JP2010081663A - 回転電機制御システム - Google Patents

回転電機制御システム Download PDF

Info

Publication number
JP2010081663A
JP2010081663A JP2008243738A JP2008243738A JP2010081663A JP 2010081663 A JP2010081663 A JP 2010081663A JP 2008243738 A JP2008243738 A JP 2008243738A JP 2008243738 A JP2008243738 A JP 2008243738A JP 2010081663 A JP2010081663 A JP 2010081663A
Authority
JP
Japan
Prior art keywords
current
current command
rotating electrical
electrical machine
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008243738A
Other languages
English (en)
Other versions
JP5384068B2 (ja
Inventor
Takeshi Ito
武志 伊藤
Takashi Ogawa
崇 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008243738A priority Critical patent/JP5384068B2/ja
Priority to US12/566,049 priority patent/US8269437B2/en
Publication of JP2010081663A publication Critical patent/JP2010081663A/ja
Application granted granted Critical
Publication of JP5384068B2 publication Critical patent/JP5384068B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】回転電機制御システムにおいて、矩形波電圧位相制御モードから過変調電流制御モードへの切替を滑らかに行うことである。
【解決手段】回転電機制御システム10の制御部30は、dq平面上において、回転電機を最大効率で運転できる最大効率特性線上で第1電流指令を実行する第1電流指令モジュール40と、回転電機の動作点が最大効率特性線よりも遅角側に予め設定された位相差を有する切替ラインを越えるときに矩形波電圧位相制御モードから過変調電流制御モードに切り替えるモード切替モジュール42と、過変調電流制御モードに切り替えた後、切替ライン上で第2電流指令を実行する第2電流指令モジュール44と、所定期間の間切替ライン上で第2電流指令を実行された後、再び最大効率特性線上における第1電流指令の実行に戻す復帰モジュール46とを備える。
【選択図】図1

Description

本発明は、回転電機制御システムに係り、特に、正弦波電流制御モードと過変調電流制御モードと矩形波電圧位相制御モードとの間で制御を切り替える回転電機制御システムに関する。
回転電機をインバータによって駆動する場合に、その制御方法として、正弦波電流制御モードと過変調電流制御モードと矩形波電圧位相制御モードとを使い分けることが行われている。すなわち、回転電機の高出力化と小型化とを両立させるためには、1パルススイッチングを用いる矩形波電圧位相制御モードが必要であり、低速領域で優れた特性を有する正弦波電流制御モードと、中速領域で用いられる過変調電流制御モードとの間のモード切替を行いながら、最適に回転電機を制御している。
ここで、正弦波電流制御モードと過変調電流制御モードとは、電流フィードバック制御であり、電圧指令と搬送波(キャリア)とを比較することでパルス幅変調(Pulse Width Modulation:PWM)パターンを回転電機に出力する制御である。一方、矩形波電圧位相制御モードは、電気角に応じて1パルススイッチング波形を回転電機に出力する制御であり、電圧振幅は最大値に固定され、位相を制御することでトルクをフィードバック制御している。
正弦波電流制御モードから過変調電流制御モード、過変調電流制御モードから矩形波電圧位相制御モードの3つのモードの間の切替は、変調率、あるいは変調率に相当する電圧指令振幅によって行われるが、矩形波電圧位相制御モードから過変調電流制御モードへの切替は、矩形波電圧位相制御モードにおいて電圧指令振幅が一定であるので、電流指令に対する実電流の位相によって切替のタイミングを判定することで行われる。
例えば、特許文献1には、モータ駆動システムの制御装置において、従来では、矩形波電圧制御方式はiu,iv,iwと電圧vとからパワーを計算しトルク推定し、トルク偏差をトルク指令値に対しフィードバックしており、一方でPWM変調制御方式では、iu,iv,iwからid,iqに変換し、これからid偏差,iq偏差をid指令値とiq指令値に対しフィードバックしていることから、PWM変調制御方式と矩形波電圧制御方式の切換に際し出力トルクに変動が生じることを指摘している。そして、ここでは、PWM変調制御方式と矩形波電圧制御方式のいずれも電流センサと回転角センサとから求められるid,iqを用いることが開示され、これによって、出力トルク制御性を確保することができると述べられている。
特許文献2には、交流電動機の駆動制御装置として、電圧振幅が基準三角波のピーク値の1.00倍を超えたらPWM電流制御モードから過変調制御モードに切り替え、電圧振幅が基準三角波のピーク値の1.27倍を超えたら矩形波電圧位相制御モードに切り替え、一方実電流位相の絶対値が電流指令位相の絶対値未満となったら矩形波電圧位相制御モードから過変調制御モードに切り替えることが述べられている。
そして、d軸電流及びq軸電流には周期的なノイズや高調波が含まれるので測定電流にローパスフィルタ処理を行うが、このフィルタ処理のため、矩形波電圧位相制御モードから過変調制御モードへの切り替えが遅れることがあり、電流位相のハンチング等を引き起こし、制御が不安的になることを指摘している。そこで、ここでは、誘起電圧等を加味した必要電圧振幅VRと基準三角波のピーク値とを比較し、さらにチャタリングを起こさないようなオフセット値を設けることで、矩形波電圧位相制御モードから過変調制御モードへの切り替えの遅れが生じないようにすることが開示されている。
特許文献3には、モータ駆動システムとして、入力側である直流電源側で受入れ可能な電力を超えて交流モータが発電することにより過剰電力が発生する場合に、過大な回生電力によりモータ駆動システム内部に過電圧が発生することがあり、必要に応じ、交流モータでの電力消費を増大させて入力側への回生電力を抑制する構成が求められると述べられている。そして、PWM制御方式の場合、電流振幅について電流位相と出力トルクとの関係で最高効率動作点を結ぶ最適効率特性線を求め、この最適効率特性線から電流位相をずらした電流動作点の集合として損失増加特性線を得て、この上で動作させることが開示されている。また、矩形波電圧制御方式では、モータ印加電圧の操作量が位相のみとなり、電流位相は調整不能な固定値となるので、トルクについてモータ必要電圧(モータ線間電圧)と電流位相との関係において、電流動作点を進角側に設定してモータ必要電圧を低下させ、PWM制御方式に従ったモータ電流制御を行い、トルク制御性を確保した上でモータ駆動効率を低下させることが開示されている。
特開2007−159368号公報 特開2008−11682号公報 特開2007−151336号公報
上記のように、矩形波電圧位相制御モードから過変調電流制御モードへの切替は、電流指令に対する実電流の位相によって切替のタイミングを判定することで行われる。このときに、切替判定は、電流指令を基準として、dq平面上における進角側で行うこととすると、モード切替の際に制御がチャタリングを起こし、電流乱れが生じる。そこで、切替判定は、電流指令を基準としてdq平面上で遅角側において行われる。
このように電流指令を基準として遅角側にモード切替判定ラインを設定しても、矩形波電圧位相制御モードから過変調電流制御モードへの切替の直後において、切替判定ラインの状態である実電流と、戻すべき電流指令との間の偏差が大きい。この偏差のため、過変調電流制御モードにおいて演算される電圧指令が、矩形波電圧位相制御モードの最後の電圧指令である最大振幅とそのときの位相に対して急変することが生じる。これによって、回転電機に実際に出力されるPWMパターンの対称性が大きく崩れ、電流が乱れ、トルク低下を招くことが起こる。
本発明の目的は、矩形波電圧位相制御モードから過変調電流制御モードへの切替を滑らかに行うことを可能とする回転電機制御システムを提供することである。
本発明に係る回転電機制御システムは、正弦波電流制御モードと過変調電流制御モードと矩形波電圧位相制御モードとの間で制御を切り替える回転電機制御システムであって、直交するd軸とq軸とで構成されるdq平面上において、回転電機を最大効率で運転できるd軸電流とq軸電流の電流組を結んで得られる最大効率特性線上で、第1電流指令を実行する第1電流指令手段と、dq平面上で、回転電機の動作点が最大効率特性線よりも遅角側に予め設定された位相差を有する切替ラインを越えるときに矩形波電圧位相制御モードから過変調電流制御モードに切り替えるモード切替手段と、過変調電流制御モードに切り替えた後、予め設定された所定期間の間は、切替ライン上で第2電流指令を実行する第2電流指令手段と、を備えることを特徴とする。
また、本発明に係る回転電機制御システムにおいて、第2電流指令手段によって所定期間の間切替ライン上で第2電流指令を実行された後、再び最大効率特性線上における第1電流指令の実行に戻す復帰手段を備えることが好ましい。
また、本発明に係る回転電機制御システムにおいて、復帰手段は、過変調電流制御モードから矩形波電圧指令制御モードへ制御を切り替えることで発生するチャタリングを防止できる遅れ時間に応じた時定数で制御周期を長めになまし変更して、切替ライン上から最大効率特性線上に電流指令の実行を戻すことが好ましい。
また、本発明に係る回転電機制御システムにおいて、復帰手段は、予め設定された電流指令値の変化率範囲内で切替ライン上から最大効率特性線上に電流指令の実行を戻すことが好ましい。
また、本発明に係る回転電機制御システムにおいて、dq平面上で最大効率特性線よりも遅角側で、切替ラインよりも進角側に予め設定される中間特性線上で電流指令を実行する中間電流指令実行手段を備え、復帰手段は、切替ライン上から中間特性線上の電流指令の実行を経由して最大効率特性線上に電流指令の実行を戻すことが好ましい。
また、本発明に係る回転電機制御システムにおいて、復帰手段は、トルク一定の条件の下で、切替ライン上の第2電流指令値とこれに対応する最大効率特性線上の第1電流指令値との差である電流指令偏差が、予め設定される電流偏差閾値以下となったときに、同じ制御周期内で瞬時的に切替ライン上から最大効率特性線上に電流指令の実行を戻すことが好ましい。
また、本発明に係る回転電機制御システムにおいて、復帰手段は、dq平面上で、最大効率特性線に対応して予め計算によって求められるd軸電圧とq軸電圧の電圧組を結んで得られる第1電圧指令特性線と、切替ラインに対応して予め計算によって求められるd軸電圧とq軸電圧の電圧組を結んで得られる第2電圧指令特性線とが交差する電圧指令値に対応する電流指令値になったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すことが好ましい。
また、本発明に係る回転電機制御システムにおいて、復帰手段は、トルク一定の条件の下で、切替ライン上の第2電流指令値に対応する第2電圧指令特性線上の第2電圧指令値と、最大効率特性線上の第1電流指令値に対応する第1電圧指令特性線上の第1電圧指令値との偏差である電圧偏差がゼロとなる前に予め設定される電圧偏差閾値以下となったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すことが好ましい。
また、本発明に係る回転電機制御システムにおいて、復帰手段は、トルク一定の条件の下で、最大効率特性線上の第1電流指令値に対応する第1電圧指令特性線上の第1電圧指令値が正弦波電流制御モード実行領域に入ったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すことが好ましい。
上記構成により、回転電機制御システムは、dq平面上において最大効率特性線と、最大効率特性線よりも遅角側に設定される切替ラインとが設けられる。そして、最大効率特性線上で第1電流指令が実行され、回転電機の動作点が最大効率特性線側から移動して切替ラインを越えるときに矩形波電圧位相制御モードから過変調電流制御モードに切り替えが行われる。従来技術では、この切替が行われると、最大効率特性線上の第1電流指令の実行に戻される。上記構成では、この切替ラインが電流指令特性線として兼用され、回転電機の動作点が切替ライン上に達すると、そこで切替ライン上において第2電流指令が実行される。
切替ライン上において第2電流指令が実行されると、矩形波電圧位相制御モードの最後の電圧指令である最大振幅とそのときの位相に対し、過変調電流制御モードにおいて演算される電圧指令が滑らかに接続される。これによって回転電機に実際に出力されるPWMパターンの対称性が崩れることが抑制され、電流が乱れることが抑制され、トルク低下を招くことが抑制される。
また、回転電機制御システムにおいて、第2電流指令手段によって切替ライン上で第2電流指令を所定期間実行された後に、再び最大効率特性線上における第1電流指令の実行に戻されるので、トルク特性等のオーバーシュート、アンダーシュートを抑制することができる。
また、回転電機制御システムにおいて、過変調電流制御モードから矩形波電圧指令制御モードへ制御を切り替えることで発生するチャタリングを防止できる遅れ時間に応じた時定数で制御周期を長めになまし変更して、切替ライン上から最大効率特性線上に電流指令の実行を戻す。これによって、チャタリングを防止し、トルク特性等のオーバーシュート、アンダーシュートを抑制できる。
また、回転電機制御システムにおいて、予め設定された電流指令値の変化率範囲内で切替ライン上から最大効率特性線上に電流指令の実行を戻すので、電流指令の急変を抑制でき、トルク特性等のオーバーシュート、アンダーシュートを抑制できる。
また、回転電機制御システムにおいて、切替ライン上から中間特性線上の電流指令の実行を経由して最大効率特性線上に電流指令の実行を戻すので、電流指令の急変を抑制でき、トルク特性等のオーバーシュート、アンダーシュートを抑制できる。
また、回転電機制御システムにおいて、トルク一定の条件の下で、切替ライン上の第2電流指令値とこれに対応する最大効率特性線上の第1電流指令値との差である電流指令偏差が、予め設定される電流偏差閾値以下となったときに、同じ制御周期内で瞬時的に切替ライン上から最大効率特性線上に電流指令の実行を戻す。電流指令偏差が小さくなれば、電流指令の急変を抑制でき、トルク特性等のオーバーシュート、アンダーシュートを抑制できる。
また、回転電機制御システムにおいて、第1電流指令が実行される最大効率特性線に対応する第1電圧指令特性線と、第2電流指令が実行される切替ラインに対応する第2電圧指令特性線とが交差する電圧指令値に対応する電流指令値になったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻す。これによって、戻す前後における電圧偏差をなくすことができ、電流指令の復帰を滑らかなものとでき、トルク特性等のオーバーシュート、アンダーシュートを抑制できる。
また、回転電機制御システムにおいて、第2電圧指令値と第1電圧指令値との偏差である電圧偏差が予め設定される電圧偏差閾値以下となったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すので、戻す前後における電圧偏差を小さくでき、トルク特性等のオーバーシュート、アンダーシュートを抑制できる。電流指令の復帰を滑らかなものとできる。
また、回転電機制御システムにおいて、最大効率特性線上の第1電流指令値に対応する第1電圧指令特性線上の第1電圧指令値が正弦波電流制御モード実行領域に入ったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻す。これによって、戻すときのトルク特性等のオーバーシュート、アンダーシュートを抑制できる。
以下に図面を用いて、本発明に係る実施の形態につき、詳細に説明する。以下では、回転電機制御システムが用いられるものとして回転電機が搭載される車両を説明するが、これは例示であって、正弦波電流制御モードと過変調電流制御モードと矩形波電圧位相制御モードとの間で制御を切り替える回転電機制御システムを用いるものであればよい。また、この車両には、車両には、回転電機として、1台でモータ機能と発電機機能とを有するモータ・ジェネレータを2台用いるものとして説明するが、これは例示であって、モータ機能のみを有する回転電機を1台、発電機機能のみを有する回転電機を1台用いるものとしてもよい。また、モータ・ジェネレータを1台用いるものとしてもよく、3台以上用いるものとしてもよい。
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
図1は、車両に搭載される回転電機についての回転電機制御システム10についてその構成を示す図である。車両は、エンジン12と、蓄電装置14とを動力源とし、第1の回転電機(MG1)18と第2の回転電機(MG2)20とを備え、さらに、蓄電装置14と2つの回転電機18,20との間に接続されて設けられるコンバータ・インバータである電源回路16と、エンジン12と第1の回転電機18と第2の回転電機20との間の動力分配を行うための動力分配機構22と、動力分配機構22と第2の回転電機20との間に設けられる変速機24と、変速機24から駆動力を受け取る車輪あるいはタイヤ26と、これらの要素の作動を全体として制御する制御部30を備えて構成される。
回転電機制御システム10は、これらの構成要素のうち、主に、2つの回転電機18,20と、電源回路16と、制御部30を含む部分に相当する。これら以外の構成要素は、いわゆるハイブリッド車両等によく用いられる要素であるので、詳細な説明を省略する。
第1の回転電機(MG1)18と第2の回転電機(MG2)20は、車両に搭載されるモータ・ジェネレータ(MG)であって、蓄電装置14から電力が供給されるときはモータとして機能し、エンジン12による駆動時、あるいは車両の制動時には発電機として機能する3相同期型回転電機である。
ここで、第1の回転電機(MG1)18は、エンジン12によって駆動されて発電機として用いられ、発電された電力を電源回路16のコンバータ・インバータを介して蓄電装置14に供給するものとして用いられる。また、第2の回転電機(MG2)20は、車両走行のために用いられ、力行時には蓄電装置14から直流電力の供給を受けて電源回路16のコンバータ・インバータを介して変換された交流電力によってモータとして機能して車両のタイヤ26を駆動し、制動時には発電機として機能して回生エネルギを回収し、電源回路16のコンバータ・インバータを介して蓄電装置14に供給するものとできる。
電源回路16は、上記のように、蓄電装置14と2つの回転電機18,20との間に配置される回路であって、コンバータ、インバータの他、平滑コンデンサ等を含んで構成される。
電源回路16に含まれるコンバータは、蓄電装置14とインバータの間に配置され、電圧変換機能を有する回路である。コンバータとしては、リアクトルと制御部30の制御の下で作動するスイッチング素子等を含んで構成することができる。電圧変換機能としては、蓄電装置側の電圧をリアクトルのエネルギ蓄積作用を利用して昇圧しインバータ側に供給する昇圧機能と、インバータ側からの電力を蓄電装置側に降圧して充電電力として供給する降圧機能とを有する。昇圧機能に着目するときは、コンバータを昇圧回路と呼ぶことができる。
電源回路16に含まれるインバータは、交流電力と直流電力との間の電力変換を行う回路である。インバータは、制御部30の制御の下で作動する複数のスイッチング素子を含んで構成される。上記のように、第1の回転電機(MG1)18と第2の回転電機(MG2)20は、用途も動作点条件も異なるので、インバータは、その内部で2つのインバータ回路で構成されている。2つのインバータ回路のうち1つは第1の回転電機(MG1)18の作動用のインバータ回路であり、もう1つは第2の回転電機(MG2)20の作動用のインバータ回路である。
上記のように、第1の回転電機(MG1)18を発電機として機能させるときは、その作動用インバータ回路は、第1の回転電機(MG1)18からの交流3相回生電力を直流電力に変換し、蓄電装置側に充電電流として供給する交直変換機能を有する。また、第2の回転電機(MG2)20の作動用インバータ回路は、車両が力行のとき、蓄電装置側からの直流電力を交流3相駆動電力に変換し、第2の回転電機(MG2)20に駆動電力として供給する直交変換機能と、車両が制動のとき、逆に第2の回転電機(MG2)20からの交流3相回生電力を直流電力に変換し、蓄電装置側に充電電流として供給する交直変換機能とを有する。
制御部30は、上記の各要素の作動を全体として制御する機能を有する。例えば、エンジン12の作動を制御する機能、2つの回転電機18,20の作動を制御する機能、電源回路16の作動を制御する機能、動力分配機構22の作動を制御する機能、変速機24の作動を制御する機能等を有する。
かかる制御部30は、車両の搭載に適した制御装置、例えば車載用コンピュータによって構成することができる。制御部30を1つのコンピュータで構成することもできるが、必要な処理速度が各構成要素によって異なること等を考慮し、複数のコンピュータにこれらの機能を分担させることもできる。例えば、エンジン12の作動を制御する機能をエンジン電気制御ユニット(Electrical Control Unit:ECU)に分担させ、2つの回転電機18,20の作動を制御する機能をMG−ECUに分担させ、電源回路16の作動を制御する機能をPCU(Power Control Unit)に分担させ、全体を統合ECUで制御する等の構成とすることもできる。
図1において、制御部30は、これらの機能のうち、特に回転電機制御機能として、2つの回転電機18,20の制御モードの切替を滑らかに行うための機能を有する部分が示されている。すなわち、制御部30は、2つの回転電機18,20の制御について、正弦波電流制御モードを実行する正弦波電流制御モジュール32、過変調電流制御モードを実行する過変調電流制御モジュール34、矩形波電圧位相制御モードを実行する矩形波電圧位相制御モジュール36を含んで構成される。
また、矩形波電圧位相制御モードから過変調電流制御モードに滑らかに移行するために、第1電流指令モジュール40、モード切替モジュール42、第2電流指令モジュール44、復帰モジュール46を含んで構成される。
第1電流指令モジュール40は、直交するd軸とq軸とで構成されるdq平面上において、回転電機を最大効率で運転できるd軸電流とq軸電流の電流組を結んで得られる最大効率特性線上で、第1電流指令を実行する機能を有する。d軸、q軸、dq平面については後述する。
モード切替モジュール42は、dq平面上で、回転電機の動作点が最大効率特性線よりも遅角側に予め設定された位相差を有する切替ラインを越えるときに矩形波電圧位相制御モードから過変調電流制御モードに切り替える機能を有する。
第2電流指令モジュール44は、過変調電流制御モードに切り替えた後、予め設定された所定期間の間は、切替ライン上で第2電流指令を実行する機能を有する。すなわち、ここでは、制御モードの切替判断に用いられる切替ラインが、そのまま第2電流指令としてのd軸電流とq軸電流の電流組を結んだ電流指令特性線として用いられる。
復帰モジュール46は、第2電流指令モジュールによって所定期間の間切替ライン上で第2電流指令を実行された後、再び最大効率特性線上における第1電流指令の実行に戻す機能を有する。
これらの機能は、ソフトウェアを実行することで実現でき、具体的には、回転電機制御プログラムの中の制御モード切替パートを実行することで実現できる。これらの機能の一部をハードウェアによって実現するものとしてもよい。
上記構成の作用、特に制御部30の各機能について以下に詳細に説明する。なお、2つの回転電機18,20の制御は特に区別がないので、以下では、第2の回転電機20に代表させて、その制御モードの切替等について説明する。
最初に、正弦波電流制御モード、過変調電流制御モード、矩形波電圧位相制御モードについて説明する。
正弦波電流制御モードと過変調電流制御モードとは、電流フィードバック制御であり、電圧指令と搬送波(キャリア)とを比較することでパルス幅変調(Pulse Width Modulation:PWM)パターンを回転電機20に出力する制御である。一方、矩形波電圧位相制御モードは、電気角に応じて1パルススイッチング波形を回転電機20に出力する制御であり、電圧振幅は最大値に固定され、位相を制御することでトルクをフィードバック制御している。上記のように、これら3つの制御モードは、それぞれ、正弦波電流制御モジュール32、過変調電流制御モジュール34、矩形波電圧位相制御モジュール36によって実行される。
正弦波電流制御モード、過変調電流制御モード、矩形波電圧位相制御モードの3つのモードの間の切替は、変調率、あるいは変調率に相当する電圧指令振幅によって行われる。変調率とは、インバータの出力電圧に対する信号振幅の比である。正弦波と三角波の比較によるPWM方式の場合は、変調率が{(3)1/2}/2{(2)1/2}=0.61であり、矩形波を信号振幅とするときの変調率が{(6)1/2}/π=0.78である。
このように、回転電機20を高出力にするには、変調率を大きくできる矩形波電圧位相制御の方が適している。一方で、正弦波電流制御モード、過変調電流制御モードにおいては、PWM技術によって形成される擬似正弦波を用いるので、矩形波電圧位相制御モードに比べ、応答を速くすることができる。これらのことから、低速領域では、正弦波電流制御モード、中速領域では過変調電流制御モード、高速領域で矩形波電圧位相制御モードを用いることが好ましい。
図2は、回転電機の動作点に応じて制御モードが選択される様子を説明する図である。この図は、回転電機20の回転数を横軸に、トルクを縦軸にとり、その最大トルク特性線50を示し、さらに、最大トルク特性線50で示される作動領域においてどの制御モードが用いられるかを示す図である。この図に示されるように、低速側に正弦波電流制御モード作動領域52が、高速側に矩形波電圧位相制御モード作動領域56が、その中間に過変調電流制御モード作動領域54がそれぞれ設定されている。
次に、これら3つの制御モードの切替について説明する。図2で示されたように、回転数とトルクで与えられる回転電機20の動作点の状態に応じて、制御モードの切替が行われる。速度とトルクを次第に上げて行くにつれて、正弦波電流制御モードから過変調電流制御モード、過変調電流制御モードから矩形波電圧位相制御モードへと制御モードを切り替える。その場合に、以下のように変調率によって、制御モードの切替を行うものとできる。すなわち、変調率が0.61以下のときに正弦波電流制御モード、変調率が0.61から0.78の間は過変調電流制御モード、変調率が0.78となれば矩形波電圧位相制御モードを用いるように制御モードを切り替える。
これと逆方向に制御モードを切り替えるときも変調率を用いることができるが、矩形波電圧位相制御モードから過変調電流制御モードへの切替は、矩形波電圧位相制御モードにおいて電圧指令振幅が一定であるので、電流指令に対する実電流の位相によって切替のタイミングを判定することで行われる。
図3は、電流指令に対する実電流の位相によって切替のタイミングを判定するための切替ラインを説明するための図である。ここでは、回転電機20のベクトル制御に用いられるd軸とq軸によって規定されるdq平面が示される。回転界磁型の3相同期型電動機に用いられるベクトル制御では、回転子の磁極が形成する磁束の方向がd軸にとられ、d軸に直交する軸がq軸に取られる。dq平面は、このd軸とq軸とを直交する座標軸として構成される平面である。
ここで、回転電機20のd軸インダクタンスをLd、q軸インダクタンスをLq、巻線抵抗をR、電気角速度をω、逆起電力定数をψ、d軸電流をId、q軸電流をIq、d軸電圧をVd、q軸電圧をVqとすると、回転電機の理論式は以下のように示すことができる。
すなわち、d軸電圧Vdは、Vd=R×Id−ω×Lq×Iqで与えられる。また、q軸電圧Vqは、Vq=R×Iq+ω×Ld×Id+ωψで与えられる。また、回転電機20の極数をpとして、トルクτは、τ=pψIq+p(Ld−Lq)Idqで与えられる。
d軸電流とq軸電流とで規定される電流ベクトルの絶対値IaをIa=(Id 2+Iq 21/2とし、電流位相βをβ=tan-1(Iq/Id)とすると、トルクτの式が電流位相βで表すことができる。すなわち、トルクτ=pψIasinβ+(1/2)×p(Ld−Lq)Ia 2×sin2βで与えられる。この式は、電流位相βでトルクτが制御できることを示している。すなわち、電流位相とは、電流におけるd軸電流成分とq軸電流成分との間の位相を示すものである。
このようにして、電流位相βを制御することで回転電機20のトルクを制御できる。なお、最大トルクを与える電流位相βは、上記トルクτの式を電流位相βで微分してその値をゼロとおいた式に基いて求めることができる。すなわち、β=cos-1〔[−ψ+{ψ2−8(Ld−Lq21/2]/4(Ld−Lq)Ia〕で最大トルクのときの電流位相βが求められる。このように計算で求められる関係式に、必要な場合に適当な補正を加えて、回転電機20を最大効率で運転できる特性線を求めることができる。
図3には、このようにして求められる最大効率特性線62が示される。この最大効率特性線62上で電流指令を実行すれば、回転電機20を最大効率で運転することができる。この最大効率特性線62上で実行される電流指令を、後に出てくる他の電流指令と区別するために、第1電流指令と呼ぶことにする。
この最大効率特性線62は、最大トルクのときの電流位相βを満たすd軸電流とq軸電流の電流組を結んで得られる特性線であるが、これらのd軸電流、q軸電流に対応するd軸電圧、q軸電圧の電圧組を結んで得られる特性線が図3において第1電圧指令特性線72として示されている。
図3で示される最大電圧円70は、回転電機20に供給される最大電圧を示す線であり、矩形波電圧位相制御モードでは、その電圧振幅が一定のときは、この最大電圧円70の上で、電圧位相を制御することで出力されるトルクの大きさを制御することができる。したがって、この最大電圧円70の内部の第1電圧指令特性線72は、正弦波電流制御モードおよび過変調電流制御モードにおける最大効率運転のときの電圧指令のd軸電圧とq軸電圧の電圧組を示すものである。第1電流指令に対応して、この電圧指令を第1電圧指令と呼ぶことにする。
このようにして、dq平面を用いることで、正弦波電流制御モードおよび過変調電流制御モードにおける最大効率運転のときの第1電流指令が実行される最大効率特性線62、これに対応する第1電圧指令が実行される第1電圧指令特性線72が示される。また、矩形波電圧位相制御モードにおける電圧指令は、最大電圧円70上で実行されることが示される。
図3において示される切替ライン64は、dq平面上で、最大効率特性線62よりも遅角側に予め設定された位相差を有する特性線である。切替ライン64は、このラインを越えるときに、矩形波電圧位相制御モードから過変調電流制御モードに切り替えるものとする判断基準としての機能を有する。
切替ライン64が最大効率特性線62よりも遅角側、すなわち、dq平面で、時計方向に位相が戻されたところに設定される理由は以下の通りである。すなわち、回転電機20が高トルク、高回転数の状態において矩形波電圧位相制御モードで運転されており、その状態から低トルク、低回転数の状態に移行するときに、電流位相が次第に遅角側に移動する。そして、その動作点が最大効率特性線62と交差するようになる。
矩形波電圧位相制御モードから過変調電流制御モードに切り替えた後は、この最大効率特性線62上で第1電流指令を実行すれば最大効率で回転電機20を運転できる。したがって、この最大効率特性線62よりも手前側、つまり進角側に切替ラインを設定することが考えられる。しかし、制御モードの切替を進角側で行うこととすると、モード切替の際に制御がチャタリングを起こし、電流乱れが生じることが知られている。そこで、切替判定は、第1電流指令が実行される最大効率特性線62を基準としてdq平面上で遅角側において行われ、その後、最大効率特性線62の上に動作点を戻すことが行われるのである。
図3に示される第2電圧指令特性線74は、切替ライン64に対応するもので、切替ライン64を構成するd軸電流とq軸電流の電流組に対応するd軸電圧とq軸電圧の電圧組を結んで得られる特性線である。
図4は、図1の制御部30の第1電流指令モジュール40、モード切替モジュール42、第2電流指令モジュール46の作用を説明する図である。図3で説明したように、従来技術では、切替ライン64は、矩形波電圧位相制御モードから過変調電流制御モードに切り替えるものとする判断基準としての機能を有している。図4では、切替ライン64は、このモード切替判断基準としての機能と共に、第2電流指令がこのライン上で実行されるという電流指令特性線としての機能も有する。
図4を用いて回転電機20の動作点の軌跡を説明する。図4では、電流位相軌跡80と電圧位相軌跡82が示されている。矢印は、低速低トルクの状態から高速高トルクの状態になり、再び低速低トルクの状態に戻る方向を示している。
回転電機20が起動し、低速低トルクの状態から速度を上げトルクを上げてゆくときは、正弦波電流制御モードを用い、最大効率特性線62上で第1電流指令が実行される。この工程は、制御部30の正弦波電流制御モジュール32と第1電流指令モジュール40の機能によって実行される。
そして、中速領域になり、例えば、変調率が0.61を超えるようになると、過変調電流制御モードに切り替えられるが、そこでも最大効率特性線62上で第1電流指令が実行される。この工程は、制御部30の過変調電流制御モジュール34と第1電流指令モジュール40の機能によって実行される。
さらに速度とトルクが上がり、例えば、変調率が0.78を超えると、矩形波電圧位相制御モードに切り替えられ、電流位相は最大効率特性線62から進角側に離れてゆく。矩形波電圧位相制御モードでは、電圧指令が第1電圧指令特性線72から最大電圧円70の上に移り、電圧位相の制御によってトルクが制御される。この工程は、制御部30の矩形波電圧位相制御モジュール36の機能によって実行される。
矩形波電圧位相制御モードの状態から速度が下りトルクが下がると、上記の軌跡を逆にたどる。そして、電流位相が最大効率特性線62を超え、切替ライン64に達すると、切替ライン64のモード切替判断基準機能により、矩形波電圧位相制御モードから過変調電流制御モードに切替が行われる。この工程は、制御部30のモード切替モジュール42の機能によって実行される。
そして、その切替のあとは、切替ライン64の電流指令特性線の機能により、この切替ライン64で示される電流位相特性に従った第2電流指令が実行される。すなわち、この切替ライン64上で、過変調電流制御モードが実行され、この切替ライン64に沿って、回転電機20が低速低トルク側に移行するように電流指令が実行される。
ここでは、従来技術のように、切替の後、すぐ最大効率特性線62上に動作点が戻されない。したがって、矩形波電圧位相制御モードの最後の電圧指令である最大振幅とそのときの位相に対し、過変調電流制御モードにおいて演算される電圧指令が滑らかに接続される。これによって、従来技術で課題となっていた回転電機に実際に出力されるPWMパターンの対称性が崩れることが抑制され、また、電流が乱れることが抑制され、さらに、トルク低下を招くことが抑制される。
切替ライン64は、最大効率特性線62とは電流位相が異なるので、切替ライン64の電流組で与えられる第2電流指令を実行すると、最大効率特性線62で示される電流位相特性に従った第1電流指令の実行に比べ、回転電機20の効率はやや低下する。そこで、切替ライン64上における第2電流指令の実行を予め設定された所定期間の間に止め、再び最大効率特性線62上の第1電流指令の実行に復帰することが行われる。この工程は、制御部30の復帰モジュール46の機能によって実行される。
復帰のための所定期間が短すぎると、従来技術の課題が解消できず、長すぎると回転電機20の効率が低下する。そこで、復帰の仕方として適切ないくつかの方法を以下に説明する。
1つの方法は、過変調電流制御モードから矩形波電圧指令制御モードへ制御を切り替えることで発生するチャタリングを防止できる遅れ時間に応じた時定数で制御周期を長めになまし変更して、切替ライン64上から最大効率特性線62上に電流指令の実行を戻すことである。例えば、通常の制御周期をtSとして、チャタリングを防止できる遅れ時間がTSとすれば、tSをTS以上となるように、適当な時定数を定めて制御周期を長くし、ゆっくりと電流指令の変更を行う処理を行い、その長くなった制御周期を所定期間として、切替ライン64上から最大効率特性線62上に電流指令の実行を戻すものとできる。
図5と図6にその様子を示す。図5は上記の方法で制御周期を長くして復帰を実行する場合の様子を示し、図6は通常の制御周期のままで復帰を実行する場合を示す図である。これらの図は、横軸に時間をとり、縦軸に電流指令の切替、トルク、d軸電流、q軸電流をとったものである。
図5では、制御周期になまし処理が施されて第2電流指令から第1電流指令に復帰が行われているので、d軸電流、q軸電流とも滑らかに変化している様子が示されている。なまし処理は、このように、電流指令の変化をゆっくりと変化させることができる。そして、第2電流指令から第1電流指令に復帰することでのトルク変動がほとんど見られない。
これに対し、図6に示されるように、制御周期になまし処理を施さない場合は、第2指令から第1電流指令に戻すことで、d軸電流とq軸電流にオーバーシュート、アンダーシュートが生じる。また、第2電流指令から第1電流指令に復帰することで、トルク変動が生じることが示されている。
また、予め設定された電流指令値の変化率範囲内で切替ライン64上から最大効率特性線62上に電流指令の実行を戻すものとすることができる。電流指令値の変化率は、図5で示されるように、なまし処理と同様な内容を有するので、電流指令値の変化率範囲を、チャタリングを防止できる遅れ時間に対応できるように緩やかに設定するものとできる。
また、dq平面上で最大効率特性線62よりも遅角側で、切替ライン64よりも進角側に中間特性線を設定し、この中間特性線を経由して切替ライン64上から最大効率特性線62上に電流指令の実行を戻すものとしてもよい。図7は中間特性線66の設定の様子を示す図であり、図8は、中間特性線66上において実行される電流指令を第3電流指令として、第2電流指令から第3電流指令を介して第1電流指令に戻す手順を示すフローチャートである。
図7は、図3、図4と同様のdq平面図であり、ここでは、電流位相において、最大効率特性線62と切替ライン64との間に中間特性線66が設定される様子が示される。なお、図7には、等トルク特性線60がいくつか例示されている。等トルク特性線は、トルクτの式であるτ=pψIq+p(Ld−Lq)Idqで示されるように、dq平面で双曲線に似た特性線として与えられる。
図8のフローチャートに従えば、切替ライン64上において第2電流指令が選択されるとタイマT2が設定されカウントダウンを始め、カウントダウンが進んでタイマT2のカウントがゼロになると、中間特性線66上の第3電流指令が選択される。第3電流指令が選択されると共にタイマT3が設定されカウントダウンを始める。そしてカウントダウンが進んでタイマT3のカウントがゼロになると、最大効率特性線62上の第1電流指令が選択される。
このようにして、切替ライン64上でタイマT2がカウントダウンするまで第2電流指令が順次実行され、その後、中間特性線66上でタイマT3がカウントダウンするまで第3電流指令が順次実行され、その後に最大効率特性線62上の第1電流指令の実行に戻される。このように、時間をかけて切替ライン64上から最大効率特性線62上に電流指令の実行を戻すので、電流指令の変化に起因するd軸電流とq軸電流のオーバーシュート、アンダーシュート等を抑制することができる。
別の方法として、トルク一定の条件の下で、切替ライン64上の第2電流指令値とこれに対応する最大効率特性線62上の第1電流指令値との差である電流指令偏差が、予め設定される電流偏差閾値以下となったときに、同じ制御周期内で瞬時的に切替ライン64上から最大効率特性線62上に電流指令の実行を戻すものとできる。
図5から理解できるように、第2電流指令から第1電流指令に戻すときに電流偏差が少なければ、d軸電流とq軸電流のオーバーシュート、アンダーシュートも少なくなる。したがって、トルク変動が生じない程度のオーバーシュート、アンダーシュートに対応する電流偏差を予め求め、これを電流偏差閾値として設定するものとすれば、瞬時的に電流指令を変更してもトルク変動を生じないようにできる。
その様子を図9に示す。この図は、図5と図6と同様の図で、ここでは、第2電流指令から第1電流指令に戻すときに電流偏差が少ないので、図5のようになまし処理を行わなくても、d軸電流とq軸電流のオーバーシュート、アンダーシュートが少ない。そして、トルク変動がほとんど生じていないことが示されている。
また、別の方法として、dq平面上で、第1電圧指令特性線72と第2電圧指令特性線74とが交差する電圧指令値に対応する電流指令値になったときに、切替ライン64上から最大効率特性線62上に電流指令の実行を戻すものとしてもよい。
図10にその様子を示す。図9は図3、図4と同様のdq平面図であり、ここでは、第1電圧指令特性線72と第2電圧指令特性線74とが交差する動作点76が示されている。切替ライン64上における第2電流指令の値が、この動作点76に対応する電流指令値になったときには、第2電流指令から第1電流指令に変更しても電圧偏差が生じない。したがって、d軸電流とq軸電流のオーバーシュート、アンダーシュート等を抑制することができる。
また、第1電圧指令特性線72と第2電圧指令特性線74とが交差する前に、つまり電圧偏差がゼロとなる前に、適当に設定された電圧偏差閾値以下に電圧偏差がなったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すものとしてもよい。電圧偏差閾値としては、トルク変動が生じない程度のオーバーシュート、アンダーシュートに対応する電圧偏差を予め求めておき、これを用いることができる。
また、第1電圧指令特性線上の第1電圧指令値が正弦波電流制御モード実行領域に入ったときに、切替ライン64上から最大効率特性線62上に電流指令の実行を戻すものとしてもよい。正弦波電流制御モード実行領域では、電圧も電流も小さく、また応答性も速いので、第2電流指令と第1電流指令との偏差も小さくなっているので、d軸電流とq軸電流のオーバーシュート、アンダーシュート等を抑制することができる。
このように、矩形波電圧位相制御モードから過変調電流制御モードにモード切替を行う場合、制御モードの切替の後、そのまま切替ライン64上で所定期間の間、第2電流指令を実行し、所定期間の後に最大効率特性線62上の第1電圧指令に復帰させることで、d軸電流とq軸電流のオーバーシュート、アンダーシュートを抑制し、トルク低下を抑制することができる。
次に、図11から図16を用いて、上記の作用効果について、従来技術を用いた場合と比較しながら説明する。ここで、従来技術を用いた場合とは、切替ライン64が制御モード切替判断基準としての機能のみを有し、切替後は最大効率特性線62上でのみ電流指令を実行する場合のことである。
図11は、従来技術を用いた場合のdq平面上の電流位相軌跡80を示す図である。この図に示されるように、切替ライン64において制御モードが切り替えられた後、最大効率特性線62に戻るまで、電流の乱れが大きくなることが示されている。
図12は、従来技術を用いた場合のdq平面上の電圧位相軌跡82を示す図である。この図に示されるように、矩形波電圧位相制御モードから過変調電流制御モードに切り替わると、正弦波電流制御モードにさらに切り替わるまで、電圧の乱れが大きく生じていることが示されている。
図13は、従来技術を用いた場合のトルクの状態を示す図である。ここでは、横軸に時間をとり、縦軸に時間をとって、トルク指令が大きな値から次第に小さな値となるときの様子が示されている。トルク指令が大きな値のときは矩形波電圧位相制御モードが用いられ、トルク指令が小さな値となるにつれて、矩形波電圧位相制御モードから過変調電流制御モード、さらに正弦波電流制御モードへと切替が行われる。図13では、破線で示されるトルク指令に対し、実線で示される実際に出力されるトルクが、過変調電流制御モードのところで低下している様子が示されている。
図14は、切替ライン64上で電流指令を実行し、所定期間の後に最大効率特性線62に電流指令を戻す場合についての電圧位相軌跡82を示す図である。ここでは、トルクがゼロの状態から最大トルクまで上昇させ、またトルクゼロの状態に戻している。図14に示されるように、第1電圧指令特性線に沿ってトルクを上昇させ、最大電圧円70上で矩形波電圧位相制御モードとなり、そこから過変調電流制御モードへモード切替して第2電圧指令特性線上で制御が行われる様子が示されている。ここで、第2電圧指令特性線から第1電圧指令特性線に戻る間の電圧に乱れがないことが示されている。図14に対応する従来技術を示す図は、図12であるが、ここでは、過変調電流制御モードにおいてかなりの電圧の乱れが認められている。
図15と図16は、電流制御の安定性を比較したもので、図15が従来技術の場合、図16が切替ライン64において第2電流指令を実行するものとした場合である。これらの図は、横軸に時間をとり、縦軸にU相とV相の間の相間電圧であるVU=Vと、V相電流であるIV、W相電流であるIWをとったもので、矩形波電圧位相制御モードから過変調電流制御モードに切替が行われたときが示されている。
図15では、破線枠で囲まれた部分、すなわち、矩形波電圧位相制御モードから過変調電流制御モードに切替が行われた直後において電圧波形に乱れが生じ、電流制御の安定性が低下していることが示されている。図16においては、矩形波電圧位相制御モードから過変調電流制御モードに切替が行われても、そのような電圧の乱れが生じていず、電流制御の安定性が優れていることが示されている。
本発明に係る実施の形態における回転電機制御システムの構成を示す図である。 回転電機の動作点に応じて制御モードが選択される様子を説明する図である。 電流指令に対する実電流の位相によって切替のタイミングを判定するための切替ラインを説明するための図である。 本発明に係る実施の形態において、制御部の第1電流指令モジュール、モード切替モジュール、第2電流指令モジュールの作用を説明する図である。 本発明に係る実施の形態において、制御周期を長くして第2電流指令から第1電流指令への復帰を実行する場合の様子を示す図である。 図5と比較するもので、通常の制御周期のままで第2電流指令から第1電流指令への復帰を実行する場合を示す図である。 本発明に係る実施の形態において、中間特性線の設定の様子を示す図である。 本発明に係る実施の形態において、中間特性線を用い、第3電流指令として、第2電流指令から第3電流指令を介して第1電流指令に戻す手順を示すフローチャートである。 本発明に係る実施の形態において、第2電流指令から第1電流指令に戻すときの電流偏差が電流偏差閾値より小さい場合を示す図である。 本発明に係る実施の形態において、第1電圧指令特性線と第2電圧指令特性線とが交差する動作点を示す図である。 従来技術を用いた場合のdq平面上の電流位相軌跡を示す図である。 従来技術を用いた場合のdq平面上の電圧位相軌跡を示す図である。 従来技術を用いた場合のトルクの状態を示す図である。 本発明に係る実施の形態において、電圧位相軌跡を示す図である。 従来技術の場合の電流制御の安定性を説明する図である。 本発明に係る実施の形態において、電流制御の安定性を説明する図である。
符号の説明
10 回転電機制御システム、12 エンジン、14 蓄電装置、16 電源回路、18,20 回転電機、22 動力分配機構、24 変速機、26 タイヤ、30 制御部、32 正弦波電流制御モジュール、34 過変調電流制御モジュール、36 矩形波電圧位相制御モジュール、40 第1電流指令モジュール、42 モード切替モジュール、44 第2電流指令モジュール、46 復帰モジュール、50 最大トルク特性線、52 正弦波電流制御モード作動領域、54 過変調電流制御モード作動領域、56 矩形波電圧位相制御モード作動領域、60 等トルク特性線、62 最大効率特性線、64 切替ライン、66 中間特性線、70 最大電圧円、72 第1電圧指令特性線、74 第2電圧指令特性線、76 動作点、80 電流位相軌跡、82 電圧位相軌跡。

Claims (9)

  1. 正弦波電流制御モードと過変調電流制御モードと矩形波電圧位相制御モードとの間で制御を切り替える回転電機制御システムであって、
    直交するd軸とq軸とで構成されるdq平面上において、回転電機を最大効率で運転できるd軸電流とq軸電流の電流組を結んで得られる最大効率特性線上で、第1電流指令を実行する第1電流指令手段と、
    dq平面上で、回転電機の動作点が最大効率特性線よりも遅角側に予め設定された位相差を有する切替ラインを越えるときに矩形波電圧位相制御モードから過変調電流制御モードに切り替えるモード切替手段と、
    過変調電流制御モードに切り替えた後、予め設定された所定期間の間は、切替ライン上で第2電流指令を実行する第2電流指令手段と、
    を備えることを特徴とする回転電機制御システム。
  2. 請求項1に記載の回転電機制御システムにおいて、
    第2電流指令手段によって所定期間の間切替ライン上で第2電流指令を実行された後、再び最大効率特性線上における第1電流指令の実行に戻す復帰手段を備えることを特徴とする回転電機制御システム。
  3. 請求項2に記載の回転電機制御システムにおいて、
    復帰手段は、過変調電流制御モードから矩形波電圧指令制御モードへ制御を切り替えることで発生するチャタリングを防止できる遅れ時間に応じた時定数で制御周期を長めになまし変更して、切替ライン上から最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
  4. 請求項2に記載の回転電機制御システムにおいて、
    復帰手段は、予め設定された電流指令値の変化率範囲内で切替ライン上から最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
  5. 請求項2に記載の回転電機制御システムにおいて、
    dq平面上で最大効率特性線よりも遅角側で、切替ラインよりも進角側に予め設定される中間特性線上で電流指令を実行する中間電流指令実行手段を備え、
    復帰手段は、切替ライン上から中間特性線上の電流指令の実行を経由して最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
  6. 請求項2に記載の回転電機制御システムにおいて、
    復帰手段は、トルク一定の条件の下で、切替ライン上の第2電流指令値とこれに対応する最大効率特性線上の第1電流指令値との差である電流指令偏差が、予め設定される電流偏差閾値以下となったときに、同じ制御周期内で瞬時的に切替ライン上から最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
  7. 請求項2に記載の回転電機制御システムにおいて、
    復帰手段は、dq平面上で、最大効率特性線に対応して予め計算によって求められるd軸電圧とq軸電圧の電圧組を結んで得られる第1電圧指令特性線と、切替ラインに対応して予め計算によって求められるd軸電圧とq軸電圧の電圧組を結んで得られる第2電圧指令特性線とが交差する電圧指令値に対応する電流指令値になったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
  8. 請求項7に記載の回転電機制御システムにおいて、
    復帰手段は、トルク一定の条件の下で、切替ライン上の第2電流指令値に対応する第2電圧指令特性線上の第2電圧指令値と、最大効率特性線上の第1電流指令値に対応する第1電圧指令特性線上の第1電圧指令値との偏差である電圧偏差がゼロとなる前に予め設定される電圧偏差閾値以下となったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
  9. 請求項2に記載の回転電機制御システムにおいて、
    復帰手段は、トルク一定の条件の下で、最大効率特性線上の第1電流指令値に対応する第1電圧指令特性線上の第1電圧指令値が正弦波電流制御モード実行領域に入ったときに、切替ライン上から最大効率特性線上に電流指令の実行を戻すことを特徴とする回転電機制御システム。
JP2008243738A 2008-09-24 2008-09-24 回転電機制御システム Active JP5384068B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008243738A JP5384068B2 (ja) 2008-09-24 2008-09-24 回転電機制御システム
US12/566,049 US8269437B2 (en) 2008-09-24 2009-09-24 Rotary electric machine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243738A JP5384068B2 (ja) 2008-09-24 2008-09-24 回転電機制御システム

Publications (2)

Publication Number Publication Date
JP2010081663A true JP2010081663A (ja) 2010-04-08
JP5384068B2 JP5384068B2 (ja) 2014-01-08

Family

ID=42036943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243738A Active JP5384068B2 (ja) 2008-09-24 2008-09-24 回転電機制御システム

Country Status (2)

Country Link
US (1) US8269437B2 (ja)
JP (1) JP5384068B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029416A (ja) * 2010-07-22 2012-02-09 Hitachi Appliances Inc 空気調和機
WO2013038250A2 (en) 2011-09-14 2013-03-21 Toyota Jidosha Kabushiki Kaisha Rotary electric machine control system and rotary electric machine control method
JP2019134630A (ja) * 2018-02-01 2019-08-08 日産自動車株式会社 電動機の制御方法及び制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076667A1 (de) * 2011-05-30 2012-12-06 Robert Bosch Gmbh Verfahren zur Reduzierung des Anlaufstromes bei einer mit Blockkommutierung betriebenen mehrphasigen Maschine
TW201624873A (zh) * 2014-12-31 2016-07-01 鴻海精密工業股份有限公司 電動車刹車回充控制系統及方法
US9783063B2 (en) * 2015-08-27 2017-10-10 Texas Instruments Incorporated Regenerative braking controller for electric motors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050686A (ja) * 1998-07-29 2000-02-18 Toyota Motor Corp 交流電動機の駆動制御装置
JP2001078495A (ja) * 1999-07-08 2001-03-23 Toyota Motor Corp 交流電動機の駆動制御装置
JP2007151336A (ja) * 2005-10-27 2007-06-14 Toyota Motor Corp モータ駆動システム
JP2007306699A (ja) * 2006-05-10 2007-11-22 Toyota Industries Corp モータインバータ
JP2008048505A (ja) * 2006-08-11 2008-02-28 Denso Corp 3相回転機の制御装置
JP2008206383A (ja) * 2006-08-11 2008-09-04 Denso Corp 多相回転機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781033B2 (en) * 2000-04-26 2004-08-24 Monsanto Technology Llc Method for the transformation of plant cell plastids
JP4706324B2 (ja) * 2005-05-10 2011-06-22 トヨタ自動車株式会社 モータ駆動システムの制御装置
JP2007159368A (ja) * 2005-12-08 2007-06-21 Toyota Motor Corp モータ駆動システムの制御装置
EP1967406B1 (en) * 2005-12-26 2019-01-09 Toyota Jidosha Kabushiki Kaisha Vehicle controller, vehicle and vehicle control method
JP4939127B2 (ja) 2006-06-30 2012-05-23 株式会社豊田中央研究所 交流電動機の駆動制御装置及び駆動制御方法
JP4720653B2 (ja) * 2006-07-07 2011-07-13 トヨタ自動車株式会社 電動機制御装置およびそれを備えた車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050686A (ja) * 1998-07-29 2000-02-18 Toyota Motor Corp 交流電動機の駆動制御装置
JP2001078495A (ja) * 1999-07-08 2001-03-23 Toyota Motor Corp 交流電動機の駆動制御装置
JP2007151336A (ja) * 2005-10-27 2007-06-14 Toyota Motor Corp モータ駆動システム
JP2007306699A (ja) * 2006-05-10 2007-11-22 Toyota Industries Corp モータインバータ
JP2008048505A (ja) * 2006-08-11 2008-02-28 Denso Corp 3相回転機の制御装置
JP2008206383A (ja) * 2006-08-11 2008-09-04 Denso Corp 多相回転機の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029416A (ja) * 2010-07-22 2012-02-09 Hitachi Appliances Inc 空気調和機
WO2013038250A2 (en) 2011-09-14 2013-03-21 Toyota Jidosha Kabushiki Kaisha Rotary electric machine control system and rotary electric machine control method
US9515583B2 (en) 2011-09-14 2016-12-06 Toyota Jidosha Kabushiki Kaisha Rotary electric machine control system and rotary electric machine control method
DE112012003822B4 (de) 2011-09-14 2020-07-30 Aisin Aw Co., Ltd. Steuersystem für eine elektrische Drehmaschine und Steuerverfahren für eine drehende elektrische Maschine
JP2019134630A (ja) * 2018-02-01 2019-08-08 日産自動車株式会社 電動機の制御方法及び制御装置

Also Published As

Publication number Publication date
US8269437B2 (en) 2012-09-18
JP5384068B2 (ja) 2014-01-08
US20100072926A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US7893637B2 (en) Motor drive system
JP6179494B2 (ja) 交流電動機の制御装置
US7443116B2 (en) Electrically powered vehicle mounting electric motor and control method therefor
JP4844753B2 (ja) 電気自動車の制御装置
JP5311950B2 (ja) 回転電機制御システム
US7928686B2 (en) Electric motor control device, electric vehicle, and hybrid electric vehicle
US7701156B2 (en) Electric motor drive control system and control method thereof
JP4538850B2 (ja) 電気自動車の制御装置
US9413281B2 (en) Apparatus for controlling AC motor
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
JP5221261B2 (ja) 回転電機制御システム
JP5384068B2 (ja) 回転電機制御システム
JP2018133935A (ja) インバータ装置および電動車両
JP2010178444A (ja) 回転電機制御システム
JP4697603B2 (ja) 電気自動車の制御装置
JP2009201250A (ja) モータの制御装置
WO2018139298A1 (ja) 交流電動機の制御装置
JP2010183661A (ja) 回転電機制御システム
JP4827017B2 (ja) 電気自動車の制御装置
JP2010172109A (ja) 回転電機制御装置
JP4827018B2 (ja) 電気自動車の制御装置
JP2007202384A (ja) 電気自動車の制御装置
JP2008011694A (ja) 電気自動車の制御装置
JP5412930B2 (ja) 回転電機制御システム
JP5067603B2 (ja) 電気自動車の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R151 Written notification of patent or utility model registration

Ref document number: 5384068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250