JP2006097972A - アキュムレータ冷凍サイクル - Google Patents

アキュムレータ冷凍サイクル Download PDF

Info

Publication number
JP2006097972A
JP2006097972A JP2004284570A JP2004284570A JP2006097972A JP 2006097972 A JP2006097972 A JP 2006097972A JP 2004284570 A JP2004284570 A JP 2004284570A JP 2004284570 A JP2004284570 A JP 2004284570A JP 2006097972 A JP2006097972 A JP 2006097972A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
radiator
accumulator
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004284570A
Other languages
English (en)
Inventor
Yoshinori Murase
善則 村瀬
Yoshitaka Tomatsu
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004284570A priority Critical patent/JP2006097972A/ja
Publication of JP2006097972A publication Critical patent/JP2006097972A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

【課題】蒸発器を複数備えたアキュムレータ冷凍サイクルにおいては、放熱器の高圧制御が安定せず、冷凍サイクルのハンチングが生じたり、COPの低下を招いていた。
【解決手段】アキュムレータ冷凍サイクルは、冷媒を圧縮する圧縮機11と、圧縮機から吐出される冷媒を冷却する放熱器14と、放熱器から流出される冷媒を減圧する1つの減圧器17と、減圧器から流出される冷媒を蒸発させる第1蒸発器21と、減圧器から流出される冷媒の流量を調整する1つの流量調整弁31と、第1蒸発器と並列に配置され各流量調整弁から流出される冷媒を蒸発させる1つの第2蒸発器34と、第1蒸発器及び第2蒸発器から流出される冷媒を受け気液分離するアキュムレータ24と、から成る。放熱器の温度又はその出口の冷媒の温度に基づき減圧器の絞り量を制御し、第2蒸発器の温度、その出口の空気の温度又はその出口の冷媒の過熱度に基づき流量調整弁の絞り量を制御する。
【選択図】図1

Description

本発明は、アキュムレータ冷凍サイクルに関し、特に2つ以上の蒸発器を含みながら放熱器の高圧制御が改良されたものに関する。
近年、ワゴン車やワンボックスカーなどでは、フロントエアコンの他にリアエアコンが設けられる場合が多く、その場合冷凍サイクルは2つの蒸発器を含むことになる。
例えば、従来のアキュムレータ冷凍サイクル(特許文献1参照)では、図6に示すように、圧縮機200の下流側にある放熱器(室外機)202の下流側に第1減圧弁205を介してフロントエアコン用第1蒸発器208を配置し、第1蒸発器208の下流側にアキュムレータ210を配置している。また、第1蒸発器208と並列にリアエアコン用第2蒸発器212を配置し、その入口側に第2減圧器215を配置し、出口側をアキュムレータ210に接続している。
冷凍サイクルを効率よく作動させるためには、熱交換器(放熱器202)出口の温度に対して最も効率が良くなるように高圧を制御することが重要である。これを考慮して、放熱器202の出口の冷媒の温度を感温センサ203で検知し、その検知結果に基づき第1減圧弁205の絞り量を制御し、放熱器202内の高圧を制御している。また、第2蒸発器212の出口の冷媒の過熱度を感温センサ213で検知し、検知結果に基づき第2減圧弁215の絞り量を制御し、第2蒸発器212内の冷媒の過熱度を制御している。
特開2000−35250号公報
従来のアキュムレータ冷凍サイクルは、異なる場所に配置した感温センサ203及び213での検知温度に基づき、第1減圧弁205と第2減圧弁215とを別個独立に作動させている。その結果、放熱器202内の高圧が変動し、しかもその変動が繰り返される。詳述すると、図7のフローチャートにおいて、送風機の風量の増加などにより第2蒸発器212の負荷が増加すると(S1)、第2蒸発器212内の冷媒の過熱度が増加し冷媒が不足するので、センサ213での検知結果に基づき第2減圧弁215が開き放熱器202の圧力が低下する(S2)。すると、放熱器202の高圧を維持するため(上昇させるべく)、感温センサ203での検知結果に基づき第1減圧弁205が絞られる(S3)。
その結果、放熱器202から第2蒸発器215に冷媒が流れすぎ、感温センサ213での検知結果に基づき、その過熱度が減少する(S4)。すると、冷媒を減らすべく第2減圧弁215が絞られるので放熱器202の高圧が上昇し(S5)、放熱器202の高圧を維持するため(下降させるべく)、第1減圧弁205が開く(S6)。第2蒸発器215内の冷媒流量が減り、過熱度が増加する(S7)ので上記S2に戻り、上記サイクルが繰り返されることになる。
このように、リアエアコン用第2減圧器215の絞り量の大小に応じて、放熱器202の高圧が低下し(S2)又は上昇し(S5)、これを補償すべくフロントエアコン用第1減圧器205が絞り量が調整される。つまり、放熱器202の高圧が第2減圧器215の絞り量の影響を受ける。その結果、放熱器202での高圧制御が不安定になり、冷凍サイクルにハンチング(定期的な圧力変動)が生じ、それに伴い、COP(成績係数)が低下することになる。
本発明は上記事情に鑑みてなされたもので、蒸発器を2つ又はそれ以上備えたアキュムレータ冷凍サイクルにおいて、放熱器の高圧制御を安定化させ、それによって冷凍サイクルのハンチングを防止すると共に、COPの低下を解消することを目的とする。
本願の発明者は、上記従来例の不具合は2つの蒸発器に対応して2つの減圧器を設けたことに起因するとの知見を得て、放熱器の高圧の変動の原因となり易い減圧器を1つにした。その上で、第1蒸発器はこの減圧器から直接冷媒を流入させ、第2蒸発器はこの減圧器から流量制御弁を介して冷媒を流入させることを着想して、本発明を完成した。
(1)本願の第1発明によるアキュムレータ冷凍サイクルは、請求項1に記載したように、冷媒を圧縮する圧縮機と、圧縮機から吐出される冷媒を冷却する放熱器と、放熱器から流出される冷媒を減圧する1つの減圧器と、減圧器から流出される冷媒を蒸発させる第1蒸発器と、減圧器から流出される冷媒の流量を調整する1つ又は複数の流量調整弁と、第1蒸発器と並列に配置され各流量調整弁から流出される冷媒を蒸発させる1つ又は複数の第2蒸発器と、少なくとも第1蒸発器から流出される冷媒を受け気液分離するアキュムレータと、から成る。
このアキュムレータ冷凍サイクルにおいて、放熱器の温度又はその出口の冷媒の温度に基づき減圧器の絞り量を制御し、第2蒸発器の温度、その出口の空気の温度又はその出口の冷媒の過熱度に基づき流量調整弁の絞り量を制御する。
(2)第2発明によるアキュムレータ冷凍サイクルは、請求項6に記載したように、冷媒を圧縮する圧縮機と、圧縮機から吐出される冷媒を冷却する放熱器と、放熱器から流出される冷媒を減圧する1つの減圧器と、減圧器から流出される冷媒を2以上の方向に分ける流量調整機能付きの切換え弁と、切換え弁から第1方向に流出される冷媒を蒸発させる第1蒸発器と、第1蒸発器と並列に配置され切換え弁から第2方向に流出される冷媒を蒸発させる1つ又は複数の第2蒸発器と、少なくとも第1蒸発器から流出される冷媒を受け気液分離するアキュムレータと、から成る。
このアキュムレータ冷凍サイクルにおいて、放熱器の温度又はその出口の冷媒の過熱度に基づき減圧器の絞り量を制御し、第2蒸発器の温度、その出口の空気の温度又はその出口の冷媒の過熱度に基づき流量調整弁の絞り量を制御する。
(1)第1発明にかかるアキュムレータ冷凍サイクルによれば、放熱器の高圧制御が安定する。即ち、第2蒸発器の上流側に配置した流量調整弁は第2蒸発器に流入する冷媒の流量を調整するのみで、冷媒の圧力は殆ど減圧しない。よって、流量調整弁、第2蒸発器、放熱器及び減圧器が配設された冷媒流通路内の圧力は変化せず、放熱器の高圧が変化しないので、減圧器の絞り量も変化しないからである。
請求項2のアキュムレータ冷凍サイクルによれば、蒸発器の出口(吹出)空気の温度を検出するために蒸発器の後に搭載されているサーミスタを、冷媒の過熱度の検知に流用することができるので、新たにセンサを増設することが不要となる。請求項3のアキュムレータ冷凍サイクルによれば、第2蒸発器の後の冷媒をアキュムレータの下流側に合流させているので、第1蒸発器の冷媒能力が増大する。請求項4のアキュムレータ冷凍サイクルによれば、放熱器の出口と第1蒸発器及び第2蒸発器の出口との間で熱交換する内部熱交換機を配置したので、冷房効率が向上する。
(2)第2発明のアキュムレータ冷凍サイクルによれば、第1発明の効果に加えて、流量調整弁から第1蒸発器に流入する冷媒の流量、及び第2蒸発器に流入する冷媒の流量を調整でき、それぞれの蒸発器に必要とされる冷媒を供給できる効果が得られる。
(イ)全体
本発明のアキュムレータ冷凍サイクルは、圧縮機、放熱器、1つの減圧器、1つの第1蒸発器、1つ又は複数の流量調整弁、1つ又は複数の第2蒸発器、及び1つのアキュムレータから成る。冷媒は(炭酸ガス)とできるが、これに限定されない。
(ロ)放熱器、減圧器
放熱器は圧縮機の下流側に配置され、圧縮機から流出される冷媒を冷却する。放熱器の下流側に1つの減圧器が配置され、放熱器から流出する冷媒を減圧、膨張させ、低温で低圧の気液2相の冷媒にする。放熱器の温度又は出口の冷媒の温度などに応じて高圧制御を行う。
(ハ)蒸発器
減圧器の下流側に少なくとも1つの蒸発器が配置される。入口から入った気液2相の冷媒が第1蒸発器の出口で蒸気に変化する。減圧器の下流側で第1冷媒流通路から分かれた第2冷媒流通路に次述する流量調整弁が配置され、更にその下流側に第2蒸発器が配置されている。
第1蒸発器は例えばフロントエアコン用であり夏期の走行時などは原則して作動し、個数は1つである。これに対して、第2蒸発器は例えばリアエアコン用であり、原則として後部座席に乗員がいるときに作動させ、いないときは非作動とできる。個数は1つ又は複数である。第2蒸発器の作動の有無によって放熱器に必要とされる冷却能力が変化する。
(ニ)流量調整弁
流量調整弁は減圧器で減圧された冷媒の第2蒸発器への流量を調整するもので、第2蒸発器と同じ個数だけ設けられる。第2蒸発器の出口の冷媒の過熱度等が高い場合はその弁を開き、低い場合は弁を絞る。但し、第2蒸発器に流入する冷媒の圧力は殆ど減圧させない。なお、第1蒸発器の温度と第2蒸発器の温度との温度差に応じて流量調整弁の絞り量を調整しても良い。
また、流量調整弁の代わりに、1つの入口ポートと、2つ以上の出口ポートとを備え、各出口ポートからの冷媒の流出量を調整可能な切換え弁を使用することもできる。
(ホ)アキュムレータ
第1蒸発器の下流側に、少なくとも第1蒸発器から流出する冷媒を気液分離するアキュムレータが配置されている。第2蒸発器から流出する冷媒もこのアキュムレータで気液分離することができる。ただし、第1蒸発器の出口のみをアキュムレータに接続し、第2蒸発器の出口はアキュムレータの下流側に接続することもできる。
(ヘ)内部熱交換器
冷房能力を上げるために、放熱器の出口側と第1蒸発器及び第2蒸発器の出口側とでの間で熱交換する内部熱交換器を設けることができる。放熱器を出た高温の冷媒を、第1蒸発器及び第2蒸発器を出た低温の冷媒で冷却するのである。この場合、第2蒸発器の出口は内部熱交換器と圧縮機との間に接続することができる。
以下、本発明の実施例を添付図面を参照しつつ説明する。
<第1実施例>
(構成)
図1に示すように第1冷媒流通路10上に冷媒の流れ方向(左回り)において順に圧縮機11、放熱器14、第1減圧器17、第1蒸発器21及びアキュムレータ24が配置されている。このうち圧縮機11は冷媒を圧縮して吐出し、放熱器14は圧縮機11から吐出される冷媒を冷却する。減圧器17は放熱器14から流出される冷媒を減圧し、フロントエアコン用第1蒸発器21は減圧器17から流出される冷媒を蒸発させ、アキュムレータ24は第1蒸発器21から流出される冷媒を液冷媒とガス冷媒とに分離する。
第1冷媒流通路10の減圧弁17と第1蒸発器21との間分岐点Aから第2冷媒流通路30が分岐し、第1蒸発器21とアキュムレータ24との間の合流点B1で第1冷媒通路10に合流している。この第2冷媒流通路30上に冷媒の流れ方向において順に流量調整弁31及びリアエアコン用第2蒸発器34が配置されている。これから分かるように、放熱器14及び減圧器17に対して第1蒸発器21と、流量調整弁31及び第2蒸発器34とが並列に配置されている。
放熱器14の出口に配置した感温センサ15により出口の冷媒の温度が検知され、それに基づき減圧弁17の絞り量を制御するようになっている。また、第2蒸発器34の出口に配置した感温センサ35により出口の冷媒の過熱度が検知され、それに基づき流量調整弁31の絞り量を制御するようになっている。また、放熱器14の出口側と第1蒸発器21及び第2蒸発器34の出口側との間で熱交換する内部熱交換器(IHE)37が配置されている。
(作用)
圧縮機11による冷媒の圧縮、放熱器14による冷媒の冷却、アキュムレータ24による気液分離、及び内部熱交換器37による内部熱交換は何れも公知であり、しかも本発明と直接関係ないので、詳しい説明は割愛する。以下、減圧器17、第1蒸発器21、流量調整弁31及び第2蒸発器34の作動を中心に説明する。
減圧器17は感温センサ15からの信号を受け、最も効率が良くなるように高圧を制御する。第2冷媒流通路30は減圧弁17の下流側で第1冷媒流通路10から分岐しているので、減圧弁17で減圧された冷媒が流量調整弁31に流入する。流量調整弁31は感温センサ35からの信号を受けて作動し、第2蒸発器34の負荷が増大したときはその内部の弁が開き、多量の冷媒を第2蒸発器34に供給する。一方、負荷が小さいときは弁が絞られ、少量の冷媒しか供給しない。
(効果)
この実施例によれば、以下の効果が得られる。まず、第2蒸発器34の負荷の大きさが変動しても、減圧器17の絞り量は大きく変化せず、放熱器14の高圧は大きく変化しない。その理由は、第2蒸発器34が配置された第2冷媒流通路30には減圧器が配置されていないからである。即ち、第2蒸発器34の負荷の大きさの変動時は流量調整弁31の弁の絞り量が変化し、第2冷媒流通路30を流れる冷媒の量が変化するのみで、第2冷媒流通路30の圧力は大きく変化しない。
また、第2冷媒流通路30には減圧器は配置されていないが、負荷の大きさに応じて流量調整弁31の絞り量が変わり、第2蒸発器34での冷媒の蒸発量が変化するので必要な冷房能力が得られ、問題ない。
<変形例>
以下、上記実施例の各種変形例につき説明する。
(1)第1変形例
図2に示す第1変形例は、流量調整弁31の絞り量を調整する基準が実施例とは異なる。即ち、第1蒸発器21及び第2蒸発器34の温度をサーミスタ51及び52で検知し、検知結果をECU55に出力している。ここで、例えば第2サーミスタ52の設定温度を第1サーミスタ51の設定温度0から3℃(ここでは2℃)高くしておく。ECU55はこの信号に基づき流量調整弁31の絞り量を制御する。両方の検知温度の差が2℃以下の間は弁31を絞っておき、2℃を超えたならばECU55からの指令により流量調整弁31を開く。
第1変形例によれば、サーミスタ51及び52は蒸発器21及び34の着霜防止のために既設されている場合が多いので、実質的にコストが上昇しないという特有の効果が得られる。
(2)第2変形例
図3に示す第2変形例は、第1冷媒流通路10と第2冷媒流通路30との合流点B2の位置が第1実施例とは異なり、第2冷媒流通路30はアキュムレータ14の下流側で第1冷媒流通路10に合流している。流量調整弁31の絞り量は第2蒸発器34の出口の冷媒の過熱度に基づき制御し、過熱度が0から5℃(例えば3℃)になったとき流量調整弁31を開く。なお、第2蒸発器34上に設けたサーミスタにより検知した温度に基づき流量調整弁31の絞り量を制御してもよい。
第2変形例によれば、第2蒸発器34の後の冷媒をアキュムレータ14の下流に合流させるので、第1実施例と比べて第1蒸発器21の冷房能力が向上するという特有の効果が得られる。
(3)第3変形例
図4に示す第3変形例では、第2冷媒流通路30は内部熱交換器37の下流側の合流点B3で第1冷媒流通路10に合流している。流量調整弁31の絞り量は第2蒸発器34の出口の冷媒の過熱度に基づき制御し、過熱度が0から20℃(例えば10℃)になるようにその開度を調整する。なお、過熱度を第2変形例よりも大きくしたのは、第1蒸発器21を出た冷媒が内部熱交換器14内を通り、合流点B3では過熱度が10から20℃の冷媒になっているので、これに合わせるためである。また、第2蒸発器34上に設けたサーミスタにより検知した温度に基づき流量調整弁31の絞り量を制御してもよい。第3変形例によれば、基本的に上記第2変形例と同様の効果が得られる。
<第2実施例>
図5に示す第2実施例は、上記流量調整弁31に変えて、分岐点Aに流量調整機能付きの三方向切換弁100が配置されている点が異なる。詳述すると、三方向切換弁100の入口ポート102とは減圧器17に、第1出口ポート104は第1蒸発器21に、第2出力ポート106は第2蒸発器34に、それぞれ接続されている。第2蒸発器34の出口の冷媒の過熱度を検知し、その結果に基づき三方向切換弁100を切り換えて流量調整している。
例えば、過熱度が所定値より大きくなったときは第2出口ポート106から第2蒸発器34に多い冷媒を、第1出口ポート104から第1蒸発器32に少ない冷媒を流す。これに対して、過熱度が所定値よりも小さいときは、第2出口ポート106から第2蒸発器34に少なめの冷媒を、第1出口ポート104から第1蒸発器32に多めの冷媒を流す。なお、第1蒸発器21及び第2蒸発器34の両方の過熱度に基づき三方向切換弁100を切り換えても良い。
第2実施例によれば、第1蒸発器21に流れる冷媒量及び第2蒸発器34に流れる冷媒量の両方を調整できるので、より広い条件において制御が可能になるという特有の効果が得られる。
本発明の第1実施例を示すサイクル説明図である。 第1変形例を示すサイクル説明図である。 第2変形例を示すサイクル説明図である。 第3変形例を示すサイクル説明図である。 第2実施例を示すサイクル説明図である。 従来例を示すサイクル説明図である。 従来例の作動を示すフローチャートである。
符号の説明
10:第1冷媒流通路 11:圧縮機
14:放熱器 17:減圧器
21:第1蒸発器 24:アキュムレータ
30:第2冷媒流通路 31:流量調整弁
34:第2蒸発器 37:内部熱交換器
100:三方向切換え弁

Claims (7)

  1. 冷媒を圧縮する圧縮機(11)と、該圧縮機から吐出される冷媒を冷却する放熱器(14)と、該放熱器から流出される冷媒を減圧する1つの減圧器(17)と、該減圧器から流出される冷媒を蒸発させる第1蒸発器(21)と、前記減圧器から流出される冷媒の流量を調整する1つ又は複数の流量調整弁(31)と、第1蒸発器と並列に配置され該各流量調整弁から流出される冷媒を蒸発させる1つ又は複数の第2蒸発器(34)と、少なくとも第1蒸発器から流出される冷媒を受け気液分離するアキュムレータ(24)と、から成り、
    前記放熱器の温度又はその出口の冷媒の温度に基づき前記減圧器の絞り量を制御し、前記第2蒸発器の温度又はその出口の冷媒の過熱度に基づき前記流量調整弁の絞り量を制御することを特徴とするアキュムレータ冷凍サイクル。
  2. 前記流量調整弁の絞り量を、前記第1蒸発器及び前記第2蒸発器の温度、又は出口の空気の温度に基づき制御する請求項1に記載のアキュムレータ冷凍サイクル。
  3. 前記第2蒸発器の出口は、前記アキュムレータと前記圧縮機との間に接続されている請求項2に記載のアキュムレータ冷凍サイクル。
  4. 更に、放熱器の出口側と前記第1蒸発器及び第2蒸発器との出口との間で熱交換する内部熱交換機(37)を含み、前記第2蒸発器の出口は前記内部熱交換機と前記圧縮機との間に接続されている請求項2又は3に記載のアキュムレータ冷凍サイクル。
  5. 前記冷媒として二酸化炭素を用いる請求項1から4の何れか1つに記載のアキュムレータ冷凍サイクル。
  6. 冷媒を圧縮する圧縮機(11)と、該圧縮機から吐出される冷媒を冷却する放熱器(14)と、該放熱器から流出される冷媒を減圧する1つの減圧器(17)と、減圧器から流出される冷媒を2以上の方向に分ける流量調整機能付きの切換え弁(100)と、該切換え弁から第1方向に流出される冷媒を蒸発させる第1蒸発器(21)と、該第1蒸発器と並列に配置され前記切換え弁から第2方向に流出される冷媒を蒸発させる1つ又は複数の第2蒸発器(34)と、少なくとも第1蒸発器から流出される冷媒を受け気液分離するアキュムレータ(24)と、から成り、
    前記放熱器の温度又はその出口の冷媒の温度に基づき前記減圧器の絞り量を制御し、前記第2蒸発器の温度、その出口の空気の温度又はその出口の冷媒の過熱度に基づき前記流量調整弁の絞り量を制御することを特徴とするアキュムレータ冷凍サイクル。
  7. 前記冷媒として二酸化炭素を用いる請求項6に記載のアキュムレータ冷凍サイクル。
JP2004284570A 2004-09-29 2004-09-29 アキュムレータ冷凍サイクル Pending JP2006097972A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284570A JP2006097972A (ja) 2004-09-29 2004-09-29 アキュムレータ冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284570A JP2006097972A (ja) 2004-09-29 2004-09-29 アキュムレータ冷凍サイクル

Publications (1)

Publication Number Publication Date
JP2006097972A true JP2006097972A (ja) 2006-04-13

Family

ID=36237968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284570A Pending JP2006097972A (ja) 2004-09-29 2004-09-29 アキュムレータ冷凍サイクル

Country Status (1)

Country Link
JP (1) JP2006097972A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298196A (ja) * 2006-04-28 2007-11-15 Denso Corp 内部熱交換器付配管およびそれを備える冷凍サイクル装置
JP2008051474A (ja) * 2006-08-28 2008-03-06 Denso Corp 超臨界冷凍サイクル装置
JP2009097786A (ja) * 2007-10-16 2009-05-07 Denso Corp 冷凍サイクル
JP2010532459A (ja) * 2007-06-29 2010-10-07 シンヴェント エイエス 閉回路蒸気圧縮式冷凍システム及び同システムの運転方法
WO2012099141A1 (ja) * 2011-01-19 2012-07-26 ダイキン工業株式会社 空気調和機
JP2013210133A (ja) * 2012-03-30 2013-10-10 Daikin Industries Ltd 冷凍装置
CN106440443A (zh) * 2016-11-25 2017-02-22 广州华凌制冷设备有限公司 一种适用高温制冷的空调系统及控制方法
CN110398043A (zh) * 2018-04-25 2019-11-01 杭州三花研究院有限公司 热管理系统及其控制方法
EP4086535A1 (en) * 2021-05-04 2022-11-09 Rhoss S.p.A. Heat pump

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298196A (ja) * 2006-04-28 2007-11-15 Denso Corp 内部熱交換器付配管およびそれを備える冷凍サイクル装置
JP2008051474A (ja) * 2006-08-28 2008-03-06 Denso Corp 超臨界冷凍サイクル装置
JP2010532459A (ja) * 2007-06-29 2010-10-07 シンヴェント エイエス 閉回路蒸気圧縮式冷凍システム及び同システムの運転方法
JP2009097786A (ja) * 2007-10-16 2009-05-07 Denso Corp 冷凍サイクル
WO2012099141A1 (ja) * 2011-01-19 2012-07-26 ダイキン工業株式会社 空気調和機
JP2012149837A (ja) * 2011-01-19 2012-08-09 Daikin Industries Ltd 空気調和機
AU2012207969B2 (en) * 2011-01-19 2015-04-09 Daikin Industries, Ltd. Air conditioner
JP2013210133A (ja) * 2012-03-30 2013-10-10 Daikin Industries Ltd 冷凍装置
CN106440443A (zh) * 2016-11-25 2017-02-22 广州华凌制冷设备有限公司 一种适用高温制冷的空调系统及控制方法
CN110398043A (zh) * 2018-04-25 2019-11-01 杭州三花研究院有限公司 热管理系统及其控制方法
CN110398043B (zh) * 2018-04-25 2022-06-14 三花控股集团有限公司 热管理系统及其控制方法
EP4086535A1 (en) * 2021-05-04 2022-11-09 Rhoss S.p.A. Heat pump

Similar Documents

Publication Publication Date Title
JP4600212B2 (ja) 超臨界冷凍サイクル装置
EP1467158B1 (en) Refrigeration cycle apparatus
JP2002195673A (ja) 超臨界蒸気圧縮システムおよび超臨界蒸気圧縮システムを循環する冷媒の高圧成分の圧力を調整する装置
JP6223469B2 (ja) 空気調和装置
JPH11193967A (ja) 冷凍サイクル
JP2009156540A (ja) 陸上輸送用冷凍装置及び陸上輸送用冷凍装置の運転制御方法
JP2007163074A (ja) 冷凍サイクル
JP2007155230A (ja) 空気調和機
JP4206870B2 (ja) 冷凍サイクル装置
US8635879B2 (en) Heat pump and method of controlling the same
WO2019053876A1 (ja) 空気調和装置
JPH0237253A (ja) 密閉冷凍回路
JP4348610B2 (ja) 冷凍サイクル
JP2006097972A (ja) アキュムレータ冷凍サイクル
JP7150148B2 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
EP2321593A2 (en) Improved operation of a refrigerant system
JP2007032895A (ja) 超臨界冷凍サイクル装置およびその制御方法
JP4263646B2 (ja) 車両用空調装置
WO2019111771A1 (ja) 膨張弁制御センサ及びこれを用いた冷凍システム
JP2020159665A (ja) 冷凍装置及び冷凍装置の運転方法
JP2006177598A (ja) 冷凍サイクル装置
JP2007071453A (ja) 冷凍サイクル
JP2013217602A (ja) 熱源機、冷凍空調装置、制御装置
JP3807955B2 (ja) 膨張弁
JP2008064327A (ja) 蒸気圧縮式冷凍サイクル