器3から流出した冷媒を減圧する高圧制御弁であり、例えば、特開2000−35250号公報などに示されるそれ自体公知のものである。この膨張装置4は、検出温度が高くなるほど開度を小さくして放熱器3の出口側の圧力を上昇させ、検出温度が低くなるほど開度を大きくして放熱器3の出口側の圧力を低下させるもので、弁開度が電気的に制御されるものであっても、機械的に制御されるものであってもよい。
また、流量調整弁7は、上流側に配された第1の蒸発器5の過熱度が一定となるように分配量を制御するもので、電気的に制御されるものであっても、機械的に制御されるものであってもよい。
よって、このような構成においては、放熱器3から流出した冷媒が、膨張装置4によって減圧されて流量調節弁7に入り、第1の蒸発器5に対してはこの蒸発器の過熱度が一定となるように供給される。このため、第1の蒸発器5に供給された冷媒は、この第1の蒸発器5を通過する空気と熱交換して蒸発気化し、第2の蒸発器6へ送られることになる。そして、流量調整弁7から第2の蒸発器6へ分配された冷媒は、前記第1の蒸発器5を通過した冷媒と共に第2の蒸発器6に供給され、ここで第2の蒸発器6を通過する空気と熱交換して蒸発気化し、アキュムレータ8へ送られることとなる。このため、上述の構成においては、第1及び第2の蒸発器5,6の全体の熱負荷に応じて膨張装置4の開度が調節され、特に流量調整弁7にあっては、第1の蒸発器5の冷房能力が一定になるように開度が調節されることになるので、第1の蒸発器5の能力に合わせた流量調整を行うことが可能となり、1つの膨張装置4でツインエアコンに対応することが可能となる。よって、比較的安価な流量調整弁7を用いることで高価な膨張装置の数を削減することができ、ツインエアコン用の冷凍サイクルを安価に製造することが可能となる。
上述した構成においては、第1の蒸発器5と第2の蒸発器6とを直列に接続した上で流量調整弁7を三方弁で構成した場合を示したが、図2に示されるように、膨張装置4から流出した冷媒の分岐点Aと第1の蒸発器5の流入口との間に流量調整弁9を設け、ここを通過する流量を調節することで第1の蒸発器5の流入量を調節すると共に第2の蒸発器6の流入量を調節するようにしてもよい。このような構成においても、第1及び第2の蒸発器5,6の全体の熱負荷にあわせて膨張装置4の開度が調節され、第1の蒸発器5にあっては、自身の冷房能力が一定となるように開度が調節されるので、1つの膨張装置4でツインエアコンに対応することが可能となり、安価に冷凍サイクルを製造することが可能となる。
また、上述の構成においては、流量調整弁7として分配量を連続的に調整可能な三方弁を用いるようにしたが、図3(a)に示されるように、流れ方向をいずれかに切り替える三方弁11、又は図3(b)に示されるように、開閉動作のみを行う二方弁12を用いて構成するようにしてもよい。
さらに、上述の構成においては、第1及び第2の蒸発器5,6を膨張装置4の下流側で直列に接続した構成を示したが、図4(a)に示されるように、第1及び第2の蒸発器5,6を膨張装置4の下流側で並列に接続し、膨張装置4から流出された冷媒の分岐部分に三方弁によって構成される流量調整弁7を配置するようにしてもよい。このような構成においても、流量調整弁7は、一方の蒸発器(例えば、第1の蒸発器5)の過熱度が一定となるように分配量を電気的に制御するものであっても、機械的に制御するものであってもよい。
このような構成においては、放熱器3から流出した冷媒が、膨張装置4によって放熱器出口側の冷媒圧力を放熱器出口側の冷媒温度に基づいて決定される所定圧力とするように減圧され、この膨張装置4を通過したのちに流量調節弁7に入り、一方の蒸発器5に対してはこの蒸発器5の過熱度が一定となるように供給される。このため、第1の蒸発器5に供給された冷媒は、この第1の蒸発器5を通過した冷媒と熱交換して蒸発気化し、アキュムレータ8へ送られることになる。また、第1の蒸発器5へ送られなかった残りの冷媒は、流量調整弁7から第2の蒸発器6へ導かれ、ここで第2の蒸発器6を通過した空気と熱交換して蒸発気化し、アキュムレータ8へ送られることとなる。このため、上述の構成においては、第1及び第2の蒸発器5,6の全体の熱負荷に応じて膨張装置4の開度が調節され、特に流量調整弁7にあっては、第1の蒸発器5の冷房能力が一定になるように開度が調節されることになるので、第1の蒸発器5の能力に合わせた流量調整を行うことが可能となり、1つの膨張装置4でツインエアコンに対応させることが可能となる。よって、比較的安価な流量調整弁を用いることで高価な膨張装置の数を削減できるので、ツインエアコン用の冷凍サイクルを安価に製造することが可能となる。
上述した構成においては、流量調整弁7を三方弁で構成した場合を示したが、図4(b)に示されるように、膨張装置4から流出した冷媒の分岐点Aと一方の蒸発器(上述の例においては、第1の蒸発器)との間に二方弁によって構成された流量調整弁9を配置し、ここを通過する流量を調節することで第1の蒸発器5の流入量を調節すると共に第2の蒸発器6の流入量を調節するようにしてもよい。
尚、図4(a)の構成においては、流量調整弁7として分配流量を連続的に調節する三方弁を用いたが、代わりに単純に流れ方向を切り換える三方弁を用いるようにしてもよく、また、図4(b)の構成においては、開閉動作のみを行う二方弁を用いるようにしてもよい。
以上の構成においては、第1及び第2の蒸発器5,6に対して流量調整弁7,9などによって分配量を調節することで膨張装置4を1つだけにした場合であるが、それぞれの蒸発器5,6に対応して膨張装置を個別に設けたい要請がある場合には、図5に示されるような構成としてもよい。
図5において、冷凍サイクル1は、冷媒を自身の臨界圧力を超える圧力まで昇圧する圧縮機2と、圧縮機2で圧縮された冷媒を冷却する放熱器3と、放熱器3により冷却された冷媒を減圧する第1及び第2の膨張装置20,21と、第1の膨張装置20で減圧された冷媒を蒸発気化する第1の蒸発器5と、第2の膨張装置21で減圧された冷媒を蒸発気化する第2の蒸発器6と、それぞれの蒸発器5,6から流出した冷媒を気液分離するアキュムレータ8と、アキュムレータ8から圧縮機2へ導かれる低圧冷媒と放熱器3から各膨張装置20,21へ導かれる高圧冷媒とを熱交換させる内部熱交換器22とを有して構成されている。
即ち、冷凍サイクル1は、圧縮機2の吐出側が放熱器3を介して内部熱交換器22の高圧流路22aに接続され、この高圧流路22aの流出側が分岐して第1の膨張装置20と第2の膨張装置21に接続されている。また、第1の膨張装置20の流出側は第1の蒸発器5を介して、また、第2の膨張装置21の流出側は第2の蒸発器6を介してそれぞれアキュムレータ8の流入口に接続され、アキュムレータ8の流出口は内部熱交換器22の低圧流路22bを介して圧縮機2の吸入側に接続されている。したがって、圧縮機2の吐出側から放熱器3及び高圧流路22aを介して膨張装置20,21に至る経路により高圧ライン23が構成され、膨張装置20,21の流出側から蒸発器5,6、アキュムレータ8、及び低圧流路22bを介して圧縮機2に至る経路により低圧ライン24が構成されている。そして、この構成において、第1の膨張装置20と第2の膨張装置21は、コントロールユニット25によって電気的に弁開度が制御されるようになっている。
ここでコントロールユニット25は、中央演算装置(CPU)、読出専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入出力ポート等を備えて構成されたそれ自体公知のもので、各種センサからの信号が入力され、メモリに与えられた所定のプログラムにしたがってそれぞれの膨張装置20,21の弁開度を制御するようにしている。
図6において、コントロールユニット25による各膨張装置の制御動作例がフローチャートとして示されており、以下、このフローチャートに基づいて制御動作例を説明すると、コントロールユニット25は、空調装置を起動した後に、初期設定などの一連の初期処理を経てこの制御ルーチンに入り、第1の蒸発器5の熱負荷を計算するために必要なパラメータ(Aパラメータ)と、第2の蒸発器6の熱負荷を計算するために必要なパラメータ(Bパラメータ)を入力する(ステップ50)。例えば、第1の蒸発器5の熱負荷を計算するために必要なパラメータとしては、空調ユニットの送風機の回転速度(送風量)、第1の蒸発器の入口側空気温度、室内温度、外気温度などが用いられ、第2の蒸発器6の熱負荷を計算するために必要なパラメータとしては、第2の蒸発器6の過熱度、第2の蒸発器6の出口冷媒温度、低圧ラインの圧力、第2の蒸発器6を通過した空気温度などが用いられる。
そして、次のステップ52において、入力されたAパラメータに基づき第1の蒸発器5の熱負荷を計算し、Bパラメータに基づき第2の蒸発器6の熱負荷を計算する。その後、ステップ54において、演算されたそれぞれの熱負荷からそれぞれの膨張装置20,21の弁開度の比率を決定し、ステップ56において、この弁開度の比率を維持したまま、放熱器出口側の圧力を放熱器出口側の冷媒温度に基づいて決定される所定圧力(最大COPが得られる圧力)となるように制御する。
したがって、このような構成においては、それぞれの蒸発器5,6の上流側に別々の膨張装置20,21が設けられているが、それぞれの膨張装置20,21は独立に制御されず、それぞれの蒸発器5,6の熱負荷に応じた比率に固定され、この比率が維持された状態で放熱器出口側の圧力が制御されるので、互いの膨張装置の制御が干渉することがなくなる。よって、上述の構成においては、第1の膨張装置20も第2の膨張装置21も同じ制御方式のものが用いられているので、部品の共通化を図ることで製造コストの増大を避けることができると共に、システムのチューニング作業を不要又は簡易にすることが可能となる。
図1は、本発明に係るツインエアコン用の冷凍サイクルの全体構成例を示す図である。 図2は、図1の膨張装置からアキュムレータの上流側に至るまでの構成の他の例を示す図である。 図3(a)は、図1の流量調整弁に変えて三方弁を用いた例を示す図であり、図3(b)は、図2の流量調整弁に変えて二方弁を用いた例を示す図である。 図4は、膨張装置の下流で蒸発器を並列に接続した構成を示し、図4(a)は三方弁タイプの流量調整弁を用いた例を示し、図4(b)は二方弁タイプの流量調整弁を用いた例を示す構成例である。 図5は、ツインエアコン用の冷凍サイクルの他の構成例を示す図である。 図6は、図5で示すコントロールユニットによる膨張装置の弁開度の制御動作例を示すフローチャートである。
1 冷凍サイクル
2 圧縮機
3 放熱器
4 膨張装置
5 第1の蒸発器
6 第2の蒸発器
7、9 流量調整弁
20 第1の膨張装置
21 第2の膨張装置
22 内部熱交換器

Claims (8)

  1. 冷媒を臨界圧力を超える圧力まで昇圧可能とする圧縮機と、
    前記圧縮機で圧縮された冷媒を冷却する放熱器と、
    前記放熱器出口側の圧力を前記放熱器出口側の冷媒温度に基づき決定される所定圧力に制御するためのものであって単体で用いられる膨張装置と、
    前記膨張装置で減圧された冷媒を蒸発させる第1及び第2の蒸発器と、
    前記第1及び第2の蒸発器へ供給される冷媒の分配量を当該第1及び第2の蒸発器の双方に対し常に分配するようにしながら調節する流量調整手段とを有して構成されることを特徴とする冷凍サイクル。
  2. 前記第1の蒸発器と第2の蒸発器とは前記膨張装置の下流側で直列に接続され、前記流量調整手段は、上流側に配された蒸発器に供給される冷媒量と、下流側に配された蒸発器に供給される冷媒量とを調節するものであることを特徴とする請求項1記載の冷凍サイクル。
  3. 前記流量調整手段は、前記第1の蒸発器と前記第2の蒸発器のうち上流側に配された蒸発器の過熱度が一定となるように分配量が制御されるものであることを特徴とする請求項2記載の冷凍サイクル。
  4. 前記第1の蒸発器と第2の蒸発器とは前記膨張装置の下流側で並列に接続され、流量調整手段は、それぞれの蒸発器へ供給される冷媒量を調節するものであることを特徴とする請求項1記載の冷凍サイクル。
  5. 前記流量調整手段は、一方の蒸発器の過熱度が一定となるように分配量が制御されるものであることを特徴とする請求項4記載の冷凍サイクル。
  6. 前記流量調整手段は、前記第1の蒸発器へ供給される流量と前記第2の蒸発器へ供給される流量とを同時に調節する三方弁によって構成されていることを特徴とする請求項2又は4記載の冷凍サイクル。
  7. 前記流量調整手段は、一方の蒸発器へ供給される流量を調節することで他方の蒸発器への供給量を調節する二方弁によって構成されていることを特徴とする請求項2又は4記載の冷凍サイクル。
  8. 前記冷凍サイクルは、二酸化炭素を冷媒とする超臨界蒸気圧縮式冷凍サイクルであることを特徴とする請求項1記載の冷凍サイクル。
JP2003337035A 2003-09-29 2003-09-29 冷凍サイクル Expired - Fee Related JP4348610B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003337035A JP4348610B2 (ja) 2003-09-29 2003-09-29 冷凍サイクル
EP20040022996 EP1519123A3 (en) 2003-09-29 2004-09-28 Cooling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337035A JP4348610B2 (ja) 2003-09-29 2003-09-29 冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2005106318A JP2005106318A (ja) 2005-04-21
JP4348610B2 true JP4348610B2 (ja) 2009-10-21

Family

ID=34191552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337035A Expired - Fee Related JP4348610B2 (ja) 2003-09-29 2003-09-29 冷凍サイクル

Country Status (2)

Country Link
EP (1) EP1519123A3 (ja)
JP (1) JP4348610B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062834B4 (de) 2005-06-30 2016-07-14 Denso Corporation Ejektorkreislaufsystem
JP5217121B2 (ja) * 2005-06-30 2013-06-19 株式会社デンソー エジェクタ式冷凍サイクル
JP4600212B2 (ja) 2005-08-23 2010-12-15 株式会社デンソー 超臨界冷凍サイクル装置
JP4209881B2 (ja) * 2005-10-18 2009-01-14 三星電子株式会社 空気調和装置
FR2895786B1 (fr) * 2006-01-04 2008-04-11 Valeo Systemes Thermiques Module de detente pour installation de climatisation a deux evaporateurs
JP2007071529A (ja) * 2006-09-08 2007-03-22 Denso Corp 冷凍サイクル装置
JP2008157305A (ja) 2006-12-21 2008-07-10 Denso Corp 圧力制御弁および超臨界冷凍サイクル
DE202009002222U1 (de) * 2009-02-16 2009-04-23 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit mehreren Fächern
DE102010033518A1 (de) * 2010-08-05 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Klimaanlage und Verfahren zum Betreiben einer Klimaanlage
DE102011109506B4 (de) * 2011-08-05 2019-12-05 Audi Ag Kältemittelkreislauf
US9605885B2 (en) * 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve
FR3043762B1 (fr) * 2015-11-13 2019-10-18 Valeo Systemes Thermiques Systeme de pompe a chaleur avec valve d'expansion electrique pour un controle ameliore de l'humidite dans un habitacle
JP7386613B2 (ja) * 2019-02-26 2023-11-27 三菱電機株式会社 熱交換器およびそれを備えた空気調和機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1908722B1 (de) * 1969-02-21 1970-08-20 Aeg Kuehl- oder Gefriermoebel mit Schnellgefriereinrichtung
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
US5444987A (en) * 1993-07-02 1995-08-29 Alsenz; Richard H. Refrigeration system utilizing a jet enthalpy compressor for elevating the suction line pressure
US6438978B1 (en) * 1998-01-07 2002-08-27 General Electric Company Refrigeration system
JP4045654B2 (ja) 1998-07-15 2008-02-13 株式会社日本自動車部品総合研究所 超臨界冷凍サイクル
JP2000065430A (ja) * 1998-08-18 2000-03-03 Nippon Soken Inc 蒸気圧縮式冷凍サイクル
JP2003139422A (ja) * 2001-10-31 2003-05-14 Daikin Ind Ltd 冷凍機

Also Published As

Publication number Publication date
JP2005106318A (ja) 2005-04-21
EP1519123A2 (en) 2005-03-30
EP1519123A3 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
US9612042B2 (en) Method of operating a refrigeration system in a null cycle
JP4348610B2 (ja) 冷凍サイクル
US10393418B2 (en) Air-conditioning apparatus
JP2002195673A (ja) 超臨界蒸気圧縮システムおよび超臨界蒸気圧縮システムを循環する冷媒の高圧成分の圧力を調整する装置
WO2013145006A1 (ja) 空気調和装置
WO1999034156A1 (fr) Cycle de refrigeration
KR20070065417A (ko) 냉동 공조장치, 냉동 공조장치의 운전 제어 방법, 냉동공조장치의 냉매량 제어 방법
JP2002081767A (ja) 空気調和装置
JP4206870B2 (ja) 冷凍サイクル装置
JP2018523085A (ja) 少なくとも2つの蒸発器群を有する蒸気圧縮システム
WO2008032578A1 (fr) Dispositif de réfrigération
AU2019457803A1 (en) Refrigeration cycle device
US20200378630A1 (en) Sequential Hot Gas Reheat System In An Air Conditioning Unit
WO1999008053A1 (fr) Cycle de refroidissement
EP2321593B1 (en) Improved operation of a refrigerant system
US8769968B2 (en) Refrigerant system and method for controlling the same
WO2011072679A1 (en) A vapour compression system with split evaporator
JP2002228282A (ja) 冷凍装置
JP2006097972A (ja) アキュムレータ冷凍サイクル
JP2008096072A (ja) 冷凍サイクル装置
JP3317170B2 (ja) 冷凍装置
US9010136B2 (en) Method of obtaining stable conditions for the evaporation temperature of a media to be cooled through evaporation in a refrigerating installation
JP2000213819A (ja) 冷凍サイクル
JPH0682113A (ja) 多室型空気調和機
JP7450772B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees