JP2008121691A - スプリッタランナおよび水力機械 - Google Patents

スプリッタランナおよび水力機械 Download PDF

Info

Publication number
JP2008121691A
JP2008121691A JP2008029867A JP2008029867A JP2008121691A JP 2008121691 A JP2008121691 A JP 2008121691A JP 2008029867 A JP2008029867 A JP 2008029867A JP 2008029867 A JP2008029867 A JP 2008029867A JP 2008121691 A JP2008121691 A JP 2008121691A
Authority
JP
Japan
Prior art keywords
blade
short
blades
long
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029867A
Other languages
English (en)
Inventor
Hideyuki Kawajiri
秀之 川尻
Kiyoshi Matsumoto
貴與志 松本
Takanori Nakamura
高紀 中村
Kotaro Tezuka
光太郎 手塚
Takeo Tokumiya
健男 徳宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008029867A priority Critical patent/JP2008121691A/ja
Publication of JP2008121691A publication Critical patent/JP2008121691A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

【課題】変落差運転時におけるキャビテーション性能の向上を図ったスプリッタランナおよび水力機械を提供する。
【解決手段】クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、翼長の長い羽根の中心線と円周とが水車入口側においてなす角度βaの円周の半径rに対する変化率(∂βa/∂r)が、翼長の短い羽根の中心線と円周とが前記水車入口側においてなす角度βbの円周の半径rに対する変化率(∂βb/∂r)より大きい。
【選択図】図15

Description

本発明は、長翼の間に短翼を配したスプリッタランナおよび水力機械に関する。
水力発電(例えば、揚水発電)に、水の速度エネルギーおよび圧力エネルギーの双方を機械的エネルギーに変換する反動水車が用いられる。反動水車のうちフランシス形水車は、回転軸を中心とする円周方向に複数枚の羽根を配列したランナを有し、水が外周方向からランナへと流入することで、ランナが回転して水車出力が生成される。
フランシス形水車では、ランナの羽根を同一形状とするのが一般的であるが、水車効率、キャビテーション性能、低振動、変落差特性等の水車性能の向上を図るため、羽根を交互に長翼、短翼とするスプリッタランナを用いる場合がある。スプリッタランナでは、多翼化による整流効果により、翼間での2次流れが低減され、水力効率を向上できる。また、羽根一枚当たりの翼負荷が低減されることで、キャビテーション性能を向上できる。なお、スプリッタランナに関する技術が公開されている(特許文献1,2参照)。
特開2000−54944 特開2000−205101
しかしながら、従来のスプリッタランナでは、羽根の特性(例えば、キャビテーション特性)が、長翼と短翼とで異なっている。
例えば、設計点に比べて水の落差が大きい高落差運転時には長翼でキャビテーションが生じ易くなり、設計点に比べて水の落差が小さい低落差運転時には短翼でキャビテーションが生じ易くなる。このような場合には、落差が変動する変落差運転時において、キャビテーションを生じずに運転可能な範囲が制限される。
また、長翼と短翼の特性の相違が、低落差領域や高落差領域での効率低下の原因となる可能性もある。
上記に鑑み、本発明は変落差運転時におけるキャビテーション性能の向上を図ったスプリッタランナおよび水力機械を提供することを目的とする。
本発明に係るスプリッタランナは、クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、前記翼長の長い羽根の中心線と前記円周とが水車入口側においてなす角度βaの前記円周の半径rに対する変化率(∂βa/∂r)が、前記翼長の短い羽根の中心線と前記円周とが前記水車入口側においてなす角度βbの前記円周の半径rに対する変化率(∂βb/∂r)より大きいことを特徴とする。
翼長の長い羽根(長翼)周りの循環と翼長の短い羽根(短翼)周りの循環の違いにより、それぞれの羽根への局所的な流入角度の差が生じる。水車入口側付近の羽根の中心線を調整することで、流入流れに対する両翼の迎え角度の相違が小さくなり、キャビテーション特性を向上できる。
本発明によれば変落差運転時におけるキャビテーション性能の向上を図ったスプリッタランナおよび水力機械を提供できる。
以下、図面を参照して、本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
図1は本発明の第1実施形態に係る水力機械10を側面から見た状態を表す一部断面図である。また、図2は、水力機械10のランナ40を下方(吸出管50側)から見た状態を表す一部断面図である。
水力機械10は、ケーシング20,ガイドベーン(案内羽根)30,ランナ40,吸出管50,回転軸60,発電電動機70を備え、発電(揚水発電を含む)に用いることができる。即ち、ケーシング20から水が流入し、ガイドベーン30およびランナ40を通って、吸出管50に排出されることで、ランナ40が回転されて発電が行われる。
水の落差(揚水発電では上池と下池の水位の相違)によりランナ40が回転されるのであり、水力機械10はいわゆるフランシス形水車として機能する。
ケーシング20は、断面積がしだいに減少するドーナツ形状であり、発電時に上池から水が流入する。
ガイドベーン30は、ケーシング20からランナ40に流入する水の流量を調節するものであり、ランナ40の外側に円周方向に所定の間隔をおいて配置されている。ガイドベーン30はそれぞれ、その中心のまわりに回転でき,それにより水の流量を調節できる。ガイドベーン30によって、水流が円周方向の速度成分をもつ旋回流となり,外周方向からランナ40に流入する。
ランナ40は、クラウン41、バンド42,長翼43,短翼44を備え、ケーシング20から流入する水によって回転される。長翼43(短翼44より長い翼長の羽根),短翼44(長翼43より短い翼長の羽根)は、クラウン41、バンド42間の円周方向に交互に配置される。即ち、ランナ40はスプリッタランナである。なお、ランナ40(特に、長翼43,短翼44)の詳細な形状は後述する。
吸出管50は、ランナ40の回転に用いられた水を放水路(揚水発電の場合は下池)へと流出させる。
回転軸60は、ランナ40の回転運動を発電電動機70に伝達する。
発電電動機70は、回転軸60が回転されることで発電を行う。
(ランナ40の形状の詳細)
図3(A),(B)はそれぞれ、ランナ40の子午面形状、および断面形状を表す図である。図3(A)は、図1に対応し、ランナ40を子午面(回転軸60を含む面)から見た形状を表す。図3(B)は、長翼43、短翼44を図3(A)の面F(回転軸60に垂直な面)で切断した状態を表す。
図1〜3に示すように、短翼44の水車入口端曲線Lbに対し、長翼43の水車入口端曲線Laの少なくとも一部がランナ40の内径側に位置している。
ここで、水車入口端曲線La、Lbはそれぞれ、長翼43、短翼44について、クラウン41、バンド42間の水車入口側(ケーシング20側)の翼端に沿った曲線である。また、水車出口端曲線Ea,Ebはそれぞれ、長翼43、短翼44について、クラウン41、バンド42間の水車出口側(吸出管50側)の翼端に沿った曲線である。円周Da1,Db1はそれぞれ、長翼43、短翼44の水車入口側の複数の翼端を結ぶ円弧であり、回転軸60をその中心とする。
(本実施形態における基本的な考え方)
本実施形態における基本的な考え方を説明する。
図4(A),(B)はそれぞれ、本実施形態の比較例たるランナ40xの子午面形状、および断面形状を表す図であり、図3(A),(B)に対応する。
ランナ40xでは、長翼43xと短翼44xは、翼長が互いに異なるものの、その翼形状が近似しており、回転軸60中心から水車入口側の翼端までの距離が等しい。短翼44xは、長翼43xと別個に作成されるのではなく、長翼43xを水車入口側から65〜80%程度の長さの部分で切り取ることで、作成されるのが通例だからである。
図5は、ランナ40xに流入する水の流れを表す図である。
ランナ40xに、上流(ケーシング20側)から流入角度βwで水が流入する。羽根(長翼43xおよび短翼44x)の近傍では流入角度がΔβw変化して(βw+Δβw)となる。これは、それぞれの羽根(長翼43xおよび短翼44x)の周りの循環に基づく偏向力によるものである。
長翼43と短翼44では、断面形状が異なることから、翼負荷が異なる。一般に、長翼43の翼負荷ΓAが短翼44の翼負荷ΓBに比べて大きいことから、長翼43近傍での流入角度の変化ΔβwAは短翼44近傍での流入角度の変化ΔβwBより大きい(ΔβwA>ΔβwB)。即ち、長翼43への流入角度(βw+ΔβwA)は、短翼44への流入角度(βw+ΔβwB)より大きくなる(βw+ΔβwA > βw+ΔβwB)。
長翼43と短翼44とで水の流入角度が異なることに起因して、ランナ40xのキャビテーション特性の劣化が生じることが判った。以下に、長翼43と短翼44での流入角度の相違とランナ40xのキャビテーション特性の関係につき説明する。
長翼43と短翼44での流入角度の相違は、迎え角(流入角度と羽根角度の差、正確には翼弦(水車入口側端部と水車出口側端部とを結ぶ羽根の中心線)が水の流れ方向(流線)となす角度)の相違をもたらす。
迎え角が大きいと羽根の水車入口側端部付近の翼面で静圧が低下し易くなる。従い、キャビテーション(静圧が局部的に蒸気圧以下になり,その部分の水が蒸発して水蒸気の気泡が生ずる現象)が生じやすくなる。
この結果、長翼43と短翼44とで迎え角が異なると、キャビテーションが発生する条件が長翼43と短翼44とで異なり、ランナ40x全体としてキャビテーションが発生し易くなる。長翼43と短翼44いずれでキャビテーションが発生しても、ランナ40xにキャビテーションが生じることに変わりはないからである。
以上のように、長翼43と短翼44で水の流入角度(究極的には迎え角)が相違することで、ランナ40xにキャビテーションが発生し易くなる。逆にいえば、長翼43と短翼44での迎え角の差異を小さくすることで、水車のキャビテーション性能等を向上できる。
本実施形態では、長翼43の水車入口端曲線Laの少なくとも一部を短翼44の水車入口端曲線Lbよりもランナ40の内径側に位置させることで、長翼43と短翼44での迎え角の差異の解消を図っている。
(ランナ40の特性)
以下、本実施形態に係るランナ40の特性を比較例のランナ40xと対比して説明する。
図6(A)、(B)はそれぞれ、図4に示した比較例のランナ40x、図1〜3に示した本実施形態のランナ40でのキャビテーション特性を表すグラフである。グラフの横軸が水の落差(上池と下池の水位の差)であり、縦軸がランナに流入する水の流量を表す。
破線が水車効率の等しい点を結んだ等効率曲線を表す。また、実線が長翼43の水車入口(ケーシング20側の翼端)でのキャビテーションの初生点を、一点鎖線が短翼44の水車入口でのキャビテーションの初生点を表す。なお、「×」は、水車効率が最高になる最高効率点を表す。
図7(A)、(B)はそれぞれ、図4に示した比較例のランナ40x、図1〜3に示した本実施形態のランナ40の最高効率点付近での静圧分布を表すグラフである。また、図8(A)、(B)はそれぞれ、高落差側、低落差側での比較例のランナ40xの静圧分布を表すグラフである。図9(A)、(B)はそれぞれ、高落差側、低落差側での本実施形態のランナ40の静圧分布を表すグラフである。
図7〜9のグラフの横軸は翼面上の流線に沿った長さであり、縦軸は翼面の静圧を表す。
図6(A)に示すように、比較例においては、高落差側でのキャビテーション初生点は長翼43xの方が短翼44xより低落差側である。逆に、低落差側でのキャビテーション初生点は短翼44xの方が長翼43xより高落差側である。このため、水車入口のキャビテーション無発生区間(最高効率点の流量でキャビテーションが発生しない落差の幅)S0が狭くなっている。
これに対して、図6(B)に示すように、本実施形態では長翼43と短翼44のキャビテーション初生点が高落差側、低落差側の双方で一致している。このため、水車入口のキャビテーション無発生区間(最高効率点の流量でキャビテーションが発生しない落差の幅)S1が広くなり、水車入口でのキャビテーション特性が向上する。
これは、図8,9に示すように、水車入口側の翼面の静圧の最低点が、比較例では長翼43x,短翼44xで一致せず、本実施形態では長翼43,短翼44で一致することによる。図8から、高落差側では長翼43xの水車入口側翼端で、低落差側では短翼44xの水車入口側翼端で、それぞれの静圧が水の飽和蒸気圧より低下し、キャビテーションが発生することが判る。なお、図8、9では高落差、低落差の場合を示したがその中間においても長翼43,短翼44の静圧の一致、不一致の傾向には特に変わりがない。
なお、図6から、長翼43と短翼44の無衝突流入点が比較例では一致せず、本実施形態では一致していることも判る。
本実施形態に係るランナ40では、上流(ケーシング20側)から自由渦的に流入してくるほぼ圧力一定な流れが、ランナ40の外径側に位置する短翼44に作用することにより、短翼44がまず負荷を持つ。従い、長翼43には圧力が減少した流れが作用する。
このために、本実施形態に係るランナ40では、短翼44と長翼43の入口端が同一円周上に位置する比較例に比べて、短翼44が受け持つ負荷が増加し、逆に長翼43が受け持つ負荷が減少する。従い、比較例では図7(A)に示すように長翼43xが大きな負荷を持ち、短翼44xはあまり大きな負荷を持たないのに対して、本実施形態では図7(B)に示すように長翼43と短翼44の翼負荷が均一化される(長翼43の静圧の積分値が、短翼44の静圧の積分値に近づく)。
以上から、本実施形態では長翼43、短翼44の入口側翼端で作用する偏向力の差異が低減し、流れの流入角度(βw+Δβw)の相違が小さくなる。従い、変落差運転時の入口側翼端における圧力低下レベルの差も小さくなる。
その結果、図6(B)に示すように、水車入口キャビテーションの初生点を長翼43と短翼44でほぼ同じ落差とすることができ、水車入口のキャビテーション性能の向上が可能となる。
これに加えて、長翼43が短くなることにより、同サイズのランナ40xと比べて、摩擦損失が減少することから、水力効率が向上する。
さらに、長翼43と短翼44の特性のずれが改善されて無衝突流入点が一致するため最高効率が向上する。
続いて、長翼43と短翼44の外径を変化させた場合を定量的に説明する。
図10は、長翼43と短翼44の外径の比とキャビテーション無発生区間Sの関係を表すグラフである。グラフの横軸が、回転軸に垂直な断面における長翼43の外径Da1と短翼44の外径Db1の比Da1/Db1を表す。横軸が、長翼43と短翼44の外径が等しいときのキャビテーション無発生区間S0に対するSとキャビテーション無発生区間S1の比S1/S0を表す。
長翼43と短翼44の外径の比(Da1/Db1)が小さくなると、短翼44周りの循環ΓBが増し、長翼43周りの循環ΓAが減少する。このため、それぞれの羽根への局所的な流入角度の差が小さくなり、S1/S0が大きくなる。
一方、Da1/Db1が小さくなりすぎると、逆に短翼44が過大な負荷を持ち、短翼44周りの循環ΓBが長翼43周りの循環ΓAを上回ることとなる。このため、短翼44と長翼43の立場が逆転してS1/S0が減少に転じる。
そこで図10に示すように、長翼43の外径と短翼44の外径の比Da1/Db1を0.85以上、0.98以下の範囲とすることで(0.85≦Da1/Db1≦0.98)、キャビテーション無発生区間Sを大きくすることが可能となる。
(第2の実施の形態)
本発明の第2の実施形態を説明する。
図11は、本発明の第2の実施形態に係るランナ40aの断面形状を表す断面図である。本図は、図3(B)と異なり、水車入口(ケーシング20側)から水車出口(吸出管50側)への水の流路に沿う面で長翼43と短翼44とを切断し、これを展開した状態を表す。
本実施形態では、長翼43の羽根最大厚みTaが、短翼44の羽根最大厚みTbより小さくなっている(Ta<Tb)。羽根最大厚みTa、Tbは、羽根(長翼43、短翼44)を流路に沿う面で切断したときの羽根の厚みの最大値をいう。
羽根の厚みおよび翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
本実施形態において、長翼43と短翼44での迎え角の相違を低減することで、キャビテーション特性の向上を図っていることは、第1の実施形態と同様である。但し、本実施形態では、長翼43と短翼44の厚みに着目して長翼43と短翼44の迎え角の相違を低減している。
短翼44の厚みを増すことで、短翼44周りの循環が増加し、短翼44がより大きな負荷を持つ。このため、短翼44と長翼43の翼負荷の差異が小さくなる(翼負荷の差異の均一化)。
この結果、長翼43と短翼44の水車入口側翼端に作用する偏向力の差異が低減し、迎え角度の相違が小さくなり、キャビテーション性能の向上が可能となる。
次に、長翼43、短翼44の羽根最大厚みTa、Tbと水力損失の関係につき説明する。
図12は、長翼43に対する短翼44の羽根最大厚みの比Tb/Taと水力損失の関係の1例を表すグラフである。横軸が長翼43の羽根最大厚みTaに対する短翼44の羽根最大厚みTbの比(Tb/Ta)を、縦軸が水力損失を表す。なお、本図では流入流れと長翼43とのマッチングがとれている運転点を例にとっている。
短翼44周りの循環が増加することで、流入流れの角度変化Δβwが大きくなり、短翼44の無衝突流入角度付近で短翼44の衝突損失が最小になる。短翼44をさらに厚くして短翼44回りの循環が増すと、短翼44の衝突損失は増加に転じる。
一方、短翼44が厚くなると、流路の断面積が減少し、平均流速が増加するために摩擦損失は増加する。
この結果、衝突損失と摩擦損失を合計した水力損失は、羽根最大厚みの比Tb/Taが変化することで、減少し、その後に増加することとなる。
図12に示すように、長翼43と短翼44の羽根最大厚みの比Tb/Taを、1.05以上、1.3以下(1.05≦Tb/Ta≦1.3)とすることで、合計の水力損失を最小限の範囲とすることができた。即ち、短翼44をある程度厚くすることで、短翼44の水力損失の低減を図ることができる。
この場合、短翼44が厚くなることで、水力損失の低減と併せて、短翼44の強度の向上をも図ることができる。
(第3の実施の形態)
本発明の第3の実施形態を説明する。
図13は本発明の第3の実施形態に係るランナ40bを側面(外径方向)から見た状態を表す側面図である。
クラウン41とバンド42の間に、長翼43と、短翼44が周方向に交互に配置されている。本実施形態では、長翼43の水車入口端曲線Laとバンド42の面とがなす角θaより、短翼44の水車入口端曲線Lbとバンド42の面とがなす角θbが大きい。
正確には、角度θaは接線6bと接線6cとのなす角として、角度θbは接線7bと接線7cとのなす角として定義できる。
接線6bは、外径方向から見た長翼43の水車入口端曲線Laとバンド42との交点6aにおける、水車入口端曲線Laの接線である。接線6cは、交点6aにおける、交点6aを通り回転軸60を中心とする円の回転方向と反対向きの接線である。
接線7bは、外径方向から見た短翼44の水車入口端曲線Lbとバンド42との交点7aにおける、水車入口端曲線Lbの接線である。接線7cは、交点7aにおける、交点7aを通り回転軸60を中心とする円の回転方向と反対向きの接線である。
水車入口端曲線の角度および翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
本実施形態においては、長翼43と短翼44の水車入口端曲線の角度に着目して長翼43と短翼44の迎え角の相違を低減している。
図14は、長翼43の水車入口端曲線の角度θaとキャビテーションの関係の1例を表すグラフである。グラフの横軸は長翼43の水車入口端曲線の角度θaを表す。グラフの縦軸は長翼43の負圧面での最低静圧Psa-min(破線のグラフ)および水力効率(実線のグラフ)を表す。ここでは、水車入口端近傍の負圧面でキャビテーションが発生し易い運転点を例に挙げている。
図14から、長翼43の水車入口端曲線の角度θaより短翼44の水車入口端曲線の角度θbを大きくすることで、水力効率をさほど低下させずに、キャビテーションを防止できることが判る(静水圧を飽和蒸気圧より大きくする)。
これは、長翼43での角度θaを短翼44での角度θbより小さくすることで、長翼43の水車入口端付近バンド42側(交点6a付近)の負圧面での流れの偏りが緩和されることによる。流れの偏りの緩和によって、交点6a付近での局所的な圧力低下が抑制される。
短翼44と長翼43が水車入口側で同一の羽根形状を持つ場合には、図6(A)および図8(A)で示したように、高落差運転時において、短翼44よりも低い落差で、長翼43の水車入口側負圧面にキャビテーションが発生する。
これに対して、長翼43の角度θaを短翼44の角度θbより小さくすることで、長翼43での圧力低下を短翼44に比較して緩和し、長翼43のキャビテーション初生点をより高落差側に移すことができる。即ち、水車入口側負圧面でキャビテーションが発生する落差を短翼44と長翼43で一致させることができ、高落差側での運転範囲を拡大できる。
短翼44、長翼43の角度θb、θaは、水車入口での高落差側キャビテーション特性が仕様を満足するように設定される。短翼44の角度θbは、短翼44の入口負圧面でキャビテーションが発生しないように定められる。そして、短翼44、長翼43の角度差(θb−θa)をある程度大きくすることで、長翼43の入口負圧面でのキャビテーションの発生を防止できる。
この一方、図14に示すように、角度差(θb−θa)を大きくし過ぎると水力効率が低下する。
図14に示すように、角度差(θb−θa)を5°以上30°以下とすることで、飽和蒸気圧(キャビテーションが発生する圧力)に対して、静水圧のマージンを確保し、かつ水力効率を損なわないことが可能となる。
(第4の実施の形態)
本発明の第4の実施形態を説明する。
図15は、本発明の第4の実施の形態に係るランナ40cの断面形状を表す断面図である。本図は、水車入口(ケーシング20側)から水車出口(吸出管50側)への水の流路に沿う面で長翼43と短翼44とを切断し、これを展開した状態を表す。
本実施形態では、水車入口側において、長翼43の反り量Caが短翼44の反り量Cbより大きい。
ここで、長翼43の反り量Caは、長翼43のキャンバーライン45(流路に沿って、水車入口側端部と水車出口側端部とを結ぶ長翼43の中心線)と回転軸60を中心とする半径rの円とのなす角度βaの半径rに対する変化率(∂βa/∂r)として定義できる。
また、短翼44の反り量Cbは、短翼44のキャンバーライン46(流路に沿って、水車入口側端部と水車出口側端部とを結ぶ短翼44の中心線)と半径rの円とのなす角度βbの半径rに対する変化率(∂βb/∂r)として定義できる。
羽根の反り量および翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
本実施形態において、長翼43と短翼44での迎え角の相違を低減することで、キャビテーション特性の向上を図っていることは、第1の実施形態と同様である。但し、本実施形態では、長翼43と短翼44の反り量に着目して長翼43と短翼44の迎え角の相違を低減している。
図5で示したように、長翼43と短翼44では翼周りの循環が異なり、長翼43に比べて短翼44は循環の偏向力による流れの角度変化が小さくなり易い。
本実施形態では、短翼44、長翼43それぞれへの水の流入角度(βw+Δβ)の相違を考慮して水車入口付近のキャンバーライン45,46を設定している。この結果、短翼44、長翼43での迎え角度の相違が小さくなり、キャビテーション性能が向上する。
(第5の実施の形態)
本発明の第5の実施形態を説明する。
本実施形態では、長翼43の水車入口端角度βa1を短翼44の水車入口端角度βb1より大きくする。
羽根の水車入口端角度および翼長以外の条件は、長翼43と短翼44とで大きく変わることはない。即ち、本実施形態では、長翼43と短翼44の外径Da1、Db1は等しいとしている。
これ以外の条件は第1の実施形態と本質的に異なる訳ではないので、全体の構成の図示、説明は省略する。
本実施形態において、長翼43と短翼44での迎え角の相違を低減することで、キャビテーション特性の向上を図っていることは、第1の実施形態と同様である。但し、本実施形態では、長翼43と短翼44の水車入口端角度に着目して長翼43と短翼44の迎え角の相違を低減している。
まず、ランナ40の水車入口端における、羽根(長翼43、短翼44)に対する水の流れの平均的な相対流入角度φを表す式を導出する。この相対流入角度φは、迎え角に対応する量であり、長翼43、短翼44とで相対流入角度φが一致するように、長翼43と短翼44の水車入口端角度を設定する。
羽根の外径をD1[m]、ランナ40入口におけるのみ口高さをB[m]、ランナ40の回転速度をn[1/sec]、ランナ40に流入する水の流量をQ[m/sec]、水の落差をH[m]、ランナ40に流入する水の平均径方向速度をVm[m/sec]、ランナ40に流入する水の平均周方向速度をVth[m/sec]、ランナ40に流入する水の流れの絶対角度をα[°]とする。
このとき、単位落差(√H)あたりの回転速度n1は(n1=n/√H)、単位落差(√H)あたりの流量Q1は(Q1=Q/√H)とそれぞれ表される。
図16は、羽根の水車入口端での速度三角形を表す図である。この速度三角形により次の式(1)の関係がなりたつ。
Vm=(Q1・√H)/(π・D1・B)
u=π・D1・n1・√H
Vth=Vm/tanα …式(1)
相対流入角度φ(°)は、次の式(2)で表される。
φ=tan−1[Vm/(u−Vth)]
=tan−1{[(Q1・√H)/(π・D1・B)]
/[π・D1・n1・√H−Q1・√H/(π・D1・B・tanα)}
=tan−1[Q1/(π・D1・B・n1−Q1/tanα)]
…式(2)
長翼43での単位落差あたりの回転速度n1A、流量Q1A、短翼44での単位落差あたりの回転速度n1B、流量Q1Bを式(2)に代入する。
各運転点における長翼43の相対流入角度φAと、短翼44の相対流入角度φBの差(φA−φB)は、次の式(3)で表される。
φA−φB
= tan−1[Q1A/(π・D1・B・n1A−Q1A/tanα)]
−tan−1[Q1B/(π・D1・B・n1B−Q1B/tanα)]
…式(3)
回転速度nと流量Qを変化させてランナを動作させ、長翼43と短翼44それぞれにおける水車入口でのキャビテーションの初生点を測定した。
但し、ここでは羽根の長さ、形状が全て同一のランナ(スプリッタランナでない通常のフランシス形水車用のランナ)を用いた。これは、スプリッタランナの羽根(長翼、短翼)それぞれの近傍での流れの傾向と、通常のランナの羽根それぞれの近傍での流れの傾向とが大まかには一致する傾向があることによる。
即ち、ここでは、スプリッタランナで長翼、短翼の双方が存在することによる流れの複雑化要因を無視し、一種の近似化(あるいは、平均化)を行っている。
測定結果から相対的流入角度の差(φA−φB)を算出した結果、相対的流入角度の差(φA−φB)、即ち、長翼43と短翼44に対する水の流入角度の差は2°から6°の範囲であることが判った。
従って、この相対的流入角度差(φA−φB)に対応するように長翼43と短翼44の水車入口端角度β1をずらすことで、長翼43と短翼44に対する相対的な水の流入角度、即ち、互いの迎え角を近づけることができる。
具体的には、長翼43の水車入口端角度βa1と短翼44の水車入口端角度βb1の差(βa1−βb1)が算出された相対的流入角度差(φA−φB)に等しくなるように、長翼43、短翼44の水車入口端角度βa1、βb1のいずれかまたは双方を修正する。例えば、短翼44の水車入口端角度βb1を長翼43の水車入口端角度βa1に対してΔφB(=φA−φB)だけずらす(2°≦ΔφB≦6°)。
このようにすることにより、流入する流れに対して長翼43と短翼44それぞれでの迎え角度の相違を小さくして、キャビテーション性能を向上することが可能となる。
(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
上記実施形態では、クラウン、バンド間の円周方向に長翼43と短翼44とを交互に配置したスプリッタランナにおいて、長翼43と短翼44での流入角度に対する羽根角度(迎え角度)の差異を小さくすることで、キャビテーション性能等の向上を図っている。このように、羽根同士での迎え角度の相違を小さくすることが可能で有れば、本発明の実施形態に含まれる。
上記実施形態では、それぞれ単一のパラメータ(例えば、羽根の外径、厚み、バンド面との角度、反り、水車入口端角度)を長翼43と短翼44それぞれで調節することで、迎え角の均一化を図っていた。これに対して、複数のパラメータを任意に組み合わせることで迎え角の均一化を図ることも可能である。即ち、羽根の外径等のパラメータを2つ以上組み合わせても差し支えない。
本発明の第1実施形態に係る水力機械を側面から見た状態を表す一部断面図である。 本発明の第1実施形態に係る水力機械のランナを下方から見た状態を表す一部断面図である。 本発明の第1実施形態に係る水力機械のランナの子午面形状、および断面形状を表す図である。 本発明の実施形態の比較例たるランナの子午面形状、および断面形状を表す図である。 本発明の実施形態の比較例たるランナに流入する水の流れを表す図である。 本発明の第1実施形態に係る水力機械のランナのキャビテーション特性の1例を比較例と対比して表すグラフである。 本発明の第1実施形態に係る水力機械のランナの最高効率点付近での静圧分布の1例を比較例と対比して表すグラフである。 本発明の実施形態の比較例たるランナの高落差側、低落差側での静圧分布を表すグラフである。 本発明の第1の実施形態に係るランナの高落差側、低落差側での静圧分布の1例を表すグラフである。 長翼と短翼の外径の比とキャビテーション無発生区間の関係の1例を表すグラフである。 本発明の第2の実施形態に係るランナの断面形状を表す断面図である。 長翼に対する短翼の羽根最大厚みの比と水力損失の関係の1例を表すグラフである。 本発明の第3の実施形態に係るランナを側面から見た状態を表す側面図である。 長翼の水車入口端曲線の角度とキャビテーションの関係の1例を表すグラフである。 本発明の第4の実施の形態に係るランナの断面形状を表す断面図である。 羽根の水車入口端での速度三角形を表す図である。
符号の説明
10…水力機械、20…ケーシング、30…ガイドベーン、40…ランナ、41…クラウン、42…バンド、43…長翼、44…短翼、50…吸出管、60…回転軸、70…発電電動機

Claims (2)

  1. クラウン、バンド間に、翼長の長い羽根と翼長の短い羽根とが、回転軸を中心とする円周方向に交互に配置されてなるスプリッタランナであって、
    前記翼長の長い羽根の中心線と前記円周とが水車入口側においてなす角度βaの前記円周の半径rに対する変化率(∂βa/∂r)が、前記翼長の短い羽根の中心線と前記円周とが前記水車入口側においてなす角度βbの前記円周の半径rに対する変化率(∂βb/∂r)より大きい
    ことを特徴とするスプリッタランナ。
  2. 請求項1記載のスプリッタランナ
    を具備することを特徴とする水力機械。
JP2008029867A 2008-02-12 2008-02-12 スプリッタランナおよび水力機械 Pending JP2008121691A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029867A JP2008121691A (ja) 2008-02-12 2008-02-12 スプリッタランナおよび水力機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029867A JP2008121691A (ja) 2008-02-12 2008-02-12 スプリッタランナおよび水力機械

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003203613A Division JP4163062B2 (ja) 2003-07-30 2003-07-30 スプリッタランナおよび水力機械

Publications (1)

Publication Number Publication Date
JP2008121691A true JP2008121691A (ja) 2008-05-29

Family

ID=39506668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029867A Pending JP2008121691A (ja) 2008-02-12 2008-02-12 スプリッタランナおよび水力機械

Country Status (1)

Country Link
JP (1) JP2008121691A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523064B1 (ja) * 2009-05-21 2010-08-11 藤沢電機管工株式会社 発電装置およびこの発電装置を備えるエネルギー回収システム
FR3100582A1 (fr) * 2019-09-09 2021-03-12 Supergrid Institute Roue de type Francis pour machine hydraulique à stabilité améliorée

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184876U (ja) * 1985-05-10 1986-11-18
JPH11319529A (ja) * 1998-05-08 1999-11-24 Nishigaki Pump Seizo Kk ガス吸収処理装置
JP2000054944A (ja) * 1998-08-05 2000-02-22 Tokyo Electric Power Co Inc:The 羽根車
JP2000154796A (ja) * 1998-11-19 2000-06-06 Mitsubishi Heavy Ind Ltd 羽根車
JP2000205101A (ja) * 1999-01-13 2000-07-25 Hitachi Ltd ポンプ水車
JP2003139035A (ja) * 2001-10-30 2003-05-14 Mitsubishi Heavy Ind Ltd ポンプ水車の羽根車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184876U (ja) * 1985-05-10 1986-11-18
JPH11319529A (ja) * 1998-05-08 1999-11-24 Nishigaki Pump Seizo Kk ガス吸収処理装置
JP2000054944A (ja) * 1998-08-05 2000-02-22 Tokyo Electric Power Co Inc:The 羽根車
JP2000154796A (ja) * 1998-11-19 2000-06-06 Mitsubishi Heavy Ind Ltd 羽根車
JP2000205101A (ja) * 1999-01-13 2000-07-25 Hitachi Ltd ポンプ水車
JP2003139035A (ja) * 2001-10-30 2003-05-14 Mitsubishi Heavy Ind Ltd ポンプ水車の羽根車

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523064B1 (ja) * 2009-05-21 2010-08-11 藤沢電機管工株式会社 発電装置およびこの発電装置を備えるエネルギー回収システム
JP2010270660A (ja) * 2009-05-21 2010-12-02 Fujisawa Denki Kanko Kk 発電装置およびこの発電装置を備えるエネルギー回収システム
FR3100582A1 (fr) * 2019-09-09 2021-03-12 Supergrid Institute Roue de type Francis pour machine hydraulique à stabilité améliorée
WO2021048132A1 (fr) * 2019-09-09 2021-03-18 Supergrid Institute Roue de type francis pour machine hydraulique à stabilité améliorée

Similar Documents

Publication Publication Date Title
JP4163062B2 (ja) スプリッタランナおよび水力機械
US20110116923A1 (en) Blade for a rotor of a wind or water turbine
JP5117349B2 (ja) 水力機械
JP2009531593A5 (ja)
AU2013333059B2 (en) Hydraulic machine
JP5135033B2 (ja) 軸流水力機械のランナベーン
JP4693687B2 (ja) 軸流水車ランナ
EP3172431B1 (en) Francis turbine with short blade and short band
JP5314441B2 (ja) 遠心型水力機械
JP6639275B2 (ja) 水力機械のガイドベーン及び水力機械
JP2015132219A (ja) インペラ及びそれを備えた回転機械
JP2008121691A (ja) スプリッタランナおよび水力機械
JP5230568B2 (ja) ランナ及び流体機械
JP4280127B2 (ja) フランシス形ランナ
JP4703578B2 (ja) フランシス型水車
JP4861132B2 (ja) 水力機械のランナ及び水力機械用ランナの製造方法
JP6556486B2 (ja) ランナ及び水力機械
JP2007107418A (ja) フランシス形ポンプ水車
JP2012172605A (ja) 流体機械のガイドベーンおよび流体機械
JP7360357B2 (ja) ランナコーンおよび水力機械
JP6407763B2 (ja) 軸流水力機械のランナベーン、軸流水力機械のランナおよび軸流水力機械
JP2007107428A (ja) 水力機械のランナおよびそれを用いた水力機械
JP7085406B2 (ja) 水力機械のランナおよび水力機械
JP2010101265A (ja) フランシス型水力機械のランナおよびフランシス型水力機械
JP2013142356A (ja) 軸流水車

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104