JP2008044325A - 搬送量補正装置、搬送量補正方法、及び、プログラム - Google Patents

搬送量補正装置、搬送量補正方法、及び、プログラム Download PDF

Info

Publication number
JP2008044325A
JP2008044325A JP2006224544A JP2006224544A JP2008044325A JP 2008044325 A JP2008044325 A JP 2008044325A JP 2006224544 A JP2006224544 A JP 2006224544A JP 2006224544 A JP2006224544 A JP 2006224544A JP 2008044325 A JP2008044325 A JP 2008044325A
Authority
JP
Japan
Prior art keywords
medium
transport
correction value
amount
transporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006224544A
Other languages
English (en)
Other versions
JP4162022B2 (ja
Inventor
Bunji Ishimoto
文治 石本
Masahiko Yoshida
昌彦 吉田
Hiroichi Nunokawa
博一 布川
Tatsuya Nakano
龍也 中野
Yoichi Kakehashi
洋一 掛橋
Toru Miyamoto
徹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006224544A priority Critical patent/JP4162022B2/ja
Priority to US11/840,352 priority patent/US20080192270A1/en
Publication of JP2008044325A publication Critical patent/JP2008044325A/ja
Application granted granted Critical
Publication of JP4162022B2 publication Critical patent/JP4162022B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/16Means for paper feeding or form feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • B41J11/425Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering for a variable printing material feed amount

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Handling Of Sheets (AREA)

Abstract

【課題】制約の少ない状態で搬送量を補正可能にすること。
【解決手段】ヘッドと、目標となる目標搬送量に応じて、前記ヘッドに対して媒体を搬送方向に搬送する搬送機構と、媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値を複数記憶するメモリと、前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させ、前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させるコントローラと、
を備える搬送量補正装置を提供する。
【選択図】図25

Description

本発明は、搬送量補正装置、搬送量補正方法、及び、プログラムに関する。
媒体(例えば紙や布など)を搬送方向に搬送するとともにヘッドにより媒体に記録を行う記録装置として、インクジェットプリンタが知られている。このような記録装置では、媒体を搬送する際に搬送誤差が生じると、媒体上の正しい位置にヘッドが記録できなくなる。特に、インクジェットプリンタでは、媒体上の正しい位置にインク滴が着弾しなくなると、印刷された画像に白スジや黒スジが生じ、画質が劣化するおそれがある。
そこで、媒体の搬送量を補正する方法が提案されている。例えば特許文献1では、テストパターンを印刷し、このテストパターンを読み取り、読取結果に基づいて補正値を算出し、画像を記録する際に補正値に基づいて搬送量を補正することが提案されている。
特開平5−96796号公報
ところで、媒体の位置によって搬送量を補正するには、媒体の各位置に対応する補正値を記憶しておく必要がある。しかしながら、メモリ容量の制限により、すべての媒体の種類及び大きさの組み合わせについての補正値を記憶できない場合がある。このようにメモリに補正値を記憶できなかった組み合わせの媒体について搬送を行うときであっても、ある程度の搬送量の補正ができると便利である。
本発明は、このような事情に鑑みてなされたものであり、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる装置を提供することを目的とする。
上記目的を達成するための主たる発明は、
(A)ヘッドと、
(B)目標となる目標搬送量に応じて、前記ヘッドに対して媒体を搬送方向に搬送する搬送機構と、
(C)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値を複数記憶するメモリと、
(D)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させ、
前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させるコントローラと、
を備える搬送量補正装置である。
本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
本明細書及び添付図面の記載により、少なくとも、以下の事項が明らかとなる。
(A)ヘッドと、
(B)目標となる目標搬送量に応じて、前記ヘッドに対して媒体を搬送方向に搬送する搬送機構と、
(C)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値を複数記憶するメモリと、
(D)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させ、
前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させるコントローラと、
を備える搬送量補正装置。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
かかる搬送量補正装置であって、各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられており、前記目標搬送量にて搬送する際に搬送前の前記相対位置に対応する前記補正値の前記範囲を超える場合、前記コントローラは、搬送前の前記相対位置に対応する前記補正値と、搬送後の前記相対位置に対応する前記補正値とに基づいて、前記目標搬送量を補正することが望ましい。また、各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられており、前記コントローラは、前記目標搬送量にて搬送する際の前記相対位置の変化する範囲と、前記補正値を適用するべき前記相対位置の前記範囲との比率に応じて前記補正値に重み付けを行い、前記目標搬送量を補正することが望ましい。また、前記搬送機構は、搬送ローラを有し、前記搬送ローラを回転させることによって前記媒体を搬送方向に搬送するものであり、各前記補正値は、前記搬送ローラを1回転させて前記媒体を搬送したときの搬送誤差に基づいて決定され、前記補正値を適用するべき前記相対位置の範囲は、1回転未満の回転量にて前記搬送ローラを回転させて前記媒体を搬送したときの搬送量に相当することが望ましい。また、前記コントローラは、前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を前記目標搬送量に乗じて新たな目標搬送量を求め、該新たな目標搬送量に応じて前記搬送機構に媒体を搬送させることが望ましい。また、前記所定の組み合わせの媒体には、ある所定の組み合わせの媒体と別の所定の組み合わせの媒体があり、前記コントローラは、前記ある所定の組み合わせの媒体を搬送するときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行って媒体を搬送させ、前記別の所定の組み合わせの媒体を搬送するときには、前記ある所定の組み合わせの媒体を搬送するときの前記相対位置に対応する補正値のうちの一部を用いて前記目標搬送量の補正を行って媒体を搬送させることが望ましい。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
(A)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値がメモリに記憶されているか否かを判定するステップと、
(B)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送し、
前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送するステップと、
を含む搬送量補正方法。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
搬送量補正装置を動作させるためのプログラムであって、
(A)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値がメモリに記憶されているか否かを判定するステップと、
(B)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送し、
前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送するステップと、
を前記搬送量補正装置に行わせるプログラム。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
===プリンタの構成===
<インクジェットプリンタの構成について>
図1は、プリンタ1の全体構成のブロック図である。また、図2Aは、プリンタ1の全体構成の概略図である。また、図2Bは、プリンタ1の全体構成の横断面図である。以下、プリンタの基本的な構成について説明する。
プリンタ1は、搬送ユニット20、キャリッジユニット30、ヘッドユニット40、検出器群50、及びコントローラ60を有する。外部装置であるコンピュータ110から印刷データを受信したプリンタ1は、コントローラ60によって各ユニット(搬送ユニット20、キャリッジユニット30、ヘッドユニット40)を制御する。コントローラ60は、コンピュータ110から受信した印刷データに基づいて、各ユニットを制御し、紙に画像を印刷する。プリンタ1内の状況は検出器群50によって監視されており、検出器群50は、検出結果をコントローラ60に出力する。コントローラ60は、検出器群50から出力された検出結果に基づいて、各ユニットを制御する。
搬送ユニット20は、媒体(例えば、紙Sなど)を所定の方向(以下、搬送方向という)に搬送させるためのものである。この搬送ユニット20は、給紙ローラ21と、搬送モータ22(PFモータとも言う)と、搬送ローラ23と、プラテン24と、排紙ローラ25とを有する。給紙ローラ21は、紙挿入口に挿入された紙をプリンタ内に給紙するためのローラである。搬送ローラ23は、給紙ローラ21によって給紙された紙Sを印刷可能な領域まで搬送するローラであり、搬送モータ22によって駆動される。プラテン24は、印刷中の紙Sを支持する。排紙ローラ25は、紙Sをプリンタの外部に排出するローラであり、印刷可能な領域に対して搬送方向下流側に設けられている。この排紙ローラ25は、搬送ローラ23と同期して回転する。
なお、搬送ローラ23が紙Sを搬送するとき、紙Sは搬送ローラ23と従動ローラ26との間に挟まれている。これにより、紙Sの姿勢が安定する。一方、排紙ローラ25が紙Sを搬送するとき、紙Sは排紙ローラ25と従動ローラ27との間に挟まれている。排紙ローラ25は印刷領域よりも搬送方向下流側に設けられているので、従動ローラ27は、紙Sとの接触面が小さくなるように構成されている(図4も参照)。このため、紙Sの下端が搬送ローラ23を通過して、紙Sが排紙ローラ25のみによって搬送されるとき、紙Sの姿勢は不安定になり易く、搬送特性も変化しやすい。
キャリッジユニット30は、ヘッドを所定の方向(以下、移動方向という)に移動(「走査」とも呼ばれる)させるためのものである。キャリッジユニット30は、キャリッジ31と、キャリッジモータ32(CRモータとも言う)とを有する。キャリッジ31は、移動方向に往復移動可能であり、キャリッジモータ32によって駆動される。また、キャリッジ31は、インクを収容するインクカートリッジを着脱可能に保持している。
ヘッドユニット40は、紙にインクを吐出するためのものである。ヘッドユニット40は、複数のノズルを有するヘッド41を備える。このヘッド41はキャリッジ31に設けられているため、キャリッジ31が移動方向に移動すると、ヘッド41も移動方向に移動する。そして、ヘッド41が移動方向に移動中にインクを断続的に吐出することによって、移動方向に沿ったドットライン(ラスタライン)が紙に形成される。
検出器群50には、リニア式エンコーダ51、ロータリー式エンコーダ52、紙検出センサ53、および光学センサ54等が含まれる。リニア式エンコーダ51は、キャリッジ31の移動方向の位置を検出する。ロータリー式エンコーダ52は、搬送ローラ23の回転量を検出する。紙検出センサ53は、給紙中の紙の先端の位置を検出する。光学センサ54は、キャリッジ31に取付けられている発光部と受光部により、紙の有無を検出する。そして、光学センサ54は、キャリッジ31によって移動しながら紙の端部の位置を検出し、紙の幅を検出することができる。また、光学センサ54は、状況に応じて、紙の先端(搬送方向下流側の端部であり、上端ともいう)・後端(搬送方向上流側の端部であり、下端ともいう)も検出できる。
コントローラ60は、プリンタの制御を行うための制御ユニット(制御部)である。コントローラ60は、インターフェース部61と、CPU62と、メモリ63と、ユニット制御回路64とを有する。インターフェース部61は、外部装置であるコンピュータ110とプリンタ1との間でデータの送受信を行う。CPU62は、プリンタ全体の制御を行うための演算処理装置である。メモリ63は、CPU62のプログラムを格納する領域や作業領域等を確保するためのものであり、RAM、EEPROM等の記憶素子を有する。CPU62は、メモリ63に格納されているプログラムに従って、ユニット制御回路64を介して各ユニットを制御する。
<ノズルについて>
図3は、ヘッド41の下面におけるノズルの配列を示す説明図である。ヘッド41の下面には、ブラックインクノズル群Kと、シアンインクノズル群Cと、マゼンタインクノズル群Mと、イエローインクノズル群Yが形成されている。各ノズル群は、各色のインクを吐出するための吐出口であるノズルを90個備えている。
各ノズル群の複数のノズルは、搬送方向に沿って、一定の間隔(ノズルピッチ:k・D)でそれぞれ整列している。ここで、Dは、搬送方向における最小のドットピッチ(つまり、紙Sに形成されるドットの最高解像度での間隔)である。また、kは、1以上の整数である。例えば、ノズルピッチが90dpi(1/90インチ)であって、搬送方向のドットピッチが720dpi(1/720インチ)である場合、k=8である。
各ノズル群のノズルは、下流側のノズルほど小さい数の番号が付されている(♯1〜♯90)。つまり、ノズル♯1は、ノズル♯90よりも搬送方向の下流側に位置している。なお、前述の光学センサ54は、紙搬送方向の位置に関して、一番上流側にあるノズル♯90とほぼ同じ位置にある。
各ノズルには、それぞれインクチャンバー(不図示)と、ピエゾ素子が設けられている。ピエゾ素子の駆動によってインクチャンバーが伸縮・膨張し、ノズルからインク滴が吐出される。
===搬送誤差===
<紙の搬送について>
図4は、搬送ユニット20の構成の説明図である。
搬送ユニット20は、コントローラ60からの搬送指令に基づいて、所定の駆動量にて搬送モータ22を駆動させる。搬送モータ22は、指令された駆動量に応じて回転方向の駆動力を発生する。搬送モータ22は、この駆動力を用いて搬送ローラ23を回転させる。つまり、搬送モータ22が所定の駆動量を発生すると、搬送ローラ23は所定の回転量にて回転する。搬送ローラ23が所定の回転量にて回転すると、紙は所定の搬送量にて搬送される。
紙の搬送量は、搬送ローラ23の回転量に応じて定まる。ここでは、搬送ローラ23が1回転すると、紙が1インチ搬送されるものとする(つまり、搬送ローラ23の周長は、1インチである)。このため、搬送ローラ23が1/4回転すると、紙が1/4インチ搬送される。
したがって、搬送ローラ23の回転量が検出できれば、紙の搬送量も検出可能である。そこで、搬送ローラ23の回転量を検出するため、ロータリー式エンコーダ52が設けられている。
ロータリー式エンコーダ52は、スケール521と検出部522とを有する。スケール521は、所定の間隔毎に設けられた多数のスリットを有する。このスケール521は、搬送ローラ23に設けられている。つまり、スケール521は、搬送ローラ23が回転すると、一緒に回転する。そして、搬送ローラ23が回転すると、スケール521の各スリットが検出部522を順次通過する。検出部522は、スケール521と対向して設けられており、プリンタ本体側に固定されている。ロータリー式エンコーダ52は、スケール521に設けられたスリットが検出部522を通過する毎に、パルス信号を出力する。搬送ローラ23の回転量に応じてスケール521に設けられたスリットが順次検出部522を通過するので、ロータリー式エンコーダ52の出力に基づいて、搬送ローラ23の回転量が検出される
そして、例えば搬送量1インチで紙を搬送する場合、搬送ローラ23が1回転したことをロータリー式エンコーダ52が検出するまで、コントローラ60が搬送モータ22を駆動する。このように、コントローラ60は、目標とする搬送量(目標搬送量)に応じた回転量になることをロータリー式エンコーダ52が検出するまで、搬送モータ22を駆動して、紙を目標搬送量にて搬送する。
<搬送誤差について>
ところで、ロータリー式エンコーダ52は、直接的には搬送ローラ23の回転量を検出するのであって、厳密にいえば、紙Sの搬送量を検出していない。このため、搬送ローラ23の回転量と紙Sの搬送量が一致しない場合、ロータリー式エンコーダ52は紙Sの搬送量を正確に検出することができず、搬送誤差(検出誤差)が生じる。搬送誤差としては、DC成分の搬送誤差及びAC成分の搬送誤差の2種類がある。
DC成分の搬送誤差とは、搬送ローラが1回転したときに生じる所定量の搬送誤差のことである。このDC成分の搬送誤差は、製造誤差等によって搬送ローラ23の周長が個々のプリンタ毎に異なることが原因と考えられる。つまり、DC成分の搬送誤差は、設計上の搬送ローラ23の周長と実際の搬送ローラ23の周長が異なるために生じる搬送誤差である。このDC成分の搬送誤差は、搬送ローラ23が1回転するときの開始位置に関わらず、一定になる。但し、実際のDC成分の搬送誤差は、紙の摩擦等の影響によって、紙の総搬送量に応じて異なる値になる(後述)。言い換えると、実際のDC成分の搬送誤差は、紙Sと搬送ローラ23(又は紙Sとヘッド41)との相対位置関係に応じて異なる値になる。
AC成分の搬送誤差とは、搬送時に用いられる搬送ローラの周面の場所に応じた搬送誤差のことである。AC成分の搬送誤差は、搬送時に用いられる搬送ローラの周面の場所に応じて、異なる量になる。つまり、AC成分の搬送誤差は、搬送開始時の搬送ローラの回転位置と搬送量に応じて、異なる量になる。
図5は、AC成分の搬送誤差の説明用グラフである。横軸は、基準となる回転位置からの搬送ローラ23の回転量である。縦軸は、搬送誤差を示す。このグラフを微分すれば、その回転位置で搬送ローラが搬送しているときに生じる搬送誤差が導き出される。ここでは、基準位置における累積搬送誤差をゼロとし、DC成分の搬送誤差もゼロとしている。
搬送ローラ23が基準位置から1/4回転すると、δ_90の搬送誤差が生じ、紙は1/4インチ+δ_90にて搬送される。但し、搬送ローラ23が更に1/4回転すると、-δ_90の搬送誤差が生じ、紙は1/4インチ−δ_90にて搬送される。
AC成分の搬送誤差が生じる原因としては、例えば、以下の3つが考えられる。
まず第1に、搬送ローラの形状による影響が考えられる。例えば、搬送ローラが楕円形状や卵型である場合、搬送ローラの周面の場所に応じて、回転中心までの距離が異なっている。そして、回転中心までの距離が長い部分で媒体を搬送する場合、搬送ローラの回転量に対する搬送量が多くなる。一方、回転中心までの距離が短い部分で媒体を搬送する場合、搬送ローラの回転量に対する搬送量が少なくなる。
第2に、搬送ローラの回転軸の偏心が考えられる。この場合も、搬送ローラの周面の場所に応じて、回転中心までの長さが異なっている。このため、たとえ搬送ローラの回転量が同じであっても、搬送ローラの周面の場所に応じて、搬送量が異なることになる。
第3に、搬送ローラの回転軸と、ロータリー式エンコーダ52のスケール521の中心との不一致が考えられる。この場合、スケール521が偏心して回転することになる。この結果、検出部522が検出するスケール521の場所に応じて、検出されたパルス信号に対する搬送ローラ23の回転量が異なることになる。例えば、検出されるスケール521の場所が搬送ローラ23の回転軸から離れている場合、検出されたパルス信号に対する搬送ローラ23の回転量が少なくなるため、搬送量が少なくなる。一方、検出されるスケール521の場所が搬送ローラ23の回転軸から近い場合、検出されたパルス信号に対する搬送ローラ23の回転量が多くなるため、搬送量が多くなる。
上記の原因のため、AC成分の搬送誤差は、図5に示す通り、ほぼサインカーブになる。
<参考例で補正する搬送誤差>
図6は、101.6mm×152.4mm(4インチ×6インチ)の大きさの紙を搬送する際に生じる搬送誤差のグラフ(概念図)である。グラフの横軸は、紙の総搬送量を示している。グラフの縦軸は、搬送誤差を示している。図中の点線は、DC成分の搬送誤差のグラフである。図中の実線の値(トータルの搬送誤差)から図中の点線の値(DC成分の搬送誤差)を引けば、AC成分の搬送誤差が求められる。AC成分の搬送誤差は、紙の総搬送量に関わらず、ほぼサインカーブになる。一方、点線で示されるDC成分の搬送誤差は、紙の摩擦等の影響によって、紙の総搬送量に応じて異なる値になる。
既に説明したように、AC成分の搬送誤差は、搬送ローラ23の周面の場所に応じて異なる。このため、たとえ同じ紙を搬送する場合であっても、搬送開始時の搬送ローラ23の回転位置が異なれば、AC成分の搬送誤差が異なるため、トータルの搬送誤差(グラフの実線で示す搬送誤差)は異なることになる。これに対し、DC成分の搬送誤差はAC成分の搬送誤差とは異なり搬送ローラの周面の場所とは無関係なので、たとえ搬送開始時の搬送ローラ23の回転位置が異なっていても、搬送ローラ23が1回転したときに生じる搬送誤差(DC成分の搬送誤差)は同じになる。
また、AC成分の搬送誤差を補正しようとする場合、コントローラ60は、搬送ローラ23の回転位置を検出する必要がある。しかし、搬送ローラ23の回転位置を検出するためには、ロータリー式エンコーダ52に原点センサを更に用意する必要があり、コストアップとなる。
そこで、以下に示す参考例の搬送量の補正では、DC成分の搬送誤差を補正することにしている。
一方、DC成分の搬送誤差は、紙の総搬送量(言い換えると、紙Sと搬送ローラ23との相対位置関係)に応じて異なる値になる(図6の点線参照)。このため、より多くの補正値を搬送方向の位置に応じて用意できれば、きめ細かく搬送誤差を補正することができる。そこで、参考例では、搬送ローラ23の1回転分に相当する1インチの範囲ごとではなく、1/4インチの範囲ごとに、DC成分の搬送誤差を補正するための補正値を用意している。
===概略説明===
図7は、搬送量を補正するための補正値を決定するまでのフロー図である。図8A〜図8Cは、補正値を決定するまでの様子の説明図である。これらの処理は、プリンタ製造工場の検査工程において行われる。この処理に先立って、検査者は、組み立て完了後のプリンタ1を工場内のコンピュータ110に接続する。工場内のコンピュータ110には、スキャナ150も接続されており、プリンタドライバ、スキャナドライバ及び補正値取得プログラムが予めインストールされている。
まず、プリンタドライバが印刷データをプリンタ1に送信し、プリンタ1がテストシートTSに測定用パターンを印刷する(S101、図8A)。次に、検査者はテストシートTSをスキャナ150にセットし、スキャナドライバがスキャナ150に測定用パターンを読み取らせ、画像データを取得する(S102、図8B)。なお、スキャナ150にはテストシートTSとともに基準シートがセットされており、基準シートに描画されている基準パターンも一緒に読み取られる。
そして、補正値取得プログラムは、取得した画像データを解析し、補正値を算出する(S103)。そして、補正値取得プログラムは、補正データをプリンタ1に送信し、プリンタ1のメモリ63に補正値を記憶させる(図8C)。プリンタに記憶される補正値は、個々のプリンタの搬送特性を反映したものになる。
なお、補正値を記憶したプリンタは、梱包されてユーザの下に届けられる。ユーザがプリンタで画像を印刷する際に、プリンタは、補正値に基づいて紙を搬送し、紙に画像を印刷する。
===測定用パターンの印刷(S101)===
まず、測定用パターンの印刷について説明する。通常の印刷と同様に、プリンタ1は、移動中のノズルからインクを吐出してドットを形成するドット形成処理と、紙を搬送方向に搬送する搬送動作とを交互に繰り返し、測定用パターンを紙に印刷する。なお、以下の説明では、ドット形成処理のことを「パス」と呼び、n回目のドット形成処理のことを「パスn」と呼ぶ。
図9は、測定用パターンの印刷の様子の説明図である。測定用パターンの印刷されるテストシートTSの大きさは、101.6mm×152.4mm(4インチ×6インチ)である。
図中の右側には、テストシートTSに印刷される測定用パターンが示されている。図中の左側の長方形は、各パスにおけるヘッド41の位置(テストシートTSに対する相対位置)が示されている。説明の都合上、ヘッド41がテストシートTSに対して移動しているように描かれているが、同図はヘッドとテストシートTSとの相対的な位置関係を示すものであって、実際にはテストシートTSが搬送方向に間欠的に搬送されている。
テストシートTSが搬送され続けると、テストシートTSの下端が搬送ローラ23を通過する。テストシートTSの下端が搬送ローラ23を通過する時に最上流ノズル♯90と対向するテストシートTSの位置が、「NIPライン」として図中に点線で示されている。つまり、図中においてヘッド41がNIPラインよりも上にあるパスでは、搬送ローラ23と従動ローラ26との間でテストシートTSが挟まれた状態(「NIP状態」とも言う)で、印刷が行われる。また、図中において、ヘッド41がNIPラインよりも下にあるパスでは、搬送ローラ23と従動ローラ26との間にテストシートTSがない状態(排紙ローラ25と従動ローラ27だけでテストシートTSを搬送する状態であり「非NIP状態」とも言う)で、印刷が行われる。
測定用パターンは、識別コードと、複数のラインとから構成される。
識別コードは、個々のプリンタ1をそれぞれ識別するための個体識別用の記号である。この識別コードは、S102において測定用パターンが読み取られるときに一緒に読み取られ、OCRによる文字認識によって、コンピュータ110に識別される。
各ラインは、いずれも移動方向に沿って形成されている。NIPラインよりも上端側には、多数のラインが形成される。NIPラインよりも上端側のラインについて、上端側から順にi番目のラインのことを「Li」と呼ぶ。また、NIPラインよりも下端側には、2つのラインが形成される。NIPラインよりも下端側の2つのラインのうち、上端側のラインをLb1と呼び、下端側のライン(一番下のライン)をLb2と呼ぶ。特定のラインは、他のラインよりも長く形成されている。例えば、ラインL1、ラインL13及びラインLb2は、他のラインと比べて、長く形成されている。これらのラインは、以下のようにして形成される。
まず、テストシートTSが所定の印刷開始位置まで搬送された後、パス1において、ノズル♯90のみからインク滴が吐出され、ラインL1が形成される。パス1の後、コントローラ60は、搬送ローラ23を1/4回転させて、テストシートTSを約1/4インチだけ搬送する。搬送後、パス2において、ノズル♯90のみからインク滴が吐出され、ラインL2が形成される。以下、同様の動作が繰り返し行われ、約1/4インチ間隔でラインL1〜ラインL20が形成される。このように、NIPラインよりも上端側にあるラインL1〜ラインL20は、ノズル♯1〜ノズル♯90のうちの最上流ノズル♯90により形成される。これにより、NIP状態で、できる限り多くのラインをテストシートTSに形成することができる。なお、ラインL1〜ラインL20はノズル♯90のみによって形成されるが、識別コードを印刷するパスでは、識別コードを印刷する際に、ノズル♯90以外のノズルも用いられる。
テストシートTSの下端が搬送ローラ23を通過した後、パスnにおいて、ノズル♯90のみからインク滴が吐出され、ラインLb1が形成される。パス1の後、コントローラ60は、搬送ローラ23を1回転させて、テストシートTSを約1インチだけ搬送する。搬送後、パスn+1において、ノズル♯3のみからインク滴が吐出され、ラインLb2が形成される。仮にノズル♯1が用いられると、ラインLb1とラインLb2との間隔が非常に狭くなり(約1/90インチ)、後でラインLb1とラインLb2との間隔を測定する際に、測定しにくくなる。このため、ここでは、ノズル♯1よりも搬送方向上流側にあるノズル♯3を用いてラインLb2を形成することにより、ラインLb1とラインLb2との間隔を広げて、測定し易くしている。
ところで、テストシートTSの搬送が理想的に行われた場合、ラインL1〜ラインL20におけるライン同士の間隔は、ちょうど1/4インチになるはずである。しかし、搬送誤差があると、ライン間隔は1/4インチにならない。仮に理想的な搬送量よりも多くテストシートTSが搬送されると、ライン間隔は広がる。逆に、理想的な搬送量よりも少なくテストシートTSが搬送されると、ライン間隔が狭まる。つまり、ある2つのラインの間隔は、一方のラインが形成されるパスと他方のラインが形成されるパスとの間に行われる搬送処理での搬送誤差を反映している。このため、2つのラインの間隔を測定すれば、一方のラインが形成されるパスと他方のラインが形成されるパスとの間に行われる搬送処理での搬送誤差を測定することが可能になる。
同様に、ラインLb1とラインLb2との間隔は、テストシートTSの搬送が理想的に行われた場合(正確には、更にノズル♯90とノズル♯3のインクの吐出が同じである場合)、ちょうど3/90インチになるはずである。しかし、搬送誤差があると、ライン間隔は3/90インチにならない。このため、ラインLb1とラインLb2の間隔は、非NIP状態における搬送処理での搬送誤差を反映していると考えられる。このため、ラインLb1とラインLb2との間隔を測定すれば、非NIP状態における搬送処理での搬送誤差を測定することが可能になる。
===パターンの読み取り(S102)===
<スキャナの構成>
まず、測定用パターンの読み取りに用いられるスキャナ150の構成について説明する。
図10Aは、スキャナ150の縦断面図である。図10Bは、上蓋151を外した状態のスキャナ150の上面図である。
スキャナ150は、上蓋151と、原稿5が置かれる原稿台ガラス152と、この原稿台ガラス152を介して原稿5と対面しつつ副走査方向に移動する読取キャリッジ153と、読取キャリッジ153を副走査方向に案内する案内部154と、読取キャリッジ153を移動させるための移動機構155と、スキャナ150内の各部を制御するスキャナコントローラ(不図示)とを備えている。読取キャリッジ153には、原稿5に光を照射する露光ランプ157と、主走査方向(図10Aにおいて紙面に垂直な方向)のラインの像を検出するラインセンサ158と、原稿5からの反射光をラインセンサ158へ導くための光学系159とが設けられている。図中の読取キャリッジ153の内部の破線は、光の軌跡を示している。
原稿5の画像を読み取るとき、操作者は、上蓋151を開いて原稿5を原稿台ガラス152に置き、上蓋151を閉じる。そして、スキャナコントローラが、露光ランプ157を発光させた状態で読取キャリッジ153を副走査方向に沿って移動させ、ラインセンサ158により原稿5の表面の画像を読み取る。スキャナコントローラは、読み取った画像データをコンピュータ110のスキャナドライバへ送信し、これにより、コンピュータ110は、原稿5の画像データを取得する。
<読み取り位置精度>
後述するように、参考例ではスキャナ150は、テストシートTSの測定用パターンと基準シートの基準パターンとを、720dpi(主走査方向)×720dpi(副走査方向)の解像度で読み取る。このため、以下の説明では、720×720dpiの解像度で画像を読み取ることを前提にして説明を行う。
図11は、スキャナの読み取り位置の誤差のグラフである。グラフの横軸は、読み取り位置(理論値)を示している(すなわち、グラフの横軸は、読取キャリッジ153の位置(理論値)を示している)。グラフの縦軸は、読み取り位置の誤差(読み取り位置の理論値と実際の読み取り位置との差)を示している。例えば、読取キャリッジ153を1インチ(=25.4mm)移動させると、約60μmの誤差が生じることになる。
仮に、読み取り位置の理論値と実際の読み取り位置が一致していれば、基準位置(読み取り位置がゼロの位置)を示す画素から副走査方向に720画素離れた画素は、基準位置からちょうど1インチ離れた位置の画像を示すはずである。しかし、グラフに示すような読み取り位置の誤差が生じた場合、基準位置を示す画素から副走査方向に720画素離れた画素は、基準位置から1インチ離れた位置よりも60μmだけ更に離れた位置の画像を示すことになる。
また、仮に、グラフの傾きがゼロであれば、1/720インチ毎に等間隔に、画像が読み取られるはずである。しかし、グラフの傾きがプラスの位置では、1/720インチよりも長い間隔で画像が読み取られることになる。また、グラフの傾きがマイナスの位置では、1/720インチよりも短い間隔で画像が読み取られることになる。
この結果、仮に測定用パターンのラインが等間隔に形成されたとしても、読み取り位置の誤差がある状態では、画像データ上のラインの画像が等間隔にならない。このように、読み取り位置の誤差がある状態では、測定用パターンを単に読み取っただけでは、ラインの位置を正確に計測することができない。
そこで、参考例では、テストシートTSをセットして測定用パターンをスキャナに読み取らせる際に、基準シートをセットして基準パターンも読み取らせている。
<測定用パターンと基準パターンの読み取り>
図12Aは、基準シートSSの説明図である。図12Bは、原稿台ガラス152にテストシートTSと基準シートSSをセットした様子の説明図である。
基準シートSSの大きさは10mm×300mmであり、基準シートSSは長細い形をしている。基準シートSSには、基準パターンとして36dpi間隔にて多数のラインが形成されている。基準シートSSは繰り返し使用されるため、紙ではなく、PETフィルムから構成される。また、基準パターンは、レーザー加工により、高精度に形成されている。
不図示の治具を用いることによって、テストシートTS及び基準シートSSは、原稿台ガラス152上の所定の位置にセットされる。基準シートSSは、長辺がスキャナ150の副走査方向に平行になるように、すなわち基準シートSSの各ラインがスキャナ150の主走査方向に平行になるように、原稿台ガラス152上にセットされる。この基準シートSSの横に、テストシートTSがセットされる。テストシートTSは、長辺がスキャナ150の副走査方向に平行になるように、すなわち測定用パターンの各ラインが主走査方向に平行になるように、原稿台ガラス152上にセットされる。
このようにテストシートTSと基準シートSSをセットした状態で、スキャナ150は、測定用パターンと基準パターンを読み取る。このとき、読み取り位置の誤差の影響のため、読取結果における測定用パターンの画像は実際の測定用パターンと比べて歪んだ画像になる。同様に、基準パターンの画像も実際の基準パターンと比べて歪んだ画像になる。
なお、読取結果における測定用パターンの画像は、読み取り位置の誤差の影響だけではなく、プリンタ1の搬送誤差の影響も受けている。一方、基準パターンはプリンタの搬送誤差とは何も関わりなく等間隔にて形成されているので、基準パターンの画像は、スキャナ150の読み取り位置の誤差の影響を受けているが、プリンタ1の搬送誤差の影響は受けていない。
そこで、補正値取得プログラムは、測定用パターンの画像に基づいて補正値を算出する際に、基準パターンの画像に基づいて、測定用パターンの画像における読み取り位置の誤差の影響をキャンセルさせる。
===補正値の算出(S103)===
補正値の算出の説明の前に、スキャナ150から取得した画像データについて説明する。画像データは、複数の画素データから構成されている。各画素データは、対応する画素の階調値を示している。スキャナの読み取り誤差を無視すれば、各画素は1/720インチ×1/720インチの大きさに相当する。このような画素を最小構成単位として画像(ディジタル画像)が構成されており、画像データは、このような画像を示すデータになっている。
図13は、S103における補正値算出処理のフロー図である。コンピュータ110は、補正値取得プログラムに従って、各処理を実行する。つまり、補正値取得プログラムは、各処理をコンピュータ110に実行させるためのコードを有する。
<画像の分割(S131)>
まず、コンピュータ110は、スキャナ150から取得した画像データの示す画像を2つに分割する(S131)。
図14は、画像の分割(S131)の説明図である。図中の左側には、スキャナから取得した画像データの示す画像が描かれている。図中の右側には、分割された画像が描かれている。以下の説明において、図中の左右方向(水平方向)をx方向と呼び、図中の上下方向(垂直方向)をy方向と呼ぶ。基準パターンの画像における各ラインはx方向にほぼ平行であり、測定用パターンの画像における各ラインはy方向にほぼ平行である。
コンピュータ110は、読取結果の画像から所定の範囲の画像を取り出すことによって、画像を2つに分割する。読取結果の画像が2つに分割されることにより、一方の画像が基準パターンの画像を示し、他方の画像が測定用パターンの画像を示すことになる。このように分割する理由は、基準シートSSとテストシートTSがそれぞれ別々に傾いてスキャナ150にセットされるおそれがあるので、それぞれ別々に傾き補正(S133)をするためである。
<各画像の傾きの検出(S132)>
次に、コンピュータ110は、画像の傾きを検出する(S132)。
図15Aは、測定用パターンの画像の傾きを検出する様子の説明図である。コンピュータ110は、画像データの中から、左からKX2番目の画素であって、上からKY1番目からJY個の画素を取り出す。同様に、コンピュータ110は、画像データの中から、左からKX3番目の画素であって、上からKY1番目からJY個の画素を取り出す。なお、取り出される画素の中にラインL1を示す画素が含まれるように、パラメータKX2、KX3、KY1及びJYが設定されている。
図15Bは、取り出された画素の階調値のグラフである。横軸は、画素の位置(Y座標)を示している。縦軸は、画素の階調値を示している。コンピュータ110は、取り出されたJY個の画素の画素データに基づいて、重心位置KY2、KY3をそれぞれ求める。
そして、コンピュータ110は、次式によりラインL1の傾きθを算出する。
θ=tan−1{(KY2−KY3)/(KX2−KX3)}
なお、コンピュータ110は、測定用パターンの画像の傾きだけでなく、基準パターンの画像の傾きも検出する。基準パターンの画像の傾きの検出方法は、上記の方法とほぼ同様であるので、説明を省略する。
<各画像の傾きの補正(S133)>
次に、コンピュータ110は、S132において検出した傾きθに基づいて、画像を回転処理し、画像の傾きを補正する(S133)。測定用パターンの画像は、測定用パターンの画像の傾き結果に基づいて回転補正され、基準パターンの画像は、基準パターンの画像の傾き結果に基づいて回転補正される。
画像の回転処理のアルゴリズムには、バイリニア法が用いられる。このアルゴリズムは良く知られているので、説明は省略する。
<印刷時の傾きの検出(S134)>
次に、コンピュータ110は、測定用パターンの印刷時の傾き(スキュー)を検出する(S134)。測定用パターンを印刷するときにテストシートの下端が搬送ローラを通過すると、テストシートの下端がヘッド41に接触し、テストシートが動くことがある。このようなことが起こると、その測定用パターンにより算出された補正値が不適切なものになる。そこで、測定用パターンの印刷時の傾きを検出することにより、テストシートの下端がヘッド41に接触したか否かを検出し、接触した場合にはエラーとする。
図16は、測定用パターンの印刷時の傾きの検出の様子の説明図である。まず、コンピュータ110は、ラインL1(一番上のライン)とラインLb1(一番下のライン、下端が搬送ローラを通過した後に形成されるライン)における左側の間隔YLと、右側の間隔YRとを検出する。そして、コンピュータ110は、間隔YLと間隔YRの差を算出し、この差が所定範囲内であれば次の処理(S135)へ進み、この差が所定範囲外であればエラーとする。
<余白量の算出(S135)>
次に、コンピュータ110は、余白量を算出する(S135)。
図17は、余白量Xの説明図である。図中の実線の四角形(外側の四角形)は、S133の回転補正後の画像を示している。図中の点線の四角形(内側の斜めの四角形)は、回転補正前の画像を示している。回転補正後の画像を長方形状にするため、S133の回転補正処理が行われる際に、回転後の画像の四隅に直角三角形状の余白が付加される。
仮に基準シートSSの傾きとテストシートTSの傾きとが異なると、付加される余白量が異なることになり、回転補正(S133)の前後において、基準パターンに対する測定用パターンのラインの位置が相対的にずれることになる。そこで、コンピュータ110は、次式により余白量Xを求め、S136において算出されるライン位置から余白量Xを差し引くことによって、基準パターンに対する測定用パターンのラインの位置のずれを防止する。
X=(w cosθ−W´/2)×tanθ
<スキャナ座標系でのライン位置の算出(S136)>
次に、コンピュータ110は、スキャナ座標系での基準パターンのラインの位置及び測定用パターンのラインの位置をそれぞれ算出する(S136)。
スキャナ座標系とは、1画素の大きさを1/720×1/720インチとしたときの座標系である。スキャナ150には読み取り位置の誤差があり、読み取り位置の誤差を考慮すると、各画素データの対応する実際の領域は厳密には1/720インチ×1/720インチにはならないが、スキャナ座標系では、各画素データの対応する領域(画素)の大きさを1/720×1/720インチとする。また、各画像における左上の画素の位置を、スキャナ座標系の原点とする。
図18Aは、ラインの位置を算出する際に用いられる画像の範囲の説明図である。図中の点線で示す範囲の画像の画像データが、ラインの位置を算出する際に用いられる。図18Bは、ラインの位置の算出の説明図である。横軸は、画素のy方向の位置(スキャナ座標系)を示している。縦軸は、画素の階調値(x方向に並ぶ画素の階調値の平均値)を示している。
コンピュータ110は、階調値のピーク値の位置を求め、この位置を中心とする所定の範囲を演算範囲とする。そして、この演算範囲の画素の画素データに基づいて、階調値の重心位置を算出し、この重心位置をラインの位置とする。
図19は、算出されたラインの位置の説明図である(なお、図中に示す位置は、所定の演算が施されて無次元化されている)。基準パターンは等間隔のラインから構成されているにもかかわらず、基準パターンの各ラインの重心位置に注目すると、算出された各ラインの位置は、等間隔にはなっていない。これは、スキャナ150の読み取り位置の誤差の影響と考えられる。
<測定用パターンの各ラインの絶対位置の算出(S137)>
次に、コンピュータ110は、測定用パターンのラインの絶対位置をそれぞれ算出する(S137)。
図20は、測定用パターンのi番目のラインの絶対位置の算出の説明図である。ここでは、測定用パターンのi番目のラインは、基準パターンのj−1番目のラインと、基準パターンのj番目のラインとの間に位置する。以下の説明では、測定用パターンのi番目のラインの位置(スキャナ座標系)を「S(i)」と呼び、基準パターンのj番目のラインの位置(スキャナ座標系)を「K(j)」と呼ぶ。また、基準パターンのj−1番目のラインとj番目のラインとの間隔(y方向の間隔)を「L」と呼び、基準パターンのj−1番目のラインと測定用パターンのi番目のラインとの間隔(y方向の間隔)を「L(i)」と呼ぶ。
まず、コンピュータ110は、次式に基づいて、間隔Lに対する間隔L(i)の比率Hを算出する。
H=L(i)/L
={S(i)−K(j−1)}/{K(j)−K(j−1)}
ところで、実際の基準シートSS上の基準パターンは等間隔であるので、基準パターンの1番目のラインの絶対位置をゼロとすれば、基準パターンの任意のラインの位置を算出できる。例えば、基準パターンの2番目のラインの絶対位置は1/36インチである。そこで、基準パターンのj番目のラインの絶対位置を「J(j)」とし、測定用パターンのi番目のラインの絶対位置を「R(i)」とすると、次式のようにしてR(i)を算出できる。
R(i)={J(j)−J(j−1)}×H+J(j−1)
ここで、図19における測定用パターンの1番目のラインの絶対位置の算出の具体的な手順について説明する。まず、コンピュータ110は、S(1)の値(373.768667)に基づいて、測定用パターンの1番目のラインが、基準パターンの2番目のラインと3番目のラインの間に位置していることを検出する。次に、コンピュータ110は、比率Hが0.40143008(=(373.7686667-309.613250)/(469.430413-309.613250))であることを算出する。次に、コンピュータ110は、測定用パターンの1番目のラインの絶対位置R(1)が0.98878678ミリ(=0.038928613インチ={1/36インチ}×0.40143008+1/36インチ)であることを算出する。
このようにして、コンピュータ110は、測定用パターンの各ラインの絶対位置を算出する。
<補正値の算出(S138)>
次に、コンピュータ110は、測定用パターンを形成する際に行われた複数回の搬送動作に対応する補正値をそれぞれ算出する(S138)。各補正値は、理論上のライン間隔と実際のライン間隔との差に基づいて、算出される。
パスiとパスi+1との間で行われた搬送動作の補正値C(i)は、「6.35mm」(1/4インチ、すなわちラインLiとラインLi+1との理論上の間隔)から「R(i+1)−R(i)」(ラインLi+1の絶対位置とラインLiの実際の間隔)を引いた値になる。例えば、パス1とパス2との間で行われた搬送動作の補正値C(1)は、6.35mm−{R(2)−R(1)}となる。コンピュータ110は、このようにして補正値C(1)〜補正値C(19)を算出する。
但し、NIPラインよりも下(搬送方向上流側)にあるラインLb1及びLb2を用いて補正値を算出する場合、ラインLb1とラインLb2の理論上の間隔は「0.847mm」(=3/90インチ)として計算する。コンピュータ110は、このようにして、非NIP状態での補正値Cbを算出する。
図21は、補正値C(i)の対応する範囲の説明図である。もし仮に、測定用パターンを印刷するときのパス1とパス2との間の搬送動作の際に、当初の目標搬送量から補正値C(1)を引いた値を目標にすれば、実際の搬送量がちょうど1/4インチ(=6.35mm)になったはずである。同様に、もし仮に、測定用パターンを印刷するときのパスnとパスn+1との間の搬送動作の際に、当初の目標搬送量から補正値Cbを引いた値を目標にすれば、実際の搬送量がちょうど1インチになったはずである。
<補正値の平均化(S139)>
ところで、参考例のロータリー式エンコーダ52は原点センサを備えていないので、コントローラ60は、搬送ローラ23の回転量は検出できるが、搬送ローラ23の回転位置までは検出していない。このため、搬送開始時の搬送ローラ23の回転位置をプリンタ1は保証することがでない。つまり、印刷する度に、搬送開始時の搬送ローラ23の回転位置が異なるおそれがある。一方、測定用パターンにおける隣接する2つの罫線の間隔は、1/4インチにて搬送するときのDC成分の搬送誤差の影響だけではなく、AC成分の搬送誤差の影響も受けている。
従って、目標搬送量を補正する際に、測定用パターンにおける隣接する2つの罫線の間隔に基づいて算出された補正値Cをそのまま適用してしまうと、AC成分の搬送誤差の影響のため、搬送量が正しく補正されないおそれがある。例えば、測定用パターンの印刷時と同じようにパス1とパス2との間で1/4インチの搬送量の搬送動作を行う場合であっても、搬送開始時の搬送ローラ23の回転位置が測定用パターンの印刷時と異なるのであれば、目標搬送量を補正値C(1)で補正しても、搬送量は正しく補正されない。もし、搬送開始時の搬送ローラ23の回転位置が測定用パターンの印刷時と比べて180度異なっていると、AC成分の搬送誤差の影響のため、搬送量は正しく補正されないどころか、むしろ搬送誤差が悪化することもあり得る。
そこで、ここでは、DC成分の搬送誤差だけを補正するようにするため、次式のように4個の補正値Cを平均化することによって、DC成分の搬送誤差を補正するための補正量Caを算出している。
Ca(i)={C(i−1)+C(i)+C(i+1)+C(i+2)}/4
ここで、DC成分の搬送誤差を補正するための補正値Caを上式によって算出できる理由を説明する。
前述した通り、パスiとパスi+1との間で行われた搬送動作の補正値C(i)は、「6.35mm」(1/4インチ、すなわちラインLiとラインLi+1との理論上の間隔)から「R(i+1)−R(i)」(ラインLi+1の絶対位置とラインLiの実際の間隔)を引いた値になる。そうすると、補正値Caを算出するための上式は、次式のような意味になる。
Ca(i)=[25.4mm−{R(i+3)−R(i−1)}]/4
つまり、補正値Ca(i)は、理論上1インチ離れるべき2つのライン(ラインLi+3とラインLi−1)の間隔と1インチ(搬送ローラ23の1回転分の搬送量)との差を4で割った値である。言い換えると、補正値Ca(i)は、ラインLi−1と、そのラインを形成してから1インチ搬送した後に形成したラインLi+3との間隔に応じた値になる。
ゆえに、4個の補正値Cを平均化して算出される補正値Ca(i)は、AC成分の搬送誤差の影響を受けず、DC成分の搬送誤差を反映した値になる。
なお、パス2とパス3との間で行われる搬送動作の補正値Ca(2)は、補正値C(1)〜C(4)の総和を4で割った値(補正値C(1)〜C(4)の平均値)として算出される。言い換えると、補正値Ca(2)は、パス1で形成されるラインL1と、ラインL1を形成してから1インチ搬送した後のパス5で形成されるラインL5との間隔に応じた値になる。
また、補正値Ca(i)を算出する際にi−1がゼロ以下になる場合、補正値C(i−1)はC(1)を適用する。例えば、パス1とパス2との間で行われる搬送動作の補正値Ca(1)は、{C(1)+C(1)+C(2)+C(3)}/4として算出される。また、補正値Ca(i)を算出する際にi+1が20以上になる場合、補正値Caを算出するためのC(i+1)はC(19)を適用する。同様に、i+2が20以上になる場合、C(i+2)はC(19)を適用する。例えば、パス19とパス20との間で行われる搬送動作の補正量Ca(19)は、{C(18)+C(19)+C(19)+C(19)}/4として算出される。
コンピュータ110は、このようにして補正値Ca(1)〜補正値Ca(19)を算出する。これにより、DC成分の搬送誤差を補正するための補正値が、1/4インチの範囲ごとに求められる。
===補正値の記憶(S104)===
次に、コンピュータ110は、補正値をプリンタ1のメモリ63に記憶する(S104)。
図22は、メモリ63に記憶されるテーブルの説明図である。メモリ63に記憶される補正値は、NIP状態における補正値Ca(1)〜Ca(19)と、非NIP状態における補正値Cbである。また、各補正値を適用する範囲を示すための境界位置情報も、各補正値に関連付けられてメモリ63に記憶される。
補正値Ca(i)に関連付けられる境界位置情報は、測定用パターンのラインLi+1に相当する位置(理論上の位置)を示す情報であり、この境界位置情報は、補正値Ca(i)を適用する範囲の下端側の境界を示している。なお、上端側の境界は、補正値Ca(i−1)に関連付けられる境界位置情報から求めることができる。従って、例えば補正値C(2)の適用範囲は、紙Sに対してラインL1の位置とラインL2の位置の間(にノズル♯90が位置する)の範囲となる。なお、非NIP状態になる範囲は既知なので、補正値Cbには境界位置情報を関連付けなくても良い。
プリンタ製造工場では、製造されるプリンタ毎に、各プリンタの個体の特徴を反映したテーブルがメモリ63に記憶される。そして、このテーブルを記憶したプリンタは、梱包されて出荷される。
===ユーザの下での印刷時の搬送動作===
プリンタを購入したユーザの下で印刷が行われる際に、コントローラ60は、メモリ63からテーブルを読み出し、目標搬送量を補正値に基づいて補正し、補正された目標搬送量に基づいて搬送動作を行う。以下、ユーザの下での印刷時の搬送動作の様子について説明する。
図23Aは、第1のケースでの補正値の説明図である。第1のケースでは、搬送動作前のノズル♯90の位置(紙に対する相対位置)が補正値Ca(i)の適用範囲の上端側の境界位置と一致し、搬送動作後のノズル♯90の位置が補正値Ca(i)の適用範囲の下端側の境界位置と一致している。このような場合、コントローラ60は、補正値をCa(i)とし、当初の目標搬送量Fから補正値Ca(i)を加えた値を目標にして搬送モータ22を駆動して、紙を搬送する。
図23Bは、第2のケースでの補正値の説明図である。第2のケースでは、搬送動作前後のノズル♯90の位置が、ともに補正値Ca(i)の適用範囲内にある。このような場合、コントローラ60は、当初の目標搬送量Fと適用範囲の搬送方向長さLとの比F/LをCa(i)で掛けた値を補正値にする。そして、コントローラ60は、当初の目標搬送量Fから補正値Ca(i)×(F/L)を加えた値を目標にして搬送モータ22を駆動して、紙を搬送する。
図23Cは、第3のケースでの補正値の説明図である。第3のケースでは、搬送動作前のノズル♯90の位置が補正値Ca(i)の適用範囲内にあり、搬送動作後のノズル♯90の位置が補正値Ca(i+1)の適用範囲内にある。ここで、目標搬送量Fのうちの補正値Ca(i)の適用範囲内での搬送量をF1とし、補正値Ca(i+1)の適用範囲内での搬送量をF2とする。このような場合、コントローラ60は、Ca(i)をF1/Lで掛けた値と、Ca(i+1)をF2/Lで掛けた値との和を補正値とする。そして、コントローラ60は、当初の目標搬送量Fから補正値を加えた値を目標にして搬送モータ22を駆動して、紙を搬送する。
図23Dは、第4のケースでの補正値の説明図である。第4のケースでは、補正値Ca(i+1)の適用範囲を通過するように紙が搬送される。このような場合、コントローラ60は、Ca(i)をF1/Lで掛けた値と、Ca(i+1)と、Ca(i+2)をF2/Lで掛けた値との和を補正値にする。そして、コントローラ60は、当初の目標搬送量Fから補正値を加えた値を目標にして搬送モータ22を駆動して、紙を搬送する。
このように、コントローラが当初の目標搬送量Fを補正して、補正後の目標搬送量に基づいて搬送ユニットを制御すると、実際の搬送量が当初の目標搬送量Fになるように補正され、DC成分の搬送誤差が補正される。
ところで、上記のように補正値を計算すれば、目標搬送量Fが小さいとき、補正値も小さい値になる。目標搬送量Fが小さければ、その搬送を行う際に生じる搬送誤差も小さいと考えられるので、上記のように補正値を計算すれば、搬送時に生じる搬送誤差に合う補正値を算出できる。また、各補正値Caに対して1/4インチ毎に適用範囲が設定されているので、これにより、紙Sとヘッド41との相対位置に応じて変化するDC成分の搬送誤差を的確に補正することができる。
上述の参考例では、境界位置情報に対応する補正値を使用して目標搬送量を補正しつつ用紙Sの搬送を行うことができた。しかしながら、メモリサイズの制約上、全ての媒体の種類及びサイズの組み合わせについての補正値のテーブルを記憶しておくのは現実的ではない。このため、使用頻度の少ない用紙の種類及びサイズの組み合わせについての補正値のテーブルがメモリに記憶されない場合がある。仮に、使用頻度の少ない用紙の種類及びサイズの組み合わせについての補正値のテーブルを記憶しておいたとしても、近年ではバリエーションに富んだ用紙の種類やサイズが次々と現れている。したがって、新しい種類やサイズの用紙について搬送を行うときには、参考例の補正方法では対応できない。
よって、対応する用紙の種類及びサイズの組み合わせの補正値のテーブルがメモリ63に記憶されているか否かによって、この補正値を使用して搬送量の補正を行うか、又は、それ以外の方法で搬送量の補正を行うかのいずれかを実行することとなる。以下の実施形態では、印刷される媒体の種類及びサイズの組み合わせに対応する補正値のテーブルがメモリに記憶されている否かに応じて、搬送量の補正の方法を異ならせることとしている。
===第1実施形態===
第1実施形態では、ある種類及びサイズの組み合わせである用紙について印刷を行う際、その組み合わせの用紙について境界位置情報に対応する補正値がメモリ63に記憶されている場合と、そうでない場合において搬送量の補正の方法を異ならせている。
概略を説明すると、印刷しようとする種類及びサイズの組み合わせの用紙についての補正値のテーブルがメモリ63に記憶されているときには、上述の参考例と同様に境界位置情報に対応する補正値を使用して目標搬送量を補正しつつ用紙の搬送を行う。一方、印刷しようとする種類及び大きさの組み合わせの用紙についての補正値のテーブルがメモリ63に記憶されていないときには、一定値である補正値に基づいて目標搬送量の補正を行って用紙の搬送を行う。
図24は、媒体の種類及びサイズの組み合わせに対して記憶されている補正値のテーブルの番号を示す表である。個々の補正値のテーブルは、例えば前述の図22に示すような表であり、境界位置情報に対する補正値の表である。補正値のテーブルは、対応する補正値のテーブルの番号ごとに用意されており、これらはメモリ63に記憶されている。ここでは、補正値のテーブルは10種類が用意されており、テーブルの番号として「1」〜「10」が示されている。すなわち、10種類の補正値のテーブルがメモリ63に記憶されていることとなる。
また、図に示すように、用紙の種類及びサイズの組み合わせに対応して、どの番号のテーブルが使用されるかが決められている。図24に示す表はメモリ63に記憶され、これを参照することで対応する組み合わせの用紙のテーブルがメモリ63に記憶されているか否かがわかるようになっている。
図24では、表の横方向に用紙の大きさが示されている。ここで、L判の大きさは80mm×110mmであり、4×6判の大きさは101.6×152.4mmであり、B5判の大きさは182mm×257mmであり、A4判の大きさは210mm×297mmである。ここでは、4種類のサイズの組み合わせに関して示されているが、これより多くの用紙のサイズ(例えば、レターサイズ、はがきサイズなど)に関する補正値のテーブルについてメモリ63に記憶するようにしてもよい。
また、図24では、縦方向に用紙の種類が示されている。ここでは、用紙の種類として普通紙、マット紙、光沢紙、及び、OHPシートが用いられている。ここでは、これら4種類の用紙の種類について示されているが、これよりも多くの用紙の種類(例えば、インク吐出型プリンタ用専用紙など)についての補正値のテーブルについてメモリ63に記憶するようにしてもよい。
前述の通り、図24には、これらの用紙の種類と用紙のサイズの組み合わせに対応して、使用するべき補正値のテーブルを示す番号が示されている。そして、このテーブルの番号に対応して、上述の参考例のように、境界位置情報に対応する補正値Ca(1)〜Ca(X)(Xは用紙のサイズによって変動する)のテーブルがメモリ63に記憶されている。
図に示すように、用紙の大きさに応じて使用される補正値のテーブルが異なるのは、用紙の大きさに応じて使用される補正値の数も変動するからである。これは、各補正値は、境界位置情報に対応づけて記憶される。そして、これら境界位置は、ほぼ1/4インチの固定幅になっているので、用紙のサイズが異なれば補正値の数も異なるのである。
また、同じサイズの用紙でも用紙の種類が変わると補正値のテーブルが異なる場合がある。これは、用紙が変わると用紙とローラ間のスリップ量が変わるため、これに対応して補正値を異ならせなければならないからである。用紙とローラ間のスリップ量が用紙によって異なるのは、用紙とローラとの間に生じる摩擦係数が異なっているからである。このような理由から、用紙の種類とサイズの組み合わせにあわせて、異なる補正値のテーブルが用意される必要があるのである。
また、図24において、用紙の種類とサイズの組み合わせのうちある組み合わせについてはテーブルの番号が示されていない。例えば、用紙の種類がOHPシートであり用紙のサイズがL判の組み合わせのときには、テーブルの番号が示されていない。これは、この種類とサイズの組み合わせに対応する補正値のテーブルがメモリ63に記憶されていないことを示す。これは、L判のOHPシートというのは一般にあまり用いられないことからメモリ63に記憶されていなかったのである。
図25は、第1実施形態における搬送量補正を説明するためのフローチャートである。ここでは、どのようにして目標搬送量を補正しつつ用紙の搬送を行うかについて説明する。コンピュータ110上で実行されているアプリケーションから印刷の指示があると、コンピュータ110は、画面にユーザインタフェースを表示し、印刷する用紙の種類の選択、及び、印刷する用紙のサイズの選択をユーザに促す。ユーザは、これに対して、印刷を行いたい用紙の種類、及び、用紙のサイズについて選択を行う。この選択された用紙の種類、及び、サイズに関するデータは、コンピュータ110からプリンタ1のコントローラ60に送られる(S251)。
選択された用紙の種類及びサイズに関するデータがコントローラ60に送られると、コントローラ60は、その用紙の種類及びサイズの組み合わせの補正値のテーブルがメモリ63に記憶されているか否かについて判定する(S252)。これは、メモリ63に記憶された図24に示すような対応表を参照し、対応するテーブル番号が存在するか否かによって行われる。印刷しようとする用紙の種類とサイズの組み合わせに対応する補正値のテーブルがメモリ63に記憶されているときには、コントローラ60は、メモリ63に記憶されている境界位置情報に対応する補正値Caを用いて搬送量を補正しつつ用紙の搬送を行って印刷を行う。
例えば、ユーザによって、普通紙のA4サイズが選択された場合には、これに対応する補正値のテーブルが記憶されているか否かについて判定する。ここでは、対応する補正値のテーブルとしてテーブル番号「4」の補正値のテーブルが記憶されている(図24)。よって、この場合には、コントローラ60は、テーブル番号「4」の補正値のテーブルを参照して、テーブルの補正値に基づいて用紙を搬送させつつ印刷を行う(S253)。境界位置情報に対応する補正値Caを用いた具体的な搬送量の補正方法については、参考例と同様の方法が用いられるので説明を省略する。
一方、印刷を行う際に、印刷しようとする用紙の種類とサイズの組み合わせに対応する補正値のテーブルがメモリ63に記憶されていないときには、一定値の補正値を用いて目標搬送量を補正しつつ用紙の搬送を行う。具体的には、目標搬送量に一定値の補正値を乗じて新たな目標搬送量を求める。そして、この新たな目標搬送量にしたがって、コントローラ60は、搬送機構である搬送ローラ及び排紙ローラを制御する。尚、この場合の一定値の補正値は、予めプリンタごとに適当な値がメモリ63に記憶されている。
たとえば、ユーザによって、OHPシートのL判サイズが選択された場合には、対応する補正値のテーブル番号が存在しない。この場合、コントローラ60は、メモリ63に予め記憶されている所定の補正値(一定値)を読み出し、この補正値を目標搬送量に乗じた新たな目標搬送量にしたがって用紙の搬送を行って印刷を行う(S254)。
このように、メモリ63に記憶されていない種類及びサイズの組み合わせの用紙について搬送を行う場合に、一定値の補正値を用いて目標搬送量の補正を行うのは次の理由からである。例えば、搬送ローラの大きさが設計上の大きさよりもやや小さく作成されている場合などには、目標の搬送量を得るには搬送ローラをより多く回転させて用紙を搬送させる必要がある。この場合、搬送ローラ等の大きさの誤差に対応する一定値の補正値を使用することで、搬送ローラ1回転あたりの搬送誤差を修正するようにして用紙の搬送を行うことができる。このようして、少なくとも搬送ローラの大きさの誤差から生ずる搬送誤差の補正にある程度対応することができるようにするため、一定値の補正値を用いて目標搬送量の補正を行うこととしているのである。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
尚、別の形態として、ユーザインタフェースにおいて、ユーザが規定のサイズ以外にも自由に用紙の大きさを入力できるようにしてもよい。このような場合には、この用紙のサイズに対応する補正値のテーブルはメモリには記憶されていないので、一定値の補正値を用いて搬送量の補正を行うこととすることができる。
===第2実施形態===
第1実施形態では、対応する補正値のテーブルがメモリ63に記憶されていないときには一定値の補正値を用いて搬送量の補正を行っていた。第2実施形態では、印刷しようとする用紙の種類及びサイズの組み合わせに対応するテーブル番号がない場合であっても、メモリ63に記憶されている別のテーブルに基づいて、印刷を行おうとする用紙のテーブルを作成し、これに基づいて目標搬送量の補正を行って用紙の搬送を行う。これは、メモリ63に記憶されているより大きいサイズの用紙のテーブルには、小さいサイズに対応する補正値が含まれていることから、やや小さいサイズの用紙については、これに基づいてテーブルを作成することができるためである。
ところで、用紙の搬送に際して搬送誤差が発生してしまう理由として、用紙とローラとの間のスリップ、及び、給紙時に用紙後端部が曲げられるときに生ずる用紙自体の反発力の用紙に与える影響が考えられる。用紙後端部が曲げられるときに生ずる力は、用紙自体の曲げに対する強さによっても変わる。また、用紙の搬送方向の大きさによっても変わるものと考えられるが、これは、用紙の搬送方向の大きさが変化すると、これにより給紙時の用紙のたわみ方が変わるためだと考えられる。
用紙を搬送したときに生ずる搬送誤差は、搬送方向について大きさの異なる同じ種類の用紙間で搬送誤差を比較したとき、用紙の端部の周辺において搬送誤差が一致する傾向がみられる。このような傾向は、サイズの近い用紙間でよくみられる。これは、給紙時の用紙のたわみ方が似ているためと考えられる。
よって、印刷しようとする用紙のサイズがメモリ63に記憶されているものよりやや小さい場合であっても、印刷しようとしている用紙と同じ種類の用紙であれば、用紙の中央部付近に対応する補正値の使用を省略して、用紙の搬送を行うようにすれば、良い精度で搬送量の補正を行うことができると考えられる。これは、用紙の中央部の給紙時において用紙のたわみ量がほぼ一定になっていることにある。そして、その用紙よりも若干小さい用紙の給紙時については、中央の部分(たわみ量一定の部分)が短くなった用紙と同等と考えることができるからである。
その一方で、印刷しようとする用紙の種類とサイズの組み合わせについて、用紙の種類が同じであっても、メモリに記憶されている用紙のサイズと大きく異なる場合には、前述のように給紙時の用紙のたわみ方が似ていない。よって、用紙の端部で発生する搬送誤差さえも、両者で一致しない傾向がある。したがって、サイズが大きく異なる場合には、このような用紙の中央部付近に対応する補正値の使用を省略するという方法が行えないこととなる。
第2実施形態では、このような性質を利用して、図24において印刷しようとする用紙の種類及びサイズの組み合わせについて、1つ大きいサイズについての補正値のテーブルがメモリ63に記憶されている場合には、次のようにして搬送量の補正を行う。これに対して、印刷しようとする用紙の種類及びサイズの組み合わせについて2以上大きいサイズについての補正値のテーブルがメモリ63に記憶されている場合には、一定値の補正値を用いて搬送量の補正を行っている。
図26は、第2実施形態における搬送量補正を説明するためのフローチャートである。ここでは、どのようにして目標搬送量を補正しつつ用紙の搬送を行うかについて説明する。コンピュータ110上で実行されているアプリケーションから印刷の指示があると、コンピュータ110は、画面にユーザインタフェースを表示し、印刷する用紙の種類の選択、及び、印刷する用紙のサイズの選択をユーザに促す。ユーザは、これに対して、印刷を行いたい用紙の種類、及び、用紙のサイズについて選択を行う。この選択された用紙の種類、及び、サイズに関するデータは、コンピュータ110からプリンタ1のコントローラ60に送られる(S261)。
選択された用紙の種類及びサイズに関するデータがコントローラ60に送られると、コントローラ60は、その用紙の種類及びサイズの組み合わせの補正値のテーブル、又は、その用紙の種類及びサイズの組み合わせよりも1つ大きいサイズ(図24)についての組み合わせの補正値のテーブルがメモリに記憶されているか否かについて判定する(S262)。
例えば、OHPシートのL判について印刷を行う場合を考える。図24に示すように、OHPシートのL判についての補正値はメモリ63に記憶されていないが、OHPシートの4×6判の補正値のテーブルは(テーブル番号「10」)メモリ63に記憶されている。よって、コントローラ60は、テーブル「10」の補正値のテーブルに基づいて、次のようにしてL判の補正値用のテーブルを作成し、これに基づいて用紙の搬送を行う(S263)。
メモリ63に記憶されているOHPシートの4×6判の補正値のテーブルは、図22に示すようなものになる。テーブルは、L2からL20に相当する理論位置に対応して、補正値Ca(1)〜Ca(19)が存在している。第2実施形態において、4×6判の大きさからL判の大きさの補正値のテーブルを作成する際、使用しないようにする補正値の番号が予め決められている。
図27は、L判における補正値C(i)の対応する範囲の説明図である。ここでは、使用されない補正値としてCa(4)〜Ca(7)が予め決められている。つまり、OHPシートの4×6判の補正値のテーブルにおいて、Ca(4)〜Ca(7)を削除するようにして作成された補正値のテーブルが、L判の搬送量の補正に使用される。
図28は、4×6判の補正値のテーブルに基づいて作成されたL判の補正値のテーブルである。第2実施形態において新たに作成されたL判の補正値のテーブルは、4×6判の補正値Ca(1)〜Ca(19)のうち、Ca(4)〜Ca(7)が削除された補正値のテーブルとなっている。よって、これらの補正値を削除した分、Ca(8)〜Ca(19)の補正値が上端寄りに移動するような形で使用されることとなる。
コントローラ60は、4×6判のテーブルに基づいて作成されたL判の補正値のテーブルに基づいて、境界位置情報に対応する補正値を使用して目標搬送量を補正しつつ用紙の搬送を行い印刷を行う。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
ところで、用紙の種類とサイズの組み合わせが、記憶されている組み合わせのテーブルよりも1つ分小さいサイズの組み合わせの場合には、上述のような方法で搬送量の補正に対応することができた。一方、用紙の種類とサイズの組み合わせが、記憶されている組み合わせのテーブルよりも2つ分以上小さいサイズの組み合わせの場合には、用紙のサイズが異なりすぎ、用紙の端部といえども補正値の傾向の一致の度合いが低くなる。よって、この場合には、所定の一定値の補正値を用いて搬送量の補正を行うこととなる。
このような場合には、コントローラ60は、ステップS264を実行することとなる。例えば、ユーザによって入力された媒体のサイズ及び種類の組み合わせが、4×6の光沢紙であった場合を考える。この場合、図24に示すようにB5判の光沢紙の組み合わせに対応するテーブルがメモリ63に記憶されていない。そうすると、上述のように別のテーブルの一部を利用して新たな補正値のテーブルを作成するという方法をとることができない。よって、コントローラ60は、所定の補正値(一定)に基づいて用紙を搬送させつつ印刷を行う。このステップ(S264)は、第1実施形態におけるS254と同様の動作であるので説明を省略する。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の媒体について、ある程度の補正を行った搬送を行うことができる。
また、メモリ63に記憶されている所定のサイズ及び種類の組み合わせの用紙より1つサイズが小さい媒体であっても、メモリ63に記憶されたテーブルの補正値を利用して搬送量の補正をすることができるので精度の高い搬送をすることができる。
===その他の実施の形態===
上記の実施形態は、主としてプリンタについて記載されているが、その中には、印刷装置、記録装置、液体の吐出装置、搬送方法、印刷方法、記録方法、液体の吐出方法、印刷システム、記録システム、コンピュータシステム、プログラム、プログラムを記憶した記憶媒体、表示画面、画面表示方法、印刷物の製造方法、等の開示が含まれていることは言うまでもない。
また、一実施形態としてのプリンタ等を説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは言うまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
<プリンタについて>
前述の実施形態では、プリンタが説明されていたが、これに限られるものではない。例えば、カラーフィルタ製造装置、染色装置、微細加工装置、半導体製造装置、表面加工装置、三次元造形機、液体気化装置、有機EL製造装置(特に高分子EL製造装置)、ディスプレイ製造装置、成膜装置、DNAチップ製造装置などのインクジェット技術を応用した各種の記録装置に、本実施形態と同様の技術を適用しても良い。
また、ピエゾ素子を利用するものに限られず、例えばサーマルプリンタなどにも適用できる。また、液体を吐出するものに限られず、ワイヤドットプリンタなどにも適用できる。
===まとめ===
(1)前述の実施形態における搬送量補正装置としてのプリンタ1は、ヘッド41と、搬送ユニット20と、メモリ63と、コントローラ60とを備えている。搬送ユニット20は、目標搬送量に応じて、ヘッド41に対して用紙Sを搬送方向に搬送するものである。
メモリ63には、用紙の種類及び大きさが所定の組み合わせの用紙について、この用紙を搬送するときにおいて目標搬送量を補正するための補正値であって、ヘッド41と用紙との相対位置(詳しくは、ノズル#90と用紙Sとの相対位置)に対応づけられた補正値を複数記憶する(図22)。
コントローラ60は、所定の組み合わせの用紙について搬送を行うときには、その搬送を行うときの相対位置に対応する補正値を用いて目標搬送量の補正を行いつつ搬送機構に媒体を搬送させる(図23A〜図23D)。また、コントローラ60は、所定の組み合わせ以外の用紙について搬送を行うときには、一定の補正値を用いて目標搬送量の補正を行いつつ搬送ユニット20に用紙を搬送させる。
このようにすることで、メモリ容量の制限により、全ての媒体の種類及び大きさの組み合わせについて補正値を記憶できない場合であっても、補正値が記憶されている組み合わせ以外の用紙について、ある程度の補正を行った搬送を行うことができる。
(2)また、各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられている。例えば、前述の補正値Ca(i)では、測定用のパターンのラインLiに相当する位置(理論上の位置)を適用範囲の上端側の境界位置とし、測定用のパターンのラインLi+1に相当する位置(理論上の位置)を適用範囲の下端側の境界位置とするように、範囲が対応づけられている。
そして、目標搬送量にて搬送する際に搬送前の相対位置に対応する補正値の前記範囲を超える場合、コントローラ60は、搬送前の相対位置に対応する補正値と、搬送後の相対位置に対応する補正値とに基づいて、目標搬送量を補正する。
これにより、用紙Sとヘッド41との相対位置に応じて変化するDC成分の搬送誤差を搬送量に応じて的確に補正することができる。
(3)また、コントローラ60は、目標搬送量にて搬送する際の相対位置の変化する範囲と、補正値を適用するべき相対位置の範囲との比率に応じて補正値に重み付けを行い、目標搬送量を補正する。例えば、図23Bに示すような場合、コントローラ60は、搬送中における相対位置の変化する範囲Fと補正値の適用範囲Lとの比率F/Lに応じて補正値Ca(i)に重み付けを行い、目標搬送量を補正している。
これにより、用紙Sとヘッド41との相対位置に応じて変化するDC成分の搬送誤差を、搬送量に応じて的確に補正することができる。
(4)また、搬送機構としての搬送ユニット20は、搬送ローラ23を有し、この搬送ローラ23を回転させることによって用紙Sを搬送方向に搬送するものである。そして、各補正値は、搬送ローラを1回転させて用紙Sを搬送したときの搬送誤差に基づいて決定され、補正値を適用するべき相対位置の範囲は、1回転未満の回転量にて搬送ローラを回転させて用紙Sを搬送したときの搬送量に相当する。例えば、ここでは、補正値を適用するべき相対位置の範囲は、1/4回転の回転量にて搬送ローラを回転させて用紙Sを搬送したときの搬送量に相当する。
このようにすることで、きめ細かくDC成分の搬送誤差を補正することができる。
(5)また、コントローラ60は、所定の組み合わせ以外の用紙について搬送を行うときには、一定の補正値を目標搬送量に乗じて新たな目標搬送量を求め、この新たな目標搬送量に応じて搬送機構に用紙Sを搬送させる。例えば、この一定の補正値は、搬送ローラの設計上の大きさと実際の大きさとの差に基づいて決められる。
このようにすることで、所定の組み合わせ以外の用紙について搬送を行う場合であっても、搬送ローラのサイズが設計上のサイズと若干異なっていた場合であっても、これを補正しつつ用紙の搬送を行うことができる。
(6)また、前記所定の組み合わせの用紙には、ある所定の組み合わせの用紙と別の所定の組み合わせの用紙がある。そして、コントローラ60は、ある所定の組み合わせの用紙を搬送するときには、その搬送を行うときの相対位置に対応する補正値を用いて目標搬送量の補正を行って用紙を搬送させる。一方、コントローラ60は、別の所定の組み合わせの用紙を搬送するときには、ある所定の組み合わせの用紙を搬送するときの相対位置に対応する補正値のうちの一部を用いて目標搬送量の補正を行って用紙を搬送させる。
このようにすることで、所定の組み合わせの用紙のうち、ある所定の組み合わせの用紙については、その搬送を行うときの相対位置に対応する補正値のテーブルを用いて目標搬送量の補正を行って用紙の搬送を行うことができる。一方、別の所定の組み合わせの用紙については、所定の組み合わせの媒体を搬送するときの搬送位置に対応する補正値のうちの一部を用いた補正値のテーブルを作成し、これに基づいて用紙の搬送を行うことができる。
(7)また、上述の要素をすべて含む搬送量補正装置によれば、記述のほぼ全ての効果を奏するため、本発明の目的が最も有効に達成される。
(8)また、次のような搬送量補正方法があることはいうまでもない。すなわち、この搬送量補正方法は、用紙の種類及び大きさが所定の組み合わせの用紙について、この用紙を搬送するときにおいて目標搬送量を補正するための補正値であって、ヘッド41と用紙Sとの相対位置に対応づけられた補正値がメモリ63に記憶されているか否かを判定するステップを含む。
また、搬送量補正方法は、所定の組み合わせの用紙について搬送を行うときには、その搬送を行うときの相対位置に対応する補正値を用いて目標搬送量の補正を行いつつ媒体を搬送し、所定の組み合わせ以外の用紙について搬送を行うときには、一定の補正値を用いて目標搬送量の補正を行いつつ用紙を搬送するステップと、を含む。
(9)また、上述の搬送量補正方法を搬送量補正装置に動作させるプログラムがあることもいうまでもない。
プリンタ1の全体構成のブロック図である。 図2Aは、プリンタ1の全体構成の概略図である。また、図2Bは、プリンタ1の全体構成の横断面図である。 ノズルの配列を示す説明図である。 搬送ユニット20の構成の説明図である。 AC成分の搬送誤差の説明用グラフである。 紙を搬送する際に生じる搬送誤差のグラフ(概念図)である。 搬送量を補正するための補正値を決定するまでのフロー図である。 図8A〜図8Cは、補正値を決定するまでの様子の説明図である。 測定用パターンの印刷の様子の説明図である。 図10Aは、スキャナ150の縦断面図である。図10Bは、上蓋151を外した状態のスキャナ150の上面図である。 スキャナの読み取り位置の誤差のグラフである。 図12Aは、基準シートSSの説明図である。図12Bは、原稿台ガラス152にテストシートTSと基準シートSSをセットした様子の説明図である。 S103における補正値算出処理のフロー図である。 画像の分割(S131)の説明図である。 図15Aは、測定用パターンの画像の傾きを検出する様子の説明図である。図15Bは、取り出された画素の階調値のグラフである。 測定用パターンの印刷時の傾きの検出の様子の説明図である。 余白量Xの説明図である。 図18Aは、ラインの位置を算出する際に用いられる画像の範囲の説明図である。図18Bは、ラインの位置の算出の説明図である。 算出されたラインの位置の説明図である。 測定用パターンのi番目のラインの絶対位置の算出の説明図である。 補正値C(i)の対応する範囲の説明図である。 メモリ63に記憶されるテーブルの説明図である。 第1のケースでの補正値の説明図である。 第2のケースでの補正値の説明図である。 第3のケースでの補正値の説明図である。 第4のケースでの補正値の説明図である。 媒体の種類及びサイズの組み合わせに対して記憶されている補正値のテーブルの番号を示す表である。 第1実施形態における搬送量補正を説明するためのフローチャートである。 第2実施形態における搬送量補正を説明するためのフローチャートである。 L判における補正値C(i)の対応する範囲の説明図である。 4×6判の補正値のテーブルに基づいて作成されたL判の補正値のテーブルである。
符号の説明
1 プリンタ、110 コンピュータ、
20 搬送ユニット、21 給紙ローラ、22 搬送モータ、23 搬送ローラ、
24 プラテン、25 排紙ローラ、26 従動ローラ、27 従動ローラ、
30 キャリッジユニット、31 キャリッジ、32 キャリッジモータ、
40 ヘッドユニット、41 ヘッド、
50 検出器群、51 リニア式エンコーダ、
52 ロータリー式エンコーダ、521 スケール、522 検出部、
53 紙検出センサ、54 光学センサ、
60 コントローラ、61 インターフェース部、62 CPU、63 メモリ、
64 ユニット制御回路、
150 スキャナ、151 上蓋、152 原稿台ガラス、
153 読取キャリッジ、154 案内部、155 移動機構、
157 露光ランプ、158 ラインセンサ、159 光学系、
TS テストシート、SS 基準シート

Claims (9)

  1. (A)ヘッドと、
    (B)目標となる目標搬送量に応じて、前記ヘッドに対して媒体を搬送方向に搬送する搬送機構と、
    (C)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値を複数記憶するメモリと、
    (D)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させ、
    前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させるコントローラと、
    を備える搬送量補正装置。
  2. 各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられており、
    前記目標搬送量にて搬送する際に搬送前の前記相対位置に対応する前記補正値の前記範囲を超える場合、前記コントローラは、搬送前の前記相対位置に対応する前記補正値と、搬送後の前記相対位置に対応する前記補正値とに基づいて、前記目標搬送量を補正する、請求項1に記載の搬送量補正装置。
  3. 各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられており、
    前記コントローラは、前記目標搬送量にて搬送する際の前記相対位置の変化する範囲と、前記補正値を適用するべき前記相対位置の前記範囲との比率に応じて前記補正値に重み付けを行い、前記目標搬送量を補正する、請求項1又は2に記載の搬送量補正装置。
  4. 前記搬送機構は、搬送ローラを有し、前記搬送ローラを回転させることによって前記媒体を搬送方向に搬送するものであり、
    各前記補正値は、前記搬送ローラを1回転させて前記媒体を搬送したときの搬送誤差に基づいて決定され、
    前記補正値を適用するべき前記相対位置の範囲は、1回転未満の回転量にて前記搬送ローラを回転させて前記媒体を搬送したときの搬送量に相当する、請求項1〜3のいずれかに記載の搬送量補正装置。
  5. 前記コントローラは、前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を前記目標搬送量に乗じて新たな目標搬送量を求め、該新たな目標搬送量に応じて前記搬送機構に媒体を搬送させる、請求項1〜4のいずれかに記載の搬送量補正装置。
  6. 前記所定の組み合わせの媒体には、ある所定の組み合わせの媒体と別の所定の組み合わせの媒体があり、
    前記コントローラは、
    前記ある所定の組み合わせの媒体を搬送するときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行って媒体を搬送させ、
    前記別の所定の組み合わせの媒体を搬送するときには、前記ある所定の組み合わせの媒体を搬送するときの前記相対位置に対応する補正値のうちの一部を用いて前記目標搬送量の補正を行って媒体を搬送させる、請求項1〜5のいずれかに記載の搬送量補正装置。
  7. (A)ヘッドと、
    (B)目標となる目標搬送量に応じて、前記ヘッドに対して媒体を搬送方向に搬送する搬送機構と、
    (C)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、前記ヘッドと前記媒体との相対位置に対応づけられた前記補正値を複数記憶するメモリと、
    (D)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させ、
    前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ前記搬送機構に媒体を搬送させるコントローラと、を備え、
    (E)各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられており、前記目標搬送量にて搬送する際に搬送前の前記相対位置に対応する前記補正値の前記範囲を超える場合、前記コントローラは、搬送前の前記相対位置に対応する前記補正値と、搬送後の前記相対位置に対応する前記補正値とに基づいて、前記目標搬送量を補正し、
    (F)各前記補正値には、その補正値を適用するべき前記相対位置の範囲が対応づけられており、前記コントローラは、前記目標搬送量にて搬送する際の前記相対位置の変化する範囲と、前記補正値を適用するべき前記相対位置の前記範囲との比率に応じて前記補正値に重み付けを行い、前記目標搬送量を補正し、
    (G)前記搬送機構は、搬送ローラを有し、前記搬送ローラを回転させることによって前記媒体を搬送方向に搬送するものであり、各前記補正値は、前記搬送ローラを1回転させて前記媒体を搬送したときの搬送誤差に基づいて決定され、前記補正値を適用するべき前記相対位置の範囲は、1回転未満の回転量にて前記搬送ローラを回転させて前記媒体を搬送したときの搬送量に相当し、
    (H)前記コントローラは、前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を前記目標搬送量に乗じて新たな目標搬送量を求め、該新たな目標搬送量に応じて前記搬送機構に媒体を搬送させ、
    (I)前記所定の組み合わせの媒体には、ある所定の組み合わせの媒体と別の所定の組み合わせの媒体があり、前記コントローラは、前記ある所定の組み合わせの媒体を搬送するときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行って媒体を搬送させ、前記別の所定の組み合わせの媒体を搬送するときには、前記ある所定の組み合わせの媒体を搬送するときの前記相対位置に対応する補正値のうちの一部を用いて前記目標搬送量の補正を行って媒体を搬送させる、搬送量補正装置。
  8. (A)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、ヘッドと前記媒体との相対位置に対応づけられた前記補正値がメモリに記憶されているか否かを判定するステップと、
    (B)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送し、
    前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送するステップと、
    を含む搬送量補正方法。
  9. 搬送量補正装置を動作させるためのプログラムであって、
    (A)媒体の種類及び大きさが所定の組み合わせの媒体について、該媒体を搬送するときにおいて前記目標搬送量を補正するための補正値であって、ヘッドと前記媒体との相対位置に対応づけられた前記補正値がメモリに記憶されているか否かを判定するステップと、
    (B)前記所定の組み合わせの媒体について搬送を行うときには、その搬送を行うときの前記相対位置に対応する補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送し、
    前記所定の組み合わせ以外の媒体について搬送を行うときには、一定の補正値を用いて前記目標搬送量の補正を行いつつ媒体を搬送するステップと、
    を前記搬送量補正装置に行わせるプログラム。

JP2006224544A 2006-08-21 2006-08-21 搬送量補正装置、搬送量補正方法、及び、プログラム Expired - Fee Related JP4162022B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006224544A JP4162022B2 (ja) 2006-08-21 2006-08-21 搬送量補正装置、搬送量補正方法、及び、プログラム
US11/840,352 US20080192270A1 (en) 2006-08-21 2007-08-17 Transport amount correcting method, transport amount correcting apparatus, and storage medium having program stored thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224544A JP4162022B2 (ja) 2006-08-21 2006-08-21 搬送量補正装置、搬送量補正方法、及び、プログラム

Publications (2)

Publication Number Publication Date
JP2008044325A true JP2008044325A (ja) 2008-02-28
JP4162022B2 JP4162022B2 (ja) 2008-10-08

Family

ID=39178507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224544A Expired - Fee Related JP4162022B2 (ja) 2006-08-21 2006-08-21 搬送量補正装置、搬送量補正方法、及び、プログラム

Country Status (2)

Country Link
US (1) US20080192270A1 (ja)
JP (1) JP4162022B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208273A (ja) * 2008-02-29 2009-09-17 Brother Ind Ltd 画像記録装置及び画像記録方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137136A (ja) * 2007-12-05 2009-06-25 Seiko Epson Corp 記録装置、搬送量補正方法、及び、プログラム
JP2009161350A (ja) * 2007-12-10 2009-07-23 Seiko Epson Corp 媒体搬送装置、該媒体搬送装置を備えるプリンタ、媒体搬送方法及びプリンタ
JP2010228227A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 画素データの補正方法、及び、流体噴射装置
JP6651889B2 (ja) * 2016-02-16 2020-02-19 ブラザー工業株式会社 画像形成装置、画像形成装置の制御方法、誤差算出方法、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158837A (en) * 1997-09-19 2000-12-12 Xerox Corporation Printer having print mode for non-qualified marking material
JP2002273956A (ja) * 2001-03-16 2002-09-25 Olympus Optical Co Ltd インクジェットプリンタ
JP5067017B2 (ja) * 2006-06-20 2012-11-07 セイコーエプソン株式会社 システム、プリンター、及びプリンターにおいて実行される方法。

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208273A (ja) * 2008-02-29 2009-09-17 Brother Ind Ltd 画像記録装置及び画像記録方法
JP4737210B2 (ja) * 2008-02-29 2011-07-27 ブラザー工業株式会社 画像記録装置及び画像記録方法
US8205954B2 (en) 2008-02-29 2012-06-26 Brother Kogyo Kabushiki Kaisha Image recording apparatus and image recording method

Also Published As

Publication number Publication date
US20080192270A1 (en) 2008-08-14
JP4162022B2 (ja) 2008-10-08

Similar Documents

Publication Publication Date Title
JP5067017B2 (ja) システム、プリンター、及びプリンターにおいて実行される方法。
JP4432943B2 (ja) ライン位置算出方法及び補正値取得方法
JP2009137136A (ja) 記録装置、搬送量補正方法、及び、プログラム
JP2009083130A (ja) 液体吐出装置、及び、搬送方法
JP4162022B2 (ja) 搬送量補正装置、搬送量補正方法、及び、プログラム
JP4341658B2 (ja) 補正値決定方法、及び、補正値決定装置
JP2008028737A (ja) 媒体上のパターンの印刷位置の算出方法
JP4193894B2 (ja) 補正値決定方法、補正値決定装置、及び、プログラム
JP4192977B2 (ja) 記録装置、搬送量補正方法、及び、プログラム
JP4967816B2 (ja) 搬送方法及び記録装置
JP2012088914A (ja) 印刷装置の製造方法、印刷装置の調整方法、及び、印刷装置
JP4458076B2 (ja) ライン位置算出方法、補正値取得方法及びプログラム
JP4900042B2 (ja) 記録方法
JP4192978B2 (ja) 記録装置、搬送量補正方法、及び、プログラム
JP2008182352A (ja) 位置特定方法、位置特定装置、及び、プログラム
JP2008119951A (ja) 搬送量補正評価方法、搬送量補正評価装置、及び、プログラム
JP2009137137A (ja) 液体吐出装置、及び、評価用パターン形成方法
JP2008034950A (ja) 媒体上のパターンの印刷位置の算出方法
JP2009143136A (ja) 液体吐出装置、及び、補正用パターン形成方法
JP2009119786A (ja) 液体吐出装置、パターン形成方法、及び、回転量設定方法
JP2008105228A (ja) ヘッドの接触判定方法、ヘッドの接触判定装置、及び、プログラム
JP2008023899A (ja) ライン位置算出方法、補正値取得方法及びプログラム
JP2009137249A (ja) 補正値取得方法、及び、液体吐出装置
JP2008012696A (ja) 記録方法
JP2008055727A (ja) 補正値決定方法、補正値決定装置、及びプログラム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees