JP2008089575A - ガスフロー測定方法及び装置 - Google Patents

ガスフロー測定方法及び装置 Download PDF

Info

Publication number
JP2008089575A
JP2008089575A JP2007210558A JP2007210558A JP2008089575A JP 2008089575 A JP2008089575 A JP 2008089575A JP 2007210558 A JP2007210558 A JP 2007210558A JP 2007210558 A JP2007210558 A JP 2007210558A JP 2008089575 A JP2008089575 A JP 2008089575A
Authority
JP
Japan
Prior art keywords
gas
flow
sensing circuit
volume
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007210558A
Other languages
English (en)
Other versions
JP2008089575A5 (ja
Inventor
Jared Ahmad Lee
アフマド リー ジャレッド
Ezra Robert Gold
ロバート ゴールド エズラ
Chunlei Zhang
ズハング チュンレイ
James Patrick Cruse
パトリック クルーズ ジェイムズ
Richard Charles Fovell
チャールズ フォーベル リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2008089575A publication Critical patent/JP2008089575A/ja
Publication of JP2008089575A5 publication Critical patent/JP2008089575A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/17Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using calibrated reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0368By speed of fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】ガスフローを測定する方法及び装置を提供する。
【解決手段】一実施形態において、ガス制御のための較正回路を用いて、特に、裏側冷却、処理ガス分配、パージガス分配、クリーニング剤分配、キャリアガス分配及び修復ガス分配に利用されるガスフローを検証及び/又は較正する。
【選択図】図1

Description

発明の背景
(発明の分野)
本発明の実施形態は、一般的に、ガスフロー測定方法及び装置に関する。特に、本発明の実施形態は、一般的に、半導体処理チャンバ及び関連のユーティリティに提供されるガスフローを測定する方法及び装置に関する。
(関連技術の説明)
ガスフローの正確な制御は、多くのマイクロエレクトロニクス装置製造処理にとって不可欠な、重要な処理制御属性である。半導体処理チャンバにおいて、基板と基板サポートの間にガスを提供することは、基板と基板サポートの間の熱伝達を改善するのに周知の方法である。これによって、基板温度制御の精度及び均一性が向上する。加えて、処理チャンバへ流れる処理ガスの正確な制御が、特に、限界寸法及びフィルム厚さ収縮で所望の処理結果を得るには必要である。更に、ガスを処理チャンバ流出ストリームに添加して、基板処理の環境影響を緩和してもよい。流出ストリームに添加されたガスを良好に制御することが、コスト有効性と適切な改善の両方を確保するのに必要である。
半導体処理チャンバに用いる従来のガス分配システムは、マスガスフローメータ(MFC)を主たる流量調整装置として含む。しかしながら、MFCの精度は、実際のガスフローの不確実性に起因する複数の因子に影響される。例えば、MFCの精度は、一般的に、温度、ライン圧力及び容積の変化により変わる。MFC不正確性によるガスフロー設定点からのずれは、処理欠陥、排出制御不良、貴重なガスの無駄の一因となる。
従来の圧力制御システムは比較的信頼性があることが証明されているが、既存の技術での実地経験によれば、フローのより正確な測定の需要が増えている。例えば、裏側基板冷却用途に用いるガスフローの制御が不良だと、基板温度制御不良となって、フィルム付着又はエッチング結果の不良を招き、次世代の回路設計には耐えられない。
従って、ガスフローを測定する改善された方法及び装置で、半導体処理システムにおけるガスの分配がより高い信頼性及び精度で行われることが求められている。
概要
ガスフローを測定する方法及び装置が提供される。一実施形態において、ガスフローを測定する較正回路を利用して、特に、裏側冷却、処理ガス分配、パージガス分配、クリーニング剤分配、キャリアガス分配及び修復ガス分配に利用されるガスフローを検証及び/又は較正する。
一実施形態において、処理システムにおいてガスフローを測定する装置は、ガス源、誘導弁、オリフィス、調整装置及びセンシング回路を含む。調整装置は、ガス源及び誘導弁の入口の間で流体結合されている。オリフィスは、誘導弁の第1の出口に流体結合されており、処理チャンバと実質的に同じ耐フロー性を有している。センシング回路は、オリフィスを通過するガスのフローを受けるように構成されている。
一実施形態において、センシング回路は、ガスフローを受けるのに較正容積を利用する。較正容積中のガスから測定された特性及び/又は属性から、センシング回路に入るガスの流量及び/又は圧力を検証する。
他の実施形態において、センシング回路は、ガスフローを受ける非較正容積を利用する。非較正容積中のガスの経時で測定された特性及び/又は属性における変化から、センシング回路に入るガスの流量及び/又は圧力を検証する。
他の実施形態において、調整装置は、蒸気分配モジュール、分流器、圧力コントローラ、調整器又はマスフローコントローラのうち少なくとも1つを含む。他の実施形態において、センシング回路は、較正容積を有するタンクを含む。他の実施形態において、センシング回路は較正容積に配置された振動部材を含む。他の実施形態において、センシング回路はセンサを含み、これは、較正容積中に配置されたガスの電気的又は磁気的特徴のうち少なくとも1つを検出するよう構成されている。更に他の実施形態において、センシング回路はカンチレバーにより支持されたタンクを含む。
半導体処理システム中のガスフローを測定する方法も提供されている。一実施形態において、半導体処理システムにおいてガスフローを測定する方法は、ガスフローを流量制御装置により設定する工程と、処理チャンバと実質的に同じ耐フロー性を有するオリフィスを通してセンシング回路へ流量制御装置からガスを流す工程と、センシング回路を用いて求められたフローを流量制御装置の設定と比較する工程とを含む。
他の実施形態において、本方法は、終点に達するまでセンシング回路に存在するガスの特徴をサンプリングする工程を含む。他の実施形態において、本方法は、信頼限界に達するまでサンプリングする工程を含む。他の実施形態において、本方法は、データが所定の範囲内に収束するまでサンプリングする工程を含む。更に他の実施形態において、本方法は、約5ミリ秒未満の頻度率でサンプリングする工程を含む。
詳細な説明
図1に、例示の半導体処理チャンバ120に結合された本発明のガス分配システム140の一実施形態を有する基板処理システム100の簡略図を示す。処理チャンバ120は、化学蒸着(CVD)、物理蒸着(PVD)、エッチチャンバ、イオン注入、熱処理、アッシング、脱気、配向又はその他真空処理技術を実施するように構成されている。
処理チャンバ120は、チャンバ本体122に配置された基板サポート124を含む。基板サポート124は、通常、処理中、基板126を支持する。基板サポート124は、通常、熱伝達ガス(以降、裏側ガスと呼ぶ)を、基板126と基板サポート124の間で画定された領域118へ分配するために中に形成された通路を含む。領域118のサイズは図1では明瞭にするために誇張してある。一般的な裏側ガスとしては、ヘリウム、窒素及びアルゴンが例示される。
チャンバ本体122は、通常、少なくとも1つの処理ガス入口128とポンピングポート134とを含む。処理ガス入口128は、通常、従来から知られている通り、処理及び任意でその他のガスを、処理チャンバ120の内部容積に与えて、基板処理を促進する。チャンバ本体122に入るガスは、ガス分配板又はシャワーヘッド130により基板126全体に分配される。
ポンピングポート134は、チャンバ本体122中に形成されている。ポンピングポート132は、通常、ポンピングシステムに結合されていて、このシステムは、チャンバ圧力を制御し、処理副生成物をチャンバ本体122の内部容積から除去する。ポンピングシステムは、一般的に、図示されていない1つ以上の真空ポンプ及びスロットル弁を含む。
処理ガスポート144を提供して、流出ストリームが流れる管160に修復ガスを分配し、ポンピングポート134を介してチャンバ本体122から出すようにしてもよい。例えば、ガスを与えて、有害な反応副生成物、過剰な処理ガス又はガス状チャンバ廃棄物と反応させ、且つ/又は吸収して、流出ストリームから特定の材料の除去及び/又は回収を促してもよい。
パージポート132を、チャンバ本体122に与えてもよい。不活性ガスをパージポート132を通して、処理チャンバ120に提供して、処理ガス及び/又は処理副生成物がチャンバ120の特定の領域に入るのを防いでもよい。パージガスとしては、窒素及びヘリウムが例示される。
ガスは、通常、1つ以上のガス分配回路から入口ポート128、領域118、パージポート132及び処置ガスポート144に入る。各ガス分配回路は、通常、中を流れるガスを正確に制御するための機構を有しており、そのうち少なくとも1つは、本発明のガス分配システム140として構成されていてもよい。簡潔にするために、1つのガス分配システム140が、入口ポート128、領域118、パージポート132及び処置ガスポート144に夫々送られるガス分配ライン112、114、116、138に結合して示されている。実際には、各ライン112、114、116、138は夫々、専用の別個の回路ガス分配システム140に結合されている。
一実施形態において、ガス分配システム140は、ガス源102、マスフローメータ(MFC)142、誘導弁106及び較正回路104を含む。誘導弁106は、ガス源102からのフローを、較正回路104又はライン112、114、116、138のうちの1つに管110を通して選択的に向ける。MFC142はガス源102と誘導弁106の間に配置されている。通常、MFC142を利用して、ガス源102から、較正回路104か管110へのフローをモニター及び制御して、ガス分配システム140を処理チャンバ120へ結合する。
較正回路104は、ガスフローを正確に測定するよう構成されている。較正回路104は、オリフィス108とセンシング回路146とを含む。オリフィス108は、センシング回路146と誘導弁106の間に配置されている。オリフィス108のサイズは、その制限によって固定フロー条件が維持されるようなものとする。一実施形態において、オリフィスのサイズは、実際の処理チャンバ120の制限をシミュレートして選択する。これによって、処理チャンバ120に流れるMFC142と同様の条件が作成されて、そこで較正回路104を用いてフローを検証する。実際の処理チャンバ120へのフローは必要としない。オリフィスは、実験、実証的分析又はその他好適な方法により求められる。一実施形態において、オリフィス108は、オリフィスの下流圧力を測定し、所望の圧力が得られるまでオリフィスサイズを調節することにより求められる。他の実施形態において、オリフィスのサイズを選択して、実際の処理チャンバ120の制限とは異なるものとしてもよい。ただし、フローが固定フロー条件に維持される場合に限る。
オリフィス108は、臨界フロー(例えば、固定フロー)状態をセンシング回路146に形成するようなサイズとする。センシング回路146への臨界フローとは、フローがマスフロー及びオリフィス108のアパーチャサイズにより決まることを意味する。オリフィス108上流のフロー(例えば、MFC142での)は一定で、圧力変動に影響されないため、上流容積をフロー計算中に考慮する必要はない。
オリフィス108は固定又は可変制限であってよい。一実施形態において、オリフィス108は機械加工されたアパーチャである。他の実施形態において、オリフィス108は、ニードル弁等調節可能なものであってもよい。
図2は、センシング回路146の一実施形態の概略図である。センシング回路146は、通常、中に配置された振動部材204を有するタンク202を含む。センサ206は、振動部材204と、振動部材204の振動周波数の測定表示をプロセッサ208に提供するのに好適なやり方でインタフェースする。これは、タンク202内のガス密度に相互に関連している。一実施形態において、センサ206は加速度計又はその他好適なセンサである。
一実施形態において、タンク202は既知又は所定の容積を有する。オリフィス108を通ってガス源102からセンシング回路146に流れるガスは、タンク202内部の圧力、及びタンク202内のガスの密度を増加する。タンク202の容積が既知であるため、振動部材204の周波数は、タンク202内のガスの質量と相互に関連している。振動部材204の振動周波数における変化は、既知のタンク容積を与えると、タンク202内の密度変化に関連した情報を与える。これはまた、MFC142を通るマスフローにも関係する。このように、振動部材の周波数を利用して、MFC142を通るフローを検証及び/又は較正する。
他の実施形態において、タンク204の容積は既知でなくてもよい。本実施形態においては、振動部材204の周波数における変化を用いて、MFC142を通る流量を検証及び/又は較正する。
図3は、センシング回路300の他の実施形態の概略図である。センシング回路300は、概して、振動部材204と、その中に配置された第2の部材302とを有するタンク202を含む。第2の部材302は、振動部材204の反対に位置している。第1のセンサ206は、振動部材204と、振動部材204の振動周波数の測定表示をプロセッサ208に提供するのに好適なやり方でインタフェースする。第2のセンサ304は、第2の部材302と、第2の部材302の振動周波数の測定表示をプロセッサ208に提供するのに好適なやり方でインタフェースする。
振動部材204は一定の周波数で駆動してよい。振動部材204からのエネルギーは、タンク202内に配置されたガスを通して移動して、第2の部材302が一定の周波数で振動する。第2の部材302の振動は、振動部材204とは異なる位相シフト及び振動振幅を有する。これらの量は、センサ206、304により測定され、タンク内の圧力変化に関連しており、経時にわたって、マスフローに関連する。これを利用して、MFC142を通る流量を検証及び/又は較正する。
図4は、センシング回路400の他の実施形態の概略図である。センシング回路400は、概して、表面404からカンチレバー配向で装着されたタンク402を含む。タンク402内のガスの質量は、カンチレバータンクの偏向に関連しており、これは、センサ406により測定される。センサ406はひずみゲージ又はLVDT等の距離測定装置であってもよい。ガスがタンク402へ流れると、タンク402内のガスの圧力及び密度が増加して、タンク402の配向を変化させる。これは、タンク402に添加されたガスの追加質量と相互に関連している。タンク内のガス質量の変化によるタンク配向の変化は、センサ406により測定される。このように、センサ406からの情報を利用して、MFC142を検証及び/又は較正する。
図5は、センシング回路500の他の実施形態の概略図である。センシング回路500は、概して、タンク502、変位装置504及びセンサ506を含む。タンク502は較正容積を有する。変位装置504を動作させて、タンク502を振動させる等して、タンク502を動かす。変位装置504は、トランスデューサ、アクチュエータ又はその他好適な振動生成装置である。加速度計又はその他好適な検出器であるセンサ506は、タンク502とインタフェースして、プロセッサ208にタンク振動周波数の測定表示を提供する。タンク502内のガスの質量が増加すると、振動周波数が予測できるやり方で変化する。これは、タンク502へのマスフローを示す。このように、センサ506により得られる情報を利用して、MFC142を通る流量を検証する。
他の実施形態において、タンク502の壁は、変位装置504により摂動して振動する。タンク502内の圧力が変化すると、壁にかかる応力が変化し、振動の周波数が予測可能に変化する。振動は、センサ506により測定される。容積が既知であるため、経時による圧力変化は、センシング回路500に入るマスフローに関連し、これを利用して、MFC142を通る流量を検証及び/又は較正する。
図6は、センシング回路600の他の実施形態の概略図である。センシング回路600は、タンク602、信号生成器604及びセンサ606を含む。タンク602は較正容積を有する。信号生成器604及びセンサ606はタンク602の内側又は外側に装着されていてよい。
一実施形態において、信号生成器604は、タンク602の較正容積内側に音響パルスを生成するように構成されている。音響パルスの局所速度は、媒体(例えば、タンク内のガス)の密度及び温度に関係している。音響パルスの速度は、センサ606により測定され、タンク602内のガスの密度に関係している。タンク602の容積が既知であるため、タンク602内のガスの質量は、センサ情報を用いて求められ、これを利用して、MFC142を通る流量を検証及び/又は較正する。
他の実施形態において、信号生成器604は、RF信号又はその他電磁パルスをタンク602に提供して、タンク内のガスの密度を測定してもよい。これらの信号の特徴は、圧力により予測可能に変化する。センサ606を利用して、信号の特徴の少なくとも1つの測定表示を与える。経時による測定された特徴の変化は、センシング回路600へのマスフローと相互に関連しており、これを利用して、MFC142を通る流量を検証及び/又は較正する。
他の実施形態において、センサ606は、タンク602内のガスの電気的又は磁気的特徴のうち少なくとも1つの変化を検出するように構成されている。電気的又は磁気的特徴は、圧力により予測可能に変化し、センサ606により測定される。センサ606により与えられたガスの電気的又は磁気的特徴の変化の測定を用いて、回路600を通る流量を求める。経時による圧力変化は、タンク602の既知の容積におけるマスフローに関連しており、これを利用して、MFC142を通る流量を検証及び/又は較正する。
図7は、センシング回路700の他の実施形態の概略図である。センシング回路700は、概して、中にピストン704を有するタンク702を含む。ピストン704は既知の重量及び表面積を有する。ピストン704は、タンク702内の圧力に応じて対向部材706に対して配置される。対向部材706はスプリングで、且つ/又はガスの容積を密閉している。ピストン704を動かすのに必要な力は、ピストン704上の圧力と共に、ピストン704の質量及び表面積、対向部材706のスプリング力から決まる。これは、制御するか、ピストン変位の関数として知ることができる。一実施形態において、センサ708は、ピストン704とインターフェースして、ピストンに作用する力が直接求められる。他の実施形態において、センサ708は、ピストン704の変位を求めるように構成されている。力は、ピストン704の表面積により圧力に関連しており、既知の容積での経時による圧力変化は、タンク704へのマスフローに関連しており、これを利用して、MFC142を通る流量を検証及び/又は較正する。
図8は、センシング回路800の他の実施形態の概略図である。センシング回路800は、概して、中にピストン704を有するタンク802を含む。オリフィス108からのフローが、夫々ピストン704の上下に配置された第1と第2の入口810、812を通してタンク802へと提供される。ピストン704は既知の特徴を有しており、入口810、812を流れるフローの比に比例して変位される。少なくとも1つのセンサを利用して、ピストン704の相対変位を求める。図8に示す実施形態において、センサ804、806を利用して、ピストン704の変位を求める。これは、MFC142を流れるフローと相互に関連している。
図9は、センシング回路900の他の実施形態の概略図である。センシング回路900は、概して、切り替え弁908を通るオリフィス108に結合した複数のタンク(タンク902、904、906として図示)を含む。各タンク902、904、906は異なる範囲の流量で用いる異なる較正容積を有する。例えば、タンク902の容積は小さく、タンク904の容積は中間で、タンク906の容積は大きい。弁908を利用して、回路900中のフローを、容積に釣り合った流量を有するタンクへ向けて、適当なサンプリング期間にわたって良好なデータ分解能が得られるようにする。例えば、低い流量を測定するときは、小タンク902を利用して、特定の期間にわたる特定の圧力上昇についてより大きな時間分解能を得る。このように、低流量だと、小タンク902は、経時による急速な圧力上昇を得るのを促して、短いサンプル期間で良好な解像度を有するデータセットを与える。逆に、大タンク908を利用すると、そう急速でない経時による圧力上昇が得られ、高流量で良好な分解能を有するデータを与える。更に、大タンク908だと、長期間にわたってデータサンプルが得られる。というのは、このタンクは小タンク902よりも大きな容積を有していて、完全なデータセットが得られる前に、高流量で充填されるからである。圧力上昇に関するデータは、上述した技術、又はその他好適な代替を用いて得られる。
圧力上昇の複数のデータサンプルを利用して、フロー計算の精度を改善することによって、MFC142の実際の流量の信頼性を上げることができる。上述したセンシング回路は夫々、バイパスループとダンプラインを含み、これによって、タンクを迅速に空にしたり再充填でき、更なるサンプルの迅速な取得が促進される。データサンプルは十分な速度で得られ、適当な期間で、データ点の統計的に妥当なサンプル集団が得られる。一実施形態において、サンプリングの頻度率は約5ミリ秒未満である。これによって、短い試験期間で大きなデータセットが得られて、データの精度が増大し、試験の適切な終点が迅速に識別される。
一実施形態において、データサンプルを得るために利用するセンサ/機器を組み合わせた測定誤差を分析して、全体の計算に与える影響を求める。この情報を利用して、信頼限界を求め、且つ/又は調節する。
他の実施形態において、データサンプルを得るために利用するセンサ/機器を組み合わせた測定誤差を利用して、測定データにおけるランダム誤差分布をシミュレートする。シミュレートされた誤差を各データサンプルに加える。ランダムに加えた誤差の影響を取り消すのに必要なサンプルの数を計算し、試験終点として利用する。このようにして、正確な計算を最短の試験期間内で得る。
例示のバイパスループ250及びダンプライン252を図2の実施形態に示す。オリフィス108からのフローはまずタンク202へ入って、圧力(密度及び/又は質量)が測定される。センシング回路200を通るフローは、バイパスループ250を通る弁256により迂回されて、第2の弁258を開いて、ダンプライン252を通してタンク202を空にする。ダンプライン252を真空源260に結合して、タンク202からのガスの除去を促進してもよい。タンク202が十分に空になったら、第2の弁258を閉じ、オリフィス108からのフローを弁256によりタンク202に戻して、続くサンプルを得る。MFC142を流れるフローの正確な測定を与えるデータセットが得られるまでこの処理を複数回繰り返す。
データセットを受けるプロセッサ208は、統計的収束技術及び/又は古典的なロバスト統計を用いて、フロー検証/較正の適切な終点を求める。例えば、既知の精度及びセンシング回路の測定装置の再現性に基づいて計算された好適な収束に達したら、サンプリングを終了してよい。或いは、サンプリング終点は、フローを連続的に計算し、平均値に対する収束を追跡することにより、動的に求めてもよい。
収束の所望のレベルは、所定のレベルであっても、信頼限界を用いて動的に求めてもよい。試験が指定の信頼レベルに達したら、試験を終える。試験を終える1つの方法は、測定装置の既知の誤差レベルを用いて、収束に必要なサンプルの数を計算するのに用いることである。予測法を用いて、サンプルのその数が取れたら、検証を自動的に終わらせる。終点を求める他の方法は、フローを連続的に再計算して、平均値へのその収束をモニターすることである。試験を実施する際、集めたサンプルの夫々の組み合わせを用いて、瞬間のフローを計算する。計算したフローが所望のレベルに収束したら、試験を終わらせる。測定エラー及び全体のシステムに与える影響をモデル化する多変数モデル及び統計を用いて、計算の精度を増大してもよい。このモデルは、異なるパラメータの相互作用を示し、最良のパラメータの選択を支援する。
開始及び終了圧力及び/又は密度の多数のサンプルを用いると精度が増す。両読み取り値の測定誤差は、各読取り値の多数のサンプルを平均することにより減って、試験の実際の圧力デルタがより正確になる。
多変数モデル及び統計を用いて、個々の測定の誤差及び全体のシステム誤差へのそれらの影響をモデル化する。これらのモデルを用いて、最良のパラメータ及びシステム限界を求める。前の技術の組み合わせを用いて、流量計算の精度を更に増大する。
操作中、フローは、タンク内の上昇技術の標準レートを用いて求める。タンクの入口にあるオリフィスのサイズは、タンクに入る音速流を作成するようなものとする。タンクに入るフローは、MFCからのフロー及びオリフィスのサイズにのみ関係している。タンク圧力は、MFCに影響しないため、フローは一定のままとすることができる。更に、オリフィスでの音の条件によって、上流圧力の変化を防ぐため、オリフィス上流のガスラインにおけるガス質量は一定のままである。この条件下では、ガスライン上流容積はフロー計算に利用しないため、上流容積計算の必要がなくなり、全体のフロー計算における不確実性が減じる。
タンク入口でのオリフィスは、チャンバ注入と同様の制限を模しているため、MFCは、例えば、ベンチ又は据付け前試験中、物理的に存在する実際のチャンバを必要とすることなく、シミュレートされたチャンバ条件下で較正できる。或いは、例えば、新たなロットの基板を実施する前に行われる定期的検査等、チャンバが操作中になったら、MFCを流れるフローは、所望であれば、較正回路を用いて検証及び/又は較正してもよいものと考えられる。
較正回路を利用して、MFC以外の流量制御装置を検証及び/又は較正してもよい。例えば、較正回路を利用して、蒸気分配モジュール、分流器、圧力制御器及び調整器、特に、流量制御装置からの流量(密度及び/又は圧力)を検証及び/又は構成してよい。
このように、MFCの特徴付けを有利に行う較正回路を有するガス分配システムを利用して、ガスを処理システムに提供する。革新的な較正回路を利用して、特に、裏側冷却、処理ガス分配、パージガス分配、クリーニング剤分配、キャリアガス分配及び修復ガス分配に利用されるガスフローを測定、検証及び/又は較正する。ガスフロー制御の精度及びサンプリング時間は最新技術よりも改善されて、コスト有効性及び次世代装置のロバスト処理が可能となる。
上述は本発明の実施形態に係るものであるが、本発明のその他又は更なる実施形態はその基本的な範囲から逸脱することなく考案してよく、その範囲は特許請求の範囲により決まる。
本発明の上述した特徴が詳細に理解できるよう、上に簡単にまとめた本発明を、実施形態を参照してより具体的に説明する。そのうちいくつかは添付図面に示されている。しかしながら、添付図面は本発明の代表的な実施形態を例示するだけであり、その範囲を制限するものではなく、本発明は他の同様に有効な実施形態も認められることに留意すべきである。
従来の半導体処理チャンバ及び本発明の較正回路を有するガス分配システムの簡略図である。 センシング回路の様々な実施形態を有する較正回路の簡略図である。
理解を促すために、図面間で共通する同一構成要素を示すのに、可能な場合は、同一の参照番号を用いている。一実施形態の構成は、特に挙げていないが、他の実施形態にも有利に組み込まれるものと考えられる。

Claims (20)

  1. ガス源と、
    入口、第1の出口及び第2の出口を有する誘導弁であって、前記第2の出口が処理チャンバに結合している誘導弁と、
    前記ガス源と前記誘導弁の前記入口の間で流体結合された調整装置と、
    前記誘導弁の前記第1の出口に流体結合されたオリフィスであって、前記処理チャンバと実質的に同じ耐フロー性を有するオリフィスと、
    前記オリフィスを通るフローを受けるように構成されたセンシング回路とを含む処理チャンバを有する処理システムにおいてガスフローを測定する装置。
  2. 前記調整装置が、蒸気分配モジュール、分流器、圧力コントローラ、調整器又はマスフローコントローラのうち少なくとも1つを含む請求項1記載の装置。
  3. 前記センシング回路が、較正容積を有するタンクを含む請求項1記載の装置。
  4. 前記センシング回路が、前記較正容積内に配置された振動部材を含む請求項3記載の装置。
  5. 前記センシング回路が、前記較正容積に配置されたガスの電気的又は磁気的特徴のうち少なくとも1つを検出するよう構成されたセンサを含む請求項3記載の装置。
  6. 前記センシング回路が、カンチレバーにより支持されたタンクを含む請求項1記載の装置。
  7. 前記センシング回路が、
    前記ガスフローを受ける較正容積と、
    前記センシング回路に入る前記ガスの流量及び/又は圧力を決める、前記較正容積中の前記ガスの少なくとも1つの特性及び/又は属性を測定するよう配列されたセンサとを含む請求項1記載の装置。
  8. 前記センシング回路が、
    前記ガスフローを受ける非較正容積と、
    前記センシング回路に入る前記ガスの流量及び/又は圧力を決める、前記非較正容積中の前記ガスの少なくとも1つの特性及び/又は属性における変化を測定するよう配列されたセンサとを含む請求項1記載の装置。
  9. ガスフローを流量制御装置により設定する工程と、
    処理チャンバと実質的に同じ耐フロー性を有するオリフィスを通してセンシング回路へ前記流量制御装置から前記ガスを流す工程と、
    前記センシング回路を用いて求められたフローを前記流量制御装置の設定と比較する工程と含む半導体処理システムにおいてガスフローを測定する方法。
  10. 終点に達するまで前記センシング回路に存在するガスの特徴をサンプリングする工程を含む請求項9記載の方法。
  11. 前記サンプリング工程が、信頼限界に達するまでサンプリングする工程を含む請求項10記載の方法。
  12. 前記サンプリング工程が、データが所定の範囲内に収束するまでサンプリングする工程を含む請求項10記載の方法。
  13. 前記サンプリング工程が、約5ミリ秒未満の頻度率でサンプリングする工程を含む請求項10記載の方法。
  14. 前記ガスを前記センシング回路の較正容積へ流す工程と、
    前記較正容積内の前記ガスの少なくとも1つの特性及び/又は属性をセンシングする工程と、
    前記センシングされた特性及び/又は属性から前記センシング回路に入る前記ガスの流量及び/又は圧力を決める工程とを含む請求項9記載の方法。
  15. 前記ガスを前記センシング回路の非較正容積へ流す工程と、
    前記非較正容積内の前記ガスの少なくとも1つの特性及び/又は属性をセンシングする工程と、
    前記センシングされた特性及び/又は属性から前記センシング回路に入る前記ガスの流量及び/又は圧力を決める工程とを含む請求項9記載の方法。
  16. 前記センシング回路に入る前記ガスの前記流量及び/又は圧力を決めるのが、前記センシング回路上流の既知の容積を用いずに求められる請求項15記載の方法。
  17. 処理チャンバ及びセンシング回路に結合したガス源を有する処理システムを提供する工程であって、前記センシング回路が前記処理チャンバと実質的に同じ耐フロー性を有する工程と、
    流量制御装置を設定して、目標量で前記ガス源からの処理ガスのフローを提供する工程であって、前記目標量が前記処理チャンバにおける基板処理について選択された所定の量であり、前記流量制御装置から出る前記フローが実際の量である工程と、
    前記処理チャンバを迂回しながら、前記処理ガスを前記実際の量で前記センシング回路へ流す工程と、
    前記実際の流量の測定表示をセンシングする工程と、
    前記流量制御装置の前記設定を調節して、前記実際の量と前記目標量の差を補正する工程と、
    前記処理ガスを前記流量制御装置から前記処理チャンバに流し、その中にある基板を処理する工程とを含む半導体処理システムにおいてガスフローを測定する方法。
  18. 前記センシング工程が、
    前記処理ガスを較正容積へ流す工程と、
    前記センシング回路に入る前記ガスの流量及び/又は圧力を決める、前記較正容積中の前記処理ガスの少なくとも1つの特性及び/又は属性を測定する工程とを含む請求項17記載の方法。
  19. 前記センシング工程が、
    前記処理ガスを非較正容積へ流す工程と、
    前記センシング回路に入る前記ガスの流量及び/又は圧力を決める、前記非較正容積中の前記処理ガスの少なくとも1つの特性及び/又は属性における変化を測定する工程とを含む請求項17記載の方法。
  20. 前記センシング工程が、
    終点に達する、信頼限界に達する、又はデータが所定の範囲内に収束する、のうち少なくとも1つまで前記センシング回路に存在するガスの特徴をサンプリングする工程を含む請求項17記載の方法。
JP2007210558A 2006-08-14 2007-08-11 ガスフロー測定方法及び装置 Pending JP2008089575A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82234506P 2006-08-14 2006-08-14
US11/833,623 US7743670B2 (en) 2006-08-14 2007-08-03 Method and apparatus for gas flow measurement

Publications (2)

Publication Number Publication Date
JP2008089575A true JP2008089575A (ja) 2008-04-17
JP2008089575A5 JP2008089575A5 (ja) 2010-09-24

Family

ID=38729030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210558A Pending JP2008089575A (ja) 2006-08-14 2007-08-11 ガスフロー測定方法及び装置

Country Status (6)

Country Link
US (2) US7743670B2 (ja)
EP (1) EP1890117A1 (ja)
JP (1) JP2008089575A (ja)
KR (3) KR20080015374A (ja)
CN (1) CN101127296B (ja)
TW (1) TW200820320A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531999A (ja) * 2007-06-27 2010-09-30 エム ケー エス インストルメンツ インコーポレーテッド 異なる体積を提供可能な質量流量検証装置及び関連する方法
KR101915535B1 (ko) 2017-11-24 2018-11-06 주식회사 센트리 가스측정장치

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743670B2 (en) * 2006-08-14 2010-06-29 Applied Materials, Inc. Method and apparatus for gas flow measurement
US8074677B2 (en) * 2007-02-26 2011-12-13 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
US8205629B2 (en) * 2008-04-25 2012-06-26 Applied Materials, Inc. Real time lead-line characterization for MFC flow verification
EP3075406A1 (en) * 2008-04-30 2016-10-05 ResMed R&D Germany GmbH Apparatus and method for controlled delivery of a breathing gas to the respiratory tracts of a user
NZ708912A (en) 2008-06-05 2016-12-23 Resmed Ltd Treatment of respiratory conditions
DE102009004363B4 (de) * 2009-01-08 2022-08-25 Inficon Gmbh Leckdetektionsverfahren
DE102009018401A1 (de) * 2009-04-22 2010-10-28 Airbus Deutschland Gmbh System und Verfahren zum Kühlen eines Raums in einem Fahrzeug
CN101872729B (zh) * 2010-05-28 2012-02-29 日月光封装测试(上海)有限公司 打线设备及其保护气体自动切换系统与方法
CN102288262A (zh) * 2011-05-04 2011-12-21 中国航空工业集团公司西安飞机设计研究所 一种散热器冷边风量现场校验方法
US9644796B2 (en) * 2011-09-29 2017-05-09 Applied Materials, Inc. Methods for in-situ calibration of a flow controller
US9772629B2 (en) 2011-09-29 2017-09-26 Applied Materials, Inc. Methods for monitoring a flow controller coupled to a process chamber
JP5433660B2 (ja) * 2011-10-12 2014-03-05 Ckd株式会社 ガス流量監視システム
JP5809012B2 (ja) * 2011-10-14 2015-11-10 株式会社堀場エステック 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
JP6094277B2 (ja) * 2013-03-13 2017-03-15 三浦工業株式会社 ボイラ負荷分析装置
WO2014158410A1 (en) * 2013-03-13 2014-10-02 Applied Materials, Inc Acoustically-monitored semiconductor substrate processing systems and methods
US9910448B2 (en) 2013-03-14 2018-03-06 Christopher Max Horwitz Pressure-based gas flow controller with dynamic self-calibration
CN104750125B (zh) * 2013-12-31 2017-10-24 北京北方华创微电子装备有限公司 一种质量流量控制器的校准方法及装置
US10031004B2 (en) 2016-12-15 2018-07-24 Mks Instruments, Inc. Methods and apparatus for wide range mass flow verification
GB2557670B (en) 2016-12-15 2020-04-15 Thermo Fisher Scient Bremen Gmbh Improved gas flow control
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
CN107958838B (zh) * 2017-11-08 2020-08-04 上海华力微电子有限公司 一种根据射频时数改善一体化刻蚀工艺面内均匀性的方法
US11718912B2 (en) 2019-07-30 2023-08-08 Applied Materials, Inc. Methods and apparatus for calibrating concentration sensors for precursor delivery
CN112563105B (zh) * 2019-09-10 2023-11-03 中微半导体设备(上海)股份有限公司 等离子体处理装置中实现气体流量验证的系统及方法
KR20220057623A (ko) * 2019-09-19 2022-05-09 어플라이드 머티어리얼스, 인코포레이티드 Ald 프로세스에서의 펄스 형상 제어
EP3940288A1 (en) * 2020-06-25 2022-01-19 Romet Limited A method and system of monitoring a meter set using a sensor
CN114623904B (zh) * 2022-03-14 2023-07-25 中公高远(北京)汽车检测技术有限公司 一种气体流量计的校准装置和方法
US20230304837A1 (en) * 2022-03-23 2023-09-28 Mks Instruments, Inc. Method and Apparatus for Mass Flow Verification

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063965A (ja) * 1973-10-06 1975-05-30
JPH01215367A (ja) * 1987-12-31 1989-08-29 Nomix Mfg Co Ltd 流体散布装置
JPH07263350A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 半導体製造方法
JPH11502026A (ja) * 1995-11-17 1999-02-16 エムケイエス・インストゥルメンツ・インコーポレーテッド 気体マス・フロー測定システム
JPH1187318A (ja) * 1997-09-08 1999-03-30 Nec Kyushu Ltd ドライエッチング装置およびガス流量制御の検査方法
JP2006012872A (ja) * 2004-06-22 2006-01-12 Tokyo Electron Ltd 基板処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
US6299753B1 (en) * 1999-09-01 2001-10-09 Applied Materials, Inc. Double pressure vessel chemical dispenser unit
US6333272B1 (en) * 2000-10-06 2001-12-25 Lam Research Corporation Gas distribution apparatus for semiconductor processing
JP4148346B2 (ja) * 2002-02-07 2008-09-10 東京エレクトロン株式会社 熱処理装置
US6875271B2 (en) * 2002-04-09 2005-04-05 Applied Materials, Inc. Simultaneous cyclical deposition in different processing regions
JP4078982B2 (ja) 2002-04-22 2008-04-23 東京エレクトロン株式会社 処理システム及び流量測定方法
US6704667B2 (en) * 2002-05-13 2004-03-09 Taiwan Semiconductor Manufacturing Co., Ltd Real time mass flow control system with interlock
SG144762A1 (en) * 2002-07-19 2008-08-28 Entegris Inc Fluid flow measuring and proportional fluid flow control device
US6813943B2 (en) 2003-03-19 2004-11-09 Mks Instruments, Inc. Method and apparatus for conditioning a gas flow to improve a rate of pressure change measurement
US6955072B2 (en) 2003-06-25 2005-10-18 Mks Instruments, Inc. System and method for in-situ flow verification and calibration
US7150201B2 (en) 2004-12-15 2006-12-19 Celerity, Inc. System and method for measuring flow
KR100706243B1 (ko) * 2005-02-22 2007-04-11 삼성전자주식회사 질화 텅스텐 증착 장치 및 증착 방법
KR101501426B1 (ko) * 2006-06-02 2015-03-11 어플라이드 머티어리얼스, 인코포레이티드 차압 측정들에 의한 가스 유동 제어
US7743670B2 (en) 2006-08-14 2010-06-29 Applied Materials, Inc. Method and apparatus for gas flow measurement
US7775236B2 (en) * 2007-02-26 2010-08-17 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
US7846497B2 (en) * 2007-02-26 2010-12-07 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
US8205629B2 (en) * 2008-04-25 2012-06-26 Applied Materials, Inc. Real time lead-line characterization for MFC flow verification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063965A (ja) * 1973-10-06 1975-05-30
JPH01215367A (ja) * 1987-12-31 1989-08-29 Nomix Mfg Co Ltd 流体散布装置
JPH07263350A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 半導体製造方法
JPH11502026A (ja) * 1995-11-17 1999-02-16 エムケイエス・インストゥルメンツ・インコーポレーテッド 気体マス・フロー測定システム
JPH1187318A (ja) * 1997-09-08 1999-03-30 Nec Kyushu Ltd ドライエッチング装置およびガス流量制御の検査方法
JP2006012872A (ja) * 2004-06-22 2006-01-12 Tokyo Electron Ltd 基板処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531999A (ja) * 2007-06-27 2010-09-30 エム ケー エス インストルメンツ インコーポレーテッド 異なる体積を提供可能な質量流量検証装置及び関連する方法
KR101915535B1 (ko) 2017-11-24 2018-11-06 주식회사 센트리 가스측정장치

Also Published As

Publication number Publication date
TW200820320A (en) 2008-05-01
CN101127296B (zh) 2010-06-09
KR20100091931A (ko) 2010-08-19
EP1890117A1 (en) 2008-02-20
US20100251828A1 (en) 2010-10-07
US20080035202A1 (en) 2008-02-14
KR101434869B1 (ko) 2014-09-02
KR20080015374A (ko) 2008-02-19
KR20130100085A (ko) 2013-09-09
US7743670B2 (en) 2010-06-29
CN101127296A (zh) 2008-02-20
US7975558B2 (en) 2011-07-12

Similar Documents

Publication Publication Date Title
JP2008089575A (ja) ガスフロー測定方法及び装置
US7174263B2 (en) External volume insensitive flow verification
KR101316075B1 (ko) 유체의 질량 유량 전달 및 유체의 질량 유량 검증용 시스템, 및 그 실행 방법
JP5512517B2 (ja) 異なる体積を提供可能な質量流量検証装置及び関連する方法
JP6130825B2 (ja) 上流体積質量流量検証システムおよび方法
KR101472146B1 (ko) 실제 흐름 검증을 실시하는 방법
JP6426474B2 (ja) 自己確認型質量流量制御器および自己確認型質量流量計を提供するためのシステムおよび方法
JP2008089575A5 (ja)
EP3036510A2 (en) Pressure-based gas flow controller with dynamic self-calibration
JP2012032983A (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
CN110073181B (zh) 用于大范围质量流量检验的方法和设备
EP2247819A1 (en) Method and apparatus for in situ testing of gas flow controllers
TW201538934A (zh) 即時監控經過質流控制器之流量的系統及方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130329

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140312

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140410

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708