JP2008048505A - 3相回転機の制御装置 - Google Patents

3相回転機の制御装置 Download PDF

Info

Publication number
JP2008048505A
JP2008048505A JP2006220158A JP2006220158A JP2008048505A JP 2008048505 A JP2008048505 A JP 2008048505A JP 2006220158 A JP2006220158 A JP 2006220158A JP 2006220158 A JP2006220158 A JP 2006220158A JP 2008048505 A JP2008048505 A JP 2008048505A
Authority
JP
Japan
Prior art keywords
current
axis
rotating machine
phase
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006220158A
Other languages
English (en)
Other versions
JP4775168B2 (ja
Inventor
Teruhiro Imura
彰宏 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006220158A priority Critical patent/JP4775168B2/ja
Publication of JP2008048505A publication Critical patent/JP2008048505A/ja
Application granted granted Critical
Publication of JP4775168B2 publication Critical patent/JP4775168B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】3相回転機を流れる電流の検出値を指令値にフィードバック制御する電流制御と、矩形波制御とを行うに際し、矩形波制御から電流制御への切り替えに伴うトルク変動を好適に抑制することのできる3相回転機の制御装置を提供する。
【解決手段】PWM制御においては、dq軸上の指令電流が、指令電流曲線CL上の値となる。矩形波制御における実電流ベクトルIrと、指令電流曲線CLに対して対称な電流ベクトルIsを算出する。そして、これら対称な電流ベクトルIsと実電流ベクトルIrとが略一致するとき、PWM制御に切り替える。
【選択図】 図7

Description

本発明は、3相回転機に電力を供給するインバータのスイッチング素子を操作することで該3相回転機の出力を制御する3相回転機の制御装置に関する。
この種の制御装置としては、3相電動機の各相に流れる電流を指令値にフィードバック制御すべく、各相に印加すべき電圧の指令値(指令電圧)を算出し、算出される指令電圧とキャリアとの大小に基づきインバータのスイッチング素子を操作するPWM制御を行うものも提案されている。これにより、3相電動機の各相に印加される電圧を指令電圧とすることができ、ひいては各相に流れる電流を指令値にフィードバック制御することができる。
また、3相回転機の高速度回転領域において、インバータのスイッチング素子のオン・オフ周期と3相回転機の電気角の回転周期とを略一致させるいわゆる矩形波制御もなされている(特許文献1、2)。
ただし、高回転速度領域において矩形波制御を行い且つそれ以外の領域においてPWM制御を行う場合、矩形波制御からPWM制御へと切り替える際にトルクが急激に変化するおそれがある。
なお、上記矩形波制御とPWM制御とを行うものに限らず、3相回転機を流れる電流の検出値を指令値にフィードバック制御する電流制御と、矩形波制御とを行う制御装置にあっては、矩形波制御から電流制御への切り替えに伴ってトルク変動が生じるおそれのあるこうした実情も概ね共通したものとなっている。
特開2000−50689号公報 特開2002−223590号公報
本発明は、上記課題を解決するためになされたものであり、その目的は、3相回転機を流れる電流の検出値を指令値にフィードバック制御する電流制御と、矩形波制御とを行うに際し、矩形波制御から電流制御への切り替えに伴うトルク変動を好適に抑制することのできる3相回転機の制御装置を提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明は、前記3相回転機の各相に印加される電圧の変化の周期を前記3相回転機の電気角の回転周期と略一致させるべく前記スイッチング素子を操作する矩形波制御手段と、前記3相回転機を流れる電流の検出値を、前記3相回転機を流れる電流についてのdq軸上での指令値に応じた電流にフィードバック制御する電流制御手段と、前記指令値のとり得る値についての情報を記憶する記憶手段と、前記矩形波制御手段による制御時において、前記3相回転機を流れる電流の検出値及び前記情報に基づき、前記3相回転機を流れる電流についてのd軸上及びq軸上の値が前記指令値としてとり得る値と略一致するとき、前記矩形波制御手段による制御から前記電流制御手段による制御に切り替える切替手段とを備えることを特徴とする。
上記構成では、矩形波制御による電流のd軸上及びq軸上の値が指令値としてとり得る値と略一致するときに矩形波制御から電流制御に切り替えるために、切り替えに際して3相回転機に流れる電流の変動を抑制することができる。このため、切り替えに伴うトルクの変動を好適に抑制することができる。
また、dq軸上の指令値は、dq軸平面内において1次元空間を占める。換言すれば、曲線で表現される。このため、切り替えにかかる処理を上記情報に基づき行うことで、例えば矩形波制御を行う領域を記憶する場合と比較して、切り替えにかかる処理のために記憶すべきデータ数を低減することもできる。
請求項2記載の発明は、請求項1記載の発明において、前記切替手段は、前記指令値がdq軸上を描く曲線に対して、前記3相回転機を流れる電流のdq軸上での電流ベクトルである実電流ベクトルと対称な電流ベクトルを算出する算出手段を備え、該対称な電流ベクトルと前記実電流ベクトルとが略一致するとき、前記3相回転機を流れる電流についてのd軸上及びq軸上の値が前記指令値としてとり得る値と略一致するとして、前記切り替えを行うことを特徴とする。
3相回転機を流れる電流のdq軸上での値が、指令値がdq軸上を描く曲線上にある場合、上記実電流ベクトルと上記対称な電流ベクトルとは一致する。このため、これらの略一致に基づき、3相回転機を流れる電流についてのd軸上及びq軸上の値が指令値としてとり得る値と略一致することを好適に判断することができる。
請求項3記載の発明は、請求項2記載の発明において、前記算出手段は、前記3相回転機を流れる電流のd軸上の値と前記情報とに基づき前記対称な電流ベクトルのq軸成分を算出する手段と、前記3相回転機を流れる電流のq軸上の値と前記情報とに基づき前記対称な電流ベクトルのd軸成分を算出する手段とを備えることを特徴とする。
3相回転機を流れる電流のd軸上の値をd軸上の指令値がとるときのq軸上の指令値は、上記対称な電流ベクトルのq軸成分となる。また、3相回転機を流れる電流のq軸上の値をq軸上の指令値がとるときのd軸上の指令値は、上記対称な電流ベクトルのd軸成分となる。このため、上記構成では、対称な電流ベクトルを適切に算出することができる。
請求項4記載の発明は、請求項1記載の発明において、前記情報は、前記d軸上の指令値idc及び前記q軸上の指令値iqcをf(idc,iqc)=Aによって関係付けるモデル式であり、前記切替手段は、前記モデル式に、前記3相回転機を流れる電流のd軸上の値及びq軸上の値を代入するときのモデル式の出力が前記Aと略一致するとき、前記3相回転機を流れる電流についてのd軸上及びq軸上の値が前記指令値としてとり得る値と略一致するとして、前記切り替えを行うことを特徴とする。
上記構成では、モデル式fの出力がAと略一致するか否かに基づき、3相回転機を流れる電流のd軸及びq軸上の値が指令値としてとり得る値か否かを簡易に判断することができる。このため、情報を記憶手段に記憶させる際のデータ数を好適に低減することができるとともにに、簡易な手法によって上記判断を行うことができる。
請求項5記載の発明は、請求項1〜4のいずれかに記載の発明において、前記電流制御手段は、前記3相回転機を流れる各相の電流の検出値に基づき、これら各相の検出値をdq軸上の電流に変換する変換手段と、該変換された電流と前記指令値との差に基づき、前記フィードバック制御を行う手段とを備えることを特徴とする。
上記構成では、電流制御手段が変換手段を備えるため、切替手段においてこの変換手段を流用することができる。
請求項6記載の発明は、請求項1〜5のいずれかに記載の発明において、前記指令値は、前記3相回転機に対する要求トルクを最小の電流で生成可能な値に設定されてなることを特徴とする。
上記構成によれば、電流制御手段による制御において出力トルクを生成するために要する電力を最小とすることができる。
(第1の実施形態)
以下、本発明にかかる3相回転機の制御装置をハイブリッド車に搭載される3相電動機の制御装置に適用した第1の実施形態について、図面を参照しつつ説明する。
図1に、電動機4の制御システムの全体構成を示す。
図示される電動機4は、埋込磁石同期電動機(IPMSM)からなる。また、電動機4の3つの相(U相、V相、W相)には、インバータ10が接続されている。このインバータ10は、3相インバータであり、3つの相のそれぞれとバッテリ42の正極側又は負極側とを導通させるべく、スイッチング素子12,14(U相アーム)とスイッチング素子16,18(V相アーム)とスイッチング素子20,22(W相アーム)との並列接続体を備えて構成されている。更に、インバータ10は、各スイッチング素子12〜22に逆並列に接続されたフライホイールダイオード24〜34を備えている。そして、スイッチング素子12及びスイッチング素子14を直列接続する接続点が電動機4のU相と接続されている。また、スイッチング素子16及びスイッチング素子18を直列接続する接続点が電動機4のV相と接続されている。更に、スイッチング素子20及びスイッチング素子22を直列接続する接続点が電動機4のW相と接続されている。ちなみに、これらスイッチング素子12〜22は、本実施形態では、絶縁ゲートバイポーラトランジスタ(IGBT)によって構成されている。
インバータ10の各1組のスイッチング素子12,14とスイッチング素子16,18とスイッチング素子20,22との両端には、平滑コンデンサ40が接続されている。
一方、マイクロコンピュータ(マイコン50)は、中央処理装置や、メモリ51を備えて構成されている。そして、マイコン50は、バッテリ42の両端の電圧VBを検出する電圧センサ44や、電動機4の出力軸の回転角度を検出する位置センサ52、U相及びV相に流れる電流を検出する電流センサ54,56の出力を取り込む。そして、マイコン50は、W相に流れる電流を、キルヒホッフの法則に基づき、U相を流れる電流iuとV相を流れる電流ivとから算出する。そして、マイコン50は、上記電動機4の出力軸の回転角度や3つの相を流れるそれぞれの電流等に基づき、ゲート駆動回路60〜70を介してスイッチング素子12〜22を操作する。
図2に、マイコン50の行なう処理についてのブロック線図を示す。本実施形態では、三角波PWM制御及び矩形波制御によって、電動機4の出力トルクを要求トルクに制御する。以下では、図2に示す処理について、三角波PWM制御に関する処理、矩形波制御に関する処理、及びこれら両制御の切り替えに関する処理の順に説明する。
<PWM制御>
3相2相変換部80は、上記電流センサ54,56によって検出されるU相を流れる実電流iu及びV相を流れる実電流ivと、これらに基づき算出されるW相を流れる実電流iwとを、dq軸に座標変換して実電流id及び実電流iqを生成する部分である。ちなみに、この座標変換に際しては、電動機4の回転角度が用いられるために、3相2相変換部80には、位置センサ52によって検出される回転角度θが入力される。一方、指令電流生成部82は、要求トルクTcに応じて指令電流iqc,idcを生成する部分である。これら指令電流iqc,idcは、dq軸上での電流の指令値となっている。
上記指令電流idcと実電流idとの差に基づき、PI制御部84によって比例項と積分項とが算出される。そして、これら算出値の和は、第1指令電圧vd1としてPI制御部84から出力される。また、指令電流iqcと実電流iqとの差に基づき、PI制御部86によって比例項と積分項とが算出される。そして、これら算出値の和は、第1指令電圧vq1としてPI制御部86によって出力される。ここで、これら第1指令電圧vd1,vq1の振る舞いについて説明する。
上記3つの相のそれぞれに印加される電圧vu,vv,vw、3相のそれぞれを流れる電流iu,iv,iw、3相のそれぞれに生じる逆起電力eu,ev,ew、電動機4の抵抗R、自己インダクタンスL´、相互インダクタンスM、時間微分演算子Pとの関係は下式となる。

vu=(R+PL´)×iu −1/2×PM×iv −1/2×PM×iw+eu
vv=−1/2×PM×iu+(R+PL´)×iv −1/2×PM×iw+ev
vw=−1/2×PM×iu −1/2×PM×iv+(R+PL´)×iw+ew

ここで、dq軸変換を行なうと、d軸及びq軸の電圧vd,vqは、電気角の回転速度ωと、d軸上のインダクタンスLd及びq軸上のインダクタンスLqと、逆起電力ωφとを用いて下式(cd)及び(cq)となる。なお、電気角の回転速度は、電動機4の回転速度に電動機4の極対数を乗算した値である。

vd=(R+PLd)×id −ωLq×iq …(cd)
vq= ωLd×id+(R+PLq)×iq +ωφ …(cq)

上記の式(cd)、(cq)に示されるように、電動機4に印加される電圧の各軸成分は、電動機4を流れる電流のうち同一の軸成分に比例する項のみならず、異なる軸成分に比例する項や逆起電力ωφ(以下、これらを干渉項という)を含む。
そこで、本実施形態では、非干渉化制御部88により、これら干渉項を、実電流id及び実電流iqに基づき算出して第0指令電圧vd0,vq0を算出する。そして、第1指令電圧vd1と第0指令電圧vd0との和としてd軸の指令電圧vdc1を算出し、第1指令電圧vq1と第0指令電圧vq0との和としてq軸の指令電圧vqc1を算出する。
d軸の指令電圧vdc1とq軸の指令電圧vqc1とは、2相3相変換部92に取り込まれる。2相3相変換部92では、d軸の指令電圧vdc1とq軸の指令電圧vqc1とを、U相の指令電圧vuc1と、V相の指令電圧vvc1と、W相の指令電圧vwc1とに変換する。これら指令電圧vuc1,vvc1,vwc1は、電動機4の各相に指令電流を流すときに各相に印加すべき電圧となっている。これら指令電圧vuc1,vvc1,vwc1は、基本的には、正弦波となって且つその電圧の中心がゼロとなっている。ただし、電圧センサ44によって検出されるバッテリ42の電圧に基づき、指令電圧vuc1,vvc1,vwc1の変調率が大きいときには、正弦波に所定の高調波を重畳したものが最終的な指令電圧vuc1,vvc1,vwc1とされる。なお、電動機4の各相の上記指令電流とは、上記指令電流idc,iqcによって定まる3相のそれぞれにおける指令電流を意味する。
これら指令電圧vuc1,vvc1,vwc1は、各々比較器94,96,98の非反転入力端子に印加される。比較器94,96,98では、指令電圧vuc1,vvc1,vwc1と、三角波生成部100によって生成される三角形状の搬送波との大小が比較される。そして、これら各比較器94、96、98の出力信号gu1、gv1、gw1は、指令電圧vuc1,vvc1,vwc1を各々パルス幅変調(PWM)したものとなる。
出力信号gu1,gv1,gw1は、切替部102に取り込まれる。そして、切替部102から出力される信号及びインバータ104,106,108によるそれらの反転信号が、Deadtime生成部110に取り込まれる。Deadtime生成部110では、上記出力される各信号とこれに対応する上記反転信号とを、これらのエッジ部分同士のタイミングの重なりを避けるように波形整形する。そして、波形整形された信号は、U相のスイッチング素子12を操作する操作信号gup、U相のスイッチング素子14を操作する操作信号gun、V相のスイッチング素子16を操作する操作信号gvp、V相のスイッチング素子18を操作する操作信号gvn、W相のスイッチング素子20を操作する操作信号gwp、W相のスイッチング素子22を操作する操作信号gwnとなる。
上記構成において切替部102により出力信号gu1,gv1,gw1が選択されているときには、実電流iu,iv,iwを指令電流idc,iqcによって定まる3相の電流(指令電流)に追従させるべく、PI制御によりスイッチング素子12〜22の操作がなされる。この際には、3相に印加される電圧は、指令電圧vuc1,vvc1,vwc1に追従する。
<矩形波制御>
トルク推定部120は、3相2相変換部80の出力するdq軸上での実電流id,iqに基づき、電動機4の出力トルクを推定する。この推定トルクTeは、例えば電動機4のトルク定数Kt、d軸インダクタンスLd、q軸インダクタンスLqを用いて、下記の式によって算出すればよい。
Te=Kt×iq−(Ld−Lq)×id×iq
vqc算出部122は、要求トルクTcと推定トルクTeとの差に基づき、q軸上の指令電圧vqc2を算出する。一方、vdc算出部124は、指令電圧vqc2とバッテリ42の電圧VBとに基づき、d軸上の指令電圧vqc2を算出する。これらvqc算出部122及びvdc算出部124は、指令電圧vqc2,vdc2によって定まる電圧ベクトルの長さをバッテリ42の電圧VBに応じて定まる長さとしつつ、同電圧ベクトルの位相を定める処理を行っている。そして、2相3相変換部126は、指令電圧vqc2、vdc2を、3相の指令電圧vuc2,vvc2,vwc2に変換する。これら指令電圧vuc2,vvc2,vwc2は、略正弦波形状の信号である。また、出力信号生成部128では、指令電圧vuc2,vvc2,vwc2に基づき、出力信号gu2,gv2,gw2を生成する。ここで、出力信号gu2は、指令電圧vuc2がゼロ以上のときに論理「H」となり、ゼロ未満のときに論理「L」となる。また、出力信号gv2は、指令電圧vvc2がゼロ以上のときに論理「H」となり、ゼロ未満のときに論理「L」となる。更に、出力信号gw2は、指令電圧vwc2がゼロ以上のときに論理「H」となり、ゼロ未満のときに論理「L」となる。なお、これら出力信号gu2,gv2,gw2は、切替部102に出力される。
上記指令電圧vuc2,vvc2,vwc2は、電動機4の電気角の回転周期と略等しい周期を有する。このため、出力信号gu2,gv2,gw2は、その論理「H」及び論理「L」との繰り返しの周期が電気角の1周期と略一致する。このため、上記構成において切替部102により出力信号gu2、gv2、gw2が選択されているときには、各相のアームの上段のスイッチング素子12,16,20及び下段のスイッチング素子14,18,22が交互にオン・オフされる周期が、電気角の1周期と略一致する。このため、切替部102によって出力信号gu2,gv2,gw2が選択される矩形波制御時には、電動機4の各相に印加される電圧が矩形波状に変化して且つ、その変化の周期が電気角の1周期と略等しくなる。
<切替処理>
図3に、PWM制御を行う領域と矩形波制御を行う領域とを示す。図示されるように、低回転速度領域から中回転速度領域まではPWM制御を行う領域であり、高回転速度領域は矩形波制御を行う領域である。そして、PWM制御を行う領域と矩形波制御を行う領域との境界は、要求トルクTcが大きいほど低回転速度側となる。ここで、高回転速度領域において、PWM制御から矩形波制御へ切り替えるのは、次の理由による。
電動機4の各相に印加可能な電圧の上限値は、バッテリ42の電圧VBである。このため、指令電圧vuc1,vvc1,vwc1の最大値が電圧VBの「1/2」以上となる状態、換言すれば変調率が「1」以上の状態では、電動機4の各相に実際に印加される電圧を指令電圧vuc1,vvc1,vwc1とすることができない。図4(a)に、変調率が「1」のときの各相に印加される電圧の推移を示し、図4(b)に、変調率が「1」よりも大きいときの各相に印加される電圧の推移を示す。図示されるように、変調率が「1」よりも大きいときには各相に印加される電圧の振幅は、バッテリ42の電圧VBの「1/2」によって制限されるため、正弦波形状の電圧とはならない。しかし、この場合であっても、図4(a)に示される電圧と比較すると、図4(b)中斜線にて示す領域だけ電圧の利用度が向上している。これにより、各相に印加される電圧の実効値を、先の図4(a)に示したものと比較して大きくすることができる。このため、指令電流idc,iqcによって定まる3相の指令電流を電動機4に流すことが可能となる。したがって、指令電圧vuc1,vvc1,vwc1の最大値が電圧VBの「1/2」以上となったとしても、PWM制御を継続することで、電動機4に、指令電流idc,iqcによって定まる3相の電流を流すことは可能である。
上記指令電圧vuc1,vvc1,vwc1の最大値が増大していくと、最終的には、電動機4の各相に印加される電圧は、指令電圧vuc1,vvc1,vwc1と同一周期で「VB/2」と「−VB/2」とに交互に変化する矩形波状となる。しかし、理論的には、変調率が「1.28」となることでPWM制御による制御性が極度に低下することが知られている。このため、本実施形態では、指令電圧vuc1,vvc1,vwc1の最大値が、バッテリ42の電圧VBの「1.28/2」倍の値となることでPWM制御から矩形波制御へ切り替える。
詳しくは、図2に示す切替制御部130では、指令電圧vuc1,vvc1,vwc1を定める指令電圧vdc1、vqc1を取り込み、これに基づき、切替部102を操作する。図5に、切替制御部130の行う処理のうち、特にPWM制御から矩形波制御への切り替えにかかる処理の手順を示す。なお、この処理は、マイコン50により、PMW制御がなされている期間において例えば所定周期で繰り返し実行される。
この一連の処理においては、まずステップS10において、指令電圧vdc1、vqc1によって定まる電圧ベクトルの長さが、制限電圧VL以上であるか否かを判断する。ここで、制限電圧VLは、電圧VBに「1.28」及び「3/8」の平方根を乗算した値である。指令電圧vuc1,vvc1,vwc1の最大値に「3/2」の平方根を乗算したものがdq軸上の電圧ベクトルの長さとなる。そして、最大値として上記変調率が「1.28」であるときの値を用いると、これは、「VB/2」に「1.28」を乗算した値となる。このため、上記ステップS10によって、指令電圧vuc1,vvc1,vwc1の最大値が、「VB/2」に「1.28」を乗算した値以上であるか否かを判断することができる。そして、ステップS10において肯定判断されると、ステップS12において、上記切替部102を操作して出力信号gu2,gv2,gw2を選択することで、PWM制御から矩形波制御に切り替える処理がなされる。
なお、ステップS10において否定判断されるときや、ステップS12の処理が完了するときには、この一連の処理を一旦終了する。
図6に、PWM制御と矩形波制御とによってとり得るdq軸上の電流を示す。図中、実線にて示す指令電流曲線CLは、上記指令電流生成部82によって生成される指令電流idc,iqcの描く曲線である。この曲線(指令電流idc,iqc)は、電動機4の制御に対する要求に応じて適宜設定されるものであるが、本実施形態では、要求トルクTcを最小の電流で実現することのできるdq軸上の電流によって設定されている。一方、図中、2点鎖線にて示すのは、実際に電動機4に流すことの可能な電流の境界をdq上で定義する制限曲線LLである。この制限曲線LLは、バッテリ42の電圧VB及び回転速度に基づき定まるものである。このため、PWM制御時においては、実電流iq,idは、指令電流曲線CLと制限曲線LLとの交点である上限PMを超えることはできない。したがって、指令電流iqc,idcが上限PMに達することで矩形波制御に切り替えられることとなる。そして矩形波制御に切り替えられることで、指令電流iqc,idcによって定まる電流ベクトルは、ベクトルV2よりも位相を進めることでベクトルV1へと移行する。これにより、電動機4を更に高回転速度に制御することができる。
このように、矩形波制御がなされているときには、一般に、dq軸上の電流は、上記指令電流曲線CLによって規定される電流とは一致しない。したがって、矩形波制御からPWM制御へ切り替える際には、電動機4を流れる電流が大きく変化し、ひいては、電動機4の出力トルクが変動するおそれがある。
そこで本実施形態では、先の図2に示す指令電流情報格納部132に指令電流idc,iqcのとり得る値についての情報を格納し、電動機4を流れる電流についてのd軸及びq軸上の値が上記指令電流iqcとしてとり得る値と略一致するとき、矩形波制御からPWM制御へと切り替えることで、切り替えに伴う出力トルクの変動を抑制する。ここで、指令電流情報格納部132は、先の図1に示すメモリ51によって構成される。指令電流情報格納部132には、上記指令電流曲線CLについての情報が格納されている。この情報は、d軸上の指令電流idcとq軸上の指令電流iqcとの関係を定めるマップデータであってもよいし、指令電流曲線CLを表現するモデル式であってもよい。
詳しくは、上記一致を、図7に示す態様にて判断する。すなわち、電動機4を流れる電流のdq軸上での電流ベクトルである実電流ベクトルIrと、指令電流曲線CLに対して対称な電流ベクトルIsを算出し、これらが略一致するときに、電動機4を流れる電流についてのd軸及びq軸上の値が上記指令電流idc,iqcとしてとり得る値と略一致すると判断する。
図8に、本実施形態にかかるPWM制御への切り替えにかかる処理の手順を示す。この処理は、先の図2の切替制御部130によってなされるものであり、具体的には、マイコン50によって、矩形波制御のなされる期間において所定周期で繰り返し実行される。
この一連の処理では、まずステップS20において、実電流ベクトルIrを取得する。換言すれば、実電流id,iqを取得する。続くステップS22においては、実電流ベクトルのq軸成分である実電流ベクトルiqに基づき、対称な電流ベクトルIsのd軸成分idsを算出する。これは、「ids,iq」が指令電流曲線CL上の点となるようにd軸成分idsを設定することで算出することができる。続いてステップS24においては、実電流ベクトルのd軸成分である実電流ベクトルidに基づき、対称な電流ベクトルIsのq軸成分iqsを算出する。これは、「id,iqs」が指令電流曲線CL上の点となるようにq軸成分iqsを設定することで算出することができる。
続いてステップS26においては、対称な電流ベクトルIeと実電流ベクトルIrとが略一致するか否かを判断する。この判断は、例えばdq軸の各成分同士の比較によって行えばよい。また、これに代えて、互いのベクトルの長さの比較に基づき行ってもよい。そして、ステップS26において肯定判断されるときには、実電流id,iqが指令電流曲線CL上にあると考えられるため、ステップS28に移行してPWM制御に切り替える。ちなみに、矩形波制御がなされているときには、PI制御部84,86の値はゼロに固定しておく。
なお、ステップS26において否定判断されるときや、ステップS28の処理が完了するときには、この一連の処理を一旦終了する。
図9に、本実施形態にかかる切り替え処理による電流ベクトルの推移についてのタイムチャートを示す。図9(a)に示されるように、dq軸上での指令電圧ベクトル(vdc1,vqc1)の長さが上記制限電圧VLに達すると、矩形波制御に移行するため、対称な電流ベクトルIsと実電流ベクトルIrとが不一致となる。このように指令電圧ベクトルの長さが制限電圧VLとなることで矩形波制御に切り替えることで、出力トルクの変動を抑制しつつ、切り替えを行うことができる。しかも、矩形波制御に切り替えることで、高回転速度領域における電圧利用率(バッテリ42の電圧VBに対する線間電圧の1次成分の実効値)を向上させることができ、電動機4の回転速度を高回転速度に制御することが可能となる。また、図9(b)に示すように、対称な電流ベクトルIsと実電流ベクトルIrとが略一致するときにPWM制御に切り替えることで、実電流ベクトルの変動を好適に抑制しつつ切り替えを行うことができる。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
(1)指令電流情報格納部132に格納される情報に基づき、矩形波制御時において、電動機4を流れる電流についてのd軸上及びq軸上の値が、PWM制御の指令電流idc,iqcのとり得る値と略一致するとき、PWM制御に切り替えた。これにより、切り替えに際して電動機4に流れる電流の変動を抑制することができる。このため、切り替えに伴うトルクの変動を好適に抑制することができる。また、dq軸上の指令電流は、dq軸平面内において1次元空間を占める(曲線で表現される)。このため、切り替えにかかる処理を指令電流情報格納部132の情報に基づき行うことで、例えば矩形波制御を行う領域を記憶する場合と比較して、切り替えにかかる処理のために記憶すべきデータ数を低減することもできる。
(2)指令電流曲線CLに対して実電流ベクトルIrと対称な電流ベクトルIsを算出し、これら対称な電流ベクトルIsと実電流ベクトルIrとが略一致するとき、電動機4を流れる電流についてのd軸上及びq軸上の値が指令電流idc,iqcとしてとり得る値と略一致すると判断した。これにより、電動機4を流れる電流についてのd軸上及びq軸上の値と指令電流idc,iqcとしてとり得る値との一致の有無を好適に判断することができる。
(3)指令電流情報格納部132に格納される情報と実電流idとに基づき、対称な電流ベクトルIsのq軸成分iqsを算出し、指令電流情報格納部132に格納される情報と実電流iqとに基づき、対称な電流ベクトルIsのd軸成分idsを算出した。これにより、対称な電流ベクトルIsを適切に算出することができる。
(4)3相の実電流iu,iv,iwをdq軸上の実電流id,iqに変換する3相2相変換部80を備え、実電流id,iqと指令電流idc,iqcとの差に基づくフィードバック制御を行うことで、PWM制御を行った。これにより、切替制御部130が3相2相変換部80を流用することができる。
(5)PWM制御の指令電流idc,iqcを、電動機4に対する要求トルクTcを最小の電流で生成可能な値に設定した。これにより、PWM制御において出力トルクを生成するために要する電力を最小とすることができる。
(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
図10に、本実施形態にかかるPWM制御への切り替えにかかる処理の手順を示す。この処理は、先の図2に示した切替制御部130によってなされるものであり、具体的には、マイコン50によって、矩形波制御のなされる期間において所定周期で繰り返し実行される。
この一連の処理では、まずステップS30において、実電流id,iqを取得する。続くステップS32においては、実電流id,iqを、指令電流idc,iqcを定めるモデル式fに代入し、そのときの出力値が略0であるか否かを判断する。ここで、モデル式は、「f(idc,iqc)=0」を満たすものであり、「f(id,iq)」が略ゼロであるときには、実電流id,iqが指令電流曲線CL上の点と略一致することを意味する。このため、略ゼロであるか否かに基づき、電動機4を流れる電流についてのd軸上及びq軸上の値が、PWM制御の指令電流idc,iqcのとり得る値と略一致するか否かを判断することができる。そして、ステップS32において肯定判断されるときには、ステップS34においてPWM制御に切り替える。
なお、ステップS32において否定判断されるときや、ステップS34の処理が完了するときには、この一連の処理を一旦終了する。
以上説明した本実施形態によれば、先の第1の実施形態の上記(1)、(4)、(5)の効果に加えて、更に以下の効果が得られるようになる。
(6)モデル式に実電流id,iqを代入するときのモデル式の出力が略ゼロであるとき、電動機4を流れる電流についてのd軸上及びq軸上の値が、PWM制御の指令電流idc,iqcのとり得る値と略一致すると判断した。これにより、指令電流情報格納部132に記憶させるデータ数を好適に低減することができるとともに、簡易な手法によって上記判断を行うことができる。
(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
・上記第2の実施形態では、「f(idc,iqc)=0」にてモデル式を定量化したが、これに限らず、「f(idc,iqc)=A(A:任意に整数)」であればよい。この場合、先の図10のステップS32において、モデル式の出力がAと略一致するか否かを判断すればよい。
・PWM制御から矩形波制御への切り替えは、指令電圧vuc1,vvc1,vwc1が、バッテリ42の電圧VBに「1.28/2」を乗算した値以上となるときに行うものに限らない。ただし、バッテリ42の電圧VBに「1.28/2」を乗算した値以下の所定値以上となるときに切り替えを行うことが望ましい。
・矩形波制御としては、先の図2に例示した処理に限らない。例えば上記特許文献1に記載されている手法を用いてもよい。
・PWM制御としては、先の図2に例示した処理に限らない。例えば、非干渉化制御部88を備えなくてもよい。また、PWM制御のための搬送波としては、三角波に限らず、鋸波等であってもよい。更に、要求トルクTcからdq軸上の指令電流idc,iqcを求めるものに限らず、要求トルクTcから3相の指令電流iuc,ivc,iwcを直接求め、これに基づき指令電圧vuc1,vvc1,vwc1を算出してもよい。ここで、指令電流iuc,ivc,iwcから指令電圧vuc1,vvc1,vwc1を求める際には、上述した3相の電流と3相の電圧との関係を定める関係式を用いればよい。
・電動機4の各相に流れる電流の検出値を、dq軸上での指令電流idc,iqcに応じた電流にフィードバック制御する電流制御としては、上記PWM制御に限らない。例えば、ヒステリシスコンパレータの2つの入力端子のいずれか一方に指令電流idc,iqcに基づき定まる3相の指令電流iuc1,ivc1,iwc1の各1相を、また他方に実電流iu,iv,iwの同1相を入力することで、瞬時電流値制御を行ってもよい。
・3相電動機としては、IPMSMに限らない。また、3相回転機としては、3相電動機に限らず、例えば3相発電機であってもよい。
・3相回転機の制御装置としては、上記マイコン50に限らず、例えば専用の集積回路(IC)であってもよい。
第1の実施形態にかかる電動機及びその制御システムを示す図。 同実施形態にかかる電動機の出力制御の処理を示すブロック図。 同実施形態にかかるPWM制御と矩形波制御との領域を示す図。 PWM制御の問題点を示すタイムチャート。 上記実施形態にかかるPWM制御から矩形波制御への切替処理の手順を示すフローチャート。 上記実施形態にかかる矩形波制御からPWM制御への切替条件を説明する図。 同実施形態にかかる矩形波制御からPWM制御への切替手法を説明する図。 同実施形態にかかる矩形波制御からPWM制御への切替処理の手順を示すフローチャート。 上記切替処理による電流ベクトルの推移を示すタイムチャート。 第2の実施形態にかかる矩形波制御からPWM制御への切替処理の手順を示すフローチャート。
符号の説明
4…電動機、10…インバータ、12〜22…スイッチング素子、50…マイクロコンピュータ(3相回転機の制御装置の一実施形態)。

Claims (6)

  1. 3相回転機に電力を供給するインバータのスイッチング素子を操作することで該3相回転機の出力を制御する3相回転機の制御装置において、
    前記3相回転機の各相に印加される電圧の変化の周期を前記3相回転機の電気角の回転周期と略一致させるべく前記スイッチング素子を操作する矩形波制御手段と、
    前記3相回転機を流れる電流の検出値を、前記3相回転機を流れる電流についてのdq軸上での指令値に応じた電流にフィードバック制御する電流制御手段と、
    前記指令値のとり得る値についての情報を記憶する記憶手段と、
    前記矩形波制御手段による制御時において、前記3相回転機を流れる電流の検出値及び前記情報に基づき、前記3相回転機を流れる電流についてのd軸上及びq軸上の値が前記指令値としてとり得る値と略一致するとき、前記矩形波制御手段による制御から前記電流制御手段による制御に切り替える切替手段とを備えることを特徴とする3相回転機の制御装置。
  2. 前記切替手段は、前記指令値がdq軸上を描く曲線に対して、前記3相回転機を流れる電流のdq軸上での電流ベクトルである実電流ベクトルと対称な電流ベクトルを算出する算出手段を備え、該対称な電流ベクトルと前記実電流ベクトルとが略一致するとき、前記3相回転機を流れる電流についてのd軸上及びq軸上の値が前記指令値としてとり得る値と略一致するとして、前記切り替えを行うことを特徴とする請求項1記載の3相回転機の制御装置。
  3. 前記算出手段は、前記3相回転機を流れる電流のd軸上の値と前記情報とに基づき前記対称な電流ベクトルのq軸成分を算出する手段と、前記3相回転機を流れる電流のq軸上の値と前記情報とに基づき前記対称な電流ベクトルのd軸成分を算出する手段とを備えることを特徴とする請求項2記載の3相回転機の制御装置。
  4. 前記情報は、前記d軸上の指令値idc及び前記q軸上の指令値iqcをf(idc,iqc)=Aによって関係付けるモデル式であり、
    前記切替手段は、前記モデル式に、前記3相回転機を流れる電流のd軸上の値及びq軸上の値を代入するときのモデル式の出力が前記Aと略一致するとき、前記3相回転機を流れる電流についてのd軸上及びq軸上の値が前記指令値としてとり得る値と略一致するとして、前記切り替えを行うことを特徴とする請求項1記載の3相回転機の制御装置。
  5. 前記電流制御手段は、前記3相回転機を流れる各相の電流の検出値に基づき、これら各相の検出値をdq軸上の電流に変換する変換手段と、該変換された電流と前記指令値との差に基づき、前記フィードバック制御を行う手段とを備えることを特徴とする請求項1〜4のいずれかに記載の3相回転機の制御装置。
  6. 前記指令値は、前記3相回転機に対する要求トルクを最小の電流で生成可能な値に設定されてなることを特徴とする請求項1〜5のいずれかに記載の3相回転機の制御装置。
JP2006220158A 2006-08-11 2006-08-11 3相回転機の制御装置 Expired - Fee Related JP4775168B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220158A JP4775168B2 (ja) 2006-08-11 2006-08-11 3相回転機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220158A JP4775168B2 (ja) 2006-08-11 2006-08-11 3相回転機の制御装置

Publications (2)

Publication Number Publication Date
JP2008048505A true JP2008048505A (ja) 2008-02-28
JP4775168B2 JP4775168B2 (ja) 2011-09-21

Family

ID=39181695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220158A Expired - Fee Related JP4775168B2 (ja) 2006-08-11 2006-08-11 3相回転機の制御装置

Country Status (1)

Country Link
JP (1) JP4775168B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081663A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 回転電機制御システム
JP2010081658A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 回転電機制御システム
JP2010142013A (ja) * 2008-12-11 2010-06-24 Nissan Motor Co Ltd 交流電動機の制御装置及び制御方法
JP2010161929A (ja) * 2010-04-26 2010-07-22 Hitachi Automotive Systems Ltd 回転電機の制御システム及び制御装置
JP2010166714A (ja) * 2009-01-16 2010-07-29 Denso Corp 回転機の制御装置及び制御システム
JP2010246282A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp 回転電機制御システム
JP2012050259A (ja) * 2010-08-27 2012-03-08 Toyota Motor Corp 交流電動機の制御システム
JP2017028943A (ja) * 2015-07-27 2017-02-02 アスモ株式会社 モータ制御装置
JP2017028944A (ja) * 2015-07-27 2017-02-02 アスモ株式会社 モータ制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032799A (ja) * 1998-07-07 2000-01-28 Hitachi Ltd 回転電機の制御装置及び制御方法
JP2000050686A (ja) * 1998-07-29 2000-02-18 Toyota Motor Corp 交流電動機の駆動制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032799A (ja) * 1998-07-07 2000-01-28 Hitachi Ltd 回転電機の制御装置及び制御方法
JP2000050686A (ja) * 1998-07-29 2000-02-18 Toyota Motor Corp 交流電動機の駆動制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081663A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 回転電機制御システム
JP2010081658A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 回転電機制御システム
JP2010142013A (ja) * 2008-12-11 2010-06-24 Nissan Motor Co Ltd 交流電動機の制御装置及び制御方法
JP2010166714A (ja) * 2009-01-16 2010-07-29 Denso Corp 回転機の制御装置及び制御システム
JP2010246282A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp 回転電機制御システム
JP2010161929A (ja) * 2010-04-26 2010-07-22 Hitachi Automotive Systems Ltd 回転電機の制御システム及び制御装置
JP2012050259A (ja) * 2010-08-27 2012-03-08 Toyota Motor Corp 交流電動機の制御システム
JP2017028943A (ja) * 2015-07-27 2017-02-02 アスモ株式会社 モータ制御装置
JP2017028944A (ja) * 2015-07-27 2017-02-02 アスモ株式会社 モータ制御装置

Also Published As

Publication number Publication date
JP4775168B2 (ja) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4582168B2 (ja) 回転機の制御装置、及び回転機の制御システム
JP5696700B2 (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
JP4775168B2 (ja) 3相回転機の制御装置
JP5471259B2 (ja) 制御装置
JP5549384B2 (ja) 電動機の制御装置および電動機制御システム
JP6406108B2 (ja) モータ制御システムの制御装置
JP2009232530A (ja) 回転機の制御装置、及び回転機の制御システム
JP2009095144A (ja) 交流モータの制御装置および交流モータの制御方法
JP2010119268A (ja) インバータの異常検出装置および異常検出方法
JP2014128052A (ja) 車両の制御装置
JP5955761B2 (ja) 車両の制御装置
JP5181551B2 (ja) 多相回転機の制御装置
JP7235588B2 (ja) 回転電機の制御装置
JP2014050122A (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
JP2009201250A (ja) モータの制御装置
JP2012138982A (ja) モータ制御装置及び電気機器
JP5577714B2 (ja) 交流モータの制御装置
JP2010183702A (ja) インバータの制御装置
JP2014050123A (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
JP7516828B2 (ja) モータ駆動システム
JP6939693B2 (ja) パルスパターン生成装置
JP5290048B2 (ja) 車両のモータ制御システム
JP6733579B2 (ja) モータ駆動装置
JP2021168566A (ja) モータ駆動システム
JP5277846B2 (ja) 交流電動機の制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R151 Written notification of patent or utility model registration

Ref document number: 4775168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees