JP2008074688A - 改質装置 - Google Patents

改質装置 Download PDF

Info

Publication number
JP2008074688A
JP2008074688A JP2006258962A JP2006258962A JP2008074688A JP 2008074688 A JP2008074688 A JP 2008074688A JP 2006258962 A JP2006258962 A JP 2006258962A JP 2006258962 A JP2006258962 A JP 2006258962A JP 2008074688 A JP2008074688 A JP 2008074688A
Authority
JP
Japan
Prior art keywords
unit
temperature
reforming
oxidation
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006258962A
Other languages
English (en)
Inventor
Shigenori Onuma
重徳 尾沼
Kouichi Kuwaha
孝一 桑葉
Akira Matsuoka
晃 松岡
Norihiko Toyonaga
紀彦 豊長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006258962A priority Critical patent/JP2008074688A/ja
Publication of JP2008074688A publication Critical patent/JP2008074688A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】COシフト部の温度をこれの活性温度域に維持するのに有利な改質装置改質装置を提供する。
【解決手段】原料水を蒸発させる蒸発部36と、蒸発部36を経た気相または液相の水と改質用燃料とを反応させて改質ガスを生成する改質部30と、改質用燃料供給部32と、改質部30よりも下流に配設されたCOシフト部5と、蒸発部36と熱交換可能に配設されCO酸化除去部37と、CO酸化除去部37に酸素成分を供給する酸素供給部75とをもつ。酸素供給部75からCO酸化除去部37に供給される酸素成分の流量を制御することにより、CO酸化除去部37の上流に配設されているCOシフト部5の温度を制御する温度調整手段をもつ。
【選択図】図1

Description

本発明は改質用燃料と水蒸気とを反応させて改質ガスを生成する改質装置に関する。
一般的には、改質装置は、原料水を加熱して蒸発させる蒸発部と、蒸発部に改質水を供給する改質水供給部と、蒸発部を経た気相または液相の水と改質用燃料とを反応させることにより、一酸化炭素を含有する改質ガスを生成する改質部と、改質部に改質用燃料を供給する改質用燃料供給部と、改質部で形成された改質ガスを浄化することにより、改質ガスに含まれている一酸化炭素を低減させるCOシフト部と、COシフト部よりも下流に配設され、COシフト部で浄化された改質ガスに残留する一酸化炭素と酸素とを反応させることにより、改質ガスに残留する一酸化炭素を低減させるCO酸化除去部とを備えている(特許文献1,2)。
改質装置で生成される改質ガスに含まれている一酸化炭素の濃度を低減させる必要がある。このため燃料電池システムの運転条件が変動するときであっても、COシフト部を安定的に作動させることが好ましい。上記した文献によれば、COシフト部の浄化作用を良好に維持するため、COシフト部の活性温度域が規定されている。COシフト部の温度が活性温度域よりも低下した温度では、COシフト部に担持されているシフト触媒が充分に活性化せず、COシフト部CO浄化性能は充分に働かないおそれがある。
特許文献3には、予め設定されたS/C範囲と改質用燃料とから算出される流量範囲内において、蒸発部に供給する改質水の流量を増減させる技術が採用されている。このものによれば、燃料電池システムの負荷変動時などにおいても、一酸化炭素の濃度を低減させるCOシフト部をこれの活性温度域に維持させるのに有利と記載されている。S/C範囲は、改質水の水モル数/改質燃料の炭素モル数である。S/C範囲が不適切であると、改質部等においてカーボンが析出し、反応を損なうおそれがある。
特開2005−104776号公報 特開2004−115321号公報 特開2004−6093号公報
しかしながら上記した特許文献3によれば、改質装置の運転中には、COシフト部の温度を維持する効果を期待できるとはいうものの、蒸発部に供給する改質水の流量の調整のみで行っているため、COシフト部の温度の安定化のためには、必ずしも充分ではない。具体的には、上記したカーボンの析出を抑制するためには、改質部に供給される改質用燃料に対して一定以上の改質水の流量を供給する必要があり、改質水の流量の低減には限界があるためである。このため、改質水の流量を低減させるのみの操作では、燃料電池システムの運転時において、COシフト部の温度の安定化の制御には限界がある。従って、燃料電池システムの運転条件が変動するとき、COシフト部の温度がこれの活性温度域よりも低下するおそれがある。
本発明は上記した実情に鑑みてなされたものであり、燃料電池システムの運転条件が変動するときであっても、COシフト部の温度をこれの活性温度域に維持するのに有利な改質装置を提供することを課題とする。
本発明に係る改質装置は、(a)原料水を加熱して蒸発させる蒸発部と、(b)蒸発部に改質水を供給する改質水供給部と、(c)蒸発部を経た気相または液相の水と改質用燃料とを反応させることにより、一酸化炭素を含有する改質ガスを生成する改質部と、(d)改質部に改質用燃料を供給する改質用燃料供給部と、(e)改質部よりも下流に配設され、改質部で形成された改質ガスを浄化することにより、改質ガスに含まれている一酸化炭素を低減させるCOシフト部と、(f)蒸発部と熱交換可能に配設され且つCOシフト部よりも下流に配設され、COシフト部で浄化された改質ガスに残留する一酸化炭素と酸素とを酸化反応させることにより、改質ガスに残留する一酸化炭素を低減させるCO酸化除去部と、(g)CO酸化除去部に酸素成分を供給する酸素供給部とを具備しており、(h)酸素供給部からCO酸化除去部に供給される酸素成分の流量を制御することにより、CO酸化除去部の上流に配設されているCOシフト部の温度を制御する温度調整手段を具備することを特徴とする。
COシフト部の浄化性能を確保するためには、COシフト部の温度がこれの活性温度域よりも低下することを抑える必要がある。ここで、CO酸化除去部における反応は酸化反応であり、発熱を伴う。本発明によれば、温度調整手段は、酸素供給部からCO酸化除去部に供給される酸素成分の流量を制御する。これによりCO酸化除去部における発熱量が制御され、CO酸化除去部の温度が制御される。この結果、CO酸化除去部と熱交換可能に配設された蒸発部の温度が制御され、蒸発部の下流に配設されているCOシフト部の温度が制御される。つまり、CO酸化除去部の温度が制御される結果、CO酸化除去部の上流に配置されているCOシフト部の温度が制御される。
即ち、COシフト部の温度が活性温度域よりも低いとき、温度調整手段は、酸素供給部からCO酸化除去部に供給される酸素成分の流量を増加させるように制御する。これによりCO酸化除去部における発熱量が増加され、CO酸化除去部の温度が上昇する。ひいてはCO酸化除去部の上流に配設されているCOシフト部の温度が上昇する。これによりCOシフト部の温度がこれの活性温度域よりも低下することが抑えられる。よって改質ガスに含まれている一酸化炭素を良好に低減させることができる。
本発明に係る改質装置によれば、COシフト部の温度がこれの活性温度域よりも低いときであっても、CO酸化除去部の上流に配設されているCOシフト部の温度を上昇させることができる。これによりCOシフト部の温度がCOシフト部の活性温度域に維持され易くなる。よって改質ガスに含まれている一酸化炭素を良好に低減させることができる。
本発明によれば、熱交換部が設けられていることが好ましい。熱交換部は、蒸発部を経た気相または液相の水と改質用燃料とが混合する混合流体が改質器に向かう第1通路と、改質器から吐出され混合流体よりも高温の改質ガスがCOシフト部に向かう第2通路とを有する。熱交換部において、改質ガスよりも相対的に低温の混合流体と、混合流体よりも相対的に高温の改質ガスとが熱交換される。この場合、熱交換部において、改質部に向かう混合流体が予熱されると共に、改質部からCOシフト部に向かう改質ガスが冷却される。
本発明によれば、温度調整手段は、(i)酸素供給部からCO酸化除去部に供給される酸素成分の流量を制御することにより、CO酸化除去部から蒸発部への伝熱量を制御し、蒸発部における水分の気相比率を調整する気相比率制御操作と、(ii)熱交換部において第2通路の改質ガスから第1通路の混合流体への伝達される伝熱量を制御することにより、熱交換部の第2通路を経てCOシフト部に向かう改質ガスの温度を制御する改質ガス温度制御操作とを行うことが好ましい。
本発明によれば、COシフト部の温度を検知するCOシフト部温度検知器が設けられていることが好ましい。この場合、温度調整手段は、COシフト部温度検知器で検知したCOシフト部の温度に応じて、酸素供給部からCO酸化除去部に供給される酸素成分の流量を制御する。即ち、COシフト部の温度が低いときには、酸素供給部からCO酸化除去部に供給される酸素成分の流量を増加させる。この場合、CO酸化除去部における酸化反応(発熱反応)が促進される。よって、CO酸化除去部が蒸発部に与える熱量が増加し、蒸発部において気相の水分の割合が増加し、液相の水分の割合が減少する。この場合、蒸発部から改質部に向かう水において、気相状の水の比率が増加し、液相状の水の比率が減少する。この場合、液相状の水の蒸発潜熱の量が減少する。このため蒸発部よりも下流側に配置されている改質部およびCOシフト部の過剰低温化が抑制される。
本発明によれば、CO酸化除去部の温度を検知するCO酸化除去部温度検知器が設けられていることが好ましい。この場合、温度調整手段は、CO酸化除去部温度検知器で検知したCO酸化除去部の温度に応じて、酸素供給部からCO酸化除去部に供給される酸素成分の流量を制御する。
温度調整手段は、改質部に供給される改質用燃料の供給量が増加するにつれて、酸素供給部からCO酸化除去部に供給される酸素成分の流量を増加させる操作を行う形態が例示される。ここで、改質部に供給される改質用燃料の流量が増加すると、改質ガスに含まれる一酸化酸素も増加する。このため酸素供給部からCO酸化除去部に供給される酸素成分の流量を増加させる。
また、COシフト部が過剰に昇温すると、COシフト部の温度がこれの活性温度域から逸脱するおそれがある。COシフト部の過熱を抑えるためには、蒸発部に供給される改質水の流量を増加させ、COシフト部を冷却させることも有効である。この場合、蒸発部から改質部に向かう水において、気相状の水の比率が減少し、液相状の水の比率が増加する。この場合、液相状の水が蒸気化する蒸発潜熱の量が増加する。このため蒸発部よりも下流側に配置されている改質部およびCOシフト部が冷やされ、COシフト部の過剰高温化が抑制される。
そこで、本発明においては、改質水供給部は、改質水基準流量と改質水補正流量との合計値に対応する改質水の流量を、改質水供給部から蒸発部に供給する。そして、温度調整手段は、COシフト部温度検知器で検知したCOシフト部の温度が高くなるにつれて改質水補正流量を増加させ、COシフト部を冷却する形態が例示される。
また、熱交換部による熱交換を介してCOシフト部の温度が制御される形態が例示される。蒸発部の温度が制御されることにより、蒸発部の下流にあるCOシフト部の温度が制御される形態が例示される。
以下、本発明の実施例1について図1を参照して具体的に説明する。本実施例に係る改質装置は燃料電池システムに適用したものである。図1に示すように、燃料電池1は、プロトン伝導性をもつ固体高分子膜10を燃料極11と酸化剤極12とで厚み方向に挟持する膜電極接合体13を複数組み付けて形成されている。固体高分子膜10の材質としては、炭化フッ素系樹脂(例えばパーフルオロスルホン酸樹脂)または炭化水素系樹脂が例示される。燃料電池1としては、シート状の膜電極接合体13を厚み方向に複数積層する方式でも良いし、チューブ状の膜電極接合体13を複数配置する方式でも良い。
図1に示すように、改質装置2は、燃焼バーナで形成された燃焼部30と、燃焼部30により加熱される改質部34と、燃焼部30に対面する燃焼通路32と、燃焼通路32に連通する燃焼通路33と、燃焼通路33に連通する燃焼通路35と、原料水を蒸発させる蒸発部36と、CO酸化除去部37(CO選択酸化部ともいう)とを備えている。
改質部34は燃焼通路32と燃焼通路33との間に配置されており、内通路34iと外通路34pと折返部34mとをもつ。改質部34の回りを包囲するように、筒状の燃焼通路33が配置されている。燃焼通路35は、燃焼通路33から折り返した筒状通路である。燃焼通路33,35の間には、筒状の断熱部31が配置されている。燃焼通路35の回りを包囲するように、筒状の蒸発部36が配置されている。燃焼通路35は蒸発部36の内周側に配置されている。蒸発部36は、燃焼通路35を通過する燃焼ガスにより加熱される。蒸発部36の回りを包囲するように、通常のCO酸化除去部37が配置されている。従って、蒸発部36とCO酸化除去部37とは互いに熱交換される。
定常運転時には、蒸発部36の温度よりもCO酸化除去部37の温度が高いため、CO酸化除去部37は蒸発部36に熱を与える。なお、起動運転時には、CO酸化除去部37の温度が100℃に達するまでと、停止操作時に蒸発部36の蒸発部36の水分が全て蒸気化した後には、蒸発部36からCO酸化除去部37に熱が与えられる。CO酸化除去部37の外周には、保温用の筒状の断熱層39が配置されている。
改質部34は、改質反応を促進させる改質触媒34eを担持する担体を有する。改質触媒34eの活性温度域は一般的には500〜800℃であるが、これに限定されるものではない。改質部34の温度がこれの活性温度域から大きく外れると、改質部34の改質反応が損なわれるおそれがある。改質部34は下記の式(1)に基づいて、改質用燃料と水蒸気とに基づいて水蒸気改質を行い、水素を主要成分とする改質ガスを生成する。改質ガスは一酸化炭素を含む。
更に、図1に示すように、改質装置2は、改質部34の下方に配置された熱交換部4と、熱交換部4の下方に配置されたCOシフト部5と、COシフト部5と熱交換部4との間に配置された暖機部47とを備えている。ここで、蒸発部36の下流に熱交換部4が設けられ、熱交換部4の下流にCOシフト部5が設けられている。
COシフト部5は、下記の(2)式に基づいて、水蒸気を利用するシフト反応を促進させ、改質ガスに含まれているCOを低減させる。COシフト部5はシフト触媒5e(例えば銅−亜鉛系触媒)を担持する担体を有する。シフト触媒5eの活性温度域は一般的には200〜300℃であるが、これに限定されるものではない。COシフト部5の温度がこれの活性温度域から大きく外れると、COシフト部5のシフト反応が損なわれ、一酸化炭素が充分に浄化されないおそれがある。COシフト部5で浄化された改質ガスに含まれているCOの濃度は、改質用燃料にもよるが、一般的にはモル比で0.2〜1%であるが、これに限られるものではない。COシフト部5は通路5iと通路5vと折返部5mとをもつ。COシフト部5の出口5pと酸化用空気配管75とは、第2合流域M2を介して浄化配管400により接続されている。
CO酸化除去部37は、COシフト部5の下流に配置されており、COシフト部5を通過した改質ガスに含まれているCOを二酸化炭素に下記の式(3)に基づいて、酸化させて低減させる酸化反応を促進させるものである。CO酸化除去部37は、選択酸化触媒37e(例えばルテニウム系)を担持する担体を有する。選択酸化触媒37eの活性温度域は一般的には100〜200℃である。但しこれに限られるものではない。CO酸化除去部37の温度がこれの活性温度域から大きく外れると、CO酸化除去部37における酸化反応が損なわれるおそれがある。CO酸化除去部37で浄化された改質ガスに含まれているCOの濃度は一般的には10ppm以下である。但しこれに限られるものではない。
式(1)…CH+HO→3H+CO
式(2)…CO+HO→H+CO
式(3)…CO+1/2O→CO
本実施例によれば、COシフト部5はCO酸化除去部37の上流に配置されているため、式(2)→式(3)の順に実行される。
次に配管系について説明する。図1に示すように、燃料供給源61に弁25aを介して繋がる燃料配管62が設けられている。燃料供給源61の燃料としては気体燃料でも、液体燃料でも、粉化燃料でも良い。具体的には、炭化水素系燃料、例えば都市ガス、LPG、灯油、メタノール、ジメチルエーテル、バイオガス、アルコール系燃料(例えばメタノール、エタノール等)が例示される。燃料配管62は、弁25a,ポンプ27aを介して改質部34の燃焼部30に繋がる燃焼用燃料配管62と、熱交換部4の入口4iにポンプ27bおよび弁25bを介して繋がる改質用燃料配管62(改質用燃料供給部)とをもつ。空気供給源71に繋がる空気配管72(酸素供給部)が設けられている。空気配管72は、ポンプ27cを介して改質部34の燃焼部30に繋がる燃焼用空気配管73と、ポンプ27dおよび弁25dを介してCO酸化除去部37の入口37iに繋がる酸化用空気配管75とをもつ。
図1に示すように、水タンク81と蒸発部36の入口36iとをポンプ27mおよび弁25mを介して繋ぐ改質水配管82(改質水供給部)が設けられている。CO酸化除去部37の出口37pと燃料電池1の燃料極11の入口11iとを弁25eを介して繋ぐアノードガス配管100が設けられている。CO酸化除去部37の出口37pはCO酸化除去部37の高さ方向の上部側に形成されている。燃料電池1の燃料極11の出口11pと燃焼部30とを弁25fを介して繋ぐオフガス配管110が設けられている。オフガス配管110は発電反応後のアノードオフガスを排出させる。オフガス配管110とアノードガス配管100とを弁25hを介して繋ぐバイパス配管150が設けられている。
図1に示すように、空気供給源71と燃料電池1の酸化剤極12の入口12iにポンプ27kおよび弁25kを介して連通するカソードガス配管200が設けられている。改質部34で燃焼された燃焼排ガスを外部に放出させる燃焼排ガス配管250が設けられている。蒸発部36の出口36pと改質用燃料配管62とを第1合流域M1を介して繋ぐ水蒸気配管300が設けられている。水蒸気配管300の上端部300eは出口36pに繋がる。水蒸気配管300の下端部300fは合流域M1に繋がる。
図1に示すように、COシフト部5の出口5pとCO酸化除去部37の入口37iとは、浄化配管400で接続されている。COシフト部5の出口5pから吐出された改質ガス(水素および一酸化炭素を含有)は、浄化配管400を上向きに矢印W2方向に流れ、第2合流域M2を経てCO酸化除去部37の入口37iに供給される。入口37iは、CO酸化除去部37の高さ方向の下部側に形成されている。
次に改質装置2を起動させるときについて説明する。この場合、ポンプ27cにより燃焼用空気配管73を介して燃焼用空気を燃焼部30に供給する。また、弁25aおよびポンプ27aにより燃焼用燃料配管62を介して燃焼用燃料を燃焼部30に供給する。これにより燃焼部30が着火されて加熱され、ひいては改質部34が改質反応に適するように加熱される。改質部34の内側部34および外側部35と共に蒸発部36も高温に加熱される。
その後、水タンク81および改質水配管82からポンプ27mおよび弁25mを介して、改質水が蒸発部36の入口36iに供給される。改質水は高温の蒸発部36において水蒸気化される。生成された水蒸気は、蒸発部36の出口36pから水蒸気配管300を経て第1合流域M1に到達する。第1合流域M1は、水蒸気配管300を流れる水蒸気または凝縮水と、改質用燃料配管62を流れる改質用燃料とが合流する領域である。これに対して、改質用燃料は弁25a,ポンプ27b,弁25bにより、改質用燃料配管62および第1合流域M1を経て熱交換部4の入口4iに供給される。第1合流域M1において、改質用燃料配管62の改質用燃料と水蒸気配管300の水蒸気とが合流して混合される。合流した混合流体が熱交換部4の入口4iに供給される。混合流体は熱交換部4の低温側の第1通路4aを通過する。このとき熱交換部4の高温側の第2通路4cを流れる高温の改質ガスと熱交換する。このため、改質反応前の混合流体が加熱される。混合流体は改質部34の外通路34pに流入し、矢印A1方向に流れ、折返部34mを経て内通路34iに流入し、矢印A2方向に流れる。このとき水蒸気(または凝縮水)および改質用燃料が混合した混合流体は、上記した(1)に示す改質反応により、水素リッチな改質ガスとなる。この改質ガスは一酸化炭素を含む。
更に、改質反応を経た高温の改質ガスは、改質部34の内側部34から熱交換部4に流入する。即ち、高温の改質ガスは、改質部34から熱交換部4の高温側の第2通路4cを通過することにより、低温側の第1通路4aの混合流体を加熱する。更に、改質ガスは、暖機部47を経て、COシフト部5の入口5iからCOシフト部5の内部に流入する。COシフト部5においては、上記した式(2)に示すように、水蒸気を利用したシフト反応が行われる。これにより改質ガスに含まれている一酸化炭素が低減されて、改質ガスは浄化される。
更に、COシフト部5において浄化された改質ガスは、COシフト部5の出口5pから浄化配管400を経て矢印W2方向に流れ、第2合流域M2に至る。更に改質ガスは、酸化用空気配管75(酸素供給部)の酸化用空気(酸素成分,CO酸化除去部37における選択反応に使用される選択酸化用空気)と第2合流域M2において合流する。第2合流域M2は、浄化配管400を流れる改質ガスと、酸化用空気配管75を流れる酸化用空気とが合流する領域である。そして、合流した改質ガスは、入口37iからCO酸化除去部37に流入する。CO酸化除去部37においては、上記した式(3)に示すように、酸素を利用した酸化反応(CO+1/2O→CO)が行われる。この結果、改質ガスに含まれているCOが浄化されて更に低減される。酸化反応は発熱を伴う。
このように浄化された改質ガスは、CO酸化除去部37の出口37pからアノードガスとして、アノードガス配管100,弁25eを経て燃料電池1の燃料極11の入口11iに供給される。カソードガスとして機能する空気は、ポンプ27k,弁25kによりカソ−ドガス配管200を経て燃料電池1の酸化剤極12の入口12iに供給される。これにより燃料電池1において発電反応が発生し、電気エネルギが生成される。アノードガスの発電反応後のオフガスは、発電反応が行われなかった水素を含むことがある。このためオフガスはオフガス配管110を経て改質部34の燃焼部30に供給されて燃焼され、燃焼部30の熱源となる。
なお、改質装置2の起動開始時では、改質ガスの組成の安定性が必ずしも充分でないときがある。このため、起動開始時では、弁25e,弁25fが閉鎖されている。この状態で、CO酸化除去部37の出口37pから吐出される改質ガスは、弁25hを通過しバイパス配管150およびオフガス配管110を介して燃焼部30に送られ、燃焼部30の熱源となる。改質装置2の起動開始から時間が経過すると、改質ガスの組成が安定する。この場合、弁25hが閉鎖され、弁25e,弁25hが開放される。このため、CO酸化除去部37の出口37pから吐出される改質ガスは、アノードガスとして、アノードガス配管100,弁25eを経て燃料電池1の燃料極11の入口11iに供給され、発電反応に使用される。
図1に示すように、COシフト部5のうち上流側(通路5iの入口側)の温度T11を検知するCOシフト部温度検知器55が設けられている。CO酸化除去部37のうち上流側の温度T2を検知するCO酸化除去部温度検知器38が設けられている。更に、改質部34の内側部34の出口側の温度T1を検知する改質部温度検知器31tが設けられている。水蒸気と改質用燃料とが合流する第1合流域M1の温度T2を検知する温度検知器65が設けられている。
さて本実施例によれば、COシフト部5の温度T11が低く、これの活性温度域よりも低い場合には、COシフト部5を昇温させることによりCOシフト部5を活性温度域に維持させるべく、制御装置500が働く。制御装置500は、COシフト部5の温度を調整してCOシフト部5の温度をこれの活性温度域に維持する温度調整手段として機能する。
COシフト部温度検知器55が検知したCOシフト部5の温度T11の信号と、CO酸化除去部温度検知器38が検知したCO酸化除去部37の温度12の信号と、改質部温度検知器31tが検知した改質部34の内側部34の温度T1の信号と、温度検知器65が検知した第1合流域M1の温度T2の信号が、それぞれ、制御装置500に入力される。制御装置500は、酸化用空気配管75(酸素供給部)からCO酸化除去部37に供給される空気(酸素含有ガス,酸素成分)の流量を制御する。これにより、CO酸化除去部37の上流に配設されているCOシフト部5の温度が制御される。
(a)具体的には、COシフト部5の温度T11が低くてこれの活性温度域よりも低い場合には、制御装置500は、酸化用空気配管75からCO酸化除去部37に供給される空気(酸素含有ガス)の流量を増加させるように制御する。これにより、CO酸化除去部37における反応が促進される。この反応は酸化反応であり、発熱を伴う反応であるため、CO酸化除去部37における発熱量が増加する。従って、相対的に高温のCO酸化除去部37から、相対的に低温の蒸発部36へ伝達される伝熱量が制御される。図1に示すように、CO酸化除去部37が蒸発部36の外側に位置するように、CO酸化除去部37および蒸発部36が互いに隣設しているためである。
改質装置の通常運転時には、蒸発部36は改質水を蒸発させるため、改質水の蒸発潜熱の影響で、蒸発部36は、一般的には100℃程度の温度領域に維持される。そして、COシフト部5を経た高温の改質ガスが、入口37iからCO酸化除去部37に供給されるため、CO酸化除去部37の温度は高くなる。このため、CO酸化除去部37は相対的に高温側となり、蒸発部36は相対的に低温側となる。故に、CO酸化除去部37が蒸発部36に与える熱量が増加する。この結果、蒸発部36において改質水へ与えられる熱量が増加する。故に蒸発部36おいて蒸気化が促進され、液相の水分比率が相対的に減少し、気相の水分の比率が相対的に増加する。
ここで熱交換部4においては、第2通路4cを流れる高温の改質ガスと、第1通路4aを流れる混合流体とは、前述同様に互いに熱交換する。混合流体に含まれている気相状の水分の比率が相対的に増加している場合には、液相状の水分を蒸気化させる蒸発潜熱量が少なくなり、高温側の改質ガスから低温側の混合流体に伝達される伝熱量が減少し、結果として、熱交換部4の温度が相対的に上昇する。よって、熱交換部4の第2通路4cを経てCOシフト部5に向かう改質ガスの温度が相対的に上昇する。従って、COシフト部5の温度T11が相対的に上昇する。
これに対して混合流体に含まれている液相状の水分の比率が相対的に増加している場合には、液相状の水分を蒸気化させる蒸発潜熱量が多くなり、熱交換部4において、高温側の改質ガスから低温側の混合流体に伝達される伝熱量が増加し、結果として、熱交換部4の温度が相対的に低下する。よって、熱交換部4の第2通路4cを経てCOシフト部5に向かう改質ガスの温度が相対的に低下する。従って、COシフト部5の温度T11が相対的に低下する。
(b)逆に、COシフト部5の温度T11が過剰に高くこれの活性温度域を越えている場合、あるいは活性温度域の上限に近い温度の場合においても、温度T11を相対的に低下させるように制御装置500が働く。即ち、COシフト部5の温度T11が過剰に高い場合、制御装置500は、酸化用空気配管75からCO酸化除去部37に供給される空気の流量を減少させる。このため、CO酸化除去部37における酸化反応が抑制され、発熱量が抑制される。従って、CO酸化除去部37が蒸発部36に与える熱量が減少する。この結果、蒸発部36において改質水へ与えられる熱量が減少する。故に蒸発部36おいて、液相状の水分の比率が相対的に増加し、気相状の水分の比率が相対的に減少する。この場合、熱交換部4において、第2通路4cを流れる高温側の改質ガスから、第1通路4aを流れる低温側の混合流体に伝達される伝熱量が増加する。この結果、熱交換部4の温度が相対的に低下する。よって、熱交換部4を経てCOシフト部5に向かう改質ガスの温度が相対的に低下し、COシフト部5の温度T11が相対的に低下する。
以上説明したように本実施例によれば、COシフト部5の温度T11が低いときには、酸化用空気配管75からCO酸化除去部37に供給される空気(酸素含有ガス)の流量を増加させることにより、COシフト部5の温度T11は上昇し、COシフト部5はこれの活性温度域に適する温度に良好に維持される。またCOシフト部5の温度T11が高いときには、酸化用空気配管75からCO酸化除去部37に供給される空気(酸素含有ガス)の流量を減少させることにより、COシフト部5の温度T11は低下し、COシフト部5はこれの活性温度域に適する温度に良好に維持される。なお、空気の流量を制御するにあたり、酸化用空気配管75におけるポンプ27dの搬送能力および/または弁25dの開度を制御する。
図2および図3は実施例2を示す。本実施例は実施例1と基本的に同様の構成、作用効果を有するため、図1を準用する。本実施例においても、実施例1と同様に、COシフト部5の温度T11が低いとき、制御装置500は、酸化用空気配管75からCO酸化除去部37に供給される空気の流量を増加させ、COシフト部5の温度T11を昇温させる。またCOシフト部5の温度T11が高いとき、制御装置500は、酸化用空気配管75からCO酸化除去部37に供給される空気の流量を減少させ、COシフト部5の温度T11を低下させる。
本実施例によれば、酸化用空気配管75からCO酸化除去部37に供給される空気の流量をVとすると、空気の流量Vは、空気の基準流量VSと空気の補正流量VCの合計値とされている(V=VS+VC)。
図2は、改質部34に単位時間当たり供給される改質用燃料の供給量と基準流量VSとの関係を示す。図2において、横軸は基準流量VS(相対表示)を示す。縦軸は、改質部34に供給される改質用燃料の供給量(相対表示)を示す。図2に示すように、改質部34に供給される改質用燃料の供給量が増加するにつれて、空気の基準流量VSを増加させる。改質用燃料の供給量が増加すれば、生成される一酸化炭素の量も増加するためである。但し、なお、空気の基準流量VSについて下限値Vminと上限値Vmaxが設定されている。
図3は、空気の補正流量VCと、COシフト部5の温度T11およびCO酸化除去部37の温度T12とを関連づける基本的な関係を示す。図3は、空気の補正流量VCと温度T11および温度T12とのあくまでも基本的な関係を示すものであり、細部まで問うものではない。図3によれば、条件1〜12に応じて状態1〜4が設定されている。状態1は補正流量VCを0に設定する、状態2は、補正流量VCを状態1に対して0.1増加させる。状態3は、補正流量VCを状態1に対して0.2増加させる。状態4は、補正流量VCを状態1に対して0.1減少させる。なお、図3に示す、『0.1増加』、『0.2増加』、『0.1減少』の数字は相対表示を示す。また、図3で示す温度℃の数値はあくまでも例示であり、これに限定されるものではない。
図3に示すように、通常運転時には補正流量VCは状態1に設定されている。状態1において、条件1に示すように、温度T11が160℃(TM)未満と低いとき(且つ150℃以上)、状態2に移行し、温度T11を上昇させるべく、空気の補正流量VCは状態1に対して0.1増加される。状態1において、条件8に示すように、温度T11が150℃(TL)未満とかなり低いとき、状態3とされ、温度T11を上昇させるべく、空気の補正流量VCは状態1に対して0.2増加される。
状態2において、条件2に示すように、温度T11が150℃(TL)未満とかなり低いとき、状態3とされ、温度T11を上昇させるべく、空気の補正流量VCは状態1に対して0.2増加される。状態2において、条件3に示すように、温度T11が高すぎて170℃(TH)を越えるとき、状態1に戻り、温度T11を低下させるべく、補正流量VCは0に設定される。状態4において、条件4に示すように、温度T11が160℃(TM)未満のとき(150℃越え)、状態2に移行し、補正流量VCは状態1に対して0.1増加される。
状態4において、条件5に示すように、温度T11が低すぎて150℃(TL)未満のときには、温度T11を上昇させるべく、補正流量VCは状態1に対し0.2増加され、状態3となる。状態3において、条件6に示すように、温度T11が高すぎて170℃(TH)を越えるとき、温度T11を低下させるべく、補正流量VCは0に設定され、状態1とされる。
状態3において、条件7に示すように、温度T11が高くて160℃(TM)を越えるときには、温度T11を低下させるべく、補正流量VCは状態1に対して0.1増加され、状態2とされる。このようにCOシフト部5はその活性温度域から大きく離脱しないように、COシフト部5の温度T11に応じて、空気の補正流量VCは増減される。
また、図3に示すように、CO酸化除去部38の温度T12については、状態1において、条件9に示すように、温度T12が高めであり200℃(TB)を越えるとき、状態4に移行し、温度T12を低下させるべく、補正流量VCは状態1に対して0.1減少される。状態4において、条件10に示すように、温度T12が190℃(TS)未満であるとき、補正流量VCは状態1に戻る。状態2において、条件11に示すように、温度T12が高温で200℃(TB)を越えるとき、補正流量VCは状態4に戻る。
このようにしてCO酸化除去部38の温度T12の温度が過剰に高いとき、補正流量VCを低下させ、CO酸化除去部38に供給される空気量を減少させる。る。これに対して、CO酸化除去部38の温度T12の温度が過剰に低いとき、補正流量VCを増加させ、CO酸化除去部38に供給される空気量を増加させる。これによりCOシフト部5はその活性温度域から大きく離脱しないように制御される。なお、図3において、CO酸化除去部38の温度T12に基づく制御装置500の指令と、COシフト部5の温度T11に基づく制御装置500の指令とが重複するようなことがある場合には、温度T11に基づく指令よりも、温度T12に基づく指令を優先させる。
(試験例)
本発明者は、図1に示す改質装置を用いて試験を行った。図7および図8は試験結果を示す。図7は経過時間と改質部34の温度T1との関係を示す。図8は経過時間とCOシフト部5の温度T11およびCO酸化除去部38の温度T12との関係を示す。図7および図8から理解できるように、燃焼用燃料を増加させたとき、改質部34の温度T1に上昇が見られた。これに伴いCOシフト部5の温度T11の上昇が見られた。そして、CO酸化除去部38に供給される空気量を時刻teから増加させた。時刻te以降から、COシフト部5の温度T11の上昇が認められた。
図4〜6は実施例3を示す。本実施例は実施例1および2と基本的に同様の構成、作用効果を有するため、図1〜図3を準用する。実施例1と同様に、COシフト部5の温度T11が過剰に低いとき、制御装置500は、酸化用空気配管75からCO酸化除去部37に供給される空気の流量を増加させ、COシフト部5の温度T11を上昇させる。またCOシフト部5の温度T11が過剰に高いときには、制御装置500は、酸化用空気配管75からCO酸化除去部37に供給される空気の流量を減少させ、COシフト部5の温度T11を低下させる。
更に本実施例は、蒸発部36を経て改質装置2に供給される改質水の流量についても、温度T11に応じて増減させる。具体的には、本実施例は、改質水および改質用燃料に関するS/Cの値を制御する。ここで、S/Cの値は、(改質水に含まれるHOのモル数)/(改質用燃料に含まれる炭素成分のモル数)を意味する。S/Cの値は、蒸発部36を介して改質部34に供給されるHOの量に対応する。ここで、蒸発部36に供給される改質水の流量が不足し、S/Cの値が適切でない場合には、改質部34等においてカーボンが析出するコーキングが発生するおそれがあり、好ましくない。
本実施例によれば、S/Cの値は、基準値αと、温度T11による補正値β1と、温度T2による補正値β2との合計値に基づく(S/C=α+β1+β2)ものである。図4は、前記した基準値αと、改質部34に供給される改質用燃料の供給量との関係を示す。図4において縦軸はS/Cの基準値α(相対表示)を示す。横軸は、改質部34に供給される改質用燃料の単位時間当たりの供給量(相対表示)を示す。図4に示すように、改質部34に供給される改質用燃料の供給量が増加するにつれて、S/Cの基準値αが減少するように設定されている。但し図4に示すように、S/Cの値に関する基準値αの下限値αminと上限値αmaxとが設定されている。
図5は、COシフト部5の温度T11(相対表示)と補正値β1(相対表示)との関係を示す。図5に示すように、温度T11が上昇するにつれて、制御装置500は補正値β1を増加させる。つまり、制御装置500は、蒸発部36に供給される改質水の流量を相対的に増加させる。この場合、蒸発部36の出口36pから熱交換部4の第1通路4aに供給される液相状の水の比率が増加される。この場合、液相状の水を蒸発させる蒸発潜熱の量が増加する。従って、熱交換部4において第2通路4cを流れる高温の改質ガスから、第1通路4aを流れる低温の混合流体に伝達される熱量が増加する。従って、熱交換部4の温度が相対的に低下する。従って改質部34から熱交換部4を経てCOシフト部5に供給される改質ガスの温度が相対的に低下する。よってCOシフト部5の温度T11が低下し、COシフト部5の過熱が抑制される。
これに対して、図5に示すように、COシフト部5の温度T11が低下するにつれて、制御装置500は補正値β1を減少させる。つまり、制御装置500は、蒸発部36に供給される改質水の流量を相対的に減少させる。この場合、蒸発部36の出口36pから熱交換部4の第1通路4aに供給される液相状の水の比率が相対的に減少され、液相状の水を蒸発させる蒸発潜熱の量が減少する。従って、熱交換部4の温度が相対的に上昇し、熱交換部4を経てCOシフト部5に供給される改質ガスの温度が上昇する。よってCOシフト部5の温度T11が相対的に上昇する。このようにCOシフト部5が昇温するため、COシフト部5の温度T11の過剰低下が抑制される。この結果本実施例によれば、COシフト部5はその活性温度域から大きく離脱しないように制御される。
図6は、第1合流域M1の温度T2(相対表示)と補正値β2との関係を示す。第1合流域M1の温度T2をパラメータとしている理由としては、HOの気液混合割合を適性に保ち、温度T11を制御するためには、温度T2が最も応答性が良く、温度T11を制御し易いためである(通常発電中は90℃≦T2≦100℃)。
図6に示すように、温度T2が上昇するにつれて、制御装置500はS/Cの補正値β2を増加させ、蒸発部36に供給される改質水の流量を増加させる。温度T2が低下するにつれて、制御装置500はS/Cの補正値β2を減少させ、蒸発部36に供給される改質水の流量を減少させる。なお改質水の流量を増減させるにあたり、ポンプ27mの搬送能力および/または弁25mの開度を制御する。
その他、本発明は上記した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更可能である。上記した実施例では、図1に示すように、蒸発部36およびCO酸化除去部37は改質部34と一体化されているが、改質部34から距離的に分離されていても良い。COシフト部5は改質部34から距離的に分離されていても良い。
本発明は燃料電池システム等に使用される改質装置に利用することができる。
実施例1に係り、改質装置のシステム図である。 CO酸化除去部に供給される空気の流量と、改質部に供給される改質用燃料との関係を示すグラフである。 CO酸化除去部に供給される空気の補正流量と、COシフト部の温度T11と、CO酸化除去部の温度T12との関係を示すグラフである。 改質用燃料の流量とαとの関係を示すグラフである。 COシフト部の温度T11(相対表示)と補正値β1との関係を示すグラフである。 温度T2(相対表示)と補正値β2との関係を示すグラフである。 経過時間と改質部34の温度T1との関係を示すグラフである。 経過時間とCOシフト部の温度T11およびCO酸化除去部の温度T12との関係を示すグラフである。
符号の説明
1は燃料電池、2は改質装置、30は燃焼部、31は断熱部、34は改質部、36は蒸発部、37はCO酸化除去部、4は熱交換部、5はCOシフト部、62は燃料配管、72は空気配管(酸素供給部)、81は水タンク、82は改質水配管(改質水供給部)、100はアノードガス配管、200はカソードガス配管、300は水蒸気配管(接続配管)、400は浄化配管、500は制御装置(温度調整装置)、31tは改質部温度検知器、38はCO酸化除去部温度検知器、55はCOシフト部温度検知器、65は温度検知器を示す。

Claims (6)

  1. (a)原料水を加熱して蒸発させる蒸発部と、
    (b)前記蒸発部に改質水を供給する改質水供給部と、
    (c)前記蒸発部を経た気相または液相の水と改質用燃料とを反応させることにより、一酸化炭素を含有する改質ガスを生成する改質部と、
    (d)前記改質部に改質用燃料を供給する改質用燃料供給部と、
    (e)前記改質部よりも下流に配設され、前記改質部で形成された改質ガスを浄化することにより、前記改質ガスに含まれている一酸化炭素を低減させるCOシフト部と、
    (f)前記蒸発部と熱交換可能に配設され且つ前記COシフト部よりも下流に配設され、前記COシフト部で浄化された改質ガスに残留する一酸化炭素と酸素とを酸化反応させることにより、改質ガスに残留する一酸化炭素を低減させるCO酸化除去部と、
    (g)前記CO酸化除去部に酸素成分を供給する酸素供給部とを具備しており、
    (h)前記酸素供給部から前記CO酸化除去部に供給される酸素成分の流量を制御することにより、前記CO酸化除去部の上流に配設されているCOシフト部の温度を制御する温度調整手段を具備することを特徴とする改質装置。
  2. 請求項1において、(i)前記蒸発部を経た気相または液相の水と前記改質用燃料とが混合する混合流体が前記改質部に向かう第1通路と、前記改質部から吐出され前記混合流体よりも高温の改質ガスが前記COシフト部に向かう第2通路とを有すると共に、前記混合流体と前記改質ガスとを熱交換させる熱交換部が設けられており、
    (j)前記温度調整手段は、前記酸素供給部から前記CO酸化除去部に供給される前記酸素成分の流量を制御することにより、前記CO酸化除去部から前記蒸発部への伝熱量を制御し、前記蒸発部における水分の気相比率を調整する気相比率制御操作と、前記熱交換部において前記第2通路の前記改質ガスから前記第1通路の混合流体へ伝達される伝熱量を制御することにより、前記熱交換部の前記第2通路を経て前記COシフト部に向かう前記改質ガスの温度を制御する改質ガス温度制御操作とを行うことを特徴とする改質装置。
  3. 請求項1または2において、前記COシフト部の温度を検知するCOシフト部温度検知器が設けられており、前記温度調整手段は、前記COシフト部温度検知器で検知した前記COシフト部の温度に応じて、前記酸素供給部から前記CO酸化除去部に供給される前記酸素成分の流量を制御することを特徴とする改質装置。
  4. 請求項1〜3のうちのいずれか一項において、前記CO酸化除去部の温度を検知するCO酸化除去部温度検知器が設けられており、前記温度調整手段は、前記CO酸化除去部温度検知器で検知した前記CO酸化除去部の温度に応じて、前記酸素供給部から前記CO酸化除去部に供給される前記酸素成分の流量を制御することを特徴とする改質装置。
  5. 請求項1〜4のうちのいずれか一項において、前記温度調整手段は、前記改質部に供給される前記改質用燃料の供給量が増加するにつれて、前記酸素供給部から前記CO酸化除去部に供給される前記酸素成分の流量を増加させる操作を行うことを特徴とする改質装置。
  6. 請求項1〜5のうちのいずれか一項において、前記改質水供給部は、改質水基準流量と改質水補正流量との合計値に対応する前記改質水の流量を、前記改質水供給部から前記蒸発部に供給し、
    前記温度調整手段は、前記COシフト部温度検知器で検知される前記COシフト部の温度が高くなるにつれてに前記改質水補正流量を増加させることを特徴とする改質装置。
JP2006258962A 2006-09-25 2006-09-25 改質装置 Pending JP2008074688A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258962A JP2008074688A (ja) 2006-09-25 2006-09-25 改質装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258962A JP2008074688A (ja) 2006-09-25 2006-09-25 改質装置

Publications (1)

Publication Number Publication Date
JP2008074688A true JP2008074688A (ja) 2008-04-03

Family

ID=39347130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258962A Pending JP2008074688A (ja) 2006-09-25 2006-09-25 改質装置

Country Status (1)

Country Link
JP (1) JP2008074688A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005165A3 (en) * 2008-07-09 2011-03-24 Gs Fuelcell Co., Ltd. Fuel processor of fuel cell system
JP2013187118A (ja) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd 燃料電池システム
CN115285937A (zh) * 2022-07-12 2022-11-04 哈尔滨工程大学 一种氨重整分离一体化装置及包括其的氢-氨混合动力系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002120A (ja) * 2002-06-03 2004-01-08 Fuji Electric Holdings Co Ltd 一酸化炭素除去装置
JP2004115321A (ja) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd 改質装置
JP2004262722A (ja) * 2003-03-03 2004-09-24 Nissan Motor Co Ltd 燃料改質システム
JP2005040660A (ja) * 2003-07-23 2005-02-17 Nissan Motor Co Ltd 触媒反応装置、熱交換器、および燃料改質システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002120A (ja) * 2002-06-03 2004-01-08 Fuji Electric Holdings Co Ltd 一酸化炭素除去装置
JP2004115321A (ja) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd 改質装置
JP2004262722A (ja) * 2003-03-03 2004-09-24 Nissan Motor Co Ltd 燃料改質システム
JP2005040660A (ja) * 2003-07-23 2005-02-17 Nissan Motor Co Ltd 触媒反応装置、熱交換器、および燃料改質システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005165A3 (en) * 2008-07-09 2011-03-24 Gs Fuelcell Co., Ltd. Fuel processor of fuel cell system
JP2013187118A (ja) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd 燃料電池システム
CN115285937A (zh) * 2022-07-12 2022-11-04 哈尔滨工程大学 一种氨重整分离一体化装置及包括其的氢-氨混合动力系统
CN115285937B (zh) * 2022-07-12 2023-06-16 哈尔滨工程大学 一种氨重整分离一体化装置及包括其的氢-氨混合动力系统

Similar Documents

Publication Publication Date Title
US8623563B2 (en) Method for starting-up solid oxide fuel cell system
JP5138324B2 (ja) 改質器及び燃料電池システム
WO2001048851A1 (fr) Dispositif de production d'energie et procede de fonctionnement
JP2008266118A (ja) 改質装置システム
TW200849706A (en) Reforming system, fuel cell system, and its operation method
US8795397B2 (en) Reforming device with series-connected gas-liquid multiphase and dry-out heat exchangers
JP3532458B2 (ja) 固体電解質型燃料電池用の燃料改質装置
US20070122666A1 (en) Method of operating fuel cell system and fuel cell system
JP4902165B2 (ja) 燃料電池用改質装置およびこの燃料電池用改質装置を備える燃料電池システム
JP2008074688A (ja) 改質装置
JP2008103278A (ja) 燃料電池システム
JP2010116304A (ja) 改質装置、燃料電池システム、改質装置の運転方法
JP2009084135A (ja) 燃料プロセッサおよびその運転方法、ならびに燃料電池システム
JP5583354B2 (ja) 燃料電池システム
JP5982665B2 (ja) 燃料電池システム
JP3856423B2 (ja) 水素発生装置の起動方法
JP2007269538A (ja) 改質装置
JP2007191338A (ja) 水素製造装置の運転方法、水素製造装置および燃料電池発電装置
JP5202863B2 (ja) 燃料電池用改質装置
JP4917790B2 (ja) 燃料電池用改質装置の運転制御方法
KR102111393B1 (ko) 연료 전지 시스템, 및 연료 전지 모듈
JP2009149478A (ja) 改質装置
JP5324272B2 (ja) 燃料電池システム
JP5309792B2 (ja) 改質装置および燃料電池システム
JP2017016816A (ja) 燃料電池システム、燃料電池システムの停止方法及び電力生産方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111201