JP2008151748A - 三次元測定プローブ - Google Patents

三次元測定プローブ Download PDF

Info

Publication number
JP2008151748A
JP2008151748A JP2006342703A JP2006342703A JP2008151748A JP 2008151748 A JP2008151748 A JP 2008151748A JP 2006342703 A JP2006342703 A JP 2006342703A JP 2006342703 A JP2006342703 A JP 2006342703A JP 2008151748 A JP2008151748 A JP 2008151748A
Authority
JP
Japan
Prior art keywords
measurement
mirror
sliding shaft
probe
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006342703A
Other languages
English (en)
Other versions
JP4291849B2 (ja
Inventor
Keiichi Yoshizumi
恵一 吉住
Keiji Kubo
圭司 久保
Hiroyuki Mochizuki
博之 望月
Takanori Funahashi
隆憲 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006342703A priority Critical patent/JP4291849B2/ja
Priority to TW096135394A priority patent/TWI334920B/zh
Priority to KR1020070098287A priority patent/KR100922034B1/ko
Priority to CN2007101624159A priority patent/CN101206110B/zh
Priority to US11/979,034 priority patent/US7520067B2/en
Priority to EP07119702A priority patent/EP1936321B1/en
Publication of JP2008151748A publication Critical patent/JP2008151748A/ja
Application granted granted Critical
Publication of JP4291849B2 publication Critical patent/JP4291849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • G01B11/007Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S33/00Geometrical instruments
    • Y10S33/01Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S33/00Geometrical instruments
    • Y10S33/02Air

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】非球面レンズなどの測定物の形状等をより高精度に測定でき、壊れにくく長寿命、低コストの三次元測定プローブを実現する。
【解決手段】小エアー軸受け部7Aに取り付けられた磁石29とヨーク8と小摺動軸部6に取り付けられた磁性体ピン20とが磁気回路を形成することにより、小摺動軸部6の回転と軸方向の変位を妨げる磁力を発生させる。非接触の磁力なので下からでも横からでも測定できる三次元測定プローブとなる。
【選択図】図1A

Description

本発明は、主に非球面レンズなどの測定物の形状等を0.01ミクロンオーダーの超高精度で測定する三次元測定プローブであって、測定範囲が、XYZ方向(縦、横、高さ)が小さいものでは30mm×30mm×20mm、大きいものでは400mm×400mm×90mmの超高精度三次元測定機に取り付けられ、測定面の傾斜角度が0度から任意方向に75度といった高傾斜部まで、連続走査によりプローブ軸方向の測定力0.1〜0.3mNといった低測定力で測定物をほとんど傷を付けることなく測定できる三次元測定プローブに関するものである。
非球面レンズは0.1ミクロン以下の高精度に作らねばならず、機械的な加工だけではこの精度を出せない。そこで、0.01ミクロンオーダーの精度の超高精度三次元測定機と、これに付ける三次元測定プローブが発明された。その内容は、特許文献1、2等に記載されている。この測定機により非球面レンズを測定し、その測定結果を非球面レンズの加工にフィードバックすることにより、0.1ミクロン以下の精度で非球面レンズの金型を作ることができるようになった。
しかし、最近のデジタルカメラや大容量光ディスク等に使われる非球面レンズは薄型化、高画質化、広角化や高ズーム倍率化等で、ますます必要精度が高くなってきた。そこで、さらなる高精度化を実現するプローブが求められている。一方、工場の現場では作業者が簡単に頻繁に使えるよう、壊れにくく、長寿命の三次元測定プローブが求められている。
従来の非球面レンズの三次元形状測定プローブについて特許文献1、2を参照して簡単に説明する。
図10は特許文献1に記載された三次元測定プローブを示す。測定物Sに接するスタイラス305に固定された小摺動軸部306が小エアー軸受け307に対してZ方向に移動可能で、板バネ350によって原子間力プローブ枠303から吊るされている。
小摺動軸部306にはミラー309が貼り付けられ、半導体レーザ334からの半導体レーザ光をミラー309に集光させて、ミラー309で反射させ、小摺動軸部306の光プローブ変位検出部302に対する変位が一定になるように、光プローブ変位検出部302と原子間力プローブ枠303を一体としてコイル313で駆動している。半導体レーザ334からの半導体レーザ光がミラー309の面上に集光されるようにサーボを掛けることをここではフォーカスサーボと呼ぶ。
測定点のZ座標測定については、ミラー309までの距離の変位量を直接、発振周波数安定化レーザ光Fzをミラー309に当て、ミラー309からの反射光を干渉させて測定しているので、前記フォーカスサーボに誤差があっても、わずかな測定力の変動にはなるが、ほとんど測定誤差とはならない。
図11は特許文献2に記載された測定用プローブを示す。特許文献1と同じく、小摺動部316が円筒形で、板バネ315によって支えられ、ミラー319が貼り付けられている。
図5Bは特許文献3に記載された、特許文献1〜2のプローブを搭載するのに好適な、超高精度三次元測定機の構成を示す。XYZ座標を測定するための発振周波数安定化レーザ127と測長ユニットとZスライド111と光プローブ変位検出部112を搭載した上石定盤106は、Xステージ121、Yステージ122によってXY方向に動く。下石定盤123上にX参照ミラー124、Y参照ミラー125、下石定盤123に固定された門型架台107に固定された上Z参照ミラー126が固定され、測定物101の測定点の軸上で、発振周波数安定化レーザ127によりこれらの高平面ミラー(X参照ミラー124、Y参照ミラー125、上Z参照ミラー126)までの距離の変化を測定することにより、Xステージ121、Yステージ122の移動真直度が1ミクロンのオーダーであっても、参照ミラー124,125,126の平面度である10nmオーダーの座標軸精度を得ている。
但し、特許文献3は、特許文献1〜2の原子間力プローブと命名された三次元測定プローブが発明される以前に書かれたもので、プローブは光プローブ112のみがついている。
図12と図13は特許文献4に記載された接触式プローブを示す。図14A及び図14Bは特許文献5に記載された静圧軸受け装置及び変位測定装置を示す。
特許第3000819号公報(第3頁、図1) 特開2006−78367号公報(第16頁、図8) 特許第3046635号公報(第6頁、図1) 特開2003−42742号公報(第19頁、図1、図2) 特公平07−58161(第6頁、図1)
(1) 独立形式の請求項に記載された本発明が解決しようとする課題を述べる。
本発明の1つの態様の目的は、非球面レンズなどの測定物の形状等をより高精度に測定でき、壊れにくく長寿命、低コストの三次元測定プローブを実現することができる三次元測定プローブを実現することである。
超高精度で測定するためのプローブの要件は、測定力が0.1〜0.3mN(10〜30mgf)と小さいことと、これと相反するが、この微弱な測定力に対してプローブが早く応答することと、横向きの力に対してプローブ先端のスタイラスが傾かないことである。
測定力が大きいと測定面を変形させるので、測定精度が落ちる。また、測定面に接するスタイラスの磨耗が早くなる。プローブの応答が遅いと測定面に追随させるためには、走査速度を落とさざるを得ないため、測定時間が長くなるし、その間に温度変化等に起因するデータドリフトが起こって測定精度が悪化し、能率が悪くなる。測定面が傾斜していればスタイラス先端に横向きの力がかかるが、傾斜角度が45度を越すとプローブの移動方向より横向きの力のほうが大きくなる。これでスタイラスが傾けば、従来例に記した、どのプローブでも測定誤差になる。従って、スタイラス先端にかかる横向きの力でスタイラスが傾かないよう、できる限り高い剛性のガイドが必要となる。
測定力をF、可動部質量をM、スタイラスの応答加速度をaとすると、ニュートン力学により、
(数1)
F=Ma ・・・ (1)

測定力Fをできるだけ小さく、応答加速度aをできるだけ大きくしようとすれば、可動部質量、つまり小摺動軸部の質量Mをできるだけ小さくするしかない。また、横向きの力に対してスタイラスが傾かないためには、移動方向には摩擦無く動き、移動方向に垂直な方向には極めて高い剛性を実現できる構造が必要である。
本発明者は数年にわたる研究開発の結果、円筒形のマイクロエアスライドを開発し、可動部質量が0.2グラム台となる小摺動軸部を実現した。
ここで、「マイクロエアスライド」の言葉の意味を説明しておく。小摺動軸部が小エアー軸受けの中を動くが、小摺動軸部と小エアー軸受けを合わせて「マイクロエアスライド」と呼んでいる。通常市販されているエアスライドは小さなものでも可動部質量が100グラムはある。これに対し、ここで言う「マイクロエアスライド」は可動部質量が0.2グラム台と著しく軽く小さい。
本発明の技術分野である超高精度三次元測定機においては、Z方向は、微小な測定力で動く小摺動軸部の小エアー軸受けを含む光プローブ変位検出部に対する変位がゼロになるよう、コイルに電流を流してプローブ部全体を駆動して、大きく動かす大エアスライドの二重構造になっている。
測定力を0.2mN、小摺動軸部の質量を0.2グラムとすると(1)式よりプローブの応答加速度は0.1Gとなる。ここで、Gは重力加速度である。この程度の応答加速度があれば、直径30mm以上の滑らかな非球面レンズであれば、最高毎秒10mm、それ以下のレンズでも最高毎秒5mmの測定速度で測定できる。
マイクロエアスライドを円筒にした理由は、最小の質量で最大の剛性が得られるからである。エアスライドは、ガイド部に2〜4気圧の高い空気圧の膜を形成することにより、高い剛性で軸を保持することができる。円筒マイクロエアスライドの場合、直径4mm以下と小さくしても、ガイド部のギャップを10ミクロン以下と狭く精度良く作れば、エアー流量が注入エアーの空気圧を顕著に下げるほど大きくないので、ガイド部に高い空気圧の膜が形成され、高い剛性を持たせることができる。
しかし、エアスライドを角柱で小さくすると、角柱の角の部分が10ミクロン以下の狭ギャップにすることができない為、角の部分で空気が抜けてしまうので、エアー流量が大きくなり、ガイド部の空気圧を高く保てないので、高い剛性を実現できない。角以外の部分を5ミクロン以下と、さらに狭ギャップにし、注入エアーの空気圧を上げれば少しは剛性が上がるが、円柱より剛性が劣るし、加工が困難、長時間使用でギャップ部への異物付着による故障可能性等、問題が多く、実用化は困難である。
マイクロエアスライドの小摺動軸部は、バネ性部材で支持されており、測定力0.2mNでZ方向に10ミクロン程度動くが、横方向に同じ力がかかったときのずれは、10ナノメートル以下にする必要がある。つまり、プローブ剛性の縦横比千倍が必要ということである。これで、測定面の傾斜角度45度のときの測定誤差が10nmということになる。これが、要求される最低の剛性である。
これらの条件をすべて満たさなければ非球面レンズの形状等を0.01ミクロンオーダーの超高精度で測定する三次元測定用プローブとすることはできない。これを満たすプローブは、従来のものでは特許文献1〜2に記載されたものしか無い。
しかしながら、特許文献1〜2に記載されたプローブには、測定物を上からしか測定できないという課題がある。つまり、図10では、板バネ350はエアー軸受け部307の上面に形成された突起部に載っているだけである。図11では、板バネ315は、エアー軸受け部317の上端に埋め込まれた球53の上に載っているだけである。
従って、これらのプローブを横向きにおくと、板バネ350や315は突起部や球53から離れ、バネ性を発揮しないし、上下逆にするとこのマイクロエアスライドは下に落ちてしまう。つまり、上から吊るす構成なので、測定物の上からしか測定できない。測定物の上からしか測定できなければ、測定物の一例であるレンズの表裏を上下から、又は左右から測定することができないプローブとなる。これが特許文献1〜2に記載された従来プローブの第一の課題である。
板バネをエアー軸受け部に接着すれば、測定物の横からでも下からでも測定できるとなるが、そうすると、スタイラス5に誤操作等で過度な測定力がかかったとき、板バネは壊れてしまう。このため、板バネ350や315はエアー軸受け部に接着することもできない。
円筒形のマイクロエアスライドが測定中に少しでも回転すれば、スタイラス先端が一般的には偏心しているので、測定誤差になる。しかし、スタイラス先端を完全にマイクロエアスライドの軸と一致して取り付けることは不可能である。
特許文献1〜2に記載された従来プローブでは、マイクロエアスライドは板バネ350や315と突起部や球53との摩擦力のみで回転を止められているので、何かの衝撃で少しでもマイクロエアスライドが回転すれば、測定誤差が発生するという課題をも有していた。これが特許文献1〜2に記載された従来プローブの第二の課題である。
また、板バネは厚さ10ミクロンの極めて薄いものなので、長期の使用で変形したりして壊れやすいという課題をも有していた。修理も限られた人しかできないので、測定室で限られた人のみしか使用できない三次元測定プローブという傾向があった。これが特許文献1〜2に記載された従来プローブの第三の課題である。
特許文献3は本発明のプローブを搭載するのに好適な全体構成を開示しているが、前述のように光プローブがついている。光プローブは完全非接触という利点があるが、下記のように多くの短所があって、高精度な三次元測定では実用的にはほとんど使えない。
光プローブでは、測定物の測定面が傾斜していると、測定面の上から光を当てても、反射光は傾斜角度の2倍だけ傾いて反射してくる。たとえば測定面が60度傾斜していれば、反射光は120度の下方向に進むので、全く測定不能である。
また、光プローブは測定面の反射率により反射光量が変わる、反射光量が変わると、フォーカスサーボではオフセットや迷光による焦点位置のずれで誤差となるし、測長のために参照光と干渉させようとしても、反射光量が著しく変わると、正しい干渉信号が出ず測定誤差となる。さらに、無反射コートした面は測定できない。
さらに、光プローブは、測定面の面粗さによって、研磨面しか測定できない方式と研磨面は測定できない方式がある。研磨面を測定できない方式は、一般的に三角測距と呼ばれるもので、高精度測定ができない。研磨面しか測定できない方式は、測定面からの反射光を参照光と干渉させる方式で測定面の傾斜に合わせて航路をずらせても最大で30度の傾斜面しか測定できないし、測定経路にホコリや傷があれば測定できなくなり、きわめて測定が大変である。
以上のように特許文献3に示す光プローブで大変苦労した結果、生み出された発明が特許文献1〜2であるが、前記したように特許文献1〜2には第一〜第三の課題がある。特許文献1〜2のプローブは図5Bに示す特許文献3の光プローブ112の先に取り付けることができる。ただし、光プローブ112の先端のレンズは特許文献1のレンズ14とは異なる。さらに特許文献1〜2の前記第一〜第三の課題を解決するものが、本発明である。
特許文献4は図12に示すようにエアスライド62の自重分を磁石418とコイル419とヨーク417からなる磁気回路で保持する構成になっている。この文献にはエアスライド62が円柱なのか角柱なのかという記載が無い。しかし、磁気回路の構成は、図13に示すように可動部ヨーク(特許文献4ではミラー固定駒と記載されている)415がほぼ正方形になっており、もしエアスライド62が円柱なら磁気回路はより磁気抵抗が小さくなる方向に動くので、可動部ヨーク415が固定部ヨーク417にくっつくまで回転してしまい、プローブ419としての動作をしなくなる。従って、エアスライド62は角柱であるはずである。
特許文献4のエアスライドが角柱であれば、前記の理由により、軽くて、剛性も高いプローブを作ることができないという課題を有していた。また、もしエアスライドが円柱なら可動部と固定部のヨーク同士が回転後くっつくので、プローブとして動作しないという課題を有していた。
また、特許文献4ではZ軸をZ駆動ネジ47でベアリングを有するガイド424を駆動している。ベアリング真球度等の問題もあるが、ベアリングガイド424はベアリングを押し付けなければ真直度を保って動作しないが、押し付け力の為、駆動に摩擦力が必要となり、駆動方向が変わったとき、駆動位置が完全に重心で無ければ、光プローブ変位検出部が傾く。
また特許文献4にある図12に示すように、Z駆動ネジ47でZ軸を駆動すると、ネジの偏心に起因する横方向の力がかかり、移動真直度を悪化させる。ネジの偏心をゼロにはできない。
また、ネジには必ず数ミクロンのバックラッシュが必要で、これを無くそうと強く締めると硬くて動かなくなる。したがって、サブミクロン精度でフォーカスサーボを掛けることができない。
特許文献5はエアスライドが円柱になっている。図14A及び図14Bに示すように、磁石(プローブ軸533に固定された磁性体)535とコイル536によって軸方向の移動を制御しているが、軸533に溝534を切り(図14Bの溝加工を参照)、空気の流れで軸533の回転を止めている。しかし、この構造では、エアスライド軸533に長い磁性体535が付くので可動部質量が重くなる。磁性体535が鉄、エアスライド533がアルミニウムなら、鉄はアルミの三倍の比重なので、可動部質量は三倍以上となるので、軽くて、剛性も高いプローブを作ることができないという課題を有していた。さらに軸533に空気噴出し部に合わせて精度良く、バリを作らず溝534を加工せねばならず、コスト高になるという課題があった。
本発明は、前記従来の課題を解決するもので、非球面レンズなどの測定物の形状等を0.01ミクロンオーダーの超高精度で測定する事、つまり0.1〜0.3mNの低測定力と剛性縦横比千倍のマイクロエアスライドを使用し、スタイラス先端の回転による誤差も無くし、壊れにくく長寿命、製作も著しく困難ではない三次元測定プローブを提供することを目的とする。
前記目的を達成するために、本発明の三次元測定プローブは、
本発明の第1態様によれば、一端に測定物の表面に接するスタイラスを設けるとともに、他端に磁性体ピンを設けた円筒形の小摺動軸部と、
この小摺動軸部と嵌合する円筒形の穴が形成され、この小摺動軸部との隙間に圧縮空気の膜を形成する空気吹き出し部を有する小エアー軸受け部と、
この小エアー軸受け部の端部に配置された磁石と複数のヨークが前記ピンと非接触で磁気回路を形成することにより、前記円筒形の小摺動軸部の軸方向であるZ方向と、前記Z方向の回りの回転方向への移動を妨げる磁力を発生させる磁力発生手段と、
前記小エアー軸受け部に対する前記小摺動軸部の前記Z方向の変位を検出する変位検出手段と、
前記小エアー軸受け部の前記Z方向への移動を案内するZステージと、
前記測定物、または前記Zステージを前記Z方向とそれぞれ直交しかつ互いに直交するXY方向に移動させるとともに、前記スタイラスが前記測定物の形状に沿って前記Z方向に移動するとき、前記Z方向の変位がほぼ一定になるように前記Zステージを駆動するZステージ駆動装置と、
を備える三次元測定プローブを提供する。
本発明の第2態様によれば、前記複数のヨークのうちの少なくとも1つのヨークはリング状のヨークであることを特徴とする第1態様に記載の三次元測定プローブを提供する。
本発明の第3態様によれば、前記ピンと前記ヨークの隙間部付近の形状を、前記Z方向には厚く、前記回転方向には薄いテーパ状とした第1〜2態様のいずれか1つに記載の三次元測定プローブを提供する。
本発明の第4態様によれば、前記ピンと前記ヨークの隙間部付近の形状を、前記ピンより前記ヨークを厚くした第1〜3のいずれか1つの態様に記載の三次元測定プローブを提供する。
本発明の第5態様によれば、前記変位検出手段は、
前記小エアー軸受け部と一体で固定されてレーザ光を発光する半導体レーザと、前記小摺動軸部に配置されかつ前記半導体レーザからの前記レーザ光が照射されて反射させるミラーと、前記半導体レーザからの前記レーザ光を前記ミラーに集光するレンズと、前記ミラーからの反射光を受光する光検出器とを少なくとも含む光プローブ変位検出部により構成し、
前記半導体レーザからの前記レーザ光を、前記ミラーに照射し、前記ミラーからの反射光を前記光検出器で受光し、この光検出器の出力信号から前記Z方向の変位を検出する構成とした第1〜3態様のいずれか1つに記載の三次元測定プローブを提供する。
本発明の第6態様によれば、発振周波数安定化レーザ光を前記変位検出手段の前記ミラーに照射し、前記ミラーで反射した反射光から前記ミラーのZ座標を測定するZ座標測定手段をさらに備える第5態様に記載の三次元測定プローブを提供する。
本発明の第7態様によれば、前記小エアー軸受け部に対する前記小摺動軸部の前記Z方向と前記Z方向を軸とした回転方向への移動を妨げる磁力を超えた力が、前記小摺動軸部の前記Z方向、又は前記Z方向を軸とした前記回転方向にかかったときの前記小摺動軸部の過度の移動を止めるための非磁性体のストッパーを設けた第1〜6態様のいずれか1つに記載の三次元測定プローブを提供する。
本発明の第8態様によれば、前記Zステージはエアー軸受けで構成された第1〜7態様のいずれか1つに記載の三次元測定プローブを提供する。
本発明の第9態様によれば、前記Zステージ駆動装置は、前記Zステージに連結されたコイルと、前記コイルに電流を流して前記Zステージを前記Z方向に駆動する磁気回路で構成された第1〜8態様のいずれか1つに記載の三次元測定プローブを提供する。
本発明の第10態様によれば、前記Zステージの可動部を、その重量にほぼ等しい張力を発生する渦巻き状に巻かれた薄板よりなる定荷重バネで支持された第1〜9態様のいずれか1つに記載の三次元測定プローブを提供する。
以上のように、本発明の三次元測定プローブによれば、小さな可動部質量の磁性体ピンと、小エアー軸受け部に取り付けられた磁石とヨークで磁気回路を形成させることにより、回転と軸方向の移動を非接触で制限することができ、最小の可動部質量で最大の横方向剛性が得られる円筒形のエアースライドの欠点であった回転による誤差発生と、従来薄板バネで吊るすしかなかったため、測定物の上からしか測定できないという問題と、薄板ばねが長期使用で壊れやすいという問題を解決することができる。
従って、より高精度で、長期使用にも壊れにくい三次元測定プローブを実現することができる。さらに、組み立てや取り扱いも容易になるので、本プローブを使用すれば、従来のように測定室で限られた人のみが使用する測定機から、工場現場に置いて、気軽に測定できる測定機となる。
また、バネで吊るす必要が無くなったため、測定物の形状を上からだけでなく、下からでも、あるいは左右からでも測定することが可能となり、非球面レンズの測定に於いては表裏面の傾きや偏心を超高精度に測定することができるようになる。これに対して、従来では、非球面レンズを、非球面レンズの上からしか測定できなかったため、面の形状は測定できても、上面と下面、側面との位置関係を容易には測定できなかったので、より高精度なレンズを作ることができなかった。しかし、本発明によれば、非球面レンズの下からでも、横からでも超高精度に測定できる三次元測定プローブを提供することができる。
これにより、薄型化と高画質化が進むカメラや大記録容量化が進む光ディスクなどのレンズの性能と品質と生産歩留まりを向上させることができる。
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。
(実施形態)
図1A及び図1Bは、本発明の実施形態における三次元測定プローブ2Aが装着可能な、超高精度三次元測定機の三次元測定プローブ2Aの要部構成を示す。図1A及び図1Bは同じプローブ2Aであるが、図1Aは、上から測定物1の表面Sを測定するとき、図1Bは下から測定物1の表面Sを測定するときのプローブ2Aの配置をそれぞれ示している。図示しないが、横からでも斜めからでもこのプローブ2Aは測定物1に対して配置可能である。図3Aは、前記実施形態における三次元測定プローブの上側の光プローブ変位検出部を含めた概略構成説明図であり、図3Bは、図3Aを上下逆さまにした図であって、前記実施形態における三次元測定プローブの下側の光プローブ変位検出部を含めた概略構成説明図である。
下から測定物1の表面Sを測定する場合には、測定物保持部材98を例えばリング状に構成して測定物1の周囲を保持し、測定物1の周囲以外の裏面は下側から測定可能に構成するとともに、図3Bに示すプローブ2Aを測定物1の下方に配置して、上側の光プローブ変位検出部とは独立して下側の光プローブ変位検出部が移動可能となるように配置すれば、測定物1の上下から同時的に表裏両面を測定することができる。
本実施形態にかかる三次元測定プローブ2Aは、円筒形の小摺動軸部6と、小エアー軸受け部7Aと、磁力発生手段95と、変位検出手段の一例として機能する光プローブ変位検出部2と、Zステージの一例として機能する大エアースライド(Z方向大エアースライドガイド35と大エアースライド可動部11とより構成される大エアースライド)89と、Zステージ駆動手段の一例として機能するZ方向駆動装置43とを備えるように構成されている。すなわち、プローブ2Aは、円筒形のマイクロエアスライドのスタイラス5と一体固定された小摺動軸部6に取り付けられた小さな可動部の質量の磁性体ピン20と、小エアー軸受け部7Aに取り付けられた磁石29a,29bとヨーク8a,8b−1,8b−2で磁気回路を形成させ、回転と軸方向の移動を妨げる磁力を非接触で発生させ、マイクロエアスライドの変位が一定になるようZ方向全体を動かすZ方向駆動装置43を備えることにより、測定物1の下からでも横からでも測定できるものである。
ここで、「マイクロエアスライド」の言葉の意味を再度説明しておく。小摺動軸部6が小エアー軸受け7の中で移動するが、小摺動軸部6と小エアー軸受け7を合わせて「マイクロエアスライド」と呼んでいる。通常市販されているエアスライドは小さなものでも可動部質量が100グラムはある。これに対し、本実施形態で言う「マイクロエアスライド」は可動部質量が例えば0.2グラム台と著しく軽く小さいものである。
本実施形態の超高精度三次元測定機においては、後述するように、Z方向は、微小な測定力で動く小摺動軸部6の小エアー軸受け7を含む光プローブ変位検出部2に対する変位がゼロになるよう、コイル13に電流を流して光プローブ変位検出部2全体を駆動して、大きく動かす大エアスライドの二重構造になっている。
測定力を0.2mN、小摺動軸部6の質量を0.2グラムとすると、前記した(1)式よりプローブ2Aの応答加速度は0.1Gとなる。ここで、Gは重力加速度である。この程度の応答加速度があれば、測定物1の一例としての直径30mm以上の滑らかな非球面レンズであれば、最高毎秒10mm、それ以下のレンズでも最高毎秒5mmの測定速度で測定することができる。
マイクロエアスライドを円筒にした理由は、最小の質量で最大の剛性が得られるからである。エアスライドは、ガイド部に2〜4気圧の高い空気圧の膜を形成することにより、高い剛性で軸を保持することができる。円筒マイクロエアスライドの場合、直径4mm以下と小さくしても、ガイド部のギャップを10ミクロン以下と狭く精度良く作れば、エアー流量が注入エアーの空気圧を顕著に下げるほど大きくないので、ガイド部に高い空気圧の膜が形成され、高い剛性を持たせることができる。
マイクロエアスライドの小摺動軸部6は、バネ性部材で支持されており、測定力0.2mNでZ方向に10ミクロン程度動くが、横方向に同じ力がかかったときのずれは、10ナノメートル以下にする必要がある。つまり、プローブ剛性の縦横比千倍が必要ということである。これで、測定面の傾斜角度45度のときの測定誤差が10nmということになる。これが、要求される最低の剛性である。この構造については後述する。
測定物1の測定表面Sに接するスタイラス先端球61が先端に付いているスタイラス5の基端側に連結固定された小摺動軸部6は、サブミクロンレベルの高精度な円筒状に加工されている。この小摺動軸部6と10ミクロン以下の隙間で嵌合する形で高精度に加工された円筒の穴7gを有する小エアー軸受け7の穴7gの中を、小摺動軸部6が、圧縮空気の膜によりZ方向(小摺動軸部6の軸方向)とZ方向を軸とした回転方向に摩擦無く摺動可能である。
小エアー軸受け7は、図1A〜図2Aに示すように、周方向に凹部18bを所定間隔毎に有するとともに軸方向の上下に環状凹部18c,18aを有する小エアー軸受け外壁19が原子間力プローブ枠3に密着して組み込まれるので、空気溜め部18をそれぞれ形成することができる。すなわち、小エアー軸受け7の小エアー軸受け外壁19は、スタイラス側(先端側)のフランジ部19aと、中間部19bと、基端側のフランジ部19cとより構成し、先端側のフランジ部19aと中間部19bとの間には先端側の環状凹部18aを形成し、基端側のフランジ部19cと中間部19bとの間には基端側の環状凹部18cを形成し、中間部19bの外周面に形成された所定間隔の凹部18bと先端側の環状凹部18aと基端側の環状凹部18cとにより空気溜め部18を形成している。図示しないコンプレッサーに接続されてそのコンプレッサーから図3A及び図3Bに示すチューブ48を経て送り込まれた圧縮空気は、空気溜め部18にそれぞれ入り、空気吹き出し部として機能する空気吹き出し口4の微小な穴から小摺動軸部6と小エアー軸受け7の穴7gとの嵌合の隙間に送り込まれて前記圧縮空気の膜を形成し、前記隙間を通って小エアー軸受け外壁19の中間部19bに径方向に貫通して所定間隔毎に形成された空気排出口10と前記フランジ部19aと19cの上下(先端側と基端側)とから空気が排出される。なお、小エアー軸受け7と原子間力プローブ枠3は密着固定されているので、これらを合わせて、小エアー軸受け部(小エアー軸受けユニット)7Aと呼んでいる。
小摺動軸部6と小エアー軸受け7との嵌合の隙間は5〜10ミクロンときわめて狭いので、小エアー軸受け7の外周側面に大略等間隔に周方向及び軸方向に配置された多数の空気吹き出し口4の微小な穴から2気圧以上の圧縮空気が供給され、空気排出口10と前記フランジ部19aと19cの上下(先端側と基端側)とから圧縮空気が抜けるまでに前記隙間には圧縮空気の圧力勾配を有する膜が形成される。
測定物1の傾斜した測定面Sの測定力によりスタイラス5に横方向の力がかかったとき、この圧縮空気の膜厚が変化しようとすると、すなわち例えば膜厚が薄くなると空気が流れにくいので、空気圧は高くなり、逆に膜厚が厚くなると空気が流れやすいので、空気圧が低くなるので、空気膜厚が変わらない方向に力がかかる。これが空気軸受けの剛性を生む原理である。
一方、小摺動軸部6の他端(スタイラス5とは反対側の端部)に、小摺動軸部6の軸方向とは直交する方向沿いに取り付けられた細長い磁性体ピン20は、原子間力プローブ枠3にそれぞれ取り付けられた、一対のヨーク8b−1,8b−2と、それらのヨーク8b−1,8b−2がそれぞれのスタイラス側の端面に固定されかつ互いに対向配置された一対の磁石29a,29bと、リング状ヨーク8aとによって、以下に説明するような磁気回路を形成している。すなわち、小エアー軸受け7の端部にそれぞれ取り付けられた、一対の磁石29a,29bとリング状ヨーク8aと一対のヨーク8b−1,8b−2とが前記磁性体ピン20と非接触で磁気回路を形成することにより、前記円筒形の小摺動軸部6の軸方向であるZ方向と、そのZ方向回りの回転方向への移動を妨げる磁力を発生させる磁力発生手段95を構成している。このように構成すれば、一方の磁石29aから発生した磁束は、一方のヨーク8b−1、その一方のヨーク8b−1と磁性体ピン20の一端との間に形成された一方の隙間部G1を通って磁性体ピン20を通り、磁性体ピン20の他端と他方のヨーク8b−2との間に形成された他方の隙間部G2を通って、他方のヨーク8b−2を通り、他方の磁石29bから発生する磁束を加えて、リング状のヨーク8aを通って、また一方の磁石29aに戻る。
磁性体ピン20とヨーク8b−1,8b−2との隙間部G1,G2の近くでは、磁性体ピン20とそれぞれのヨーク8b−1,8b−2とは軸方向に厚く回転方向に薄いテーパ状になって(図2B〜図2Dに示すように、軸方向には一定の厚みでかつ径方向には中心側から周囲に向かうに従い傾斜して幅が徐々に減少する傾斜面を有して)おり、このような形状にすることにより、回転方向の変位は強く抑制され、軸方向の変位は弱く抑制される。また、図2B〜図2Dに示すように、前記磁性体ピン20と前記ヨーク8b−1,8b−2のそれぞれの隙間部G1,G2付近の形状を、前記磁性体ピン20より前記ヨーク8b−1,8b−2を厚くしている。磁性体ピン20の長手軸方向が上下方向に沿うように置き、かつ図2B〜図2Cに示したように、ピン厚0.5mm、ヨーク厚1mm、回転方向先端幅0.2mm、ギャップ0.5mmにすることにより、小摺動軸部6は自重により100ミクロン位、軸方向にずれ、磁力と釣り合っている状態となる。磁性体ピン20の長手軸方向を上下方向と直交する横方向に沿うように置いたときは、横方向には小摺動軸部6の自重が作用しないので、磁束が一番良く通る位置で釣り合っている。
図3A及び図3Bで、光プローブ変位検出部(光プローブ変位検出ユニット)2に取り付けられた波長780nmの半導体レーザ34からの半導体レーザ光Fが、レンズ32及び偏光プリズム37及び波長板33を通過してダイクロイックミラー15で全反射し、レンズ14の開口一杯に入り、レンズ14により、磁性体ピン20の上に固定されたミラー(Zミラー)9上に絞られて照射される。そして、ミラー9からの反射光は、ダイクロイックミラー15及び偏光プリズム37でそれぞれ全反射されて、ハーフミラー39で2つに分岐されて、二つの焦点前後に置かれたピンホール40をそれぞれ通過して二つの光検出器41に入る。スタイラス5への測定力により小摺動軸部6が軸方向に動くと、ミラー9からの反射光の焦点位置が変化するので、二つの光検出器41からの出力はフォーカス誤差信号検出部42でフォーカス誤差信号となり、このフォーカス誤差信号に基づいて、光プローブ変位検出部2をZ方向沿いに進退駆動するためのZステージ駆動装置の一例として機能するZ方向駆動装置43によって、大エアースライド89の可動部11の両側の左右のコイル13に電流を同時に流して、フォーカス誤差信号がゼロになるように光プローブ変位検出部2をZ方向沿いに進退駆動する。
より具体的には、図4のように、それぞれのコイル13には、上石定盤106側にブラケット86などによりそれぞれ固定された大ヨーク12と大磁石28で形成された磁気回路の隙間部G3を貫通して電流が流れるので、Z方向に電磁力がかかる。左右一対のコイル13は、大エアースライドガイド35によってZ方向に案内されながら、光プローブ変位検出部2の全体をZ方向に極めて真直度良く動かす大エアースライド可動部11と連結されて一体となっている。
大エアースライド可動部11の移動真直度は、超高精度三次元測定機の測定精度に直結する。その理由を説明する。本実施形態の光プローブ2Aを搭載した超高精度三次元測定機の全体構成の一例を図5Aに示す。
図5Aにおいて、XYZ座標を測定するためのXYZ座標測定用レーザ光発生装置の一例としての発振周波数安定化レーザ27と、測長ユニット(X方向用レシーバー105、Y方向用レシーバー104、Z方向用レシーバー103、Z方向用レシーバー102)と、大エアースライド可動部11と、光プローブ変位検出部2とを上石定盤96に搭載している。そして、この上石定盤96は、光プローブ変位検出部2をXY方向に移動させるXY方向移動装置として機能するXYステージ90、すなわち、Xステージ21とYステージ22とによってXY方向に動く。下石定盤23上には、測定物1を載置保持する測定物保持部材98と、X参照ミラー(X方向参照ミラー、以下単に「X参照ミラー」と称する。)24、Y参照ミラー(Y方向参照ミラー、以下単に「Y参照ミラー」と称する。)25、下石定盤23に固定された門型架台97に固定された上Z参照ミラー(Z方向参照ミラー、以下単に「Z参照ミラー」と称する。)26とがそれぞれ固定されている。このような構成において、発振周波数安定化レーザ27の光で、測定物保持部材98に保持された測定物1の測定点の軸上でXYZ方向の三枚の高平面度の参照ミラー24,25,26までの距離の変位量を測長ユニットにより測定することにより、XYステージ90(Xステージ21,Yステージ22)の移動真直度が1ミクロンのオーダーであっても、参照ミラー24,25,26の平面度である10nmオーダーの座標軸精度を得ているが、Zステージの一例としてのエアースライド89の移動真直度だけはこれらの参照ミラー24,25,26で補正できる構造にしていない。
理由は、特許文献3には、ZステージにまでX参照ミラーとY参照ミラーの2枚の参照ミラーを取り付け、Zステージの移動真直度をも補正する構造も開示されているが、高平面度を出そうとしたら参照ミラーは重くなるし、移動のピッチング(傾き)まで補正しようとしたら各2点を測定しなければならず、構造が大変複雑になる。
ここで、XYステージ90はXステージ21とYステージ22とより構成されて、ステージが2段重ねになっており、ステージ移動による重心移動で0.01ミクロンオーダーの真直度達成が不可能に近いが、Zステージの一例としてのエアースライド89は一軸のみで重心の移動は無いので、構造の工夫により、10nmオーダーの移動真直度をなんとか実現できる。構造の工夫とは、大エアースライド89のZ方向大エアースライドガイド35のガイド部の平面度と大エアースライド89の横方向の剛性を高め、移動時に横方向に力がかからないZ方向の支持方法及び構造と駆動方法及び構造を考えることである。
図4に示すように、Zステージの一例としてのエアースライド89でのZ方向可動部(大エアースライド可動部11)の重心付近を、バネ材の薄板を巻いて対向させた定荷重バネ17でZ方向可動部の重量分を支えることにより、バネ定数をできるだけ小さくし、軽い力で上下に動かすことができる。コイル13も光プローブ変位検出部2の左右に対称に配置し、左右のコイル13による駆動力の合力が光プローブ変位検出部2の重心付近にかかるようにすることによって、駆動力による移動真直度悪化を防ぐことができる。
図5Aは、特許文献3に記載された超高精度三次元測定機の構成と同様な構成を有する超高精度三次元測定機の構成の図である。図5Bの三次元測定機の光プローブ変位検出部112A及びプローブ112に、原子間力プローブ枠3などを有する本実施形態の光プローブ変位検出部2及びプローブ2を差し込めば、図5Aの本発明の本実施形態の超高精度三次元測定機の説明図とすることができる。つまり、一例として、図1A〜図4に示す三次元測定プローブ2Aを図5Bの三次元測定機のプローブ112Aに置き換えれば、図5Aに示すように本発明の本実施形態の超高精度三次元測定機のZ方向の構成とすることができる。
本実施形態の前記測定機は、超高精度三次元測定動作を制御する制御部88を備えている。制御部88は、XYステージ90すなわちXステージ21の図示しない駆動装置とYステージ22の図示しない駆動装置と、He−Ne発振周波数安定化レーザ27と、X方向用レシーバー105と、Y方向用レシーバー104と、Z方向用レシーバー103と、Z方向用レシーバー102と、Z座標演算装置の一例としての演算部87と、フォーカスサーボ機構を有するZ方向駆動装置43と、半導体レーザ34と、光検出器41となどに接続されて、それぞれの動作制御を行なうことにより、前記超高精度三次元測定動作を制御するようにしている。
図5Aで、発振周波数安定化レーザ(発振周波数安定化HeNeレーザ)27は、真空中の波長が世界長さ標準であるヨー素安定化HeNeレーザとのビート周波数測定により発振周波数を校正された安定化レーザである。ヨー素安定化HeNeレーザは発振周波数が473612214.8MHzで、不確かさは±1×10−9(3σ)である(JISハンドブックより)。しかし、ヨー素吸収セルを追加した大がかりな装置の為、測定機には搭載できない。また、産業上必要な加工精度/寸法は高精度であっても10−4〜10−5である。つまり、例えば直径10mmの軸は1〜0.1ミクロンの直径精度が通常の高精度加工であり、測定限界ということである。本発明の本実施形態に係わる非球面レンズ測定において、必要な不確かさは±1×10−6程度であるので、これをXYZ座標測定の不確かさの目標としている。また、空中での波長は温度変動1℃、あるいは、3%の気圧変化で10−6変わる。前記測定機は、大気中で使用する。従って、ヨー素安定化HeNeレーザを前記測定機に搭載するほどの必要性は無い。
そこで、ヨー素吸収セルを使わず、発振波長であるネオンのスペクトル線で発振周波数を安定化させた、発振周波数が473612.12GHz±0.3GHz、不確かさが±5×10−8(3σ)のコンパクトな発振周波数安定化HeNeレーザ27を前記測定機に搭載した。ヨー素安定化レーザと発振周波数の比較測定をしているので、この波長は世界長さ標準に対してトレーサブルである。このレーザ光FzでXYZ座標を測定している。
この発振周波数安定化レーザ27から発光したレーザ光Fzを、例えばX方向と、X方向と直交するY方向と、X方向及びY方向とそれぞれ直交するZ方向と、X方向及びY方向とそれぞれ直交するZ方向とに分岐し、さらに、それぞれの方向に分岐されたレーザ光Fzを測定光と参照光に分岐し、それぞれの測定光をそれぞれ高平面度のX参照ミラー24、Y参照ミラー25、Z参照ミラー26、Zミラー9に当て、それぞれの反射光と参照光を測長ユニットすなわちX方向用レシーバー105、Y方向用レシーバー104、Z方向用レシーバー103、Z方向用レシーバー102にそれぞれ入射させ、干渉させることによってXYZ座標をX参照ミラー24、Y参照ミラー25、Z参照ミラー26の平面度の精度で測定することができるようにしている。ここで、Y方向はX方向と直交する方向である。Z方向とZ方向とは、それぞれ、X方向及びY方向とそれぞれ直交するZ方向沿いである。
発振周波数安定化レーザ27から発光した4つのレーザ光Fzは、以下のように使用される。なお、発振周波数安定化レーザ27から発光した4つのレーザ光Fzを形成するためには、レーザ光源を4個配置してもよいし、又は、1つ又は4個以下のレーザ光源を配置して、レーザ光源からのレーザ光を前記したように分岐して合計4つのレーザ光Fzを形成するようにしてもよい。
発振周波数安定化レーザ27から発光した一つ目のレーザ光Fzは、X参照ミラー24の反射面(測定物1とは反対側の面)に照射し、X参照ミラー24の反射面で反射された反射光を光学系を経て、X座標測定装置の一例としてのX座標測定ユニット(X座標用レーザ測長ユニットすなわちX方向用レシーバー)105で受光して、受光されたレーザ光に基づきX方向用レシーバー105により光プローブ変位検出部2のX座標を測定する。ここで、X参照ミラー24は完全な平面と見なされるので、X参照ミラー24のX座標を測定することは、上石上盤96に固定された光学系とX参照ミラー24の反射面との間の距離の変位量を測定することを意味する。
同じく、発振周波数安定化レーザ27から発光した2つ目のレーザ光Fzは、Y参照ミラー25に照射し、Y参照ミラー25で反射された反射光を、Y座標測定装置の一例としてのY座標測定ユニット(Y座標用レーザ測長ユニットすなわちY方向用レシーバー)104で受光して、受光されたレーザ光に基づきY方向用レシーバー104により光プローブ変位検出部2のY座標を測定する。Y参照ミラー25は完全な平面と見なされるので、Y座標を測定することは、上石上盤96に固定されたミラー(図示せず)とY参照ミラー25の反射面との距離の変位量を測定することを意味する。
一方、発振周波数安定化レーザ27から発光した3つ目のレーザ光Fzは、Zミラー9に照射され、Zミラー9で反射された反射光を、Z座標測定装置(Z座標測定手段)の一例としてのZ座標測定ユニット(Z座標用レーザ測長ユニットすなわちZ方向用レシーバー)102で受光して、受光されたレーザ光に基づきZミラー9のZ座標をZ方向用レシーバー102により測定する。Z座標を測定することは、3つ目のレーザ光FzをZミラー9へ入射させるために反射させる上石上盤96に固定された反射ミラー(図示せず)の反射面からZミラー9の反射面までの距離の変位量を測定することを意味する。
発振周波数安定化レーザ27から発光した4つ目のレーザ光Fzは、上石上盤96に固定されたミラーで反射したのちZ参照ミラー26の下面である反射面で反射された反射光を、Z座標測定装置の一例としてのZ座標測定ユニット(Z座標用レーザ測長ユニットすなわちZ方向用レシーバー)103で受光して、受光されたレーザ光に基づきZ方向用レシーバー103により光プローブ変位検出部2のZ座標を測定する。Z座標を測定することは、4つ目のレーザ光FzをZ参照ミラー26の反射面に入射させるように反射させるために上石定盤96に固定されたミラーの反射面からZ参照ミラー26の反射面までの距離の変位量を測定することを意味する。
すなわち、Z座標については、図3A及び図3Bのレーザ光Fzが発振周波数安定化レーザ27からの3つ目と4つ目のレーザ光Fzで以下のように測定して求める。図5Aの上石定盤96上にある測長ユニットの光学系からダイクロイックミラー15を全透過し、レンズ14により絞られてミラー9で反射したレーザ光FzによりZ座標をZ方向用レシーバー102により測定する。XYステージ90の移動真直度は、1ミクロンのオーダーであるが、上石定盤96上にある測長ユニットの光学系から10ナノメートルオーダーの平面度のZ参照ミラー26にレーザ光Fzを当て、そのZ参照ミラー26の反射光からZ座標をZ方向用レシーバー103により測定する。そして、前記(Z座標+Z座標)を演算部87で演算してZ座標とすることにより、Z参照ミラー26の精度でZ座標を測定することができる。
測定物1の三次元形状の測定開始前は、測定物1の上下のスタイラス5は測定物1の測定面Sから離れているので、前述のフォーカスサーボは掛けられない。光プローブ変位検出部2には、図示しないがZ方向の位置検出器が取り付けられており、この位置検出器からの位置信号が測定機の操作部に取り付けられかつ作業者により廻される手動駆動用ダイヤル91により変化させられる位置指令値になるよう、制御部88による制御の下で、Z方向駆動装置43で光プローブ変位検出部2をZ方向に移動させている(言い換えれば、作業者が手動駆動用ダイヤル91を廻すことにより生じた入力情報に基づき、Z方向駆動装置43が駆動されて、光プローブ変位検出部2の先端が測定物1の測定面Sに5mm以下に近づく位置まで移動させられる)。これを「位置サーボ」と呼ぶ。
この位置サーボがかかっているときは、スタイラス5に測定力がかかっていないので、ミラー9がフォーカス位置から10ミクロン程度、離れた位置にあるように、レンズ14をプローブケーシング2aに対してあらかじめZ方向に位置調整しておく。
測定開始時は測定物1をスタイラス5の真下数ミリの位置に置き、測定機の操作部にあるフォーカススタートボタンを作業者が押すことにより前記手動駆動用ダイヤル91に基づく手動駆動を解除して自動制御に切り替える。すると、光プローブ変位検出部2は、Z方向駆動装置43により測定面Sの方向にゆっくりと測定面Sに近づくように移動する。スタイラス5が測定物1の測定面Sを検知すると(スタイラス5が測定物1の測定面Sに触れたら)、スタイラス5の測定力によりミラー9が半導体レーザ光Fの焦点方向に動くので、ミラー9が半導体レーザ光Fの焦点方向に動いたことをフォーカス誤差信号の変化によりフォーカス誤差信号検出部42で検出すると(言い換えれば、ミラー9が焦点位置付近に着いたら)、位置サーボからフォーカスサーボに切り替わり、ミラー9がフォーカス位置に来る。すなわち、フォーカス誤差信号がゼロになるまで、Z方向駆動装置43で光プローブ変位検出部2を移動させる。これがフォーカスサーボがかかった状態である。
半導体レーザ光Fは、フォーカス誤差信号を感度良く検出するため、図3A及び図3Bに示すようにレンズ14の開口一杯に入射させるが、Z座標測定用のHeNe安定化レーザ光Fzはレンズ14の開口より細い光束径で入射させるので、焦点深度が深く、10ミクロン程度、焦点ずれ位置にZミラー9があっても反射光から十分にZ座標を測定できる。
次に、測定力の設定とその理由を述べる。図7に示すスタイラス5の軸方向に働く測定力をFとする。測定力Fによりミラー9がフォーカス位置にくるので、測定力Fは測定面Sの傾きに係わらず一定になる。測定力Fは図3A及び図3Bのレンズ14を上下させることにより設定できる。
測定面Sに垂直な方向に働く測定力はF/cosθとなる。θは測定面Sの傾斜角度である。図7に示すようにスタイラスには(F/cosθ)sinθの横方向測定力がかかる。横方向測定力はθが60度のときはFの1.7倍、θが75度のときはFの3.7倍にもなる。
横方向測定力によりスタイラス5が横に傾くと測定誤差になる。これをできるだけ小さくするには、測定力をできるだけ小さくした方が良い。測定力が小さいほどスタイラス5の傾きが小さいので測定誤差は小さくなる。
また、測定力が小さいほうがスタイラス5の磨耗が少ないので、スタイラス5が長持ちする。
さらに、先端半径2ミクロンの尖ったスタイラスで樹脂等の柔らかい面を測定するときは測定面Sを傷つけたり、測定面変形による測定誤差を生ずる。これも測定力が小さいほど良い。経験上、傷や誤差があまり気にならない測定力は0.2mN以下である。なお、先端半径0.5mmのスタイラスで測定するときはやわらかい面でも傷が付いた例は皆無である。
逆に、先端半径0.5mmのスタイラスで測定するとき、測定力が小さいと表面のホコリを測定してしまう。測定力が大きいとホコリを測定せず掻き分ける。この点では測定力が大きいほうが測定しやすい。
先端半径の小さいプローブはホコリを測定しにくいが、先端を真球度良く作る事が難しい。先端の真球度が悪いと測定精度が悪くなる。これについては真球をあらかじめ測定し、データから補正することができるが手間がかかる。
可動部質量が同じなら測定力が大きいほど応答が速いので、早く測定できる。
以上の事から、現状の技術レベルを前提とすると最適な測定力が存在する。それが、0.1mN〜0.3mNである。そこで、測定力は中心値0.2mNと設定し、レンズ14の位置の調整で0.1mN〜0.3mNの範囲で調節可能とした。
小摺動軸部6は自重で100ミクロン程度下がった位置から0.2mNの測定力で小エアー軸受け7に対し、10ミクロン程度移動するように設計する。なお、プローブ2Aを横向きにおくこともでき、そのときは、自重による移動は無いが、0.2mNの測定力でつりあい位置から10ミクロン程度移動するように設計する。
測定力0.2mNで小摺動軸部6が10ミクロン程度移動した位置でフォーカスサーボを掛ける理由を述べる。
スタイラス5を含む小摺動軸部6の質量約0.2gに対し測定力0.2mNは0.02グラム重なので、小摺動軸部6の重量の十分の一の力で10ミクロンだけ移動した位置でフォーカスサーボがかかることになる。
フォーカスサーボに誤差があっても、同じミラー9までの距離の変位量を発振周波数安定化HeNeレーザ光Fzで干渉により測定しているので、測定誤差にはならず、測定力の変動となるだけである。
図3A及び図3Bに示すように、半導体レーザ光F、はフォーカス感度が良いようにレンズ14の開口一杯に入れているので、開口数(NA)が0.4程度、レンズ14とミラー9の距離の変位量の変動が1ミクロン以下でフォーカスサーボを掛けることができる。すなわち、前記測定物1、または大エアースライド89を前記Z方向とそれぞれ直交しかつ互いに直交するXY方向にXYステージ90により移動させるとともに、前記スタイラス5が前記測定物1の形状に沿って前記Z方向に移動するとき、前記Z方向の変位がほぼ一定になるようにフォーカスサーボを掛けて前記大エアースライド89をZ方向駆動装置43により駆動する。このときの測定力の変動は0.02mN以下である。
発振周波数安定化HeNeレーザ光Fzは焦点深度が深くなるよう、1〜2mmの光束径の半導体レーザ光Fをそのままレンズ14に入れている。そうすると、焦点深度は20ミクロン程度となり、スタイラス5が測定物1の測定面Sに接していないときにミラー9の位置が10ミクロンずれるが、問題無くレーザ測長可能となる。
スタイラス5が測定面Sに接していないときでもZ座標を測定できないと連続走査により測定できない複数の測定物1を測定するとき、Z座標が保存されないので、大変不便である。例えば測定力0.2mNで小摺動軸部6が20ミクロン移動するように磁力を弱い弾性係数に設計すると、スタイラス5が測定面Sを離れるときにミラー9の位置が20ミクロンずれ、測長用HeNeレーザ光Fzの焦点深度をはずれ、測長が不安定となる。
また、例えば測定力0.2mNで小摺動軸部6が5ミクロン移動するよう磁力を強い弾性係数に設定すると、同じようにレンズ1とミラー9の距離の変位量の変動が1ミクロン以下でフォーカスサーボを掛けても測定力の変動が大きくなるし、測定力が0.1mNになるようにレンズ9の位置を調整すると小摺動軸部6が2.5ミクロンしか移動しない状態となり、サーボが不安定になる。
以上が0.2mNの測定力で小摺動軸部6が10ミクロン程度移動するように設計した理由である。
次に、小摺動軸部6のZ方向(小摺動軸部6の軸方向)を中心とした回転方向への移動を妨げる力の必要トルクについて説明する。スタイラス先端球61がマイクロエアスライドの軸中心に対し、組み立て公差の範囲で偏心して付いているので、スタイラス先端球61が小摺動軸部6の軸を中心に回転すれば測定値が変わり、測定誤差になる。
従って、回転を妨げる力は強いほど良いが、そのために磁性体ピン20を大きくすれば、小摺動軸部6の質量が大きくなってしまう。前記の理由から小摺動軸部6の質量は小さいほど良いので、磁性体ピン20の重量は必要最小限にしたい。本発明の本実施形態においては、図1A及び図1Bの構成にすることにより、一例として、磁性体ピン20は厚さ0.5mm、質量16ミリグラムと超軽量を実現した。これにより、回転方向の磁力はTm=274mN・mm/rad を実現した。つまり、トルクTm=0.27mN・mmで1mrad だけ回転する。
次に、図1A及び図1Bの構成で、実際の測定において、最大、どれだけのスタイラス5の回転による測定誤差が発生し得るかを検討した。
図6A〜図6Cは、測定物1の一例としてのレンズの表面Sをスタイラス5で測定するときの走査方法を図示している。図6Aのようにレンズ1の表面Sにおいてレンズ1の中心を通るラインをスタイラス5で測定する事を「軸上測定」、図6Bのようなレンズ1の表面Sの全面走査を「面上測定」、図6Cのようにレンズ1の表面Sを同心円状に走査することを「円周測定」とそれぞれ名づけている。レンズ1は回転対称でないものもあるし、本発明の本実施形態では回転対称なレンズに限っているわけでもないが、スタイラス5にかかる回転トルクの解析は、これでできる。
スタイラス5にかかる回転トルクは、スタイラス5のレンズ1の表面Sに対する測定力により発生する。図7のように、半径rのスタイラス先端球61に軸方向測定力Fがかかっているとすると、測定面Sに垂直な方向にF/cosθ、 横方向には(F/cosθ)sinθの測定力がかかる。
図8は、図7のスタイラス先端球61が測定面Sに接した高さにおける断面を上から見た図である。なお、理解しやすくするため、図8及び図9での断面ハッチングは省略している。従って、スタイラス先端球61の半径rに対し、図8の円の半径はrsinθとなる。測定面Sに平行な方向にマイクロエアスライドの軸中心がずれているとき、最大の測定誤差が発生する。図8はその状態を示す。図9のようにマイクロエアスライドの軸中心が測定点から最も遠い位置にあるとき、円周測定ではスタイラス5に最大の回転トルクが働くが、図9の破線位置にスタイラス先端球61が移動しても測定値はほとんど変わらない。つまり、測定誤差にはならない。
前記した軸上測定では、図8の左右方向へのみスタイラス5が動くので、図8の紙面の上下方向の摩擦は無いので回転トルクは
(数2)
軸上測定回転トルク T=偏心量×横方向測定力 ・・・ (2)

となる。円周測定時と前記面上測定でスタイラス先端球61の縁を傾斜していない方向に走査測定するときには、測定力に加えて摩擦力がかかるので、
(数3)
円周測定回転トルク T=偏心量×横方向測定力+rsinθ×測定力×摩擦係数 ・・・ (3)

となる。
回転を止める磁力は、前述のように、Tmのトルクで1mradだけ回転するので、回転角はT/Tm(mrad)、求めたい横方向測定誤差Eは回転角×偏心量なので
(数4)
E=偏心量×T/Tm ・・・ (4)

偏心量を0.1mm、F=0.3mN、横方向測定力は(F/cosθ)sinθ、r=0.5mm、測定力はF/cosθ、摩擦係数を0.5、前述のように、Tm=0.27mN・mm/mrad、θを60度と75度の2通りで横方向測定誤差を計算した。
計算結果をまとめると、表1のようになった。
Figure 2008151748
傾斜角度60度までの軸上測定が一般的な測定であり、そのときの誤差は0.02ミクロン以下と超高精度測定可能なレベルとなる。また、測定力を0.2mNにすると最大測定誤差はこの2/3倍に減り、スタイラス5の偏心を0.05mm以下に抑え込めば、最大誤差はさらに半分になるので、そのときは、75度の円周測定でも、横方向の誤差0.05ミクロン以内と、超高精度測定が可能なレベルとなる。
スタイラス先端球61には、真球度の良い直径1mmのルビー球や、先端が2ミクロンの半径の球面に加工されたダイヤ等が付けられている。例えば、レンズ1の測定には直径1mmのルビー球を使用する一方、測定物1の表面が回折格子のように微細加工されたものを測定するときはダイヤを使用するといったように、スタイラス5は交換が必要である。
スタイラス5の交換は、特許文献2と同様に、図11のように、スタイラス5に形成されたネジ360を小摺動軸6に加工されたメネジ359に締め入れることにより、取外し可能に取付けることができて、交換が可能である。ネジ締め、取り外し時には、スタイラス5を小摺動軸部6に押し付けた後、回転させる必要がある。
図1A及び図1Bと図2Aでは、小摺動軸部6の基端側の端面(磁性体ピン20が配置されている側の端面)には非磁性体のストッパー30が貼り付けてあり、スタイラス5を小摺動軸部6に押し付けたときには、ストッパー30が原子間力プローブ枠3に固定された環状の当て部36に当たり、スタイラス5のねじ(図11のメネジ360参照)を回すときは、ストッパー30が、小摺動軸部6の基端側の端面に固定された回転止めピン31に当たって小摺動軸部6の回転を止める。言い換えれば、前記小エアー軸受け部7Aに対する前記小摺動軸部6の前記Z方向と前記Z方向を軸とした回転方向への移動を妨げる磁力を超えた力が、前記小摺動軸部6の前記Z方向、又は前記Z方向を軸とした前記回転方向にかかったときの前記小摺動軸部6の過度の移動を非磁性体のストッパー30により止めるようにしている。このため、スタイラス5のみが小摺動軸部6に対して回転可能となり、スタイラス5に形成されたネジ360を、小摺動軸6に加工されたメネジ359に対して回転させてメネジ359から取り外すことができる。一方、別のスタイラス5を小摺動軸6に取り付けるときには、スタイラス5を小摺動軸部6に押し付けてストッパー30を回転止めピン31に当てて小摺動軸部6の回転を止めた状態で、スタイラス5に形成されたネジ360を、小摺動軸6に加工されたメネジ359に入れて回転させることにより、ネジ360をメネジ359にねじ込むことができる。なお、通常測定時には、ストッパー30と当て部36、ストッパー30と回転止めピン31とはそれぞれ十分に離れており、互いに接触することはないため、測定に何ら支障はない。
なお、この実施形態においては、リング状ヨーク8aを使っている。この方が優れてはいるが、必ずしもリング状でなくてはならないわけではなく、たとえばリングの片方が欠けていても使えないわけではない。
また、この実施形態においては、前記磁性体ピン20と前記ヨーク8b−1,8b−2の隙間部付近の形状を、前記軸方向には厚く、回転方向には薄いテーパ状とした。この方が優れてはいるが、必ずしもテーパ状でなくてはならないわけではなく、円錐状や角錐状でも使えないわけではない。
また、この実施形態においては、半導体レーザ光Fzで前記小摺動軸部6のZ方向の前記光プローブ変位検出部2に対する変位量を検出している。他の方法としては、たとえば、静電容量センサーや発光ダイオードの光を使用した三角測距法で変位を検出しても良い。
また、この実施形態においては、発振周波数安定化レーザ光Fzをミラー9に照射、反射光から前記ミラー9のZ座標を測定するとした。この方が優れてはいるが、これに限定されるものではなく、たとえば、Z座標はリニアスケールで測定する構成にすることも可能である。
また、この実施形態においては、回転止めストッパー30と回転止めピン31を使用してスタイラス5の小摺動軸部6に対する回転止めを行うようにしている。この場合、スタイラス5を小摺動軸部6にねじ込んでいるが、これに限定されるものではなく、スタイラス5か小摺動軸部6の穴にばねを付け、差し込み固定にする事や、小摺動軸部6とスタイラス5を一体加工する事も可能で、その場合は回転止めと回転止めピンが不要である。
また、この実施形態においては、Zステージは、Z方向大エアースライドガイド35と大エアースライド可動部11とより構成される大エアースライド89すなわちエアー軸受けで構成されている。しかしながら、これに限定されるものではなく、性能が落ちるが、ローラーガイドやオイル軸受け等で構成することも可能である。
また、この実施形態においては、Zステージ駆動手段は、Z方向駆動装置43すなわちコイル13と磁気回路で構成されている。この方が優れてはいるが、これに限定されるものではなく、ボールねじ送りにすることも可能である。
また、この実施形態においては、大エアースライド89の大エアースライド可動部11(Z方向可動部)を定荷重バネで支持しているが、これに限定されるものではなく、Z方向を横方向にすれば定荷重バネは不要となる。
なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明の三次元測定プローブは、測定物の下からでも横からでも0.01ミクロンのオーダーの超高精度で測定できるので、前後面を同時に測定する事により非球面レンズの傾き偏心を超高精度に測定できる。また、壊れにくく長寿命となり、現場で簡単に頻繁に使用できるといった効果を有し、測定できなければ作れない非球面レンズのさらなる高精度化と生産歩留り向上を実現し、小型高画質化するデジタルカメラ、ムービー、カメラ付携帯電話、大容量化する光ディスク等の非球面レンズ内蔵商品の性能向上とコストダウンに貢献できる。さらに、幅広く、医療機器、自動車の歯車、ナノテクやマイクロマシンの研究開発用途にも適用可能性がある。
本発明の実施形態における三次元測定プローブの要部拡大図 本発明の前記実施形態における三次元測定プローブの要部拡大図 本発明の前記実施形態における三次元測定プローブの要部に原子間力プローブ枠を付けた図 本発明の前記実施形態における三次元測定プローブの要部であって、リング状のヨークと磁性体ピン20との関係を示す斜視図 本発明の前記実施形態における三次元測定プローブの要部であって、リング状のヨークとは異なる他方のヨークの先端と磁性体ピン20の先端との関係を示す底面図 本発明の前記実施形態における三次元測定プローブの要部であって、リング状のヨークとは異なる他方のヨークの先端と磁性体ピン20の先端との関係を示す側面図 本発明の前記実施形態における三次元測定プローブの上側の光プローブ変位検出部を含めた概略構成説明図 本発明の前記実施形態における三次元測定プローブの下側の光プローブ変位検出部を含めた概略構成説明図 本発明の前記実施形態における三次元測定プローブのZ方向の構成図 本発明の前記実施形態における三次元測定プローブを取り付けることができる超高精度三次元測定機の構成図 特許文献3に記載された超高精度三次元測定機の構成図 本発明の前記実施形態における三次元測定プローブの測定経路を示す説明図 本発明の前記実施形態における三次元測定プローブの測定経路を示す説明図 本発明の前記実施形態における三次元測定プローブの測定経路を示す説明図 本発明の前記実施形態における三次元測定プローブの測定力に関する説明図 測定力によりスタイラス回転誤差発生の説明図 測定力によるスタイラス回転誤差が発生しないときの説明図 特許文献1に記載された従来の三次元測定プローブの構成図 特許文献2に記載された従来の三次元測定プローブの構成図 特許文献4に記載された従来の接触式プローブの構成図 特許文献4に記載された従来の接触式プローブの要部説明図 特許文献5に記載された従来の静圧軸受け装置及び変位測定装置の構成図 特許文献5に記載された従来の静圧軸受け装置及び変位測定装置の構成図
符号の説明
1 被測定物
2 光プローブ変位検出部
2A 光プローブ
3 原子間力プローブ枠
4 空気吹出口
5 スタイラス
6 小摺動軸部
7 小エアー軸受け
7A 小エアー軸受け部
8a,8b−1,8b−2 ヨーク
9 Zミラー
10 空気排出口
11 大エアースライダー可動部
12 大ヨーク
13 コイル
14 レンズ
15 ダイクロイックミラー
16 ミラー
17 定荷重ばね
18 空気溜め部
18a 先端側の環状凹部
18b 凹部
18c 基端側の環状凹部
19 小エアー軸受け外壁
19a 先端側のフランジ部
19b 中間部
19c 基端側のフランジ部
20 磁性体ピン
21 Xステージ
22 Yステージ
23 下石定盤
24 X参照ミラー
25 Y参照ミラー
26 Z参照ミラー
27 He−Ne発振周波数安定化レーザ
28 大磁石
29a,29b 磁石
30 ストッパー
31 回転止めピン
32 レンズ
33 波長板
34 半導体レーザ
35 大エアースライドガイド
36 当て部
37 偏光プリズム
38 レンズ
39 ハーフミラー
40 ピンホール
41 光検出器
42 フォーカス誤差信号検出部
43 Z方向駆動装置
47 Z駆動ネジ
48 エアーチューブ
53 バネ受け球
59 メネジ
60 ネジ
61 スタイラス先端球
62 エアースライド
63 Z座標測定ユニット
86 ブラケット
87 演算部
88 制御部
89 大エアースライド
90 XYステージ
96 上石定盤
97 門型架台(Z参照ミラー保持部)
102 Z方向用レシーバー
103 Z方向用レシーバー
104 Y方向用レシーバー
105 X方向用レシーバー

Claims (10)

  1. 一端に測定物の表面に接するスタイラスを設けるとともに、他端に磁性体ピンを設けた円筒形の小摺動軸部と、
    この小摺動軸部と嵌合する円筒形の穴が形成され、この小摺動軸部との隙間に圧縮空気の膜を形成する空気吹き出し部を有する小エアー軸受け部と、
    この小エアー軸受け部の端部に配置された磁石と複数のヨークが前記ピンと非接触で磁気回路を形成することにより、前記円筒形の小摺動軸部の軸方向であるZ方向と、前記Z方向の回りの回転方向への移動を妨げる磁力を発生させる磁力発生手段と、
    前記小エアー軸受け部に対する前記小摺動軸部の前記Z方向の変位を検出する変位検出手段と、
    前記小エアー軸受け部の前記Z方向への移動を案内するZステージと、
    前記測定物、または前記Zステージを前記Z方向とそれぞれ直交しかつ互いに直交するXY方向に移動させるとともに、前記スタイラスが前記測定物の形状に沿って前記Z方向に移動するとき、前記Z方向の変位がほぼ一定になるように前記Zステージを駆動するZステージ駆動装置と、
    を備える三次元測定プローブ。
  2. 前記複数のヨークのうちの少なくとも1つのヨークはリング状のヨークであることを特徴とする請求項1に記載の三次元測定プローブ。
  3. 前記ピンと前記ヨークの隙間部付近の形状を、前記Z方向には厚く、前記回転方向には薄いテーパ状とした請求項1〜2のいずれか1つに記載の三次元測定プローブ。
  4. 前記ピンと前記ヨークの隙間部付近の形状を、前記ピンより前記ヨークを厚くした請求項1〜3のいずれか1つに記載の三次元測定プローブ。
  5. 前記変位検出手段は、
    前記小エアー軸受け部と一体で固定されてレーザ光を発光する半導体レーザと、前記小摺動軸部に配置されかつ前記半導体レーザからの前記レーザ光が照射されて反射させるミラーと、前記半導体レーザからの前記レーザ光を前記ミラーに集光するレンズと、前記ミラーからの反射光を受光する光検出器とを少なくとも含む光プローブ変位検出部により構成し、
    前記半導体レーザからの前記レーザ光を、前記ミラーに照射し、前記ミラーからの反射光を前記光検出器で受光し、この光検出器の出力信号から前記Z方向の変位を検出する構成とした請求項1〜4のいずれか1つに記載の三次元測定プローブ。
  6. 発振周波数安定化レーザ光を前記変位検出手段の前記ミラーに照射し、前記ミラーで反射した反射光から前記ミラーのZ座標を測定するZ座標測定手段をさらに備える請求項5に記載の三次元測定プローブ。
  7. 前記小エアー軸受け部に対する前記小摺動軸部の前記Z方向と前記Z方向を軸とした回転方向への移動を妨げる磁力を超えた力が、前記小摺動軸部の前記Z方向、又は前記Z方向を軸とした前記回転方向にかかったときの前記小摺動軸部の過度の移動を止めるための非磁性体のストッパーを設けた請求項1〜6のいずれか1つに記載の三次元測定プローブ。
  8. 前記Zステージはエアー軸受けで構成された請求項1〜7のいずれか1つに記載の三次元測定プローブ。
  9. 前記Zステージ駆動装置は、前記Zステージに連結されたコイルと、前記コイルに電流を流して前記Zステージを前記Z方向に駆動する磁気回路で構成された請求項1〜8のいずれか1つに記載の三次元測定プローブ。
  10. 前記Zステージの可動部を、その重量にほぼ等しい張力を発生する渦巻き状に巻かれた薄板よりなる定荷重バネで支持された請求項1〜9のいずれか1つに記載の三次元測定プローブ。
JP2006342703A 2006-12-20 2006-12-20 三次元測定プローブ Active JP4291849B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006342703A JP4291849B2 (ja) 2006-12-20 2006-12-20 三次元測定プローブ
TW096135394A TWI334920B (en) 2006-12-20 2007-09-21 Three-dimensional measurement probe
KR1020070098287A KR100922034B1 (ko) 2006-12-20 2007-09-28 삼차원(三次元) 측정 프로브
CN2007101624159A CN101206110B (zh) 2006-12-20 2007-09-29 三维测定探头
US11/979,034 US7520067B2 (en) 2006-12-20 2007-10-30 Three-dimensional measurement probe
EP07119702A EP1936321B1 (en) 2006-12-20 2007-10-31 Three-dimensional measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342703A JP4291849B2 (ja) 2006-12-20 2006-12-20 三次元測定プローブ

Publications (2)

Publication Number Publication Date
JP2008151748A true JP2008151748A (ja) 2008-07-03
JP4291849B2 JP4291849B2 (ja) 2009-07-08

Family

ID=39154367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342703A Active JP4291849B2 (ja) 2006-12-20 2006-12-20 三次元測定プローブ

Country Status (6)

Country Link
US (1) US7520067B2 (ja)
EP (1) EP1936321B1 (ja)
JP (1) JP4291849B2 (ja)
KR (1) KR100922034B1 (ja)
CN (1) CN101206110B (ja)
TW (1) TWI334920B (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094365A1 (ja) * 2006-02-14 2007-08-23 Japan Science And Technology Agency 測定プローブ、試料表面測定装置、及び試料表面測定方法
US7797851B2 (en) * 2006-05-18 2010-09-21 Panasonic Corporation Shape measurement device probe and shape measurement device
DE102008049751A1 (de) * 2008-10-01 2010-04-08 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Vermessen eines Werkstücks, Kalibrierverfahren sowie Koordinatenmessgerät
JP5740084B2 (ja) * 2008-12-09 2015-06-24 株式会社東芝 タービン発電機におけるステータコイルの接続組立の3次元形状測定方法及び3次元形状測定装置用冶具
DE102009008722A1 (de) * 2009-02-06 2010-08-19 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät zum Bestimmen von Raumkoordinaten an einem Messobjekt sowie ein Tastkopfsystem für ein solches Koordinatenmessgerät
CN101520321B (zh) * 2009-03-30 2011-04-06 哈尔滨工业大学 精度检测设备
US8408082B2 (en) * 2009-11-18 2013-04-02 General Electric Company Apparatus to measure fluids in a conduit
GB201012249D0 (en) * 2010-07-21 2010-09-08 Renishaw Plc Metrology apparatus
CN102374835A (zh) * 2010-08-25 2012-03-14 鸿富锦精密工业(深圳)有限公司 量测仪
JP5143931B2 (ja) * 2010-09-09 2013-02-13 パナソニック株式会社 三次元形状測定装置
US8622620B2 (en) * 2010-09-15 2014-01-07 Hamilton Sundstrand Corporation Shaft for air bearing and motor cooling in compressor
JP5843531B2 (ja) * 2010-09-27 2016-01-13 株式会社ミツトヨ 座標測定用ヘッドユニット及び座標測定機
JP5663274B2 (ja) * 2010-11-10 2015-02-04 オリンパス株式会社 形状測定センサ
CN102175198B (zh) * 2011-01-26 2012-11-28 安徽电气工程职业技术学院 接触扫描探头的等张力悬吊机构
CN102692457B (zh) * 2011-03-24 2014-10-08 常州展华机器人有限公司 曲面三维超声探伤用四-七轴联动装置
CN102207489B (zh) * 2011-03-29 2013-07-24 常州信雷迪特电子系统工程有限公司 组合式三-六轴三维探伤装置
CN102494607B (zh) * 2011-10-28 2013-11-27 合肥工业大学 三维微纳米接触扫描探头中的弹性测头
CN102506725B (zh) * 2011-10-28 2013-07-31 合肥工业大学 三维微纳米接触扫描探头
TWI468642B (zh) * 2012-11-01 2015-01-11 Univ Southern Taiwan Sci & Tec 三次元接觸式掃描探頭
JP5910480B2 (ja) * 2012-12-12 2016-04-27 マツダ株式会社 鍛造回転体のセンタ穴の加工方法及びその加工システム
JP5838370B2 (ja) * 2013-01-18 2016-01-06 パナソニックIpマネジメント株式会社 三次元形状測定装置用プローブ
GB201309506D0 (en) * 2013-05-28 2013-07-10 Renishaw Plc Methods of controlling a coordinate positioning machine
CN103479387B (zh) * 2013-09-22 2016-08-10 江苏美伦影像系统有限公司 可移动回转式c型扫描系统
JP5945788B2 (ja) * 2014-05-29 2016-07-05 パナソニックIpマネジメント株式会社 三次元形状測定装置
TWI564547B (zh) * 2015-05-12 2017-01-01 Position displacement sensing device
CN105783772B (zh) * 2016-03-07 2018-06-26 合肥工业大学 单传感器式三维微纳米接触触发测量探头
JP6229959B2 (ja) * 2016-03-08 2017-11-15 パナソニックIpマネジメント株式会社 スタイラス及び測定方法
US10518039B2 (en) * 2016-04-29 2019-12-31 Verily Life Sciences Llc Apparatus and methods for tracking administering of medication by medication injection devices
US10953155B2 (en) 2016-04-29 2021-03-23 Verily Life Sciences Llc Pressure sensor in plunger head to wake up electronics
CN106595543B (zh) * 2016-12-01 2023-07-18 江西中船航海仪器有限公司 一种连接中空轴系的内撑式轴系回转精度测量装置
CN107014323B (zh) * 2017-06-06 2023-02-03 富加宜连接器(东莞)有限公司 一种点激光共面度测试装置及其方法
CN109975584B (zh) * 2017-12-27 2021-06-04 致茂电子(苏州)有限公司 电流探针
JP6799815B2 (ja) * 2018-05-21 2020-12-16 パナソニックIpマネジメント株式会社 形状測定用プローブ
JP7261560B2 (ja) * 2018-10-31 2023-04-20 株式会社ミツトヨ 表面性状測定方法および表面性状測定装置
JP7340761B2 (ja) * 2019-10-28 2023-09-08 パナソニックIpマネジメント株式会社 測定用プローブ
CN111964788B (zh) * 2020-08-12 2022-10-11 电子科技大学 一种四轴式多功能涡轮叶片测温装置
CN112046129B (zh) * 2020-08-14 2022-05-20 九江运城制版有限公司 一种凹版辊的高精度加工装置和方法
CN112697087B (zh) * 2020-12-04 2022-12-06 安徽精尼流体机械设备有限公司 一种强酸流体阀的壳体监测装置
CN114904171B (zh) * 2021-02-07 2024-01-26 重庆海扶医疗科技股份有限公司 超声消融系统及其控制方法
CN115235344B (zh) * 2022-06-06 2023-08-01 苏州天准科技股份有限公司 基于涡旋光束的测量系统及高度测量方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3922297A1 (de) * 1989-07-07 1991-01-17 Zeiss Carl Fa Elektromagnetische haltevorrichtung
GB9001682D0 (en) * 1990-01-25 1990-03-28 Renishaw Plc Position sensing probe
US5491904A (en) * 1990-02-23 1996-02-20 Mcmurtry; David R. Touch probe
DE69108817T2 (de) * 1990-08-17 1995-10-05 Toshiba Kawasaki Kk Verschiebungsmessapparat.
JP3046635B2 (ja) 1991-03-28 2000-05-29 松下電器産業株式会社 超高精度三次元測定機
JP3000819B2 (ja) 1993-03-15 2000-01-17 松下電器産業株式会社 三次元測定用プローブ及び形状測定方法
JPH0758161A (ja) 1993-08-10 1995-03-03 Nippon Steel Corp フィルムキャリヤ及びこのフィルムキャリヤを用いた半導体装置
DE4331655C3 (de) * 1993-09-17 2000-11-09 Leitz Mestechnik Gmbh Tastkopf vom messenden Typ für Koordinatenmeßgeräte
JP4557466B2 (ja) 2001-08-02 2010-10-06 キヤノン株式会社 接触式プローブ
JP4093828B2 (ja) 2002-08-29 2008-06-04 松下電器産業株式会社 測定用プローブ及び光学式測定装置
ITBO20020628A1 (it) * 2002-10-07 2004-04-08 Marposs Spa Sonda di tastaggio
JP4376592B2 (ja) 2003-10-31 2009-12-02 株式会社リコー 形状測定装置
JP4436665B2 (ja) 2003-12-24 2010-03-24 パナソニック株式会社 測定用プローブ及び形状測定方法
JP2006078367A (ja) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd 測定用プローブ
JP4557657B2 (ja) * 2004-09-28 2010-10-06 キヤノン株式会社 接触式プローブおよび形状測定装置
DE102004059468B3 (de) * 2004-12-10 2006-06-14 Hexagon Metrology Gmbh Verfahren zum Trennen der mechanischen Verbindung zwischen einer Taststiftaufnahme und einem Tastkopf sowie Vorrichtung zum Trennen der mechanischen Verbindung zwischen einer Taststiftaufnahme und einem Tastkopf
DE102005043454B3 (de) * 2005-09-13 2007-05-03 Carl Zeiss Industrielle Messtechnik Gmbh Wechseleinrichtung
DE102006003362A1 (de) * 2006-01-19 2007-07-26 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät und Verfahren zum Betreiben eines Koordinatenmessgeräts

Also Published As

Publication number Publication date
TW200827663A (en) 2008-07-01
EP1936321A3 (en) 2009-10-21
TWI334920B (en) 2010-12-21
JP4291849B2 (ja) 2009-07-08
US7520067B2 (en) 2009-04-21
KR100922034B1 (ko) 2009-10-19
US20080148588A1 (en) 2008-06-26
CN101206110B (zh) 2010-06-02
EP1936321B1 (en) 2012-12-12
CN101206110A (zh) 2008-06-25
EP1936321A2 (en) 2008-06-25
KR20080058159A (ko) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4291849B2 (ja) 三次元測定プローブ
KR100921847B1 (ko) 3차원 형상 측정 장치
KR940003918B1 (ko) 형상측정장치
Henselmans et al. The NANOMEFOS non-contact measurement machine for freeform optics
CN1327262C (zh) 物镜单元制造装置及制造方法
US5455677A (en) Optical probe
JP5143931B2 (ja) 三次元形状測定装置
JP5154149B2 (ja) 三次元測定プローブ
KR101330468B1 (ko) 삼차원 형상 측정장치
JP5171108B2 (ja) 三次元形状測定装置
JP6799815B2 (ja) 形状測定用プローブ
JP2016223928A (ja) 面測定方法及び面測定装置
JP2006292642A (ja) 光測長器、光ディスク原盤露光装置、及び加工装置
JP4519449B2 (ja) 形状測定機
JP6980304B2 (ja) 非接触内面形状測定装置
CN112880585A (zh) 非接触形状测定装置
WO2015093244A1 (ja) 測定プローブ及び形状測定装置
Henselmans et al. Application of the NANOMEFOS Non-contact Measurement Machine in Asphere and Freeform Optics Production
JP2006125934A (ja) 測定用プローブと測定方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Ref document number: 4291849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5