JP2008042034A - 記憶素子及び記憶装置 - Google Patents

記憶素子及び記憶装置 Download PDF

Info

Publication number
JP2008042034A
JP2008042034A JP2006216180A JP2006216180A JP2008042034A JP 2008042034 A JP2008042034 A JP 2008042034A JP 2006216180 A JP2006216180 A JP 2006216180A JP 2006216180 A JP2006216180 A JP 2006216180A JP 2008042034 A JP2008042034 A JP 2008042034A
Authority
JP
Japan
Prior art keywords
memory
layer
electrode
thin film
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006216180A
Other languages
English (en)
Other versions
JP4816314B2 (ja
Inventor
Takeshi Sone
威之 曽根
Akira Kochiyama
彰 河内山
Satoshi Sasaki
智 佐々木
Tetsuya Mizuguchi
徹也 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006216180A priority Critical patent/JP4816314B2/ja
Publication of JP2008042034A publication Critical patent/JP2008042034A/ja
Application granted granted Critical
Publication of JP4816314B2 publication Critical patent/JP4816314B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】記憶層に含まれる記憶用薄膜の抵抗状態が変化することを利用して記憶される情報を安定して保持することができ、信頼性の高い記憶素子を提供する。
【解決手段】第1の電極1と、第2の電極5との間に、熱伝導率が15W/mK以上である絶縁層2と、希土類元素酸化物からなる記憶用薄膜3と、イオン化するCu,AgもしくはZnを含有するイオン源層4とを積層した記憶層6が挟まれて構成され、記憶層6と一方の電極1とが、絶縁層2に形成された開口部を通じて接続される記憶素子10を構成する。
【選択図】図3

Description

本発明は、情報を記録することができる記憶素子、及び記憶素子を用いた記憶装置に係わる。
コンピュータ等の情報機器においては、ランダム・アクセス・メモリとして、動作が高速で、高密度のDRAMが広く使用されている。
しかしながら、DRAMは、電子機器に用いられる一般的な論理回路LSIや信号処理と比較して製造プロセスが複雑であるため、製造コストが高くなっている。また、DRAMは、電源を切ると情報が消えてしまう揮発性メモリであり、頻繁にリフレッシュ動作、即ち書き込んだ情報(データ)を読み出し、増幅し直して、再度書き込み直す動作を行う必要がある。
そこで、電源を切っても情報が消えない不揮発性のメモリとして、例えばFeRAM(強誘電体メモリ)やMRAM(磁気記憶素子)等が提案されている。
これらのメモリの場合、電源を供給しなくても書き込んだ情報を長時間保持し続けることが可能になる。また、これらのメモリの場合、不揮発性とすることにより、リフレッシュ動作を不要にして、その分消費電力を低減することができると考えられる。
しかしながら、上述の不揮発性のメモリは、各メモリセルを構成するメモリ素子の縮小化に伴い、記憶素子としての特性を確保することが困難になってくる。このため、デザインルールの限界や製造プロセス上の限界まで素子を縮小化することは難しい。
そこで、縮小化に適した構成のメモリとして、新しいタイプの記憶素子が提案されている。
この記憶素子は、2つの電極の間に、ある金属を含むイオン導電体を挟んだ構造である。
そして、2つの電極のいずれか一方にイオン導電体中に含まれる金属を含ませることにより、2つの電極間に電圧を印加した場合に、電極中に含まれる金属がイオン導電体中にイオンとして拡散するため、これによりイオン導電体の抵抗値或いはキャパシタンス等の電気特性が変化する。この特性を利用して、メモリデバイスを構成することが可能である(例えば、特許文献1、非特許文献1参照)。
具体的には、イオン導電体はカルコゲナイドと金属との固溶体より成る、ガラス材料又は半導体材料であり、さらに具体的には、AsS,GeS,GeSeにCu,Ag,Znが固溶された材料(例えば、AsSAg,GeSeAg,GeSAg,AsSCu,GeSeCu,GeSCu等のように、Cu,Ag,Znを含むカルコゲナイドガラスが好適とされている。)からなり、2つの電極のいずれか一方の電極には、Cu,Ag,Znを含んでいる(上記特許文献1参照)。
なお、他方の電極は、イオン導体を含む材料に実質的に溶解しない、タングステン、ニッケル、モリブデン、白金、メタルシリサイド等により形成されている。
そして、例えば、記憶素子とダイオード或いはMOSトランジスタのような選択素子とを接続してメモリセルを形成し、このメモリセルをアレイ状に配置してメモリデバイスを構成することができる。
この構成の記憶素子では、2つの電極に閾値電圧以上のバイアス電圧を印加することにより、イオン導体内にある導電性イオン(Cu,Ag,Zn等のイオン)が負電極方向に移動して、負電極に達することにより電着が生じる。さらに、この電着が、例えば樹枝状(デンドライト)に成長し、正電極に達することにより電流パスが形成されるため、イオン導体の抵抗値が高抵抗から低抵抗に変化する。これにより、記憶素子に情報の記録を行うことができる。
また、2つの電極に、上述のバイアス電圧と逆極性の電圧を印加することにより、樹枝状の電流パスを形成していた導電性イオンが、イオン導体中に溶解することによって、電流パスが消滅し、抵抗値が初期の高抵抗の状態に戻る。これにより、記録した情報の消去動作を行っている。
しかしながら、上述した、上部電極或いは下部電極のいずれかにAgもしくはCuを含み、それらの電極にGe−SもしくはGe−Seアモルファスカルコゲナイド材料が挟まれた構造の記憶素子では、温度上昇によりカルコゲナイド薄膜が結晶化を生じる。そして、この結晶化に伴って材料の特性が変化し、本来は高い抵抗の状態でデータを保持している部分が、高温環境下或いは長期保存時に低い抵抗の状態に変化する等の問題を有する。
そこで、さらに電極とイオン導体の間に、イオン導体と電極との間をイオンが移動することを制限するバリア層として希土類酸化膜を挿入した構成の記憶素子も提案されている(例えば、特許文献2参照)。
このように希土類酸化膜から成るバリア層が形成されている構成の記憶素子では、閾値電圧以上の記録電圧の印加により、Cu,Ag,Znが含まれた電極層からCu,Ag,Znがイオン化して、希土類酸化膜に拡散していき、他電極側で電子と結合して析出する、或いは、希土類酸化膜内部に拡散した状態で留まる。すると、希土類酸化物薄膜内部にCu,Ag,Znを多量に含む電流パスが形成される、もしくは、希土類酸化物薄膜内部にCu,Ag,Znによる欠陥が多数形成されることによって、希土類酸化膜の抵抗値が低くなる。
また、上述と逆極性の電圧を印加することにより、希土類酸化膜内に形成されていた電流パス或いは不純物準位を構成するCu,Ag,Znが再びイオン化して、希土類酸化膜内を移動して電極層側に戻り、希土類酸化膜の抵抗値は高くなる。
この希土類酸化膜の抵抗変化による記憶素子は、微細化していった場合においても、特に高温環境下及び長期のデータ保持安定性に優れた特性を有すると報告されている。
特表2002−536840号公報 日経エレクトロニクス 2003年1月20日号(第104頁) 特開2005−197634号公報
しかしながら、上述した、上部電極或いは下部電極のいずれかにCu,Ag,Znを含み、それらの電極にGe−SもしくはGe−Seアモルファスカルコゲナイド材料が挟まれた構造の記憶素子では、イオン源層に含まれるCu,Ag,Znが、外部高温環境下において希土類酸化膜及び層間絶縁層に容易に拡散してしまい、長期データ保存時においても、高抵抗状態を維持することが困難であるという問題を生じている。
例えば、電流パスが消滅し、抵抗値が高抵抗の状態にある記憶素子に対し、情報の読み出しのための電流を流した場合には、記憶素子の内部に対して、瞬間的に1000℃程度の熱が加わることが計算によって予測されている。
このように、記憶素子に対して、電流を繰り返し流すことによって、素子内に多量の熱が発生する。
そして、従来、層間絶縁膜として使用されていたSiOは、導電性イオンの拡散を受けやすいため、記憶素子に対して電流を繰り返し流すことによって、素子に多量の熱が発生した場合に、イオン源層に含まれるCu,Agが、層間絶縁膜に拡散してしまう。
このため、高抵抗状態を維持することが困難となり、情報の劣化が発生すると考えられる。
上述した問題の解決のため、本発明においては、記憶用薄膜に記録された情報を安定して保持することができ、信頼性の高い記憶素子及びこれを用いた記録装置を提供するものである。
本発明の記憶素子は、第1の電極と、第2の電極との間に、絶縁層と記憶層が挟まれて構成され、記憶層が、記憶用薄膜と、イオン化するCu,AgもしくはZnを含有するイオン源層とを積層してなり、記憶用薄膜が、希土類元素酸化物からなり、記憶層と一方の電極とが、絶縁層に形成された開口部を通じて接続され、前記絶縁層の熱伝導率が15W/mK以上であることを特徴とする。
本発明の記憶装置は、上記本発明の記憶素子と、第1の電極側に接続された配線と、第2の電極側に接続された配線とを有し、記憶素子が多数配置されて成るものである。
上述の本発明の記憶素子の構成によれば、第1の電極と、第2の電極との間に、記憶層が挟まれて構成され、この記憶層が、記憶用薄膜の上にイオン化するCu,AgもしくはZnを含有するイオン源層を積層して成ることにより、記憶層に含まれる記憶用薄膜の抵抗状態が変化することを利用して情報を記憶することが可能になる。
具体的には、例えば、Cuを含有するイオン源層側の一方の電極に正電位を印加して記憶素子に正電圧をかけると、イオン源層に含まれているCuがイオン化して記憶用薄膜内に拡散し、他方の電極側の部分で電子と結合して析出することにより、或いは、記憶用薄膜中に留まり絶縁層の不純物準位を形成することによって、記憶用薄膜の抵抗値が低くなり、記憶用薄膜を含む記憶層の抵抗値が低くなるので、これにより情報の書き込みを行うことが可能になる。
また、この状態から、イオン源層側の一方の電極に負電位を印加して記憶素子に負電圧をかけると、他方の電極側に析出していたCuが再びイオン化して、一方の電極側に戻ることによって記憶層の抵抗値が元の高い状態に戻り、記憶素子の抵抗値も高くなるので、これにより記録した情報の消去を行うことが可能になる。
また、記憶層と一方の電極とが、絶縁層に形成された開口部を通じて接続されているので、絶縁層が、記憶層と電極との接触面積を規定している。そして、この絶縁層として、熱伝導率が15W/mK以上である絶縁材料を用いることにより、高温環境下において、記憶素子にかかる熱を、この熱伝導性の高い絶縁材料によって放熱することが可能である。
このため、高温環境下におけるイオン源層に含まれるCu,Ag及びZn等の、熱による記憶用薄膜や、絶縁層等への拡散を抑制することが可能である。
上述の本発明の記憶素子によれば、高温環境下においても、記憶用薄膜に記録された情報の保持特性を改善することができる。
また、本発明の記憶素子を用いることにより、安定性及び耐久性に優れた記憶装置を構成することができる。
本発明の一実施の形態として記憶素子10の概略構成図(断面図)を図1に示す。
この記憶素子10は、例えば、CMOS回路が形成されたシリコン基板11(図3参照)上でCMOS回路部分との接続部である下部電極1が形成されていて、この下部電極1上に、開口部を有する絶縁層2と、記憶層6が形成され、この記憶層6上に上部電極5が形成されて構成されている。
そして、下部電極1と記憶層6とは、絶縁層2に形成された開口部を通じて接続されている。
下部電極1には、半導体プロセスに用いられる配線材料、例えばTiW,Ti,W,Cu,Al,Mo,Ta,WN,TaN,シリサイド等を用いることができる。
上部電極5には、下部電極1と同様、通常の半導体プロセスに用いられる配線材料を用いることができる。
絶縁層2には、熱伝導率が15W/mK以上である絶縁材料、例えば、窒化ケイ素、酸化アルミニウム、炭化ケイ素等を用いることができ、具体的には、Si,Al,SiC等を用いることができる。
なお、絶縁層2に形成される開口部の面積は、特に限定されない。例えば、図1に示したように、下部電極1の一部の面積のみに対応する開口部が形成されていてもよく、また、下部電極が充分小さい場合には、下部電極の面積と開口部の面積とが同一であってもよい。
また、絶縁層2は、例えば、10nm以上の膜厚で形成する。これによって、記憶素子10にかかる熱を、他の特性を低下させることなく効率的に放出することが可能になる。ただし、絶縁層2の膜厚は、記憶用薄膜3の抵抗率及び膜厚により、10nmよりも薄くすることが可能である。
記憶層6は、記憶用薄膜3と、記憶用薄膜3上に形成されるイオン源層4から構成される。
イオン源層4は、イオン化する元素(イオン源元素)、すなわちCu,AgもしくはZnを含有し、より好ましくは、さらに、Te,Se,Sのカルコゲナイド元素を含有する。
記憶用薄膜3は、La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Yから選ばれる1種類もしくは2種以上の元素(希土類元素)の酸化物から形成される。
この記憶用薄膜3は、例えば、0.5nm〜10nm程度の膜厚で形成する。このように、記憶用薄膜3の膜厚を薄くすることにより、通常絶縁材料である希土類酸化物等から成る記憶用薄膜3に電流を流すことが可能になる。
実際のメモリセル部分は、下部電極1と記録用薄膜3が接触する面積によって決められる。
イオン源層4は、例えば、Te,Se,Sのカルコゲナイド元素を含有する、GeSbTe,GeTe,GeSe,GeS,SiGeTe,SiGeSbTe等に、Cu,Ag,Znを加えた組成の膜、Ag膜、Ag合金膜、Cu膜、Cu合金膜、Zn膜、Zn合金膜等を用いて構成することができる。
なお、このイオン源層4に、必要に応じて、Geや希土類元素等を添加することにより、耐熱性を向上させることができる。
上述した材料からなる記憶素子10は、電圧パルス或いは電流パルスが印加されることにより、インピーダンス(抵抗値)が変化する特性を有する。そして、記憶用薄膜3は、記憶素子10の他の層よりも抵抗値の変化が充分大きい。そのため、記憶素子10全体の抵抗値の変化は、主として記憶用薄膜3により影響される。従って、記憶用薄膜3の抵抗値の変化を利用して、記憶素子10に情報の記録を行うことができる。
なお、上述した実施の形態の記憶素子10では、下部電極1上に絶縁層と、酸化物層31と記憶用薄膜3を形成し、記憶用薄膜3上に、イオン源層4を積層する構造としている。
しかし、下部電極1上に、Cu,AgもしくはZnを含むイオン源層4と、記憶用薄膜3を順次積層して記憶層3を形成し、その上に絶縁層2と上部電極5を形成するような、上述した実施の形態の記憶素子10と逆の積層順序の構成とすることもできる。
本実施の形態の記憶素子10は、次のように動作させて、情報の記憶を行うことができる。
まず、Cu,AgもしくはZnが含まれたイオン源層4に接する上部電極5側が正に、記録用薄膜3に接する下部電極1側が負になるように、記憶素子10に対して電圧を印加する。ここで、このとき、記憶素子10に印加する電圧を、正電圧(+)と定義し、以下同様に定義して説明する。
記憶素子10への正電圧の印加により、イオン源層4からCu,AgもしくはZnがイオン化して、記憶用薄膜3内を拡散していき、下部電極1側で電子と結合して析出する、或いは、記憶用薄膜3内部に拡散した状態で留まる。
すると、記憶用薄膜3内部にCu,AgもしくはZnを多量に含む電流パスが形成される、或いは、記憶用薄膜3内部にCu,AgもしくはZnによる欠陥が多数形成されることによって、記憶用薄膜3の抵抗値が低くなる。
記憶用薄膜3以外の各層は、記憶用薄膜3の記録前の抵抗値に比べて、元々抵抗値が低いので、記憶用薄膜3の抵抗値を低くすることにより、記憶素子10全体の抵抗値も低くすることができる。
その後、正電圧を除去して、記憶素子10にかかる電圧をなくすと、抵抗値が低くなった状態で保持される。これにより、情報を記録することが可能になる。一度だけ記録が可能な記憶装置、いわゆる、PROMに用いる場合には、この過程(記録過程)のみで記録が完結する。
また、RAM或いはEEPROM等の記憶装置へ応用する場合には、記憶素子10を抵抗値の高い状態に戻す消去過程が必要である。この消去過程においては、上部電極5側が負に、下部電極1側が正になるように、記憶素子10に対して負電圧(−)を印加する。
記憶素子10への負電圧の印加により、記憶用薄膜3内に形成されていた電流パス或いは不純物準位を構成していたCu,AgもしくはZnがイオン化して、記憶用薄膜3内を移動してイオン源層4側に戻る。
すると、記憶用薄膜3内からCu,AgもしくはZnによる電流パス、もしくは、欠陥が消滅して、記憶用薄膜3の抵抗値が高くなる。記憶用薄膜3以外の各層は元々抵抗値が低いので、記憶用薄膜3の抵抗値を高くすることにより、記憶素子10全体の抵抗値も高くすることができる。
その後、負電圧を除去して、記憶素子10にかかる電圧をなくすと、抵抗値が高くなった状態で保持される。これにより、記録された情報を消去することが可能になる。
このような過程を繰り返すことにより、記憶素子10に情報の記録(書き込み)と記録された情報の消去を繰り返し行うことができる。
そして、例えば、抵抗値の高い状態を「0」の情報に、抵抗値の低い状態を「1」の情報に、それぞれ対応させると、正電圧の印加による情報の記録過程で「0」から「1」に変え、負電圧の印加による情報の消去過程で「1」から「0」に変えることができる。
即ち、記憶素子10の抵抗値の高低により、2値の情報を記憶させることができる。
記録後の抵抗値は、記憶素子10のセルサイズ及び記憶用薄膜3の材料組成よりも、記録時に印加される電圧パルス或いは電流パルスの幅や電流量等の記録条件に依存し、初期抵抗値が100kΩ以上の場合には、およそ50Ω〜50kΩの範囲となる。
記録データを復調するためには、初期の抵抗値と記録後の抵抗値との比が、およそ、2倍以上であれば充分である。記録前の抵抗値が100Ωであれば、記録後の抵抗値が50Ω、あるいは、記録前の抵抗値が100kΩであれば、記録後の抵抗値が50kΩといった状況であれば充分であり、記憶用薄膜3の初期の抵抗値はそのような条件を満たすように設定される。記憶用薄膜3の抵抗値は、例えば、記憶用薄膜3の厚みを変化させることによって制御することが可能である。
上述した記憶素子10によれば、下部電極1と上部電極5との間に、記憶用薄膜3と、イオン源層4とが挟まれた構成である。このような構成により、例えば、Cu,AgもしくはZnを含むイオン源層4側に正電圧(+電位)を印加して、下部電極1側が負になるようにした場合に、記憶用薄膜3内に、Cu,AgもしくはZnを多量に含む電流パスが形成される。これにより、記憶用薄膜3の抵抗値が低くなり、記憶素子10全体の抵抗値が低くなる。
そして、正電圧の印加を停止して、記憶素子10に電圧が印加されないようにすることで、抵抗値が低くなった状態が保持され、情報を記録することが可能になる。
そして、記憶素子10の抵抗値の変化、特に記憶用薄膜3の抵抗値の変化を利用して情報の記憶を行っているため、記憶素子10を微細化していった場合にも、情報の記録や記録した情報の保存が容易になる。
また、消去動作は、上述した記録後の状態の記憶素子10に対して、Cu,AgもしくはZnを含むイオン源層4側の上部電極5に負電圧(−電位)を印加して、記憶用薄膜3側の下部電極1側が正になるようにする。
これにより、記憶用薄膜3内に形成されていた、Cu,AgもしくはZnによる電流パスが消滅して、記憶用薄膜3の抵抗値が高くなり、記憶素子10全体の抵抗値が高くなる。
そして、負電圧の印加を停止して、記憶素子10に電圧が印加されないようにすることで、抵抗値が高くなった状態が保持され、記録されていた情報を消去することが可能になる。
また、上述の記憶素子10の下部電極1と記憶層6との間に、熱伝導率の高い材料を用いた絶縁層2を形成することにより、高温環境下でイオン源層中のCu,AgもしくはZnが、記憶用薄膜3及び絶縁層2へ拡散することを抑制することができる。
従って、長期データ保存時において、情報の書き込みと消去及び情報の読み出しを繰り返して行った場合でも、記憶素子10にかかる熱を、絶縁層によって放熱することができる。このため、高温環境下においても、記憶素子10が安定して長期データを保存することができる。
本実施の形態の記憶素子10は、具体的には、例えば次のようにして製造することができる。
まず、選択トランジスタ等のCMOS回路が形成された基板上に、例えばWから成る下部電極1を形成する。この後、必要であれば逆スパッタ等で、プラグ表面上の酸化物等を除去する。
次に、下部電極1の上部に、例えばSiからなる絶縁膜を成膜した後、下部電極1と、記憶層6とが接触するための開口部を形成するため、絶縁膜の開口部以外をマスクによって覆い、絶縁膜を選択的にエッチングする。このとき、例えば、開口部は円形状とし、直径30nmとする。
これにより、絶縁層2が形成される。
次に、絶縁層2の上部、及び絶縁層2に形成された開口部に、例えば、ガドリニウムターゲットを用いて、ガドリニウム膜を例えば膜厚3nmで成膜した後、酸素プラズマによってガドリニウム膜を酸化する。
これにより、記憶用薄膜3が形成される。
次に、記憶用薄膜3の上部に、例えばGeTeGd膜をDCマグネトロンスパッタリングにより形成する。
これにより、イオン源層4が形成される。
次に、イオン源層4上に、例えばW膜を成膜して、上部電極5を形成する。
その後、絶縁層2、記憶用薄膜3、イオン源層4及び上部電極5を、例えばプラズマエッチング等によりパターニングする。プラズマエッチングの他には、イオンミリング、RIE(反応性イオンエッチング)等のエッチング方法を用いてパターニングを行うことができる。
次に、上部電極5に接続する配線層を形成することにより、記憶素子10と共通電位を得るためのコンタクトとを接続する。
このようにして、記憶素子10を製造することができる。
上述した構成の記憶素子10を、多数マトリクス上に配置することにより、記憶装置(メモリ装置)を構成することができる。
この様な記憶装置の一形態の概略構成図(斜視図)を図2に示す。
この記憶装置は、各記憶素子10に対して、下部電極1側に接続された複数のワード線WLと、これらワード線WLと直交する上部電極5側に設置された複数のビット線BLとを有し、ワード線WLとビット線BLとの各交点に、記憶素子10が配置されている。
このように形成されたメモリセル20が、多数配置されることにより、メモリセルアレイが形成される。
図2に示した記憶装置では、3×3個のメモリセル20がマトリクス状に配列された構成のメモリセルアレイを示している。
このような記憶装置では、上述した構成の記憶素子10を用いて記憶装置を構成することにより、記録及び消去時の抵抗値の変動が少なくなる。このため、特に繰り返し動作を行った際のデータの劣化が少なくなり、情報の読み出しを安定して行うことができる。従って、動作の安定した、信頼性の高い記憶装置を実現することができる
また、例えば上部電極5に接続された配線をメモリセルアレイ全体に共通して形成し、記憶装置を構成することが考えられる。
この構成としたメモリセルアレイの一形態の概略構成図を、図3及び図4に示す。図3は断面図であり、図4は平面図である。
図3及び図4に示すように、このメモリセルアレイでは、メモリセル全体にわたって、各メモリセルを構成する記憶素子10が、絶縁層2、記憶用薄膜3、イオン源層4及び上部電極5の各層を共有している。言い換えれば、各記憶素子10が、それぞれ同一層の絶縁層2、記憶用薄膜3、イオン源層4及び上部電極5により構成されている。
そして、共通に形成された上部電極5は、プレート電極PLとなるものである。
一方、下部電極1は、メモリセル毎に個別に形成されており、各メモリセルが電気的に分離されている。このメモリセル毎に個別に形成された下部電極1によって、各下部電極1に対応した位置に、各メモリセルの記憶素子10が規定される。
また、下部電極1は、各々対応する選択用のMOSトランジスタTrに接続されている。
図3に示すように、メモリセルアレイの各メモリセルを構成するそれぞれの記憶素子10は、半導体基板11に形成されたMOSトランジスタTrの上方に形成されている。
このMOSトランジスタTrは、半導体基板11内の素子分離層12により分離された領域に形成されたソース/ドレイン領域13と、ゲート電極14とから成る。ゲート電極14の壁面には、サイドウォール絶縁層が形成されている。
また、ゲート電極14は、記憶素子の一方のアドレス配線であるワード線WLを兼ねている。
そして、MOSトランジスタTrのソース/ドレイン領域13の一方と、記憶素子10の下部電極1とが、プラグ層15、金属配線層16、プラグ層17を介して、電気的に接続されている。
MOSトランジスタTrのソース/ドレイン領域13の他方は、プラグ層15を介して金属配線層16に接続されている。この金属配線層16は、記憶素子の他方のアドレス配線であるビット線BL(図4参照)に接続される。
また、図4においては、MOSトランジスタTrのアクティブ領域18を鎖線で示している。また、図4中21は、記憶素子10の下部電極1に通じるコンタクト部を示し、22は、ビット線BLに通じるコンタクト部を示している。
図3及び図4に示すメモリセルアレイは、例えば次のように動作させることができる。
ワード線WLにより選択用のMOSトランジスタTrのゲートをオン状態として、ビット線BLに電圧を印加すると、MOSトランジスタTrのソース/ドレインを介して、選択されたメモリセルの下部電極1に電圧が印加される。
ここで、下部電極1に印加された電圧の極性が、上部電極5(プレート電極PL)の電位に比して負電位である場合には、記憶素子10の抵抗値が低抵抗状態へと遷移する。これにより、選択されたメモリセルの記憶素子10に情報を記録することができる。
また、下部電極1に、上部電極5(プレート電極PL)の電位に比して正電位である場電圧を印加することにより、記憶素子10の抵抗値が再び高抵抗状態へと遷移する。これにより、選択されたメモリセルの記憶素子10に対して、記録された情報を消去することができる。
また、記録された情報の読み出しを行うには、例えば、MOSトランジスタTrによりメモリセルを選択して、選択したメモリセルに対して、所定の電圧或いは電流を印加し、記憶素子10の抵抗状態により異なる電流或いは電圧を、ビット線BL或いはプレート電極PLの先に接続されたセンスアンプ等を介して検出する。
このとき、選択したメモリセルに対して印加する電圧或いは電流は、記憶素子10の抵抗値の状態が遷移する電圧或いは電流の閾値よりも小さくする。
上述した実施の形態の記憶素子10によれば、容易に情報の記録及び情報の読み出しを行うことができ、特に、書き込みおよび消去電圧閾値のばらつきが少ないという優れた特性を有する。
また、上述した実施の形態の記憶装置は、微細化していった場合においても、情報の記録や記録した情報の保持が容易になる。したがって、上述した実施の形態の記憶素子10を用いて記憶装置を構成することにより、記憶装置の集積化(高密度化)や小型化を図ることができる。
(実施例)
次に、上述の記憶素子10を実際に作製して、その特性を評価した。
実際の記憶装置では、図2〜4に示したように、アレイ状に記憶素子を配列させていたり、記憶素子部以外にもトランジスタ等の回路素子が存在したりするが、ここでは、図5に示すテストデバイス(特性評価用素子)を作製して特性の測定、評価を行った。
図5Aに作製したテストデバイスの平面図、図5Bに図5AのテストデバイスのA−A´断面図を示す。このテストデバイスにより、記憶素子の読み出し抵抗マージンを調べ、特性評価用テストデバイスの特性の測定、評価を行った。
この特性評価用テストデバイスは、シリコン基板上に各メモリセルの記憶素子10に共通する下部電極1が成膜されている。そして、記憶素子10の記憶用薄膜3及びイオン源層4から成る記憶層6が、下部電極1上の絶縁層2の開口部を通じて、下部電極1に接続された構成となっている。
さらに、記憶層6と下部電極1とが接続された部分がメモリセル20となり、この部分の形状が図5Aに示すように円形状となっている。
また、記憶素子10の記憶層6は、メモリセル20の周囲を含み、図5Aに示す縦長の素子形成領域23に形成されている。上部電極5は、素子形成領域23に沿って縦長に形成されている。素子形成領域23の左右に下部電極接続用端子パッド24が形成され、上部電極5の両端に上部電極接続用端子パッド25が形成されている。
(実施例1)
まず、厚さ2mmのシリコン基板上に下部電極1として膜厚100nmのW膜と、絶縁層2として膜厚10nmのSiCを順次成膜した。
その後、フォトリソグラフィを用いて、メモリセル20となる絶縁層2の開口部と、下部電極1の接続用端子パッド24以外の部分をマスクにより覆って、絶縁層2を選択的にエッチングした。このとき、メモリセル20となる部分、即ち下部電極1上の絶縁層2の開口部の平面形状は円形とし、その直径は30nmとした。
次に、絶縁層2の開口部を覆うように、記憶用薄膜3として膜厚3nmの酸化ガドリニウム膜と、イオン源層4として膜厚20nmのCuGeTeGd膜と膜厚12nmのCu膜とを順次成膜し、記憶素子10の記憶層6となる積層膜を形成した。
次に、この記憶層6に対して、フォトリソグラフィを用いて、記憶素子10の形成領域となる横200μm×縦600μmの範囲をマスクした後に、Arプラズマにより、記憶層6(3,4)をエッチングした。
さらに、上部電極5、下部電極接続用端子パッド24及び上部電極接続用端子パッド25となる部分を除いて、フォトリソグラフィを用いてマスクした後に、DCマグネトロンスパッタ法を用いて、電極材料を成膜した。そして、公知のリフトオフ法によりマスクを除去して、それぞれ電極材料から成る、上部電極5、下部電極接続用端子パッド24、上部電極接続用端子パッド25を形成した。
なお、上部電極5、下部電極接続用端子パッド24及び上部電極接続用端子パッド25としては、膜厚20nmのCr膜、膜厚100nmのCu膜、膜厚100nmのAu膜の積層膜を形成した。
このように、記憶素子10の特性評価用テストデバイスを公知のエッチングおよびリソグラフィ技術によって作製した。
(実施例2)
絶縁層2に、膜厚10nmのAlを用いて成膜した以外は、実施例1と同様の方法で、実施例2の特性評価用テストデバイスを作製した。
(実施例3)
絶縁層2に、膜厚10nmのSiを用いて成膜した以外は、実施例1と同様の方法で、実施例3の特性評価用テストデバイスを作製した。
(比較例1)
絶縁層2に、膜厚5nmのZrO膜厚5nmのAlとの積層膜を用いて成膜した以外は、実施例1と同様の方法で、比較例1の特性評価用テストデバイスを作製した。
(比較例2)
絶縁層2に、膜厚10nmのMgOを用いて成膜した以外は、実施例1と同様の方法で、比較例2の特性評価用テストデバイスを作製した。
(比較例3)
絶縁層2に、膜厚10nmのSiOを用いて成膜した以外は、実施例1と同様の方法で、比較例3の特性評価用テストデバイスを作製した。
(特性評価)
実施例1〜3及び比較例1〜3で作製したテストデバイスを各1000個作製し、それらすべてについて情報の書き込み及び消去の連続動作を1000回行った後、情報の記録時及び消去時の抵抗が、160℃、20hの外部環境下でどのように変化するかを測定し、各テストデバイスの記録抵抗保持率及び消去抵抗保持率を求めた。
なお、各テストデバイスの抵抗保持率を以下の式によって求めた。
抵抗保持率(%)=(160℃、20h試験後の抵抗変化が10%以内であった素子数/1000)×100
上記の式で求められた各テストデバイスの抵抗保持率と、各テストデバイスの絶縁層として用いた材料の熱伝導率を表1に示す。
また、各テストデバイスの記録抵抗保持率及び消去抵抗保持率と、各テストデバイスの絶縁層として用いた絶縁材料の熱伝導率との関係を図6に示す。図6において、縦軸は抵抗保持率(%)を示し、横軸は熱伝導率(W/mK)を示す。
Figure 2008042034
表1によれば、実施例1〜3のテストデバイスは、記録抵抗保持率及び消去抵抗保持率
が良好な結果を示した。これに対して、比較例1〜3のテストデバイスは、記録抵抗保持率及び消去抵抗保持率が、実施例のテストデバイスに比べて低下している。
つまり、絶縁層に用いた材料の熱伝導性が高くなるほど、記録時及び消去時のデータ保持率が向上することが分かる。
特に、比較例1〜3のテストデバイスは、実施例のテストデバイスに比べて消去抵抗保持率が大きく低下している。これは、高温条件化において、イオン源層4中のCuが記憶用薄膜3に拡散し、テストデバイスの抵抗値が減少したために、消去抵抗保持率が減少したものと考えられる。
また、図6によると、消去抵抗変化が5%以下(消去抵抗保持率95%以上)とするためには、熱伝導率が15W/mK以上必要であることが分かる。
従って、高温環境下において、記録時及び消去時のデータ保持率を向上させ、記憶層に記録された情報の保持特性を向上させるためには、絶縁層として15W/mK以上の熱伝導率を有する材料を用いることが必要である。
上述した本発明の記憶素子を用いて、記憶素子を多数、例えば列状やマトリクス状に配列することにより、記憶装置(メモリ装置)を構成することができる。また、各記憶素子10に、必要に応じて、素子の選択用のMOSトランジスタ、或いはダイオードを接続してメモリセルを構成することができる。さらに、配線を介して、センスアンプ、アドレスレコーダー、記録・消去・読み出し回路等に接続することができる。
本発明の記憶素子は、各種のメモリ装置に適用することができる。例えば、一度だけ書き込みが可能な、いわゆるPROM(プログラマブルROM)、電気的に消去が可能なEEPROM(Electrically Erasable ROM)、或いは、高速に記録・消去・再生が可能な、いわゆるRAM(ランダム・アクセス・メモリ)等、いずれのメモリ形態でも適用することが可能である。
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
本発明の記憶素子の一実施の形態の概略構成図(断面図)である。 図1の記憶素子を用いた記憶装置の概略構成図(斜視図)である。 図1の記憶素子を用いたメモリセルアレイの概略構成図(断面図)である。 図1の記憶素子を用いたメモリセルアレイの概略構成図(平面図)である。 A 特性評価用テストデバイスの概略構成図(平面図)である。 B 特性評価用テストデバイスの概略構成図(断面図)である。 絶縁膜の熱伝導性と抵抗保持率との関係を示す図である。
符号の説明
1 下部電極、2 絶縁層、3 記憶用薄膜、4 イオン源層、5 上部電極、6 記憶層、10 記憶素子、11 半導体基板、12 素子分離層、13 ソース/ドレイン領域、14 ゲート電極、15 プラグ層、16 金属配線層、17 プラグ層、18 アクティブ領域、20 メモリセル、23 素子形成領域、24 下部電極接続用端子パッド、25 上部電極接続用端子パッド、BL ビット線、PL プレート電極、Tr MOSトランジスタ、WL ワード線

Claims (7)

  1. 第1の電極と、第2の電極との間に、絶縁層と記憶層が挟まれて構成され、
    前記記憶層が、記憶用薄膜と、イオン化するCu,AgもしくはZnを含有するイオン源層とを積層してなり、
    前記記憶用薄膜が、希土類元素酸化物からなり、
    前記記憶層と一方の電極とが、前記絶縁層に形成された開口部を通じて接続され、
    前記絶縁層の熱伝導率が15W/mK以上である
    ことを特徴とする記憶素子。
  2. 前記イオン源層が、Te,Se,Sから選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の記憶素子。
  3. 前記絶縁層が、窒化ケイ素、酸化アルミニウム、炭化ケイ素から選ばれる1種類以上によって構成されることを特徴とする請求項1に記載の記憶素子。
  4. 前記絶縁層が、Si,Al,SiCから選ばれる1種類以上によって構成されることを特徴とする請求項1に記載の記憶素子。
  5. 前記記憶層に、電圧パルスもしくは電流パルスを印加することにより、前記記憶層のインピーダンスが変化して、情報の記録が行われることを特徴とする請求項1に記載の記憶素子。
  6. 第1の電極と、第2の電極との間に、絶縁層と記憶層が挟まれて構成され、前記記憶層が、記憶用薄膜と、イオン化するCu,AgもしくはZnを含有するイオン源層とを積層してなり、前記記憶用薄膜が、希土類元素酸化物からなり、前記記憶層と一方の電極とが、前記絶縁層に形成された開口部を通じて接続され、前記絶縁層の熱伝導率が15W/mK以上である記憶素子と、
    前記第1の電極側に接続された配線と、
    前記第2の電極側に接続された配線とを有し、
    前記記憶素子が多数配置されてなる
    ことを特徴とする記憶装置。
  7. 隣接する複数の前記記憶素子において、前記記憶素子を構成する少なくとも一部の層が同一層により共通に形成されていることを特徴とする請求項6に記載の記憶装置。
JP2006216180A 2006-08-08 2006-08-08 記憶素子及び記憶装置 Expired - Fee Related JP4816314B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216180A JP4816314B2 (ja) 2006-08-08 2006-08-08 記憶素子及び記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216180A JP4816314B2 (ja) 2006-08-08 2006-08-08 記憶素子及び記憶装置

Publications (2)

Publication Number Publication Date
JP2008042034A true JP2008042034A (ja) 2008-02-21
JP4816314B2 JP4816314B2 (ja) 2011-11-16

Family

ID=39176693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216180A Expired - Fee Related JP4816314B2 (ja) 2006-08-08 2006-08-08 記憶素子及び記憶装置

Country Status (1)

Country Link
JP (1) JP4816314B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050117A1 (ja) * 2008-10-30 2010-05-06 独立行政法人産業技術総合研究所 固体メモリ
WO2010090128A1 (ja) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 固体メモリ
JP2010251529A (ja) * 2009-04-16 2010-11-04 Sony Corp 半導体記憶装置およびその製造方法
WO2014103577A1 (ja) * 2012-12-26 2014-07-03 ソニー株式会社 記憶装置およびその製造方法
US9142774B2 (en) 2011-12-20 2015-09-22 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342843A (ja) * 2003-05-15 2004-12-02 Sony Corp 半導体記憶素子及びこれを用いた半導体記憶装置
JP2006196537A (ja) * 2005-01-11 2006-07-27 Sony Corp 記憶素子及び記憶装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342843A (ja) * 2003-05-15 2004-12-02 Sony Corp 半導体記憶素子及びこれを用いた半導体記憶装置
JP2006196537A (ja) * 2005-01-11 2006-07-27 Sony Corp 記憶素子及び記憶装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050117A1 (ja) * 2008-10-30 2010-05-06 独立行政法人産業技術総合研究所 固体メモリ
JP2010109175A (ja) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology 固体メモリ
JP4635235B2 (ja) * 2008-10-30 2011-02-23 独立行政法人産業技術総合研究所 固体メモリ
WO2010090128A1 (ja) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 固体メモリ
JP2010183017A (ja) * 2009-02-09 2010-08-19 National Institute Of Advanced Industrial Science & Technology 固体メモリ
JP2010251529A (ja) * 2009-04-16 2010-11-04 Sony Corp 半導体記憶装置およびその製造方法
US9142774B2 (en) 2011-12-20 2015-09-22 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for manufacturing the same
WO2014103577A1 (ja) * 2012-12-26 2014-07-03 ソニー株式会社 記憶装置およびその製造方法
KR20150101997A (ko) * 2012-12-26 2015-09-04 소니 주식회사 기억 장치 및 그 제조 방법
JPWO2014103577A1 (ja) * 2012-12-26 2017-01-12 ソニーセミコンダクタソリューションズ株式会社 記憶装置およびその製造方法
US10186658B2 (en) 2012-12-26 2019-01-22 Sony Semiconductor Solutions Corporation Memory device and method of manufacturing memory device
KR102166506B1 (ko) * 2012-12-26 2020-10-15 소니 세미컨덕터 솔루션즈 가부시키가이샤 기억 장치 및 그 제조 방법

Also Published As

Publication number Publication date
JP4816314B2 (ja) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4396621B2 (ja) 記憶素子及び記憶装置
KR101541573B1 (ko) 기억 소자 및 기억 장치
JP5088036B2 (ja) 記憶素子および記憶装置
JP4830275B2 (ja) 記憶素子
JP4848633B2 (ja) 記憶素子及び記憶装置
JP4815804B2 (ja) 記憶素子及び記憶装置
JP4529654B2 (ja) 記憶素子及び記憶装置
JP5007502B2 (ja) 記憶素子の製造方法
KR102040329B1 (ko) 기억 소자 및 그 제조 방법 및 기억 장치
JP4816314B2 (ja) 記憶素子及び記憶装置
JP4742971B2 (ja) 記憶素子及び記憶装置
JP4465969B2 (ja) 半導体記憶素子及びこれを用いた半導体記憶装置
JP2007157941A (ja) 記憶素子及び記憶装置
JP4552752B2 (ja) 記憶素子の製造方法、記憶装置の製造方法
JP4760606B2 (ja) 記憶素子及び記憶装置
JP5257573B2 (ja) 記憶素子および記憶装置
JP4548211B2 (ja) 記憶素子の製造方法、記憶装置の製造方法
JP5103932B2 (ja) 記憶素子及び記憶装置
JP4635759B2 (ja) 記憶素子及び記憶装置
JP5423940B2 (ja) 記憶素子の製造方法および記憶装置の製造方法
JP2008153375A (ja) 記憶素子及び記憶装置
JP4692383B2 (ja) 記憶素子及び記憶装置
JP2007189086A (ja) 記憶素子及びその製造方法、記憶装置
JP2009054901A (ja) 記憶素子およびその製造方法、並びに記憶装置
JP2008047709A (ja) 記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees