JP2008075167A - 半導体装置の製造方法、及び基板処理装置 - Google Patents

半導体装置の製造方法、及び基板処理装置 Download PDF

Info

Publication number
JP2008075167A
JP2008075167A JP2006258751A JP2006258751A JP2008075167A JP 2008075167 A JP2008075167 A JP 2008075167A JP 2006258751 A JP2006258751 A JP 2006258751A JP 2006258751 A JP2006258751 A JP 2006258751A JP 2008075167 A JP2008075167 A JP 2008075167A
Authority
JP
Japan
Prior art keywords
gas
substrate
processing chamber
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258751A
Other languages
English (en)
Inventor
Sadayoshi Horii
貞義 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006258751A priority Critical patent/JP2008075167A/ja
Publication of JP2008075167A publication Critical patent/JP2008075167A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れた薄膜を形成することが可能な半導体装置の製造方法、及び基板処理装置を提供する。
【解決手段】処理室内に基板を搬入する工程と、前記処理室内に液体原料を気化した原料ガスを供給して前記基板上へ吸着させる工程と、前記処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給し、前記基板上に吸着した前記原料ガスと反応させて前記基板上に薄膜を生成する工程と、を1サイクルとしてこのサイクルを複数回繰り返し、前記基板上に所望膜厚の薄膜を形成する工程と、所望膜厚の薄膜形成後の前記基板を前記処理室内から搬出する工程と、を有する。
【選択図】図1

Description

この発明は、基板上に薄膜、例えば導電性金属膜等の薄膜を形成するための半導体装置の製造方法、及び基板処理装置に関するものである。
導電性金属膜等の薄膜を備えた半導体装置として、例えばDRAMのキャパシタがある。
DRAMのキャパシタは、微細化に伴う蓄積電荷容量を確保するため、下部電極膜または上部電極膜の金属化の研究が活発化している。例えば、下部電極膜または上部電極膜の材料としては、Ru、Pt、Irの貴金属あるいはその酸化物が候補となっている。また、バリアメタル膜の材料としては、TiN、TaN等が用いられる。
また、キャパシタの電極形状は、高アスペクト比のシリンダ型が主流となっている。そのため、下部電極膜、上部電極膜、バリアメタル膜を含めた全ての膜は、段差被覆性に優れた方法を用いて成膜する必要がある。
このような事情から、成膜の方法として、従来のスパッタリング法ではなく、段差被覆性に優れたCVD法が用いられるようになっていた。特に、有機金属液体原料と、酸素含有ガス、水素含有ガスまたは窒素含有ガスとの反応が利用されている(特許文献1参照)。
特開2001−345285号公報
CVD法では、有機液体金属原料を気化させた原料ガスと、酸素ガスと、を同時に基板に供給することにより薄膜を形成する。しかしながら、キャパシタの電極形状のアスペクト比をより高めようとした場合、CVD法では段差被覆性が不足していた。
何故なら、CVD法において段差被覆性を向上させるためには、低温化は避けることはできないが、CVD法において低温化を行うと、有機液体原料中の炭素や酸素が不純物として薄膜中に多く残り、薄膜の電気特性を劣化させてしまうという問題があるためである。その他、成膜後の熱処理により、不純物がガス脱離して膜はがれが生じるという問題があり、さらには、幾つかの有機液体原料についてはインキュベーションタイムが増大し、生産性が劣るといった問題があるためである。
そのため、より高い段差被覆性を得るための成膜方法として、いわゆるALD(Atomic Layer Deposition)法が用いられるようになってきた。ALD法では、有機液体原料を気化した原料ガスのみを基板に供給して吸着させた後、酸素ガスを基板に供給して薄膜を生成する工程を1サイクルとし、このサイクルを複数回繰り返すことにより所望厚さの薄膜を形成する。
しかしながら、酸素ガスを用いたALD法においては、基板に供給した酸素ガスが薄膜を形成する際の下地を酸化させてしまう、という問題がある。例えば、キャパシタの下部電極膜は基板上に予め形成されたバリアメタル膜等を下地として形成されるが、下地であるバリアメタル膜が酸化してしまうと、下部電極膜とのコンタクト抵抗が増大してしまい、デバイス特性が悪化してしまうという問題がある。
そこで、下地の酸化を防止するため、ダイレクトプラズマにより励起した水素又はアンモニアガス等を酸素ガスの代わりに用いるPEALD(Plasma Enhanced Atomic Layer Deposition)法や、リモートプラズマにより励起した水素又はアンモニアガス等を酸素ガスの代わりに用いるRPEALD(Remote Plasma Enhanced Atomic Layer Deposition)法が検討されてきた。有機液体金属原料は、酸素のみならず原子状水素や水素イオンとも反応するためである。これらプラズマを用いるALD法では、有機液体原料を気化した原料ガスのみを基板に供給して吸着させた後、プラズマ励起された水素又はアンモニアガスを基板に供給して薄膜を生成する工程を1サイクルとし、このサイクルを複数回繰り返すことにより所望厚さの薄膜を形成する。
しかしながら、PEALD法では、ダイレクトプラズマの活性種が電界方向に向かって進んでしまうため、良好な段差被覆性が得られないという問題がある。また、RPEALD法では、リモートプラズマの活性種は寿命が短いという問題がある。
本発明の目的は、薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れた薄膜を形成することが可能な半導体装置の製造方法、及び基板処理装置を提供することにある。
本発明の一態様によれば、処理室内に基板を搬入する工程と、前記処理室内に液体原料を気化した原料ガスを供給して前記基板上へ吸着させる工程と、前記処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給し、前記基板上に吸着した前記原料ガスと反応させて前記基板上に薄膜を生成する工程と、を1サイクルとしてこのサイクルを複数回繰り返し、前記基板上に所望膜厚の薄膜を形成する工程と、所望膜厚の薄膜形成後の前記基板を前記処理室内から搬出する工程と、を有する半導体装置の製造方法が提供される。
本発明によれば、薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れた薄膜を形成することが可能な半導体装置の製造方法、及び基板処理装置を提供することができる。
上述の通り、酸素ガスを用いたALD法においては、基板に供給した酸素ガスが、薄膜を形成する際の下地を酸化させ、デバイス特性を悪化させてしまうといった問題がある。
これに対し、PEALD法あるいはRPEALD法においては、酸素ガスの代わりに、プラズマを用いて原子状の水素や水素イオンを基板上に供給して薄膜を生成することから、下地の酸化を防止することが出来る。しかしながら、PEALD法では高い段差被覆性が得られにくく、また、RPEALD法ではプラズマの寿命が短いといった問題がある。
このような問題に対して、発明者らは、プラズマを使用することなく、原子状の水素や水素イオンを基板に供給すればよいという知見を得て、本発明を完成させるに至った。
以下、本発明の実施例を説明する前に、明確化のため、本発明の一実施の形態における半導体装置の製造方法の一工程としての基板処理工程について説明する。本発明の一実施の形態における半導体装置の製造方法の一工程としての基板処理工程は、以下に示す(a)から(e)までの各工程を備えている。
(a)基板を搬入する工程
まず、処理室に基板を搬入する。ここで処理室とは、その内部に基板を格納し、基板を格納した状態のままで処理室内に後述する各種ガスを供給し、あるいは排気することが可能な密閉容器等をいう。なお、処理室に格納される基板の表面は、例えば、処理室内部に設置されたヒータ等を用いて所定温度に昇温する事が出来るようになっている。なお、本発明の一実施形態においては、処理対象の基板として、例えば、シリコン基板を用いることとする。
(b)原料ガスを供給する工程
続いて、原料ガスを基板を格納した処理室内に供給する。なお、原料ガスの供給前に、処理室内を排気して処理室内の雰囲気を窒素ガスなどの不活性ガスに置換しておく。また、処理室内の圧力を所定圧力に調整し、基板の温度を所定温度に昇温しておく。
ここで原料ガスとは、常温常圧で液体である液体原料を気化させることにより得られるガスをいう。液体原料は、用途に応じて様々な種類から適宜選択可能である。例えば、DRAMのキャパシタを製造する際には、下部電極膜または上部電極膜用として、Ru、RuO、Pt、Ir、IrO等を構成する元素を含む液体原料を用いることが出来る。また、バリアメタル膜用としては、TiN、TaN等を構成する元素を含む液体原料を用いることが出来る。
具体的には、下部電極膜または上部電極膜用の液体原料として、Ru(C(ビスエチルシクロペンタジエニルルテニウム)、Ru(C)(C)(ブチルルテノセン)、Ru[CHCOCHCO(CHCH(トリス2,4オクタンジオナトルテニウム)、Ru(C)((CH)C)(2,4ジメチルペンタジエニルエチルシクロペンタジエニルルテニウム)、Ru(C)(C11)等の有機液体金属原料を用いることが出来る。
また、バリアメタル膜用の液体原料として、Ti[(OCH(CH)]、Ti(OCHCH、Ti[N(CH、Ti[N(CHCH、Ta(CO)等の有機液体金属原料を用いることが出来る。
なお、本発明の一実施形態においては、原料ガスとして、Ru(C)((CH)C)を気化させたガス(以下、DERガスと略す。)を用いることとする。DERガスのガス分子は、ルテニウム原子Ruと、ルテニウム原子Ruにそれぞれ結合している配位子h1(C)及び配位子h2((CH)C)と、から構成されている。
上述の通り、処理室内に原料ガスを供給すると、原料ガス分子としてのDERガス分子がシリコン基板上に吸着、すなわち物理吸着または化学吸着している状態となる。
(c)反応ガスを供給する工程
続いて、処理室内に、熱反応により原子状水素や水素イオンを放出する反応ガスを供給する。なお、反応ガスの供給前には、処理室内を排気して残留ガスを除去するか、処理室内の残留ガスを窒素ガスなどの不活性ガスに置換しておく。
反応ガスとしては、ギ酸(HCOOH)、酢酸(CHCOOH)等の有機酸、モノメチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、モノエチルアミン((C)NH)、ジエチルアミン((CNH)、トリエチルアミン((CN)等のアミン、ヒドラジン(HNNH)、モノメチルヒドラジン(CH−NH−NH)、硫化水素(HS)、シアン化水素(HCN)、酢酸(HCl)等の無機酸を用いることが出来る。なお、本発明の一実施形態においては、反応ガスとしてギ酸ガスを用いることとする。
処理室内にギ酸ガスを供給すると、シリコン基板表面に到達したギ酸ガスは、シリコン基板表面の熱反応により、原子状水素(H)や水素イオン(H+)を放出する。そして、放出された原子状水素や水素イオンは、シリコン基板表面に吸着しているDERガス分子と反応し、ルテニウム原子Ruに配位している配位子h1,h2や、ルテニウム原子に吸着している不純物を、ルテニウム原子Ruから脱離させる。その結果、ルテニウム原子Ruは、シリコン基板に吸着してルテニウム薄膜を生成することとなる。
(d)繰り返し工程
そして、上述の(b)および(c)の工程を1サイクルとして、このサイクルを複数回繰り返し、シリコン基板上に所望膜厚のルテニウム薄膜を形成する。なお、上記においては、1サイクルによるルテニウム薄膜の成膜行為を「生成」と表現し、このサイクルを複数回繰り返すことによる所望膜厚のルテニウム薄膜の成膜行為を「形成」と表現している。
(e)基板を搬出する工程
所望膜厚のルテニウム薄膜を形成後、シリコン基板を処理室内から搬出して、基板処理工程を完了する。
以上に示したとおり、本発明の一実施形態によれば、酸素ガスやプラズマを用いることなく、熱反応により原子状水素や水素イオンを放出する反応ガスを用いて成膜を行う。そのため、薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れた薄膜を形成することが可能である。
その他、本発明の一実施形態によれば、処理室内に、原料ガス、反応ガスをそれぞれ順番に供給することにより、処理室内でのガスの反応が抑制され、シリコン基板上に段差被覆性よく成膜することが出来る。
また、本発明の一実施形態によれば、成膜の初期段階においては、シリコン基板の表面に原料ガスが吸着した状態で表面反応が発生するため、インキュベーションタイムの発生を抑制することが出来る。
以下に、本発明の実施例について、図1〜図4を参照しながら説明する。参照する図面において、図1および図2は、実施例1および2にかかる半導体装置の製造方法の一工程としての基板処理工程をそれぞれ示している。また、図3は、実施例1および2において共通に用いられる本発明の一実施例にかかる基板処理装置の構成例を示している。また、図4は、実施例1および2において形成される下部電極膜、上部電極膜を備えたDRAMのキャパシタ部分の断面図である。
<実施例1>
実施例1では、本発明にかかる半導体装置の製造方法を適用し、DRAMのキャパシタの下部電極膜、及び上部電極膜を形成する方法について説明する。
(1)DRAMのキャパシタの構造
まず、DRAMのキャパシタ構造とその製造方法について、図4を用いて説明する。
最初に、シリコン基板1上に、SiOなどの絶縁体からなる層間絶縁膜100を形成する。そして、層間絶縁膜100を貫通するように、コンタクトホール107を開口する。
続いて、開口したコンタクトホール107の内部に、シリコン基板1と接続するためのコンタクトプラグ101を形成する。コンタクトプラグ101はポリシリコンを材料としてもよいし、タングステンを材料としてもよい。
続いて、コンタクトプラグ101の上部空間を埋めるように、バリアメタル膜102を形成する。バリアメタル膜102の材料としては、TiNやTaNが例示される。なお、バリアメタル膜102は、電極を構成する材料や酸化剤が、コンタクトプラグ101に拡散することを防止する。
続いて、層間絶縁膜100上とバリアメタル膜102上の全面に、層間絶縁膜103を形成する。その後、層間絶縁膜103を貫通するようにコンタクトホール108を開口する。
続いて、本発明にかかる基板処理方法を適用して、コンタクトホール108内と層間絶縁膜103上の全面に、下部電極膜104を形成する。下部電極膜104の形成方法については、(3)において後述する。
続いて、コンタクトホール108内の下部電極膜104を残留させつつ、層間絶縁膜103上の下部電極膜104を除去する。その後、残留させたコンタクトホール108内の下部電極膜104の内部をエッチングし、下部電極膜104の形状をシリンダ状とする。
続いて、下部電極膜104上と層間絶縁膜103上の全面に、所定の製造方法で容量絶縁膜105を形成する。
最後に、本発明にかかる基板処理方法を適用して、容量絶縁膜105上の全面に上部電極膜106を形成して、図4に示すキャパシタの製造を完了する。上部電極膜106の形成方法についても、(3)において後述する。
(2)基板処理装置の構成
続いて、実施例1で用いられる本発明の一実施例にかかる基板処理装置の構成について、図3を用いて説明する。なお、図3に例示する基板処理装置は、実施例1に示すようなALD法による成膜方法の実施に限らず、CVD法による成膜方法の実施にも適用可能である。
基板処理装置は、シリコン基板1を内部に搬入して薄膜を形成するための処理室5を備えている。処理室5は処理容器5aの内部に形成される。処理室5の側面部には、基板搬入搬出口2aの開閉を行うゲート弁2が設けられている。そして、ゲート弁2を開くことで開放された基板搬入搬出口2aを介して、搬送ロボット(図示せず)が、処理室5の内外にシリコン基板1を搬送できるようになっている。
処理室5の内部には、シリコン基板1を下方から支持するための支持板としてのサセプタ41が設けられている。そして、サセプタ41は、支持台としてのヒータユニット40により下方から支持されている。
ヒータユニット40は、シリコン基板1を加熱するためのヒータ4を内蔵している。そして、ヒータ4は、温度制御手段17によって制御され、サセプタ41上のシリコン基板1を所定の温度に加熱することが出来るようになっている。
ヒータユニット40は、昇降機構39によって処理室5内を昇降自在に設けられ、必要に応じて回転自在にも設けられている。ヒータユニット40は、シリコン基板1の搬送時には実線で示す位置まで下降し、サセプタ41の表面より突出した突き上げピン3が、シリコン基板1を支持する。また、シリコン基板1上への成膜時には、ヒータユニット40は点線で示す位置まで上昇し、突き上げピン3がサセプタ41の表面より没入するため、サセプタ41がシリコン基板1を支える。
処理室5の底面部には、処理室5を排気するための排気管9が連結されている。排気管9には、真空ポンプvpが連結されている。
処理室5の上面部には、処理室5にガスを供給するためのシャワーヘッド27が設けられている。シャワーヘッド27は、シャワーヘッド27に供給されるガスを拡散させるための拡散板7と、拡散板7によって拡散されたガスを分散するためのバッファ空間28と、分散されたガスを処理室5内へシャワー状に噴射するためのシャワー板8と、から構成されている。
シャワーヘッド27の上部には、原料ガスを処理室5内に供給するための原料ガス供給ライン15が接続されている。
さらに、シャワーヘッド27の上部には、熱反応により原子状水素や水素イオンを供給する反応ガスとしてのギ酸ガスを処理室5内に供給するための反応ガス供給ライン11と、原料ガスと反応する酸素ガスを処理室5内に供給するための酸素ガス供給ライン30と、がそれぞれ開閉バルブ14、13を介して接続されている。
上述の原料ガス供給ライン15は、原料ガスとしてのDERガスを、処理室5内に供給する。
原料ガス供給ライン15には、DERガスを供給するためのDERガス管31と、不活性ガスとしての窒素ガスを供給するための窒素ガス管32とが、それぞれ開閉バルブ6、10を介して接続されている。
DERガス管31には、液体原料としてのルテニウム原子を含む有機液体金属原料であるDERを気化させてDERガスを生成させる気化器50が接続されている。また、窒素ガス管32は、原料ガスの供給停止時に原料ガス供給ライン15内に窒素ガスを供給して、原料ガス供給ライン15内に酸素ガスやギ酸ガスが逆流(侵入)することを防止する。また、窒素ガス管32は、処理室5内へ窒素ガスを供給して、処理室5内の残留ガスを窒素ガスに置換する。
上述の反応ガス供給ライン11は、反応ガスとしてのギ酸ガスを、処理室5内に供給する。反応ガス供給ライン11には、開閉バルブ12を介してベントライン(バイパス管)36が接続されている。ベントライン36は、開閉バルブ12を開けることにより、ギ酸ガスを処理室5をバイパスさせて排気管9へと逃がす。
上述の酸素ガス供給ライン30は、熱CVD法で用いる酸素含有ガスとしての酸素ガスを、処理室5内に供給する。
酸素ガス供給ライン30には、酸素ガスを供給するための酸素ガス管37が、開閉バルブ23を介して接続されている。
さらに、酸素ガス供給ライン30には、窒素ガスを供給するための窒素ガス管38が、開閉バルブ24を介して接続されている。窒素ガス管38は、酸素ガスの供給停止時に酸素ガス供給ライン30内に窒素ガスを供給して、酸素ガス供給ライン30内へ原料ガスや反応ガスが逆流(侵入)することを防止する。また、窒素ガス管38は、反応ガスの供給停止時に酸素ガス供給ライン30を介して反応ガス供給ライン11内に窒素ガスを供給して、反応ガス供給ライン11内に原料ガスが侵入することを防止する。また、窒素ガス管38は、処理室5内へ窒素ガスを供給して処理室5内をガス置換する。
上述の開閉バルブ6、10、12〜14、23、及び24は、コントローラ60によって、それぞれ開閉制御される。
また、上述の配管32、11、37、及び38には、ガス流量を制御するための流量制御器21、20、25、及び26がそれぞれ設けられる。また、上述の配管31には、気化器50に供給するDERの液体流量を制御するための液体流量制御器22が設けられる。各流量制御器は、コントローラ60によってそれぞれ制御される。
また、上述の排気管9の真空ポンプvpの上流には、処理室5の内部圧力を調整するための排気配管コンダクタンス制御部18が設けられる。排気配管コンダクタンス制御部18は、コントローラ60によって制御される。なお、コントローラ60はこの他、基板処理装置を構成する各部の動作を制御する。
(3)ルテニウム膜の形成方法
続いて、上述の基板処理装置を使用した下部電極膜、上部電極膜の形成方法について、図1を用いて説明する。なお、以下の説明において、基板処理装置を構成する各部の動作は、コントローラ60によって制御される。シリコン基板1を処理室5内へ搬入する前に、予め処理室5内に窒素ガスを充満させて処理室5内の雰囲気を窒素等の不活性ガスに置換しておく。
まず、上述の処理室5内に、表面にSiO膜が形成されているシリコン基板1を搬入し、ヒータユニット40を上昇させることでサセプタ41上にシリコン基板1を載せ、シリコン基板1を成膜位置まで上昇させる。そして、開閉バルブ6、14、23を閉め、開閉バルブ24、13、10を開けることで処理室5内に窒素ガスを供給しつつ、排気管9より排気することにより、処理室5内をパージして窒素ガスで充満させる。そして、シリコン基板1をヒータ4により所定温度まで加熱して、処理室5内の圧力を所望の値に安定させる(開始)。具体的には、例えばシリコン基板1の表面温度は200〜350℃、処理室内圧力は0.1〜数10Torr(13.3〜数千Pa)とする。
続いて、開閉バルブ10を閉め、開閉バルブ6を開けることにより、拡散板7、シャワー板8を通して処理室5内に原料ガスとしてのDERガスを供給しつつ排気管9より排気する(工程1)。その結果、DERガス分子がシリコン基板1に物理吸着または化学吸着している状態となる。
続いて、開閉バルブ6を閉め、開閉バルブ10を開けることで処理室5内に窒素ガスを供給しつつ、排気管9を用いて処理室5内の残留ガスを排気することにより、処理室5内をパージして窒素ガスに置換する(工程2)。なお、この間、すなわち工程1、2では、開閉バルブ24、13は開いたままの状態として、酸素ガス供給ライン30より窒素ガスを供給しつつけることで、DERガス分子が酸素ガス供給ライン30内に侵入することを防止するようにする。
続いて、開閉バルブ12、13、24を閉め、開閉バルブ14を開けることにより、ギ酸ガスを処理室5内に供給しつつ、排気管9より排気する(工程3)。その結果、シリコン基板1の表面にギ酸ガス分子が到達し、シリコン基板1表面の熱反応により、原子状水素(H)や水素イオン(H+)を放出する。そして、放出された原子状水素や水素イオンは、シリコン基板1表面に吸着しているDERガス分子と反応し、ルテニウム原子Ruに配位している配位子h1、h2や、ルテニウム原子に吸着している不純物を、ルテニウム原子Ruから脱離させる。その結果、ルテニウム原子Ruは、シリコン基板に吸着してルテニウムRuの薄膜を生成することとなる。
続いて、開閉バルブ14を閉め、開閉バルブ13、24を開けることで、処理室5内に窒素ガスを供給しつつ、排気管9を用いて処理室5内の残留ガスを排気することにより、処理室5内をパージして窒素ガスに置換する(工程4)。なお、この間、すなわち工程3、4では、開閉バルブ10は開いたままの状態として、原料ガス供給ライン15より窒素ガスを供給し続けることで、ギ酸ガスが原料ガス供給ライン15内に侵入するのを防止するようにする。
そして、工程1から工程4までを1サイクルとして、シリコン基板1上に所望膜厚のルテニウム薄膜が形成されるまでこのサイクルを複数回繰り返す。その後、ルテニウム薄膜形成後のシリコン基板1を処理室5内から搬出して、基板処理工程を完了する(終了)。
実施例1によれば、繰り返し実施する各サイクルにおいて、酸素ガスやプラズマを用いることなく、処理室5内にギ酸ガスを供給し、ギ酸ガスが熱反応により放出する原子状水素や水素イオンを用いて成膜を行う。そのため、ルテニウム薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れた薄膜を形成することが可能である。
<実施例2>
実施例2においても、本発明にかかる半導体装置の製造方法を適用し、DRAMのキャパシタの下部電極膜、及び上部電極膜を形成する方法について説明する。
実施例2においては、成膜の初期段階のみ実施例1と同じ方法で成膜するが、途中からDERガスと酸素ガスとを同時に供給する熱CVD法を用いて成膜する点が、実施例1と異なる。他の条件は実施例1とほとんど変わらない。
(1)DRAMのキャパシタの構造、及び基板処理装置の構成
実施例1と同一である。
(2)ルテニウム膜の形成方法
実施例2における下部電極膜、上部電極膜の形成方法について、図2を用いて説明する。なお、以下の説明において、基板処理装置を構成する各部の動作はコントローラ60によって制御される。シリコン基板1を処理室5内へ搬入する前に、予め処理室5内に窒素ガスを充満させて処理室5内の雰囲気を窒素等の不活性ガスに置換しておく。
まず、上述の処理室5内に、表面にSiO膜が形成されているシリコン基板1を搬入し、ヒータユニット40を上昇させることでサセプタ41上にシリコン基板1を載せ、シリコン基板1を成膜位置まで上昇させる。そして、開閉バルブ6、14、23を閉め、開閉バルブ24、13、10を開けることで処理室5内に窒素ガスを供給しつつ、排気管9より排気することにより、処理室5内をパージして窒素ガスで充満させる。そして、シリコン基板1をヒータ4により所定温度まで加熱して、処理室5内の圧力を所望の値に安定させる(開始)。具体的には、例えばシリコン基板1の表面温度は200〜350℃、処理室内圧力は0.1〜数10Torr(13.3〜数千Pa)とする。
その後、実施例1における工程1から工程4までを1サイクルとし、このサイクルを所定回繰り返して、シリコン基板1上に所望膜厚のルテニウム膜を形成する。このときのサイクル数は、実施例1の場合より少なくてよい。その結果、シリコン基板1の表面はルテニウム薄膜により覆われ、薄膜を形成する際の下地は露出していない状態となる。
その後、開閉バルブ10、14、24を閉じ、開閉バルブ6、23、13を開けて、DERガスと酸素ガスとを処理室5内に同時に供給しつつ、排気管9より排気する。そして熱CVD法により、前述の工程で成膜したルテニウム薄膜上に、所望膜厚の薄膜を更に形成する(工程5)。なお、熱CVD工程は、上述の工程と、同一反応室内、同一温度にて行うことが、生産性やコストの観点から望ましい。実施例2においても、上述の工程と同一の処理室5内で熱CVDを行うこととし、かつ基板温度や処理室内圧力も同一条件とする。
その後、開閉バルブ6、23を閉め、開閉バルブ10、24を開けることで処理室5内に窒素ガスを供給しつつ、排気管9を用いて処理室5内の残留ガスを排気することにより、処理室5内を窒素ガスに置換する。その後、ルテニウム薄膜形成後のシリコン基板1を処理室5内から搬出して、基板処理工程を完了する(終了)。
実施例2によれば、成膜の初期段階においては、実施例1と同様に、ルテニウム薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れたルテニウム薄膜を形成することが可能である。また、下地面がルテニウム薄膜にて覆われた後は、酸素ガスを供給しても下地が酸化することはなく、また、熱CVD法によりルテニウム薄膜を形成するため、成膜速度をさらに向上させることが出来る。
なお、上記実施例1、2のルテニウム膜の形成方法は、DRAMキャパシタの下部電極を形成する場合のみに適用し、上部電極を形成する際には還元ガスを用いないようにしてもよい。例えば、上部電極についてはDERガスと酸素ガスとを同時に供給する熱CVD法を用いてもよいし、DERガスと酸素ガスとを交互に供給するALD法を用いてもよい。というのは、DRAMキャパシタの上部電極を絶縁膜の上に形成する場合には、酸素を用いたALD法を使用することが出来るが、下部電極を形成する場合には、下地としてバリアメタル膜などが予め形成されており、酸素がこのバリアメタル膜を酸化させてしまうと、下部電極のコンタクト抵抗が増大する問題があるからである。
<本発明の好ましい態様>
第1の態様は、処理室内に基板を搬入する工程と、前記処理室内に液体原料を気化した原料ガスを供給して前記基板上へ吸着させる工程と、前記処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給し、前記基板上に吸着した前記原料ガスと反応させて前記基板上に薄膜を生成する工程と、を1サイクルとしてこのサイクルを複数回繰り返し、前記基板上に所望膜厚の薄膜を形成する工程と、所望膜厚の薄膜形成後の前記基板を前記処理室内から搬出する工程と、を有する半導体装置の製造方法である。
第1の態様によれば、繰り返し実施する各サイクルにおいて、酸素ガスやプラズマを用いることなく、熱反応により原子状水素や水素イオンを放出する反応ガスを用いて成膜を行う。そのため、薄膜を形成する際の下地を酸化させることなく、段差被覆性に優れた薄膜を形成することが可能である。
また、第1の態様によれば、処理室内に、原料ガスと、反応ガスと、をそれぞれ順番に供給することにより、処理室内でのガスの反応が抑制され、基板上に段差被覆性よく成膜することが出来る。また、成膜の初期段階においては、基板の表面に原料ガスが吸着した状態で表面反応が発生するため、インキュベーションタイムの発生を抑制出来る。
ここで前記反応ガスとは、好ましくは、有機酸、アミン、無機酸のうち、少なくともいずれか一つを含むガスとする。さらに好ましくは、ギ酸(HCOOH)、酢酸(CHCOOH)等の有機酸、モノメチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、モノエチルアミン((C)NH)、ジエチルアミン((CNH)、トリエチルアミン((CN)等のアミン、ヒドラジン(HNNH)、モノメチルヒドラジン(CH−NH−NH)、硫化水素(HS)、シアン化水素(HCN)、酢酸(HCl)等の無機酸のうち、少なくともいずれかを一つを含むガスとする。
第1の態様における反応ガスとして、これらのガスを用いることにより、熱反応による原子状水素や水素イオンの放出がさらに促され、基板上への成膜レートをさらに向上させることが出来る。
第2の態様は、基板を処理するための処理室と、前記処理室内に液体原料を気化した原料ガスを供給するための原料ガス供給ラインと、前記処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給するための反応ガス供給ラインと、前記処理室内に前記原料ガスを供給した後、前記処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給し、これを1サイクルとしてこのサイクルを複数回繰り返すように制御するためのコントローラと、を有することを特徴とする基板処理装置である。
第2の態様によれば、コントローラが、処理室内に原料ガスを供給した後、処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給し、これを1サイクルとしてこのサイクルを複数回繰り返すように制御するようにすれば、第1の態様の半導体装置の製造方法を自動化することが出来るので、作業は一層容易になる。
実施例1にかかる半導体装置の製造方法の一工程としての基板処理工程を示す図である。 実施例2にかかる半導体装置の製造方法の一工程としての基板処理工程を示す図である。 実施例1および2において共通に用いる本発明の一実施例にかかる基板処理装置の構成例を示す概略図である。 実施例1および2において形成される下部電極膜、上部電極膜を備えたDRAMのキャパシタ部分の断面図である。
符号の説明
1 シリコン基板
5 処理室
11 反応ガス供給ライン
15 原料ガス供給ライン
30 酸素ガス供給ライン
60 コントローラ

Claims (1)

  1. 処理室内に基板を搬入する工程と、
    前記処理室内に液体原料を気化した原料ガスを供給して前記基板上へ吸着させる工程と、前記処理室内に熱反応により原子状水素又は水素イオンを放出する反応ガスを供給し、前記基板上に吸着した前記原料ガスと反応させて前記基板上に薄膜を生成する工程と、を1サイクルとしてこのサイクルを複数回繰り返し、前記基板上に所望膜厚の薄膜を形成する工程と、
    所望膜厚の薄膜形成後の前記基板を前記処理室内から搬出する工程と、
    を有することを特徴とする半導体装置の製造方法。
JP2006258751A 2006-09-25 2006-09-25 半導体装置の製造方法、及び基板処理装置 Pending JP2008075167A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258751A JP2008075167A (ja) 2006-09-25 2006-09-25 半導体装置の製造方法、及び基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258751A JP2008075167A (ja) 2006-09-25 2006-09-25 半導体装置の製造方法、及び基板処理装置

Publications (1)

Publication Number Publication Date
JP2008075167A true JP2008075167A (ja) 2008-04-03

Family

ID=39347518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258751A Pending JP2008075167A (ja) 2006-09-25 2006-09-25 半導体装置の製造方法、及び基板処理装置

Country Status (1)

Country Link
JP (1) JP2008075167A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070781A (ja) * 2008-09-16 2010-04-02 Tokyo Electron Ltd 成膜方法および成膜装置、ならびに記憶媒体
WO2023153284A1 (ja) * 2022-02-14 2023-08-17 東京エレクトロン株式会社 成膜方法及び成膜装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070781A (ja) * 2008-09-16 2010-04-02 Tokyo Electron Ltd 成膜方法および成膜装置、ならびに記憶媒体
WO2023153284A1 (ja) * 2022-02-14 2023-08-17 東京エレクトロン株式会社 成膜方法及び成膜装置

Similar Documents

Publication Publication Date Title
JP4813480B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
JP4803578B2 (ja) 成膜方法
JP5864503B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP5097554B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
US9536782B2 (en) Tungsten film forming method, semiconductor device manufacturing method, and storage medium
JP6710089B2 (ja) タングステン膜の成膜方法
WO2015080058A1 (ja) タングステン膜の成膜方法
JP2016222954A (ja) 金属膜の成膜方法
JP2006054432A (ja) 成膜方法、成膜装置及び記憶媒体
JP4694209B2 (ja) 基板処理装置及び半導体装置の製造方法
JP2019062142A (ja) 選択成膜方法および半導体装置の製造方法
JP4559223B2 (ja) 半導体装置の製造方法及び基板処理装置
JP2021015947A (ja) RuSi膜の形成方法及び基板処理システム
US20160040287A1 (en) Tungsten Film Forming Method
US9331139B2 (en) Ruthenium film formation method and storage medium
JP2008075167A (ja) 半導体装置の製造方法、及び基板処理装置
JP2008075166A (ja) 半導体装置の製造方法、及び基板処理装置
JP2008205325A (ja) 半導体装置の製造方法、及び基板処理装置
JP6030746B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP2009299101A (ja) 半導体装置の製造方法および基板処理装置
KR101094954B1 (ko) 원자층증착법을 이용한 반도체 소자의 박막 제조방법
JP6176776B2 (ja) 半導体装置の製造方法、基板処理装置、基板処理システムおよびプログラム
KR20150060532A (ko) 금속막의 성막 방법
JP2021008642A (ja) 基板処理方法及び基板処理装置
CN116779534A (zh) 衬底处理方法、半导体器件的制造方法、记录介质及衬底处理装置