JP2008153421A - 半導体発光装置およびその製造方法 - Google Patents

半導体発光装置およびその製造方法 Download PDF

Info

Publication number
JP2008153421A
JP2008153421A JP2006339511A JP2006339511A JP2008153421A JP 2008153421 A JP2008153421 A JP 2008153421A JP 2006339511 A JP2006339511 A JP 2006339511A JP 2006339511 A JP2006339511 A JP 2006339511A JP 2008153421 A JP2008153421 A JP 2008153421A
Authority
JP
Japan
Prior art keywords
semiconductor light
layer
light emitting
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339511A
Other languages
English (en)
Other versions
JP4836769B2 (ja
Inventor
Naoto Suzuki
直人 鈴木
Yoshio Sato
喜郎 佐藤
Yoshihiro Nakamura
吉博 中村
Yoshiaki Yasuda
喜昭 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006339511A priority Critical patent/JP4836769B2/ja
Publication of JP2008153421A publication Critical patent/JP2008153421A/ja
Application granted granted Critical
Publication of JP4836769B2 publication Critical patent/JP4836769B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】 加熱がなされることによる密着層の密着性の低下を防止することを可能にする。
【解決手段】 本発明の半導体発光装置は、所定の基板3aの表面に形成された絶縁膜3bと、該絶縁膜3b上に形成された金属層5と、半導体発光素子4とを有し、前記金属層5には、前記絶縁膜3bとの密着性を図るための密着層3cと、該密着層3cの上方において反射層3eとが設けられ、前記反射層3eは、前記半導体発光素子4から出射された光に対する反射面としての機能を有しており、前記密着層3cは、Ti−Ni合金で形成されている。
【選択図】 図2

Description

本発明は、半導体発光装置およびその製造方法に関する。
近年、発光素子としてLEDを用いた半導体発光装置が普及してきており、光取り出し効率と耐久性のより一層の向上が求められている。半導体発光装置の一例として、特許文献1には、Si(シリコン)ウエハに異方性エッチングで形成したホーンの中に発光素子への給電のための金属膜が施されたLEDパッケージが開示されている。ホーンの中の金属膜は、給電のための電極用途だけでなく、発光素子から出射された光を効率よく上部に取り出すための反射膜としても用いられる。
すなわち、ホーンの中の金属膜は、Siウエハの表面に形成された絶縁膜としての酸化シリコン膜SiOの上に、Ti(チタン)やCr(クロム)などのSiOとの密着層、その上に、Au(金)−Sn(スズ)共晶接合やハンダ接合等がSiウエハに拡散するのを防ぐためのNi(ニッケル),Pt(白金)等でできたバリアメタル層、そして最上層が高い反射率を有する反射層から構成されており、この構成により、LEDからの光束を効率よく外部に取り出すことが出来る。
このように、シリコン基板にホーンを形成し、ホーンの中に金属膜を成膜し、この金属膜をエッチングもしくはリフトオフすることで電極パターンを形成することが出来る。ここで、ホーンの内部に成膜された金属膜は、上述したように、半導体発光素子から発する光を効率良く上部に取り出す反射膜の役割も兼ねる。
このように電極パターンを形成したシリコン基板に対し、半導体発光素子をダイボンディングした後にワイヤボンディングにて電気的に接続するか、バンプを介して電気的に接続した後に、樹脂封止することにより、半導体発光装置を作製することが出来る。
特開2005−277380号公報
なお、上記半導体発光装置において、反射層には、金属の中でも特に反射率の高いものが用いられる。
図1に、各金属の光の波長に対する反射率を表したグラフを示す。図1に示すように、Ag(銀)は、可視域の反射率が最も高く、LEDパッケージの主な反射膜兼電極材料として,すなわち反射層の材料として用いられている。反射層の材料としては、Agの他に、さらに、Alや後述のようにAg合金なども用いられる。
また、上述したように、密着層にはTiなどが用いられる。
ところで、密着層にTiを用いる場合、Tiは熱履歴が加えられていない状態において、シリコン酸化膜との密着性が非常に高いが、熱履歴が加わると密着性が低下する。具体的な事例としては、大気中285℃で300秒間の加熱を行った後に、シリコン基板を金属膜ごとダイシングすると剥離が生じるという現象が見られる。このように、パッケージが実装されてから熱履歴を経た後にダイシングを行うと、金属膜の剥離が生じる可能性がある。またLEDのON/OFFの切り替えに伴う温度サイクルに起因して膜の密着性が低下し、剥離が生じることも考えられる。金属膜が剥離すると、電極パターンは断線し、半導体発光装置の不灯の原因となる。
加熱がなされることによるTi密着層の密着性の低下について原因は明らかではないが、Tiの酸化,窒化,炭化による界面状態の変化や、格子の再配列を要因とした熱応力の蓄積などが、密着性を低下させる原因として予想される。
本発明は、加熱がなされることによる密着層の密着性の低下を防止することの可能な半導体発光装置およびその製造方法を提供することを目的としている。
上記目的を達成するために、請求項1記載の発明は、所定の基板の表面に形成された絶縁膜と、
該絶縁膜上に形成された金属層と、
半導体発光素子とを有し、
前記金属層には、前記絶縁膜との密着性を図るための密着層と、該密着層の上方において反射層とが設けられ、
前記反射層は、前記半導体発光素子から出射された光に対する反射面としての機能を有しており、
前記密着層は、Ti−Ni合金で形成されていることを特徴とする半導体発光装置である。
また、請求項2記載の発明は、請求項1記載の半導体発光装置において、前記Ti−Ni合金で形成された密着層は、Ti濃度範囲が25〜70at.%となっていることを特徴としている。
また、請求項3記載の発明は、請求項1または請求項2に記載の半導体発光装置において、前記反射層は、半導体発光素子から出射される光に対する反射率が前記密着層よりも高い材料からなることを特徴としている。
また、請求項4記載の発明は、請求項3記載の半導体発光装置において、前記金属層には、前記密着層上にバリアメタル層が設けられ、該バリアメタル層上に前記反射層が設けられ、該バリアメタル層は、Ni,PtまたはPdにより形成されていることを特徴としている。
また、請求項5記載の発明は、請求項4記載の半導体発光装置において、前記Ti−Ni合金で形成された密着層は、厚さが15nm乃至2000nmの範囲のものとなっていることを特徴としている。
また、請求項6記載の発明は、請求項1乃至請求項4のいずれか一項に記載の半導体発光装置において、前記反射層は、AgまたはAlまたはAg合金により形成されていることを特徴としている。
また、請求項7記載の発明は、請求項6記載の半導体発光装置において、前記Ag合金は、Bi,Au,Pd,Cu,Pt,Ndの中の少なくとも1種を含有する合金であることを特徴としている。
また、請求項8記載の発明は、(a)シリコン基板表面に絶縁膜を形成する工程と、
(b)前記絶縁膜上に、Ti−Ni合金を材料とした密着層を形成する工程と、
(c)前記密着層上に、NiまたはPtまたはPdを材料としたバリアメタル層を形成する工程と、
(d)前記バリアメタル層上に、AgまたはAlまたはAg合金を材料とした反射層を形成する工程と、
(e)前記反射層に半導体発光素子を電気的に接続する工程と、
を有していることを特徴とする半導体発光装置の製造方法である。
また、請求項9記載の発明は、請求項8記載の半導体発光装置の製造方法において、前記Ti−Ni合金を材料とした密着層を、Ti−Ni合金ターゲットによるスパッタリング、または、Tiターゲット及びNiターゲットによる二元同時スパッタリング、または、Ti蒸着材及びNi蒸着材による二元同時蒸着、または、スパッタリング,蒸着,CVDのいずれかを用いたTi膜,Ni膜の交互成膜後の熱処理による合金化、のいずれかの手法で形成することを特徴としている。
また、請求項10記載の発明は、請求項8記載の半導体発光装置の製造方法において、前記工程(a)は、
(a−1)シリコン基板に異方性エッチングを行うことにより、(100)面の底面と4つの(111)面の傾斜側面からなるホーンを形成する工程と、
(a−2)前記ホーンが形成されたシリコン基板表面に絶縁膜を形成する工程と、
を有していることを特徴としている。
請求項1乃至請求項10記載の発明によれば、所定の基板の表面に形成された絶縁膜と、該絶縁膜上に形成された金属層と、半導体発光素子とを有し、前記金属層には、前記絶縁膜との密着性を図るための密着層が設けられており、該密着層はTi−Ni合金で形成されているので、加熱がなされることによる密着層の密着性の低下を防止することができる。
以下、本発明を実施するための最良の形態を図面に基づいて説明する。
図2は本発明に係る半導体発光装置(例えば、LEDパッケージやLEDランプ等)の構成例を示す図である。図2を参照すると、この半導体発光装置は、所定の基板(例えばシリコン基板)3aの表面に形成された絶縁膜(例えば酸化シリコン膜)3bと、該絶縁膜3b上に形成された金属層5と、半導体発光素子4(例えばLEDチップ等)とを有し、前記金属層5には、前記絶縁膜3bとの密着性を図るための密着層3cと、該密着層3cの上方において反射層3eとが設けられ、前記反射層3eは、前記半導体発光素子4から出射された光に対する反射面としての機能を有しており、前記密着層3cは、Ti−Ni合金で形成されていることを特徴としている。
ここで、半導体発光素子4と金属層5とを電気的に接続させることもでき(すなわち、後述のように、半導体発光素子4と反射層3eとを電気的に接続させることもでき)、この場合、金属層5(反射層3e)を半導体発光素子4の電極としても機能させることができる。すなわち、この場合、反射層3eは、半導体発光素子4に対する反射膜兼電極として機能するようになっている。
図3は本発明の半導体発光装置のより具体的な構成例を示す図である。図3を参照すると、この半導体発光装置は、図2の構成において、金属層5には、密着層3c上にバリアメタル層3dが設けられ、バリアメタル層3d上に半導体発光素子4から出射された光に対する反射面として機能する反射層3eが設けられている。
ここで、所定の基板(例えばシリコン基板)3aの表面は、図2,図3では図示しないが、後述のように例えばホーンの形状に加工されており、ホーンの表面に、絶縁膜3b,密着層3c,バリアメタル層3d,反射層3eが形成される。
また、図2,図3の構成例において、前記Ti−Ni合金で形成された密着層3cは、Ti濃度範囲(Tiの組成範囲)が25〜70at.%となっている。
また、前記Ti−Ni合金で形成された密着層3cは、厚さが15nm乃至2000nmの範囲のものとなっている。
また、図3の構成例において、バリアメタル層3dは、Au(金)−Sn(スズ)共晶接合やハンダ接合等がシリコン基板3aに拡散するのを防止するために設けられ、Ni,PtまたはPdにより形成されている。
また、図3の構成例において、反射層3eは、高い反射率を有しているとともに、さらに導電性を有しており、導電性を有している場合には、半導体発光素子4を反射層3eと電気的に接続することで、反射層3eは、半導体発光素子4に対する反射膜兼電極として機能するようになっている。
具体的に、反射層3eは、AgまたはAlまたはAg合金により形成されている。
上記Ag合金は、Bi,Au,Pd,Cu,Pt,Ndの中の少なくとも1種を含有する合金である。具体的に、Ag合金としては、例えばBiを0.05〜0.15at.%含有し、Au,Pd,Cu,Pt,Ndの中の少なくとも1種をBiよりも多く含有する合金が耐久性の観点より望ましい。
上記のように、反射層3eは、AgまたはAlまたはAg合金により形成できるが、この中でもAg合金で形成されるのが好ましい。すなわち、Agは可視光領域において反射率が最も高い金属であり、光を効率良く取り出すことができるという点で半導体発光装置の反射膜(反射層)に最適な金属である。しかし、Agは化学的に活性な金属であり、硫化をはじめとした耐食性に劣り、加熱による凝集が容易に起こるという欠点を有する。これに対し、反射層3e(反射膜兼電極)をAg合金とすることにより(Agに合金元素を添加することにより)、耐食性及び耐熱性を高めることができる。
また、図2,図3の構成例では、密着層3cがTi−Ni合金で形成されていることにより、加熱がなされることによる密着層3cの密着性の低下を防止することができる。
具体的には、TiとNiからなる適切な組成範囲のTi−Ni合金を密着層3cとして用いることにより、Tiに比べて著しく密着性を向上させることが可能となる。また、もともと密着層としてTiを用い、バリアメタル層としてNiを用いていた半導体発光装置においては、同時蒸着や同時スパッタリングの手法により、従来の成膜装置および成膜材料をそのまま利用することができ、追加設備や追加材料の必要が無く、産業応用上極めて有利である。このように、本発明によるTi−Ni密着層3cは、簡便かつ低コストで、電子デバイスとして極めて高い信頼性の半導体発光装置の提供に寄与することができる。
本発明の半導体発光装置は、例えば以下の工程によって作製される。
すなわち、本発明の半導体発光装置は、
(a)所定の基板(例えばシリコン基板)3aの表面に絶縁膜(例えば酸化シリコン膜)3bを形成する工程と、
(b)前記絶縁膜3b上にTi−Ni合金を材料とした密着層3cを形成する工程と、
(c)前記密着層3c上にNiまたはPtまたはPdを材料としたバリアメタル層3dを形成する工程と、
(d)前記バリアメタル層3d上にAgまたはAlまたはAg合金を材料とした反射層3eを形成する工程と、
(e)前記反射層3eに半導体発光素子4を電気的に接続する工程と、
によって作製することができる。
ここで、前記Ti−Ni合金を材料とした密着層3cは、Ti−Ni合金ターゲットによるスパッタリング、または、Tiターゲット及びNiターゲットによる二元同時スパッタリング、または、Ti蒸着材及びNi蒸着材による二元同時蒸着、または、スパッタリング,蒸着,CVDのいずれかを用いたTi膜,Ni膜の交互成膜後の熱処理による合金化、のいずれかの手法で形成することができる。
また、バリアメタル層3d、反射層3eは、スパッタリングまたは蒸着またはCVDによって形成することができる。
また、前記工程(a)は、具体的には、例えば、
(a−1)シリコン基板3aに異方性エッチングを行うことにより、(100)面の底面と4つの(111)面の傾斜側面からなるホーンを形成する工程と、
(a−2)前記ホーンが形成されたシリコン基板3aの表面に絶縁膜3bを形成する工程と、
を含むものにすることができる。
あるいは、前記工程(a)は、例えば、
(a−1)シリコン基板3aに異方性エッチングを行うことにより、(100)面の底面と4つの(111)面の傾斜側面からなるホーンを形成する工程と、
(a−2)前記ホーンの傾斜側面を等方性エッチングして該ホーンの角度に丸みを持たせる工程と、
(a−3)前記ホーンが形成されたシリコン基板3aの表面に絶縁膜3bを形成する工程と、
を含むものにすることができる。
ここで、(100)面の底面と4つの(111)面の傾斜側面からなるホーンを形成する工程は、例えば、結晶性シリコン基板をKOHやTMAH等のアルカリ性溶液にて、結晶異方性エッチング加工することによってなされる。この場合、結晶性シリコン基板をKOHやTMAH等のアルカリ性溶液にて、結晶異方性エッチング加工すると、{100}に平行な底面と、底面54.7°の角度を有する{111}に平行な4つの斜面からなるホーンが形成される。
本発明では、TiとNiからなる適切な組成範囲のTi−Ni合金を密着層3cとして用いることにより、Tiに比べて著しく密着性を向上させることが可能となる。また、もともと密着層としてTiを用い、バリアメタル層としてNiを用いていた半導体発光装置においては、同時蒸着や同時スパッタリングの手法により、従来の成膜装置および成膜材料をそのまま利用することができ、追加設備や追加材料の必要が無く、産業応用上極めて有利である。このように、本発明によるTi−Ni密着層3cは、簡便かつ低コストで、電子デバイスとして極めて高い信頼性の半導体発光装置の提供に寄与することができる。
図4に、半導体発光装置の一例として、平板状のサブマウントを用いて半導体発光素子を実装したLEDパッケージを示す。図4に示すように、2つのリードを有するリードフレーム2が取り付けられた樹脂ハウジング1内の一方のリード上にシリコンサブマウント3を銀ペーストでダイボンディングする。
図5に、平板状のシリコンサブマウント3の断面図を示す。平板状のシリコンサブマウント3を形成するための基体として、シリコン基板3aを用いる。シリコン基板3aの表面は光学研磨処理によって平坦化されている。まず、シリコン基板3aの表面全体に、拡散炉を用いて熱酸化により絶縁膜としての酸化シリコン膜3bを形成する。これにより、リードにシリコンサブマウント3をダイボンドしても、シリコンサブマウント3とリードとの絶縁を保つ。次に、酸化シリコン膜3bで覆われたシリコン基板3aの上面に、前述したような金属膜3c,3d,3eを積層する。
上記のような構成のシリコンサブマウント3を一方のリードの上にダイボンドした後、シリコンサブマウント3の上に半導体発光素子4をこれもダイボンディングする。
図6に、半導体発光素子4の構成例を示す。半導体発光素子4は、赤(R)、緑(G)又は青(B)の発光色を有する単色LEDである。例えば、赤色の場合、半導体層のアルミガリウム砒素(AlGaAs)を用いる。緑色の場合はガリウムリン(GaP)、青色の場合はガリウムナイトライド(GaN)等が用いられる。赤色の場合、例えば、図9に示すように、ガリウム砒素(GaAs)基板4bの上に、半導体層4cが形成される。半導体層4cは、p型半導体層4d、発光層4e、n型半導体層4fが積層している。さらに、最下部と最上部に金属電極4a、4gが設けられる。緑色の場合は、例えば基板にGaP等を用い、赤色の場合と同じように、GaP基板の上に半導体層を積層し、最下部と最上部に金属電極を設ける。青色の場合は、例えば特願2005−167319号公報中の図1および段落「0017」〜「0023」に記載の構成からなっている。
上記のような構成の半導体発光素子4の下部電極をシリコンサブマウント3とダイボンディングすると、シリコンサブマウント3上の反射層3eと半導体発光素子4の下部は電気的機械的に接続される。続いて、半導体発光素子4の下面に接続されているシリコンサブマウント3上の反射層3eと、シリコンサブマウント3をダイボンディングしていない側のリードとをワイヤボンディングする。そして、半導体発光素子4の上面の電極と、シリコンサブマウント3をダイボンディングしている側のリードとをワイヤボンディングする。最後に、樹脂ハウジング内に透明又は蛍光体入りの樹脂を充填して、LEDパッケージが完成する。
図7に、LEDパッケージの他の構成例を示す。すなわち、図7は、シリコンサブマウント3として、ホーンタイプのシリコンサブマウントを用いて半導体発光素子4を実装したLEDパッケージを示す。図7に示すように、構成は図4に示すような平板状のシリコンサブマウント3を用いた場合とほとんど同じである。ホーン付のシリコンサブマウント3を一方のリードにダイボンディングする。シリコンサブマウント3のホーンを含む上面には、金属膜3c,3d,3eが積層している。このシリコンサブマウント3のホーン底部に半導体発光素子4をダイボンドし、半導体発光素子4の下面とシリコンサブマウント3上の金属膜とを電気的機械的に接続する。次に、半導体発光素子4下面に電気的に接続されたシリコンサブマウント3表面上の金属膜と、シリコンサブマウント3がダイボンディングされていない方のリードとをワイヤボンディングする。続いて、半導体発光素子4の上面と、シリコンサブマウント3がダイボンドされている方のリードとをワイヤボンディングする。最後に、樹脂ハウジング内に透明又は蛍光体入りの樹脂を充填して、LEDパッケージが完成する。
図8に、ホーンタイプのシリコンサブマウント3の断面図を示す。ホーンタイプのシリコンサブマウント3を形成するための基体として、(100)シリコン基板3aを用いる。シリコン基板3aの表面は光学研磨処理によって平坦化されている。まず、シリコン基板3aにホーン22を形成する。ホーン22が形成されたシリコン基板3aの表面全体に、拡散炉を用いて熱酸化により絶縁膜としての酸化シリコン膜3bを形成する。これにより、リードにダイボンドしてもシリコンサブマウント3とリードとの絶縁を保つ。次に、酸化シリコン膜3bで覆われたシリコン基板3aの上面に、平板状のシリコンサブマウント3を形成したのと同様に金属膜3c,3d,3eを積層する。
図9は本発明の半導体発光装置の具体的な製造工程例を示す図である。
この製造工程例では、まず、図9(A)に示すように、鏡面シリコンウエハ3aの表面に拡散炉を用いて厚さ500nmの熱酸化シリコン膜21を作製する。次に、フォトリソグラフィー技術によってレジストパターンを形成し、バッファードフッ酸(BHF)によって熱酸化シリコン膜21をエッチング除去することで、図9(B)に示すような酸化シリコン膜21のパターンを形成する。パターニングされた酸化シリコン膜21をマスクとして、例えば20%TMAH溶液による結晶異方性エッチングによって、図9(C−1)に示すようなホーン22を作製する。得られたホーン22について、レジストスプレーコーティングを用いてホーン底部を酸化膜で保護し、例えばフッ酸,硝酸,水の混合溶液によってホーンの傾斜のみ等方性エッチング処理をすることによって、図9(C−2)に示すような楕円錘状の傾斜面を作製することも出来る。
ホーン22を作製した後、BHF溶液によって一旦すべての熱酸化シリコン膜21を除去し、図9(D)に示すように再びシリコン基板表面に拡散炉を用いて厚さ500nmの熱酸化シリコン膜3bを作製する。続いて、立体形状へのレジスト塗布技術であるレジストスプレーコーティングによってレジストを塗布し、フォトリソグラフィー技術によって熱酸化シリコン膜3b上に図9(E)に示すようなレジストパターン23を形成する。
次に酸化シリコン膜3b上にレジストパターン27が形成されたシリコン基板に、3層積層の金属膜(3c,3d,3e)を図9(F)に示すように表面,裏面にそれぞれ形成する。まず熱酸化シリコン膜3b上に密着層3cとしてTi−Ni合金膜を作製する。合金薄膜を作製する方法としては、(1)Tiターゲット及びNiターゲットによる二元同時スパッタリング、(2)合金ターゲットを用いたスパッタリング、(3)二元同時蒸着、(4)スパッタリングまたは蒸着またはCVDを用いたTi膜,Ni膜の交互成膜後の熱処理による合金化、などの手法を用いることが出来る。いずれの方法を用いても、Ti−Ni合金膜の組成及び膜厚に関しては任意に決定することが可能である。Ti−Ni薄膜を作製した後、連続的にバリアメタル層3dとしてNiまたはPtまたはPd膜を成膜し、反射層3eとしてAgまたはAlまたはAg合金膜を成膜する。
このようにして反射層3eを形成した後、続いて、図9(G)に示すように3層積層の金属膜(3c,3d,3e)をリフトオフすることで、半導体発光装置の反射膜を兼ねた電極パターンを作製することが出来る。なお、図9ではリフトオフプロセスによる電極パターニングの例を示したが、酸・アルカリ溶液によるウエットエッチングや、RIEのようなドライエッチングプロセスにより電極をパターニングすることももちろん可能である。
このように電極パターンを作製したシリコン基板に対し、図10(H−1)に示すように、半導体発光素子4(例えばLEDチップ等)をダイボンディングした後にワイヤボンディング25にて電気的に接続するか、あるいは、図10(H−2)に示すように、半導体発光素子4(例えばLEDチップ等)に搭載されたバンプを介して電気的に接続することにより、半導体発光装置を作製することが出来る。特に青色半導体発光素子をボンディングし、図10(I)に示すように蛍光体などの波長変換材料が分散したような透明樹脂26でホーン内を封止することによって、白色半導体発光装置が得られる。
以下、本発明の実施例を説明する。
実施例1では、純Tiと比較してのTi−Ni合金薄膜の密着性評価、及びTi−Ni合金の最適な組成範囲の検討のため、酸化膜付き平面シリコン基板上に金属膜を成膜し、碁盤目状にダイシングすることで剥離の有無を観察することで、密着性評価を行った。
3cm角の酸化膜付きシリコン基板に密着層として純TiまたはTi−Ni薄膜を、それぞれ、Tiターゲット単独のスパッタリング、TiターゲットとNiターゲットによる二元同時スパッタリングによって作製した。Ti−Ni合金組成比の調節はスパッタ時のDC出力比を変化させることによって行った。両者ともに、密着層の厚さは25nmであり、アルゴン圧は1.0Paである。密着層の上部にNi膜をアルゴン圧0.2Pa,DC出力1kWで250nmの厚さに、また、Ag合金膜をアルゴン圧1.0Pa,DC出力500Wで300nmの厚さに、それぞれスパッタリングで成膜することで、金属膜を作製した。Ag合金は、Ag−Bi−Auを用いたが、Ag−Pd−Cuや、Ag−Bi−Ndのように、Bi,Au,Pd,Cu,Pt,Ndの中から少なくとも1種を含有するものであればよい。また、Ag,Alのような高反射な金属も好ましく用いられる。金属膜付きシリコン基板を5nm/secで1mm角の格子状にダイシングし、目視もしくは光学顕微鏡により剥離の有無について観察を行った。また、金属膜付きシリコン基板を300℃のホットプレートに乗せ、室温大気中で300秒加熱を行った後に、同様にダイシングによる剥離観察を行った。
剥離を観察した結果を次表(表1)に示す。
Figure 2008153421
表1から、大気加熱した際に純Tiを用いた金属膜では剥離が観察されたのに対し、Ti濃度を25〜70at.%の範囲としたTi−Ni合金膜では剥離が観察されず密着性の向上が見られた。Ti−Ni合金中のTi濃度は小さすぎても密着性は低下し、多すぎても密着性は低下する。
実施例2では、Ti−Ni合金膜の最適膜厚を検討するため、実施例1と同様の方法を用いて、ダイシングによる密着性評価を行った。
3cm角の酸化膜付きシリコン基板に密着層としてTi−Ni薄膜を、Tiターゲット,Niターゲットによる二元同時スパッタリングによって作製した。密着層の厚さは10〜25nmとした。Ti−Ni合金中のTi濃度は32at.%、アルゴン圧は1.0Paである。密着層の上部に、Ni膜をアルゴン圧0.2Pa,DC出力1kWで250nmの厚さに、また、Ag膜をアルゴン圧1.0Pa,DC出力500Wで300nmの厚さに、それぞれスパッタリングで成膜することで、金属膜を作製した。金属膜付きシリコン基板を5nm/secで1mm角の格子状にダイシングし、目視もしくは光学顕微鏡により剥離の有無について観察を行った。また、金属膜付きシリコン基板を300℃のホットプレートに乗せ、室温大気中で300秒加熱を行った後に、同様にダイシングによる剥離観察を行った。
剥離を観察した結果を次表(表2)に示す。
Figure 2008153421
表2から、Ti−Niの膜厚が10nmと非常に薄い場合に剥離が見られた。よって、Ti−Niを密着層として用いる際の膜厚としては15nm乃至2000nmの範囲のものが望ましいと考えられる。
すなわち、Ti−Niの膜厚として2000nmを形成しても20nmの場合と反射率特性に大きな変化は見られなかった。厚く形成すると膜形成時間が長くかかる等の実用上の問題があるので、バリアメタル層を形成する場合には密着層の膜厚は15〜2000nmの範囲、特に20〜300nmの範囲が好適と考えられる。
上述の例では、密着層(Ti−Ni合金)上にNi膜からなるバリアメタル層を設けたが、密着層(Ti−Ni合金)の上部にNi膜を設けずにAg合金反射層を設けた場合においても、剥離観察の結果は同様のものとなる。すなわち、密着層(Ti−Ni合金)とは別途にNiバリアメタル層を設けるかわりに、Ti−Ni合金からなる密着層兼用バリアメタル層とすることもでき、この場合、Ti−Ni合金からなる密着層兼用バリアメタル層上に反射層が形成される構造となる。
このように本発明によれば、以下のことが確認された。すなわち、
(1)金属膜の密着層3cとしてTi膜の代わりにTi−Ni合金膜を用いることで、絶縁膜(具体的には、例えば酸化シリコン膜)3bとの密着性が向上する。Ti−Ni合金膜のTi濃度は25at.%〜70at.%の範囲が望ましく、膜厚は15nm乃至2000nmの範囲のものが望ましい。
(2)金属膜の従来構造に用いるTi,Niを使用して密着層3cを形成するので、新たな設備導入の必要が無く、新たなターゲット及び蒸着材を導入する必要が無い(合金スパッタリング法を採用した場合は、新たに合金ターゲットが必要となる)。結果として、従来よりも工程を追加することなく密着性を著しく向上させることが出来る。
なお、反射層3eをAg合金層で形成する場合について詳述する。なお、Ag合金としてAg−Bi系合金を用いるとする。
まず、Ag−Bi(0.07原子%、0.14原子%)−Nd(ネオジウム)膜(膜厚0.1μm)の2種類のサンプルについて耐久試験を行った。なお、双方のサンプルともNdの含有量は0.2原子%、Agは99原子%以上である。測定はn&kテクノロジ社(米国)製のn&kアナライザを用い、特許技術であるn&k法(A.R.Furouhi and I.Bloomer,Method and Apparatus for Determing Optical Constants of Materials;U.S.Patent No.4,905,170;1990参照)に基づいて行った。
図11AにAg−Bi(0.07原子%)−Ndの時間経過後の垂直反射率を、図11BにAg−Bi(0.14原子%)−Ndの時間経過後の垂直反射率を示す。図11A,図11Bに示すように、Agに含有させるBiの含有率が大きいほど耐久性は良いことが判った。
Biの好ましい含有率を導くために、以下のような実験を行った。ガラス基板上に、次の5種類の膜をターゲット材料を変えてスパッタ成膜した。なお、いずれのサンプルも膜厚は0.1μmとした。
サンプルA Ag−Bi−Nd 合金膜 (Bi原子%=0.07)
サンプルB Ag−Bi−Nd 合金膜 (Bi原子%=0.14)
サンプルC Ti/Ag−Bi−Nd 合金膜 (Bi原子%=0.14、Ti膜厚:0.05μm)
サンプルD Ti/Ag−Bi−Nd 合金膜 (Bi原子%=0.22、Ti膜厚:0.05μm)
サンプルE Ti/Ag−Bi−Nd 合金膜 (Bi原子%=0.24、Ti膜厚:0.05μm)
上記5種類をそれぞれ成膜したサンプルの初期垂直反射率をn&kアナライザを用いて測定した。
図12に上記サンプルの初期垂直反射率を表したグラフを示す。図12に示すように、Biの含有量が増えるほど初期垂直反射率は悪くなる。反射膜として用いるために好ましくはBiの含有率を0.14原子%以下とするのが良いことが判った。
上記の二つの実験により、Biの含有率は0.07原子%より大きく、0.14原子%以下の範囲とすると、LEDパッケージとして実用的な初期反射率を高い水準にし、かつ耐久性を確保することができることが判った。半導体発光装置における銀合金層としてはBiの含有量が0.05〜0.15原子%の範囲が好適と考えられる。
このAg−Bi系合金には、添加元素としてAu,Pd,Pt,Cu(銅)のうち1種以上が添加される。合計の添加量としては0.5〜5.0原子%が望ましく、さらに好ましくは1.0〜2.0原子%が望ましい。また、添加元素として、希土類元素を添加しても良い。例えばNdを添加した場合には添加量は0.1〜1.0原子%とすることが望ましい。さらに好ましくは0.1〜0.5原子%とすることが望ましい。これらの添加量よりも多くなると初期反射率および電気抵抗率が低下するからである。また、上記した好適な範囲のBiを含有するAg−Bi系合金においてはBi添加量の原子%よりも多い原子%のAu,Pd,Cu,Pt,Ndの中の少なくとも1種を添加したほうが好適な傾向を示した。なお、上記したAg合金におけるAgの含有量は原子%で94%以上である。
成膜したAg−Bi系合金の反射率の、成膜時の雰囲気の圧力に対する依存性を表したグラフを図13に示す。図13はAg−Bi−Au(膜厚0.1μm)をシリコン基板上に成膜した例で、縦軸に反射率、横軸に光の波長をとっている。成膜時の雰囲気が0.5Paの場合は、可視域の反射率が100%に近いのに対し、1Paの場合は、可視域でも波長が短くなるに従って反射率が低下している。したがって成膜時の雰囲気の圧力は少なくとも1Paより低いことが望ましい。
上記の条件で、反射層としてAg合金を成膜する。なお、その膜厚は0.1〜0.6μmが好ましい。
次に、バリアメタル層の厚み範囲、成膜条件について述べる。例えば、バリアメタル層としてNiを用いた場合、Niの膜厚はダイボンディングで用いるハンダの拡散防止機能とAg−Bi系合金の高反射率維持の両立が可能な厚さが好ましい。
ハンダの拡散を防ぐための必要最低限の膜厚を調べるために以下のような実験を行った。まず、酸化シリコン膜付のシリコンウエハの上に下記を順に成膜した。なお、以下では、説明の便宜上、密着層がTiで形成されるとした。
Ti(厚さ0.1μm)/Ni(厚さ0.5μm)/Ag−Bi−Nd(厚さ0.1μm)
そして上記の膜の上にAg−Sn−Cuの鉛フリーハンダをポッティングした後、リフロー炉を用いて鉛フリーハンダを溶かし、この時、鉛フリーハンダがバリア層であるNiに対してどのくらいの深さまで拡散したかを二次イオン質量分析計(SIMS)によって観察した。
その結果、拡散距離は0.5μm程度であることが判った。従って、Ni層の厚さは0.5μm以上であることが好ましい。
また、同様の実験をAu−Sn共晶ハンダに対して行ったところ、Ni層の厚さは0.1μm以上あれば十分であることが判った。
次に、高反射率維持のための膜厚の範囲を調べるために、以下のような実験を行った。酸化シリコン膜付のシリコンウエハの上に下記の金属膜をNiの3種類の膜厚についてそれぞれ成膜し、n&kアナライザを用いて垂直反射率を測定した。
サンプル:Ti(厚さ0.1μm)/Ni(厚さ0.1μm、0.5μm、2μm)/Ag−Bi−Nd(厚さ0.1μm)
図14に上記金属膜の反射率を表したグラフを示す。図14に示すように、Niが0.1μmと0.5μmとでは反射率がほとんど変わらないが、2μmの場合反射率が低下することが判った。
LEDチップとして赤色や緑色を発するLEDを用いる場合はNiの膜厚が2μmでも構わないが、短波長領域での使用を考慮すると、好ましくは2μmよりも薄い方が良いことが判った。
上記の実験から好ましいNi層の厚み範囲は0.1〜2μmであることが判った。
続いて、Ni層の成膜時の雰囲気圧力の条件について記述する。当該条件を調べるために以下の実験を行った。
酸化シリコン膜付のシリコンウエハ上に下記の金属膜をスパッタ成膜した。その際、Niの成膜条件であるアルゴンの圧力を0.2Paと1.0Paの2種類の場合について成膜した。このサンプルの垂直反射率をn&kアナライザを用いて測定した。
サンプル:Ti(膜厚0.1μm)/Ni(膜厚0.2μm)/Ag−Bi−Au(膜厚0.1μm)
図15に上記サンプルの垂直反射率を表したグラフを示す。比較のために、純Agの垂直反射率のデータも示す。図15に示すように、アルゴン圧力が0.2Paの場合、形成された膜は純Agとほぼ同様の反射率であった。また、アルゴン圧力が1Paであっても、400nm以下の反射率は低下するが、波長450nm〜1000nmの範囲であれば反射率が90%以上であり、反射幕として使用可能であることが判る。よって好ましいNi成膜時のアルゴン圧力の範囲は0.2〜1Paである。
こうして成膜したバリアメタル層は反射層としてのAg合金層の高温多湿下における信頼性を向上させる。その効果を確かめるために、シリコン基板の上にTi(0.05μm)/Ag−Bi−Nd(0.1μm)を積層した膜と、Ti(0.05μm)/Ni(2μm)/Ag−Bi−Nd(0.1μm)を積層した膜の2種類を成膜した。そして、60℃90RH%下で放置して、放置時間と反射率の関係を測定した。
図16に、上記成膜条件で成膜したAg合金の反射率を示す。測定開始直後、波長500〜1000nmの範囲で反射率は各々95%以上あったが、その後、Ni層の無い膜は360時間経過後約70%に低下した。それに対し、Ni層のある膜は1000時間経過後も反射率90%以上を維持していた。
続いて密着層の厚み範囲、成膜条件について述べる。密着層として、例えばTiを用いる。バリアメタル(Ni)層及びAg合金層がシリコン基板から剥離するのを防止するためのTiの膜厚を調べるために、以下の実験を行った。
まず、酸化シリコン膜付のシリコンウエハ上に次の金属膜を、Ti成膜時の雰囲気圧力を0.5Paと1Paの2種類に設定しスパッタ成膜した。そして、それぞれのサンプルに対しスコッチテープを用いて剥離テストを行った。
Ti(0.05μm)/Ni(0.5μm)/Ag−Bi−Nd(0.1μm)
Ti層成膜時の雰囲気圧力が0.5Paの場合は金属膜に剥離が生じたが、1Paでは剥離しなかった。
次に、Ti成膜時の雰囲気圧力を1Paとし、上記金属膜のうちNi層の厚さを2μmに変更して剥離実験を行ったところ、金属膜を剥離してしまった。
そこで、Tiの膜厚を0.1μmとして剥離実験を行ったところ、金属膜は剥離しなかった。
上記の結果から、Ti密着層の膜厚は0.05μm以上で、スパッタ成膜時の圧力は0.5Paよりも大きい方が好ましいことが判った。さらに、表面粗さを考慮すると、圧力は1Pa以下が好ましい。
上記のように、ダイボンド時の接合によって膜が剥離せずに、反射膜として高い反射率を維持するための、バリアメタル層及び密着層の開発を行った結果、反射膜として優れたAg−Bi系合金を半導体発光素子のダイボンド用の電極兼反射膜として使用することを可能にした。これにより、従来のLEDパッケージよりも3〜5割光取り出し効率の高いシリコンパッケージを実現することができた。このパッケージは高反射率に加えて熱伝導性が良いため1W超級のパワーLEDパッケージとしても優れた特性を発揮する。しかもAg−Bi系合金の高耐久性を促進するバリアメタル層及び密着層の導入により、経時変化による反射膜の劣化のない極めて実用上安定なLEDパッケージを供給することが可能となった。
本発明により作製されるLEDパッケージは、種々の発光装置として用いることができ、例えば図17のように使用できる。すなわち、図17では、LED発光体31に作製したLEDパッケージが使用され、スイッチ32でLEDパッケージへの給電を制御する。柄33を持ってLED発光体31を所望の方向に向けることができる。
以上、本発明を説明したが、本発明はこれらに制限されるものではない。
例えば、反射層3eを複数の領域に分割し、これらを反射部と呼ぶこととする。そして反射部の各々の領域を半導体発光素子4と電気的に接続することにより、例えばRGB混色の半導体発光装置を作成することもできる。
また、半導体発光素子4は、反射層3e上に搭載することに限定されるものではなく、例えば絶縁材料に半導体発光素子4を搭載し、ワイヤーで周辺の電極と接続するという形態も可能である。すなわち、上述した説明では、反射層3eは、反射膜兼電極としての機能を有しているとしたが、反射膜としての機能のみを有するものであっても良い。
さらに、シリコン基板3aにホーンを形成する際、ホーンの角部に丸みを持たせる工程を説明したが、丸みを持たせないホーンの形態も実用上あり得る形態である。
さらに、図18に示すように、反射層3e上に反射層3eよりも薄い厚さとしたTiコート層3fを形成しても良い。ここで、Tiコート層3fは、Tiで形成されているが、その一部にTiが酸化,窒化,あるいは炭化した薄い膜厚の場合もTiコート層3fに含まれる。すなわち、Tiコート層3fは、Tiにより形成されたものであるか、または、Tiと酸素,窒素,炭素のうちの少なくとも1つとのTi化合物(例えば、TiOやTiOなど)をTiの一部に含むものである。
また、Tiコート層3fは、具体的には、厚さが0.35nm〜2nm程度の薄い膜厚のものである。
このように、Tiコート層3fが、反射層3eよりも薄い膜厚のものとなっていることにより、Tiコート層3fは、半導体発光素子4からの光に対する反射層3eの反射率に影響を及ぼさず(すなわち、Tiコート層3fの光の透過性を高く維持でき、半導体発光素子4からの光に対する反射層3eの反射率を低下させず)、かつ、電極としての高い導電性(小さな抵抗値)をも有しており、さらに、Tiコート層3fが設けられることによって、反射層3eの表面を保護することができる。すなわち、Tiコート層3fは、硫化や熱などによる反射層3eの反射率の低下を防止する表面保護層として機能する。より詳細に、AgまたはAg合金を反射層3eの材料として用いた場合、Tiコート層3fが設けられていないときには、AgまたはAg合金は硫化や熱などによって反射率が低下してしまうが、Tiコート層3fが用いられることによって、AgまたはAg合金の硫化や熱などによる反射率の低下を防止できる。また、Alが反射層3eの材料として用いられる場合、AlはAgに比べれば硫化や熱などによる反射率の低下は少ないが、それでも、Tiコート層3fが用いられることによって、Alの硫化や熱などによる反射率の低下を防止できる。
また、図18の構成例において、Tiコート層3fおよび反射層3eと半導体発光素子4とを電気的に接続することができ、反射層3eを、半導体発光素子4に対する反射膜兼電極として機能させることができる。具体的には、例えば、半導体発光素子4をTiコート層3fを介して反射層3eと電気的に接続することもできる(半導体発光素子4をTiコート層3fにボンディング(ワイヤボンディングやダイボンディング等)する構造にすることもできる)し(具体例として、裏面電極を有する半導体発光素子をTiコート層3fに直接ダイボンディングすることなどもできるし))、あるいは、例えばTiコート層3fの一部に開口部を設けるなどして、半導体発光素子4を反射層3eと直接ワイヤボンディングする構造(反射層3eと直接電気的に接続する構造)にすることもできる。
その他、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
本発明は、単色LED、蛍光体励起型白色LED(一般照明,ストロボ,バックライトなど)、RGB混色型白色LED、調光回路搭載LED、受発光一体型フォトセンサ,フォトインターラプタ,フォトカプラなどに利用可能である。
各種金属の光の波長に対する反射率を表したグラフを示す図である。 本発明に係る半導体発光装置の構成例を示す図である。 本発明に係る半導体発光装置のより具体的な構成例を示す図である。 平板状のサブマウントを用いてLEDチップを実装したLEDパッケージを示す図である。 図4のシリコンサブマウントの断面図である。 半導体発光素子の構成例を示す図である。 ホーン付のサブマウントを用いてLEDチップを実装したLEDパッケージを示す図である。 図7のシリコンサブマウントの断面図である。 本発明に係る半導体発光装置の作製工程例を示す図である。 本発明に係る半導体発光装置の作製工程例を示す図である。 AはAg−Bi(0.07原子%)−Ndの時間経過後の垂直反射率を示す図、BはAg−Bi(0.14原子%)−Ndの時間経過後の垂直反射率を示す図である。 5種類のAg−Bi系合金サンプルの初期垂直反射率を表したグラフを示す図である。 Ag−Bi系合金の反射率の、成膜時の雰囲気の圧力に対する依存性を表したグラフを示す図である。 3種類のサンプルの反射率を表したグラフを示す図である。 2種類のサンプルの垂直反射率を表したグラフを示す図である。 所定の成膜条件で成膜したAg合金の反射率を示す図である。 LEDパッケージの使用例を示す図である。 本発明に係る半導体発光装置の他の具体的な構成例を示す図である。
符号の説明
3a 基板
3b 絶縁膜
3c 密着層
3d バリアメタル層
3e 反射層
3f Tiコート層
4 半導体発光素子
22 ホーン

Claims (10)

  1. 所定の基板の表面に形成された絶縁膜と、
    該絶縁膜上に形成された金属層と、
    半導体発光素子とを有し、
    前記金属層には、前記絶縁膜との密着性を図るための密着層と、該密着層の上方において反射層とが設けられ、
    前記反射層は、前記半導体発光素子から出射された光に対する反射面としての機能を有しており、
    前記密着層は、Ti−Ni合金で形成されていることを特徴とする半導体発光装置。
  2. 請求項1記載の半導体発光装置において、前記Ti−Ni合金で形成された密着層は、Ti濃度範囲が25〜70at.%となっていることを特徴とする半導体発光装置。
  3. 請求項1または請求項2に記載の半導体発光装置において、前記反射層は、半導体発光素子から出射される光に対する反射率が前記密着層よりも高い材料からなることを特徴とする半導体発光装置。
  4. 請求項3記載の半導体発光装置において、前記金属層には、前記密着層上にバリアメタル層が設けられ、該バリアメタル層上に前記反射層が設けられ、該バリアメタル層は、Ni,PtまたはPdにより形成されていることを特徴とする半導体発光装置。
  5. 請求項4記載の半導体発光装置において、前記Ti−Ni合金で形成された密着層は、厚さが15nm乃至2000nmの範囲のものとなっていることを特徴とする半導体発光装置。
  6. 請求項1乃至請求項4のいずれか一項に記載の半導体発光装置において、前記反射層は、AgまたはAlまたはAg合金により形成されていることを特徴とする半導体発光装置。
  7. 請求項6記載の半導体発光装置において、前記Ag合金は、Bi,Au,Pd,Cu,Pt,Ndの中の少なくとも1種を含有する合金であることを特徴とする半導体発光装置。
  8. (a)シリコン基板表面に絶縁膜を形成する工程と、
    (b)前記絶縁膜上に、Ti−Ni合金を材料とした密着層を形成する工程と、
    (c)前記密着層上に、NiまたはPtまたはPdを材料としたバリアメタル層を形成する工程と、
    (d)前記バリアメタル層上に、AgまたはAlまたはAg合金を材料とした反射層を形成する工程と、
    (e)前記反射層に半導体発光素子を電気的に接続する工程と、
    を有していることを特徴とする半導体発光装置の製造方法。
  9. 請求項8記載の半導体発光装置の製造方法において、前記Ti−Ni合金を材料とした密着層を、Ti−Ni合金ターゲットによるスパッタリング、または、Tiターゲット及びNiターゲットによる二元同時スパッタリング、または、Ti蒸着材及びNi蒸着材による二元同時蒸着、または、スパッタリング,蒸着,CVDのいずれかを用いたTi膜,Ni膜の交互成膜後の熱処理による合金化、のいずれかの手法で形成することを特徴とする半導体発光装置の製造方法。
  10. 請求項8記載の半導体発光装置の製造方法において、前記工程(a)は、
    (a−1)シリコン基板に異方性エッチングを行うことにより、(100)面の底面と4つの(111)面の傾斜側面からなるホーンを形成する工程と、
    (a−2)前記ホーンが形成されたシリコン基板表面に絶縁膜を形成する工程と、
    を有していることを特徴とする半導体発光装置の製造方法。
JP2006339511A 2006-12-18 2006-12-18 半導体発光装置およびその製造方法 Expired - Fee Related JP4836769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339511A JP4836769B2 (ja) 2006-12-18 2006-12-18 半導体発光装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339511A JP4836769B2 (ja) 2006-12-18 2006-12-18 半導体発光装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2008153421A true JP2008153421A (ja) 2008-07-03
JP4836769B2 JP4836769B2 (ja) 2011-12-14

Family

ID=39655289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339511A Expired - Fee Related JP4836769B2 (ja) 2006-12-18 2006-12-18 半導体発光装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP4836769B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029640A (ja) * 2009-07-24 2011-02-10 Lg Innotek Co Ltd 発光素子パッケージ及びその製造方法
WO2013062221A1 (ko) * 2011-10-28 2013-05-02 한국기계연구원 타이타늄-니켈 합금박막 및 다중 스퍼터링법을 이용한 타이타늄-니켈 합금박막의 제조 방법
JP2013219150A (ja) * 2012-04-06 2013-10-24 National Institute Of Advanced Industrial & Technology 炭化珪素半導体装置のオーミック電極の製造方法
KR20160087103A (ko) * 2015-01-13 2016-07-21 한국산업기술대학교산학협력단 인쇄 회로 기판과 이의 제조방법 및 이를 이용한 led 모듈과 led 램프
JP2017224691A (ja) * 2016-06-14 2017-12-21 日亜化学工業株式会社 発光装置
CN118064833A (zh) * 2024-04-16 2024-05-24 杭州美迪凯光电科技股份有限公司 一种异方性导电膜镀膜结构及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033410A (ja) * 2000-05-11 2002-01-31 Mitsutoyo Corp 機能デバイスユニット及びその製造方法
JP2003258360A (ja) * 2002-03-06 2003-09-12 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置
JP2004266039A (ja) * 2003-02-28 2004-09-24 Shin Etsu Handotai Co Ltd 発光素子及び発光素子の製造方法
WO2004084319A1 (ja) * 2003-03-18 2004-09-30 Sumitomo Electric Industries Ltd. 発光素子搭載用部材およびそれを用いた半導体装置
JP2005277380A (ja) * 2004-02-23 2005-10-06 Stanley Electric Co Ltd Led及びその製造方法
JP2005303012A (ja) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd 半導体発光素子搭載部材と、それを用いた半導体発光装置
JP2006093486A (ja) * 2004-09-27 2006-04-06 Kyocera Corp 発光素子搭載用基板および発光装置
JP2006147613A (ja) * 2004-11-16 2006-06-08 Sony Corp 半導体装置及びその製造方法
JP2006318987A (ja) * 2005-05-10 2006-11-24 Rohm Co Ltd 半導体チップの電極構造およびその形成方法ならびに半導体チップ
JP2006344682A (ja) * 2005-06-07 2006-12-21 Stanley Electric Co Ltd 半導体発光装置の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033410A (ja) * 2000-05-11 2002-01-31 Mitsutoyo Corp 機能デバイスユニット及びその製造方法
JP2003258360A (ja) * 2002-03-06 2003-09-12 Sumitomo Electric Ind Ltd サブマウントおよび半導体装置
JP2004266039A (ja) * 2003-02-28 2004-09-24 Shin Etsu Handotai Co Ltd 発光素子及び発光素子の製造方法
WO2004084319A1 (ja) * 2003-03-18 2004-09-30 Sumitomo Electric Industries Ltd. 発光素子搭載用部材およびそれを用いた半導体装置
JP2005277380A (ja) * 2004-02-23 2005-10-06 Stanley Electric Co Ltd Led及びその製造方法
JP2005303012A (ja) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd 半導体発光素子搭載部材と、それを用いた半導体発光装置
JP2006093486A (ja) * 2004-09-27 2006-04-06 Kyocera Corp 発光素子搭載用基板および発光装置
JP2006147613A (ja) * 2004-11-16 2006-06-08 Sony Corp 半導体装置及びその製造方法
JP2006318987A (ja) * 2005-05-10 2006-11-24 Rohm Co Ltd 半導体チップの電極構造およびその形成方法ならびに半導体チップ
JP2006344682A (ja) * 2005-06-07 2006-12-21 Stanley Electric Co Ltd 半導体発光装置の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029640A (ja) * 2009-07-24 2011-02-10 Lg Innotek Co Ltd 発光素子パッケージ及びその製造方法
WO2013062221A1 (ko) * 2011-10-28 2013-05-02 한국기계연구원 타이타늄-니켈 합금박막 및 다중 스퍼터링법을 이용한 타이타늄-니켈 합금박막의 제조 방법
JP2015509134A (ja) * 2011-10-28 2015-03-26 韓国機械材料技術院 チタン−ニッケル合金薄膜、及び同時スパッタリング法を用いたチタン−ニッケル合金薄膜の製造方法
JP2013219150A (ja) * 2012-04-06 2013-10-24 National Institute Of Advanced Industrial & Technology 炭化珪素半導体装置のオーミック電極の製造方法
KR20160087103A (ko) * 2015-01-13 2016-07-21 한국산업기술대학교산학협력단 인쇄 회로 기판과 이의 제조방법 및 이를 이용한 led 모듈과 led 램프
KR101719692B1 (ko) * 2015-01-13 2017-03-24 한국산업기술대학교산학협력단 인쇄 회로 기판과 이의 제조방법 및 이를 이용한 led 모듈과 led 램프
JP2017224691A (ja) * 2016-06-14 2017-12-21 日亜化学工業株式会社 発光装置
CN118064833A (zh) * 2024-04-16 2024-05-24 杭州美迪凯光电科技股份有限公司 一种异方性导电膜镀膜结构及其制备方法

Also Published As

Publication number Publication date
JP4836769B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5179766B2 (ja) 半導体発光装置およびその製造方法
JP5139005B2 (ja) 半導体発光素子及び半導体発光装置
JP4963950B2 (ja) 半導体発光装置およびその製造方法
US7514720B2 (en) White light emitting device
JP2007194385A (ja) 半導体発光装置及び半導体発光装置の製造方法
JP5305790B2 (ja) 半導体発光素子
KR100862453B1 (ko) GaN 계 화합물 반도체 발광소자
US20040182914A1 (en) Flip-chip light emitting diode with a thermally stable multiple layer reflective p-type contact
US7491974B2 (en) Light-emitting device
US20200313049A1 (en) Light emitting diode package
KR101437746B1 (ko) 반도체 발광 소자 및 전극 성막 방법
TW201010136A (en) A light-emitting semiconductor device and package with a wavelength conversion structure
JP4836769B2 (ja) 半導体発光装置およびその製造方法
CN105023858B (zh) 一种集成石墨烯温度传感的led器件及其制造方法
JP4925512B2 (ja) 波長変換型半導体素子
JP5608762B2 (ja) 半導体発光素子
JP2012178453A (ja) GaN系LED素子
JP4622426B2 (ja) 半導体発光素子
JP5983068B2 (ja) 半導体発光素子及び発光装置
CN108365056A (zh) 一种垂直结构发光二极管及其制造方法
JP5851001B2 (ja) 半導体発光素子
JP2002246647A (ja) 波長変換型半導体素子
JP2006100472A (ja) 半導体発光装置
JP5886899B2 (ja) 半導体発光素子及び半導体発光装置
JP5563031B2 (ja) 半導体発光素子及び半導体発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees