JP2008121881A - 変速機構 - Google Patents

変速機構 Download PDF

Info

Publication number
JP2008121881A
JP2008121881A JP2006309793A JP2006309793A JP2008121881A JP 2008121881 A JP2008121881 A JP 2008121881A JP 2006309793 A JP2006309793 A JP 2006309793A JP 2006309793 A JP2006309793 A JP 2006309793A JP 2008121881 A JP2008121881 A JP 2008121881A
Authority
JP
Japan
Prior art keywords
rolling element
diameter rolling
small
peripheral surface
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006309793A
Other languages
English (en)
Other versions
JP2008121881A5 (ja
Inventor
Masayoshi Muraki
正芳 村木
Kikuo Okamura
暉久夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shonan Institute of Technology
Campus Create Co Ltd
Original Assignee
Shonan Institute of Technology
Campus Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shonan Institute of Technology, Campus Create Co Ltd filed Critical Shonan Institute of Technology
Priority to JP2006309793A priority Critical patent/JP2008121881A/ja
Priority to US12/514,981 priority patent/US20100099534A1/en
Priority to PCT/JP2007/071950 priority patent/WO2008059807A1/ja
Publication of JP2008121881A publication Critical patent/JP2008121881A/ja
Publication of JP2008121881A5 publication Critical patent/JP2008121881A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Abstract

【課題】高変速比を実現でき、小型化、低コスト、低騒音を実現可能で、かつ、スリップロスを低く抑えることが可能な変速装置を提供する。
【解決手段】小径転動体11及び補助転動体13の外周面は、大径転動体12の外周面に接触させられる。補助転動体13は、大径転動体12を挟んで、小径転動体11とほぼ反対側に配設される。調圧リング14の内周面は、小径転動体11の外周面と補助転動体13の外周面とに接触させられ、これらによって支持されている。小径転動体11が自転すると、大径転動体12及び補助転動体13を介して調圧リング14が回転する。大径転動体12の回転に負荷が加わると、調圧リング14が偏心する。これにより、小径転動体11は、調圧リング14から、大径転動体12の半径方向における内側への押圧力を受ける。
【選択図】図1

Description

本発明は、主に動力の伝達に用いられる変速機構に関するものである。
変速機構としては、例えば下記特許文献1〜6に記載されたものがある。なお、この明細書において変速とは、減速と増速とを総称する意味とする。
これらの文献に記載の技術は、歯車を用いるもの(例えば特許文献3)とローラを用いるもの(例えば特許文献4)とに分けることができる。
歯車を用いた変速機構においては、
・高い減速比を得るためには多数の歯車を組み合わせる必要があるために、機構が大型化する傾向にあること
・多数の歯車を用いると、重量や騒音が大きくなること
等の不都合がある。
また、ローラを用いた変速機構においては、
・高負荷の場合に、駆動ローラと従動ローラとの間で滑り(スリップロス)を生じやすくなること
・滑りを抑制するための付勢機構を設けると、機構が複雑化すること
等の不都合がある。
特公平6−74831号公報 特開2002−31202号公報 特開平8−294515号公報 特開2006−117003号公報 実公昭33−4426号公報
本発明は、前記の事情に鑑みてなされたものである。本発明は、高変速比を実現でき、小型化、低コスト、低騒音を実現可能で、かつ、スリップロスを低く抑えることが可能な変速装置を提供しようとするものである。
請求項1に記載の変速装置は、小径転動体と、大径転動体と、補助転動体と、調圧リングとを備えている。前記小径転動体は、第1仮想回転軸を中心として自転可能となっている。かつ、前記小径転動体の外周面は、前記大径転動体の外周面と接触させられている。
前記大径転動体は、第2仮想回転軸を中心として自転可能となっている。かつ、前記大径転動体における前記第2仮想回転軸は、前記小径転動体における前記第1仮想回転軸とほぼ平行となるように配置されている。
前記補助転動体は、第3仮想回転軸を中心として自転可能となっている。かつ、前記補助転動体の外周面は、前記大径転動体の外周面と接触させられている。さらに、前記補助転動体の前記第3仮想回転軸は、前記小径転動体の第1仮想回転軸とほぼ平行となるように配置されている。さらに、前記補助転動体は、前記小径転動体との間で前記大径転動体を挟む位置に配設されている。
前記調圧リングは、前記小径転動体と前記大径転動体と前記補助転動体とを囲むように配置されている。かつ、前記調圧リングは、第4仮想回転軸を中心として自転可能となっている。さらに、前記調圧リングにおける前記第4仮想回転軸は、前記大径転動体における前記第2仮想回転軸とほぼ平行となるように配置されている。さらに、前記調圧リングの内周面は、前記小径転動体の外周面と前記補助転動体の外周面とに接触させられている。
この発明によれば、外周面どうしが接触する小径転動体と大径転動体との間での変速が可能となる。したがって、小径転動体を高速軸側に接続し、大径転動体を低速軸側に接続することで、高速軸と低速軸との間での変速が可能となる。
請求項2に記載の変速装置は、請求項1に記載のものにおいて、小径転動体が、前記大径転動体の半径方向において移動可能とされているものである。
請求項3に記載の変速装置は、請求項1又は2に記載のものにおいて、前記補助転動体が、前記大径転動体の半径方向において移動可能とされているものである。
請求項4に記載の変速装置は、請求項1〜3のいずれか1項に記載の変速装置において、前記調圧リングが、前記小径転動体と前記補助転動体とによって支持されているものである。
請求項5に記載の変速装置は、請求項1〜4のいずれか1項に記載の変速装置において、前記第1〜第3仮想回転軸が、一つの平面上に配置されているものである。
請求項6に記載の変速装置においては、請求項1〜4のいずれか1項に記載の変速装置において、前記第1及び第2仮想回転軸が、第1平面上に配置されており、前記第2及び第3仮想回転軸が、第2平面上に配置されており、前記第1平面と前記第2平面とのなす外角θが、0<θ<180°である構成となっている。
請求項7に記載の変速装置は、請求項1〜6のいずれか1項に記載のものにおいて、さらに減速機構を備えている。この減速機構は、前記大径転動体の内側に配置されている。かつ、前記減速機構は、前記大径転動体に接続されることによって、前記大径転動体に加えられた回転力を減速させる構成となっている。
請求項8に記載の変速装置は、請求項1〜7のいずれか1項に記載のものにおいて、前記小径転動体が、前記小径転動体が自転する方向に前記小径転動体を駆動する駆動源に接続可能となっているものである。
請求項9に記載の車輪駆動装置は、請求項1〜8のいずれか1項に記載の変速装置と、車軸と、車輪支持部とを備えている。前記車輪支持部は、前記車軸に対して回転可能とされている。かつ、前記車輪支持部は、前記大径転動体に接続されて、前記大径転動体の回転に伴って回転する構成となっている。
請求項10に記載の動力伝達装置は、請求項1〜8のいずれか1項に記載の変速装置と、出力軸とを備えている。前記出力軸は、前記大径転動体に接続されて、前記大径転動体の回転に伴って回転する構成となっている。
請求項11に記載の変速装置は、請求項1〜7に記載の変速装置において、前記小径転動体の外周面と、前記大径転動体の外周面とが、両者の間に介在するトラクションオイル又はトラクショングリースによる高圧下の油膜のせん断力を摩擦力として利用することによって、一方の回転力を他方に伝達しているものである。
本発明によれば、小径転動体と大径転動体とを用いることで、高変速比を実現でき、しかも小型化、低コスト、低騒音を実現可能となる。また、補助転動体と調圧リングとを用いることで、小径転動体と大径転動体との間におけるスリップロスを低く抑えることが可能となる。
以下、本発明に係る変速装置及びそれを用いた車輪駆動装置の第1実施形態を、図1〜図3を参照しながら説明する。
(第1実施形態の構成)
本実施形態に係る車輪駆動装置は、変速装置1と、駆動源2と、支持体3と、車軸4と、ハブ(車輪支持部)5と、軸受6を主な要素として備えている。
(本実施形態に係る変速装置の構成)
変速装置1は、小径転動体11と、大径転動体12と、補助転動体13と、調圧リング14とを主要な構成として備えている。
小径転動体11は、第1仮想回転軸X1を中心として自転可能となっている。より詳しくは、小径転動体11の両端部は、軸受151及び152によって支持されており(図1参照)、これによって、軸周りに自転可能となっている。
また、小径転動体11の一端は、自在継手17を介して駆動源2に接続されている。これにより、小径転動体11は、小径転動体11が自転する方向に小径転動体11を駆動する駆動源に接続されたものとなっている。
さらに、小径転動体11の外周面は、大径転動体12の外周面と接触させられている(図1及び図2参照)。また、小径転動体11の外周面は、第1仮想回転軸X1に平行な円筒形状となっている。
小径転動体11を支持する軸受151及び152は、いずれも、支持体3に形成されたスリット311及び312に収納されている。スリット311及び312に収納された状態において、軸受151及び152は、大径転動体12の半径方向(図1及び図2において図中上下方向)において移動可能となっている。これは、各スリットと各軸受との間に間隙を設け、その間隙の範囲で各軸受が移動可能とすることによって実現できる。この構成により、本実施形態の小径転動体11は、大径転動体12の半径方向において移動可能となっている。
大径転動体12は、大径転動体12の外周を構成する外周部121と、この外周部121に固定された伝動部122とを備えている。
大径転動体12は、第2仮想回転軸X2を中心として自転可能となっている。より具体的には、大径転動体12は、ハブ5及び軸受6を介して車軸4に回転自在に取り付けられており、これによって、自転可能となっている。
大径転動体12における第2仮想回転軸X2は、小径転動体11における第1仮想回転軸X1とほぼ平行となるように配置されている。また、大径転動体12の外周面は、第2仮想回転軸X2に平行な円筒形状となっている。すなわち、大径転動体12の外周面(円筒面)は、小径転動体11の第1仮想回転軸X1とも平行となっている。
また、大径転動体12の直径と小径転動体11の直径との比は、適宜に設定することができるが、例えば、2〜50:1程度に設定することができる。
大径転動体12の伝動部122は、ハブ5に対して、ボルトによって固定されている。これによって、大径転動体12の外周部121が自転すると、ハブ5も回転するようになっている。
補助転動体13は、第3仮想回転軸X3を中心として自転可能となっている。より詳しくは、補助転動体13の両端部は、軸受161及び162によって支持されており(図1参照)、これによって、軸周りに自転可能となっている。
また、補助転動体13の外周面は、大径転動体12の外周面と接触させられている。
さらに、補助転動体13の第3仮想回転軸X3は、小径転動体11の第1仮想回転軸X1とほぼ平行となるように配置されている。
さらに、補助転動体13は、大径転動体12を挟んで、小径転動体11の反対側となる位置に配設されている。具体的には、補助転動体13の仮想回転軸X3と、大径転動体12の仮想回転軸X2と、小径転動体11の仮想回転軸X1とは、一つの平面P0上に配置されたものとなっている(図2参照)。つまり、補助転動体13は、小径転動体11との間で大径転動体12を挟んでいる。ただし、本明細書においては、後述するように、補助転動体13は、小径転動体11のちょうど反対側でなくてもよい。したがって、本明細書において、「大径転動体12を挟む位置」とは、ちょうど反対側に位置することだけを意味するものではなく、2部材の間に大径転動体12が存在する位置関係を広く含む意味である。
また、補助転動体13を支持する軸受161及び162は、いずれも、支持体3に形成されたスリット321及び322に収納されている。スリット321及び322に収納された状態において、軸受161及び162は、大径転動体12の半径方向(図1及び図2において図中上下方向)において移動可能となっている。これは、小径転動体11の場合と同様、各スリットと各軸受との間に間隙を設け、その間隙の範囲で各軸受が移動可能とすることによって実現できる。この構成により、本実施形態の補助転動体13は、大径転動体12の半径方向において移動可能となっている。
調圧リング14は、小径転動体11と大径転動体12と補助転動体13とを囲むように配置されている(図1及び図2参照)。つまり、調圧リング14は、大径転動体12より大きな径とされており、小径転動体11と大径転動体12と補助転動体13とがその内部に収納されたものとなっている。ここで、調圧リング14の内径をN、小径転動体11の外径をn1、大径転動体の外径をn2、補助転動体13の外径をn3、寸法公差をdとすると、これらには以下の関係が成り立つ。
N=n1+n2+n3+d
dの値をどの程度に設定するかは、加工、組み立て、回転抵抗などの諸要素を勘案して決定される。一般に、dの値が小さくなると、調圧リング14が自転するための回転抵抗が大きくなる傾向にあり、dの値が大きくなると、調圧リング14による調圧動作(後述)が生じにくくなる傾向にある。
調圧リング14は、第4仮想回転軸X4を中心として自転可能となっている。より詳しくは、調圧リング14は、本実施形態においては、小径転動体11と補助転動体13とによって支持された構成になっている。このため、調圧リング14は、小径転動体11及び補助転動体13が回転することにより自転できる構成となっている。
さらに、調圧リング14における第4仮想回転軸X4は、大径転動体12における第2仮想回転軸X2とほぼ平行となるように配置されている。さらに、この第4仮想回転軸X4は、本実施形態では、第2仮想回転軸X2と実質的に同じ位置に配置されている。ただし、後述するように、調圧リング14は、たわみ又は偏心可能なので、その分だけ仮想回転軸X4の位置は軸X2からずれることになる(図1では両者を同じ位置に記載している)。
さらに、調圧リング14の内周面は、小径転動体11の外周面と補助転動体13の外周面とに接触させられている。つまり、前記したように、調圧リング14は、本実施形態においては、小径転動体11と補助転動体13とによって支持された構成になっている。
(車輪駆動装置の構成)
駆動源2としては、本実施形態では、電動のモータが用いられている。ただし、駆動源2として他の種類のもの(例えば内燃機関)を用いることは可能である。要するに、駆動源2としては、回転出力を取り出せるものであればよい。
駆動源2は、支持体3に、ボルトによって固定されている。駆動源2の出力軸は、自在継手17によって、小径転動体11に接続されている。これにより、駆動源2からの回転力を用いて、小径転動体11を回転させることができるようになっている。
支持体3は、車輪駆動装置の本体部分を構成する部分であり、主要な部品を支持するようなっている。
車軸4は、この実施形態では、車両本体10(図1においてその一部のみを示す)に固定されており、回転しないようになっている。
ハブ5は、二つの軸受6によって、車軸4に対して、回転自在となるように取り付けられている。ハブ5の外周面には、車輪(図示せず)が取り付けられるようになっている。また、前記したとおり、ハブ5には、大径転動体12の伝動部122がボルトによって固定されている。
(第1実施形態の動作)
つぎに、第1実施形態に係る車輪駆動装置及びそれに用いられている変速装置の動作を説明する。
まず、駆動源2を動作させ、これによって、小径転動体11を回転駆動させる。この例では、説明の便宜上、図2において時計方向に小径転動体11が自転するものとする。もちろん、小径転動体11を逆方向に回転させてもよい。
すると、小径転動体11に接触する大径転動体12は、小径転動体11から接線方向(図2の例では、図中左方向)への力を受けて自転する。この例では、大径転動体12は、反時計方向に自転する。さらに、大径転動体12の自転に伴い、補助転動体13も接線力(接線方向の力)を受けて自転する。この例では、補助転動体13は時計方向に自転する。
一方、小径転動体11及び補助転動体13が回転を始めると同時に、調圧リング14も、小径転動体11から接線力を受けて回転を始める。より詳しくは、小径転動体11から、図2において右方向への接線力を受けて、時計回りに自転する。
このとき、本実施形態の変速装置では、大径転動体12での負荷が上昇すると、次のような現象を生じる。すなわち、小径転動体11を基準にして、調圧リング14の回転方向における後側(つまり、図3の例では、小径転動体11よりも左側)における、調圧リング14と大径転動体12との間隔L1が、それと反対側における間隔L2よりも狭くなる(図3参照)。この現象は、小径転動体11の回転による接線力が調圧リング14に作用し、調圧リング14をたわませるためである。より詳しくは、この作用は、次のような物理的帰序に基づくものと考えられる。すなわち、
・小径転動体11と調圧リング14との接触状態において、小径転動体11から調圧リング14に接線力が作用する
・調圧リング14がd0だけ偏心する
・間隔L1及びL2が生じる
・平面P0上で
Figure 2008121881
が成立する
・調圧リング14が
Figure 2008121881
だけたわむ
・調圧リング14の内部に応力が生じる
・調圧リング14の内周面と小径転動体14の外周面との接触面に押圧力が生じる。なお、ここで、調圧リング14のたわみ量は、一般に微少である。
本実施形態では、調圧リング14が小径転動体11と補助転動体13とによって支持されているために、調圧リング14は、たわみによって変形することが可能となっている。また、調圧リング14は、このたわみによって、若干量であるが、偏心することが可能となっている。間隔L1が間隔L2より狭くなる(L1<L2)という前記の現象は、この偏心によりもたらされたものと説明することも可能である。
さらに、このとき、小径転動体11は、調圧リング14から、大径転動体12の半径方向において内側(以下において「法線方向」と言うことがある)への押圧力を受ける。つまり、小径転動体11の回転力の一部は、調圧リング14を介して、小径転動体11自身を内側方向へ押圧する押圧力に変換される。
また、本実施形態では、小径転動体11を支持する軸受151及び152が、大径転動体12の半径方向において移動可能となるように、支持体3のスリット311及び312によって保持されている。このため、法線方向の力を受けた小径転動体11は、スリット311・312に沿って移動し、大径転動体12の外周面に押し付けられる。本実施形態では、この法線方向の力によって、小径転動体11と大径転動体12との摩擦力を高くすることができ、両者の間の滑りを防止することができる。
ただし、スリット311及び312を形成していない場合であっても、調圧リング14は、それ自体のたわみによって変形できるので、たわみの範囲内では、前記した摩擦力の向上という作用を発揮できる。したがって、この場合でも、小径転動体11と大径転動体12との滑りの抑止効果を発揮できる。
ここで、小径転動体11と大径転動体12との摩擦力は、大径転動体12への負荷が増加するほど増大する。これは、小径転動体11から大径転動体12への押圧力(法線方向の力)が、小径転動体11から大径転動体12への接線力に基づくためと考えられる。例えば、大径転動体12による負荷が増大して、小径転動体11から大径転動体12への接線力が上昇すると、調圧リング14の偏心量(たわみ量)が増大しようとする。すると、調圧リング14から小径転動体11への押圧力(法線方向の力)が増大し、小径転動体11と大径転動体12との摩擦力が増大すると考えられる。
したがって、本実施形態によれば、大径転動体12への負荷が増大しても、小径転動体11と大径転動体12との間での滑りを低く抑えることが可能になるという利点がある。しかも、軽負荷時には、小径転動体11から大径転動体12への押圧力は低いまま維持されるので、両者間の接触による回転抵抗を低く抑えることができ、したがって、高効率の変速を行うことができる。
しかも、本実施形態では、小径転動体11と大径転動体12とを用いていることにより、高い変速比を得ることができる。例えば小径転動体11の外径を4mm、大径転動体12の外径を80mmとすると、変速比は20(=80/4)となる。一方、二つの歯車の組み合わせを用いた場合は、モジュールを考慮すると、ここまで高い変速比を得ることは困難である。したがって、本実施形態によれば、歯車を用いる場合に比較して、高い変速比でありながら、装置を小型化することが可能である。
さらに、本実施形態では、転動体を用いているので、歯車を用いる場合に比較して、騒音を低く抑えることができる。加えて、装置構成が簡単なので、コストを低く抑えることも可能になる。また、装置の組み立て、加工、保守が容易になるという利点もある。
また、本実施形態では、調圧リング14をその内側から支持する小径転動体11が、スリット311に沿って移動できるので、調圧リング14は、小径転動体11の移動によっても偏心することが可能である。したがって、調圧リング14は、それ自身のたわみによる偏心だけでなく、小径転動体11の移動に伴う偏心も可能であり、これにより、小径転動体11に対して押圧力(法線方向の力)を与えることができる。すると、調圧リング14として、たわみの少ない材料を用いることが可能になる。また、調圧リング14の偏心量(より正確には寸法公差dによって決定される偏心可能な範囲)を増大することができるので、大径転動体12への負荷が増大した場合でも、小径転動体11から大径転動体12への押圧力を一層確実に付与することができ、両者間の滑りを一層抑制できる。なお、前記において、寸法公差dによって偏心可能な範囲が決定されるとしたのは、締まり嵌めのように寸法公差が0のときは、ほとんど偏心を生じないと考えられるからである。偏心量そのものは、たわみ量にも依存するので、寸法公差だけでは決まらない。
さらに、本実施形態では、補助転動体13を支持する軸受161及び162が、大径転動体12の半径方向において移動可能となるように、支持体3のスリット321及び322によって保持されている。このため、調圧リング14から、半径方向内側への力(法線方向の力)を受けた補助転動体13は、その方向へ移動することができる。すると、調圧リング14が偏心可能な範囲は、さらに増大する。これにより、調圧リング14から小径転動体11への押圧力を、一層確実に付与することが可能になる。
また、本実施形態では、小径転動体11と駆動源2との間に自在継手17を介在させているので、小径転動体11が法線方向に移動することが容易になるという利点がある。ただし、小径転動体11の変位量が少なくて良い場合は、自在継手17を省略し、小径転動体11のたわみによって変位させる構成であってもよい。また、自在継手に代えて、例えばゴムや、比較的に弾性の高い金属などの、弾性変形しやすい部材を介して、小径転動体11と駆動源2とを接続しても良い。
本実施形態の変速装置1によって大径転動体12の外周部121が回転すると、伝動部122を介して、ハブ5が、車軸4を中心として回転する。これにより、ハブ5に取り付けられる車輪を回転させることができる。
なお、本実施形態では、前記した第1〜第3仮想回転軸X1〜X3を一つの平面上に配置したので、次のような利点がある。すなわち、この場合は、ハブ5に対して、駆動方向と同じ方向の回転力が加わった場合(つまり、例えば下り坂での走行や惰性走行のように、駆動源2による回転速度より速い速度でハブ5が外力により回転される場合)であっても、調圧リング14は、寸法公差dの範囲内においては、小径転動体11から離間しないと考えられる。その理由は、調圧リング14が、互いに180°ずれた位置にある小径転動体11と補助転動体13とによって支持されていて、常にこれらと接触状態にあるからである。したがって、この場合は、小径転動体11と大径転動体13との間での滑りは低く抑えられることになる。すると、本実施形態では、駆動源2による回転抵抗によって、車輪の回転に制動力を作用させることが可能になる。また、例えば、駆動源2を逆回転させることでブレーキ動作を行わせることもできるので、走行時の安全性を高めることもできる。
また、本実施形態では、小径転動体11の外周面と大径転動体12の外周面とを、いずれも、それらについての各仮想回転軸に平行な円筒形状とし、さらに、これらの仮想回転軸を互いに平行としている。このため、小径転動体11の外周面と大径転動体12の外周面との接触面における速度差(スピン)を、理想的には零とすることが可能である。したがって、本実施形態の装置によれば、ころがり損失を低減させることができ、変速装置の効率を向上させることが可能であるという利点がある。
さらに、本実施形態では、小径転動体11及び補助転動体13を支持する各軸受151,152,161,162を、大径転動体12の半径方向に移動可能としている。このため、この装置によれば、これらの軸受151,152,161,162は、調圧リング14による押圧力の影響を受けにくい。したがって、本実施形態の装置では、調圧リング14からの押圧力による軸受損失が少なくなっており、この点からも、変速装置としての効率を向上させることが可能になる。
また、本実施形態の大径転動体12は、中空の筒状に形成されている(図1及び図2参照)ため、大径転動体12の軽量化を図ることができる。大径転動体12は、変速装置のなかでは比較的大型になりがちな部材なので、大径転動体12を軽量化することにより、変速装置全体の軽量化に大きく寄与することが可能である。
(第2実施形態)
つぎに、本発明の第2実施形態に係る変速装置を用いた車輪駆動装置を、図4に基づいて説明する。本実施形態の説明においては、前記した第1実施形態と基本的に共通する構成要素については同一符号を付することで、説明を簡略化する。
第2実施形態の変速装置1においては、第1及び第2仮想回転軸X1及びX2は、第1平面P1上に配置されている。一方、第2及び第3仮想回転軸X2及びX3は、第2平面P2上に配置されている。
ここで、第1平面P1と第2平面P2とのなす外角θは、0<θ≦20に設定されている(図4参照)。ここで、外角θとは、内角をαとすると
θ=180°−α
で表すことができる(図4参照)。
すなわち、第2実施形態では、補助転動体13の位置が、第1実施形態の場合に比較して移動させられており、これによって、補助転動体13における第3仮想回転軸X3も移動している。さらに、補助転動体13の移動に対応して、これを支持する軸受161及び162や、スリット321及び322の位置も移動させられている。
第2実施形態の変速装置においても、大径転動体12に負荷が作用すると、調圧リング14のたわみ又は移動によって、調圧リング14が偏心し、この調圧リング14によって、小径転動体11が大径転動体12の外周面に対して押圧される。
一方、第2実施形態の変速装置では、前記したように、0°<θとしているので、次のような利点がある。すなわち、この場合は、ハブ5に対して、駆動方向と同じ方向の回転力が加わった場合(つまり、例えば下り坂での走行や惰性走行のように、駆動源2による回転速度より速い速度でハブ5が外力により回転される場合)には、調圧リング14は、その移動により、小径転動体11から離間する方向に移動する。その理由は、調圧リング14が接線力により偏心すると、調圧リング14、小径転動体11及び補助転動体13の位置関係が
N>(n1+n2+n3+d)(1+cosθ)/2
となり、接触状態を維持できなくなるからである。したがって、この場合は、小径転動体11と大径転動体13との間での摩擦力が低下し、大径転動体13は小径転動体11に対して空転することができる。すると、本実施形態では、慣性による走行が可能になる。これにより、動力エネルギーの効率利用が可能となり、省エネルギーに寄与することができる。
また、本実施形態によれば、0°<θとしているために、駆動源2が停止した場合には、手動による走行も容易になるという利点がある。このため、例えば電動車椅子や電気自動車などのための変速装置として、本実施形態のものを好適に利用することができる。
一方、θ≦20°とした場合には、調圧リング14、小径転動体11及び補助転動体13の位置関係が
N<(n1+n2+n3+d)(1+cosθ)/2
となる。このため、大径転動体12に負荷がかかった場合における調圧リング14の偏心量を確保でき、その結果、調圧リング14から小径転動体11への押圧力を確保できるので好ましい。なお、原理的には、20°<θ<180°の範囲であっても、調圧リング14を支持することが可能な場合には、この第2実施形態で説明した利点を発揮できると考えられる。
第2実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の詳しい説明は省略する。
(第3実施形態)
つぎに、本発明の第3実施形態に係る変速装置を用いた動力伝達装置を、図5及び図6に基づいて説明する。本実施形態の説明においては、前記した第1実施形態と基本的に共通する構成要素については同一符号を付することで、説明を簡略化する。
第3実施形態の動力伝達装置は、変速装置1と、ケーシング30と、出力軸40と、二つの軸受60とを備えている。
第3実施形態の変速装置1における伝動部122は、出力軸40に固定されている。出力軸40は、軸受60を介して、ケーシング30に、回転自在に取り付けられている。
また、ケーシング30は、第1実施形態と同様に、小径転動体11用の軸受151及び152を取り付けるためのスリット3011及び3012と、補助転動体13用の軸受161及び162を取り付けるためのスリット3021及び3022とを備えている。これらのスリットにより、小径転動体11及び補助転動体13は、大径転動体12の半径方向に沿って移動可能となっている。
第3実施形態の小径転動体11は、適宜な回転駆動機構(図示せず)に接続されて、回転駆動されるようになっている。小径転動体11が自転すると、第1実施形態において説明した動作により、大径転動体12が自転する。この駆動力は、伝動部122を介して出力軸40に伝達され、出力軸40が回転駆動される。
なお、前記においては、変速装置1を減速機として使用しているが、原理的には、増速機として使用することもできる。すなわち、出力軸40から入力としての回転力を加え、この回転力によって小径転動体11を増速して回転駆動することも原理的には可能である。増速の場合も、前記と同様の原理により、調圧リング14の作用により、小径転動体11を大径転動体12に押圧することができ、両者間の摩擦力を高めることができる。
また、第3実施形態においても、第2実施形態と同様に、補助転動体13の位置を変更することで、小径転動体11の空転を行わせることは可能である。
第3実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の詳しい説明は省略する。
(第4実施形態)
次に、本発明の第4実施形態に係る変速装置1を用いた動力伝達装置を、図7及び図8に基づいて説明する。本実施形態の説明においては、前記した第3実施形態と基本的に共通する構成要素については同一符号を付することで、説明を簡略化する。
第4実施形態の動力伝達装置は、基本的には、第3実施形態における装置において、さらに、大径転動体12の内部に収納された減速機構7を備えたものとなっている。また、大径転動体12の伝動部122は、中間軸741に接続されている。第4実施形態では、この中間軸741の回転力を減速機構7で減速して、出力軸742に出力するようになっている。なお、動力伝達機構においては一般に当然のことであるが、伝動部122と中間軸741とを直接に接続することは必須でなく、間に介在する部材があってもよい。
減速機構7では、中間軸741に与えられた回転が、太陽ローラ71に伝達される。すると、遊星ローラ72は、リング73の内周面において、公転とともに自転する。遊星ローラ72の公転は、軸受74及びこの軸受74が固定されたキャリア75を介して、出力軸742に伝達される。
第4実施形態の装置によれば、減速機構7により、さらに大きな減速比(又は増速比)を得ることが可能となる。さらに、本実施形態では、大径転動体12の内部に減速機構を収納しているので、装置の小型化を図ることができるという利点もある。
第4実施形態における他の構成及び利点は、第1実施形態と同様なので、これ以上の詳しい説明は省略する。なお、第4実施形態における減速機構7としては、遊星ローラ機構を用いているが、これに代えて、遊星歯車機構を用いることも可能である。
なお、本発明に係る変速装置、これを用いた車輪駆動装置及び動力伝達装置は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはもちろんである。
例えば、図示の例では、小径転動体と補助転動体の径がほぼ等しくなっているが、原理的には、等しい必要はない。
また、小径転動体11、大径転動体12、補助転動体13、調圧リング14等の部材の材質は、特に限定されない。好ましくは、摩耗に強く、かつ、ある程度の摩擦力を有するものが用いられる。例えば、これらの材質としては、金属やセラミックスである。いかなる材質であっても、微少のたわみを生じると考えられるので、硬質材料を調圧リング14として用いることも可能である。また、たわみ量が不足する場合でも、既に説明したスリットを用いることで、調圧作用を発揮することは可能である。
さらに、前記した各実施形態では、各スリットにより、小径転動体11と補助転動体13とを、大径転動体12の半径方向において移動可能とした。ただし、スリットの延長方向としては、大径転動体12の半径方向に対して傾斜していてもよい。要するに、小径転動体11と補助転動体13とが、大径転動体12の半径方向への成分を持つ方向に変位できればよい。
また、寸法公差dの範囲を小さくして部品を加工した後、これらの部品どうしを締り嵌め状態で組み上げると、調圧リング14が偏心しなくても押圧力を発生させることができる。この場合には、複数個の補助転動体13を設けることができる。この場合の補助転動体13は、一般の軸受におけるボールやローラの役割を果たし、調圧リング14の位置決めとともに伝達能力の向上にも寄与する。
さらに、小径転動体11の外周面と、大径転動体12の外周面との間は、直接接触していてもよいが、表面損傷を避けるためには、両者の間にトラクションオイルあるいはトラクショングリース(図示せず)を介在させることが好ましい。この場合は、小径転動体11の外周面と大径転動体12の外周面との間に作用する高圧下で、両者間に油膜が存在することになる。小径転動体11と大径転動体12とは、油膜におけるせん断力を摩擦力として利用することによって、一方の回転力を他方に伝達することができる。
本発明の第1実施形態に係る車輪駆動装置の縦断面図である。 図1に示す装置におけるA−A線での矢視図である。 図2に相当する図面であって、変速装置の動作を説明するための説明図である。 本発明の第2実施形態に係る変速装置を示す説明図であって、図2に相当する図面である。 本発明の第3実施形態に係る動力伝達装置の縦断面図である。 図5に示す装置におけるC−C線での矢視図である。 本発明の第4実施形態に係る動力伝達装置の縦断面図である。 図1に示す装置におけるC−C線での矢視図である。
符号の説明
X1〜X4 第1〜第4仮想回転軸
P0 一つの平面
P1・P2 第1平面・第2平面
θ 外角
α 内角
1 変速装置
11 小径転動体
12 大径転動体
121 外周部
122 伝動部
13 補助転動体
14 調圧リング
151・152 小径転動体用の軸受
161・162 補助転動体用の軸受
17 自在継手
2 駆動源
3 支持体
311・312・3011・3012 小径転動体の軸受用のスリット
321・322・3021・3022 補助転動体の軸受用のスリット
4 車軸
5 ハブ(車輪支持部)
6 ハブ用の軸受
7 減速機構
30 ケーシング
40 出力軸
60 出力軸用の軸受

Claims (11)

  1. 小径転動体と、大径転動体と、補助転動体と、調圧リングとを備えており、
    前記小径転動体は、第1仮想回転軸を中心として自転可能となっており、
    かつ、前記小径転動体の外周面は、前記大径転動体の外周面と接触させられており、
    前記大径転動体は、第2仮想回転軸を中心として自転可能となっており、
    かつ、前記大径転動体における前記第2仮想回転軸は、前記小径転動体における前記第1仮想回転軸とほぼ平行となるように配置されており、
    前記補助転動体は、第3仮想回転軸を中心として自転可能となっており、
    かつ、前記補助転動体の外周面は、前記大径転動体の外周面と接触させられており、
    さらに、前記補助転動体の前記第3仮想回転軸は、前記小径転動体の第1仮想回転軸とほぼ平行となるように配置されており、
    さらに、前記補助転動体は、前記小径転動体との間で前記大径転動体を挟む位置に配設されており、
    前記調圧リングは、前記小径転動体と前記大径転動体と前記補助転動体とを囲むように配置されており、
    かつ、前記調圧リングは、第4仮想回転軸を中心として自転可能となっており、
    さらに、前記調圧リングにおける前記第4仮想回転軸は、前記大径転動体における前記第2仮想回転軸とほぼ平行となるように配置されており、
    さらに、前記調圧リングの内周面は、前記小径転動体の外周面と前記補助転動体の外周面とに接触させられている
    ことを特徴とする変速装置。
  2. 前記小径転動体は、前記大径転動体の半径方向において移動可能とされている
    ことを特徴とする請求項1に記載の変速装置。
  3. 前記補助転動体は、前記大径転動体の半径方向において移動可能とされている
    ことを特徴とする請求項1又は2に記載の変速装置。
  4. 前記調圧リングは、前記小径転動体と前記補助転動体とによって支持されている
    ことを特徴とする請求項1〜3のいずれか1項に記載の変速装置。
  5. 前記第1〜第3仮想回転軸は、一つの平面上に配置されている
    ことを特徴とする請求項1〜4のいずれか1項に記載の変速装置。
  6. 前記第1及び第2仮想回転軸は、第1平面上に配置されており、
    前記第2及び第3仮想回転軸は、第2平面上に配置されており、
    前記第1平面と前記第2平面とのなす外角θは、0<θ<180°である
    ことを特徴とする請求項1〜4のいずれか1項に記載の変速装置。
  7. さらに減速機構を備えており、
    前記減速機構は、前記大径転動体の内側に配置されており、
    かつ、前記減速機構は、前記大径転動体に接続されることによって、前記大径転動体に加えられた回転力を減速させる構成となっている
    ことを特徴とする請求項1〜6のいずれか1項に記載の変速装置。
  8. 前記小径転動体は、前記小径転動体が自転する方向に前記小径転動体を駆動する駆動源に接続可能となっている
    ことを特徴とする請求項1〜7のいずれか1項に記載の変速装置。
  9. 請求項1〜8のいずれか1項に記載の変速装置と、車軸と、車輪支持部とを備えており、
    前記車輪支持部は、前記車軸に対して回転可能とされており、
    かつ、前記車輪支持部は、前記大径転動体に接続されて、前記大径転動体の回転に伴って回転する構成となっている
    ことを特徴とする車輪駆動装置。
  10. 請求項1〜8のいずれか1項に記載の変速装置と、出力軸とを備えており、
    前記出力軸は、前記大径転動体に接続されて、前記大径転動体の回転に伴って回転する構成となっている
    ことを特徴とする動力伝達装置。
  11. 請求項1〜7に記載の変速装置であって、前記小径転動体の外周面と、前記大径転動体の外周面とは、両者の間に介在するトラクションオイル又はトラクショングリースによる高圧下の油膜のせん断力を摩擦力として利用することによって、一方の回転力を他方に伝達していることを特徴とする変速装置。
JP2006309793A 2006-11-16 2006-11-16 変速機構 Pending JP2008121881A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006309793A JP2008121881A (ja) 2006-11-16 2006-11-16 変速機構
US12/514,981 US20100099534A1 (en) 2006-11-16 2007-11-13 Transmission mechanism
PCT/JP2007/071950 WO2008059807A1 (fr) 2006-11-16 2007-11-13 Dispositif de transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309793A JP2008121881A (ja) 2006-11-16 2006-11-16 変速機構

Publications (2)

Publication Number Publication Date
JP2008121881A true JP2008121881A (ja) 2008-05-29
JP2008121881A5 JP2008121881A5 (ja) 2009-06-25

Family

ID=39401615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309793A Pending JP2008121881A (ja) 2006-11-16 2006-11-16 変速機構

Country Status (3)

Country Link
US (1) US20100099534A1 (ja)
JP (1) JP2008121881A (ja)
WO (1) WO2008059807A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171156A (en) * 1981-03-06 1982-10-21 Excelermatic Traction roller transmission
JPS63189568U (ja) * 1987-05-29 1988-12-06
JPH0193659A (ja) * 1987-07-10 1989-04-12 Rockwell Cim 減速/増速機構及びこれに使用される弾性圧力リング
JPH0465902U (ja) * 1990-10-12 1992-06-09
JP2005140156A (ja) * 2003-11-04 2005-06-02 Nsk Ltd 摩擦ローラ式変速機
JP2006117003A (ja) * 2004-10-19 2006-05-11 Nsk Ltd 電動式車輪駆動装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151053A (ja) * 1990-10-12 1992-05-25 Takashi Takahashi トラクション型変速装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171156A (en) * 1981-03-06 1982-10-21 Excelermatic Traction roller transmission
JPS63189568U (ja) * 1987-05-29 1988-12-06
JPH0193659A (ja) * 1987-07-10 1989-04-12 Rockwell Cim 減速/増速機構及びこれに使用される弾性圧力リング
JPH0465902U (ja) * 1990-10-12 1992-06-09
JP2005140156A (ja) * 2003-11-04 2005-06-02 Nsk Ltd 摩擦ローラ式変速機
JP2006117003A (ja) * 2004-10-19 2006-05-11 Nsk Ltd 電動式車輪駆動装置

Also Published As

Publication number Publication date
US20100099534A1 (en) 2010-04-22
WO2008059807A1 (fr) 2008-05-22

Similar Documents

Publication Publication Date Title
US8862298B2 (en) Drive control device of hybrid vehicle
US10369880B2 (en) Power transmission device for vehicle
JP5903834B2 (ja) 摩擦ローラ式減速機及び電気自動車用駆動装置
JP4669110B2 (ja) 平行二軸駆動装置
JP5817104B2 (ja) ローラ式摩擦伝動ユニット
US10233906B2 (en) Joint member for wind power generation apparatus, and wind power generation apparatus
JP2014040885A (ja) 摩擦ローラ式変速機
CN102182815A (zh) 一种准双曲面齿轮传动机构
JP2011153645A (ja) 無段変速機及び無段変速機の制御装置
JP2008121881A (ja) 変速機構
JP2010018101A (ja) ハイブリッド車両の駆動力伝達装置
JP5471202B2 (ja) ハイブリッド駆動機構、車両及びその制御方法
JP2007155039A (ja) トラクション変速装置
JP2008215478A (ja) 摩擦式変速装置
JP2011190882A (ja) 無段変速機
JP2014040892A (ja) 摩擦ローラ式変速機
JP2010143576A (ja) 駆動ユニット
JP2016008675A (ja) 摩擦ローラ式減速機
JP2009052666A (ja) 遊星ローラ装置
JP2014214838A (ja) 無段変速機
JP2014196825A (ja) 摩擦ローラ式減速機
JP2007071248A (ja) フォークリフトの動力伝達装置
JP2005265089A (ja) 摩擦式変速装置
CN221723354U (zh) 差速器、电驱动总成及车辆
JP2011056985A (ja) ハイブリッド駆動機構、車両及びその制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313