JP2008021675A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2008021675A
JP2008021675A JP2006189648A JP2006189648A JP2008021675A JP 2008021675 A JP2008021675 A JP 2008021675A JP 2006189648 A JP2006189648 A JP 2006189648A JP 2006189648 A JP2006189648 A JP 2006189648A JP 2008021675 A JP2008021675 A JP 2008021675A
Authority
JP
Japan
Prior art keywords
region
trench
insulating film
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006189648A
Other languages
English (en)
Inventor
Akio Nishida
彰男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006189648A priority Critical patent/JP2008021675A/ja
Publication of JP2008021675A publication Critical patent/JP2008021675A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】トレンチ分離構造を採用する半導体装置において、選択的に空洞部を形成することにより、結晶欠陥による弊害を効果的に抑制して、信用性の向上が図られた半導体装置およびその製造方法を提供する。
【解決手段】本発明にかかる半導体装置は、主表面を有する半導体基板1と、半導体基板1の主表面に形成された第1凹部10Aと、該第1凹部10A内に形成された第1分離絶縁膜20Aと、分離絶縁膜20A内に形成された空隙部AGとを有する第1分離領域30Aと、半導体基板1の主表面に形成され、第1凹部10Aの幅より幅広の第2凹部10Bと、該第2凹部10B内に充填された第2分離絶縁膜20Bとを有する第2分離領域30Bとを備える。
【選択図】図2

Description

本発明は、半導体装置およびその製造方法に関し、特に、トレンチ分離構造を有する半導体装置およびその製造方法に関する。
従来から、素子を電気的に分離するための分離構造として、トレンチ分離構造が採用されている(下記特許文献1〜9参照)。このトレンチ分離構造は、従来のLOCOS分離構造と比較して微細化を図ることができる。トレンチ分離構造は、半導体基板の主表面上に形成された溝部と、この溝部内に、分離絶縁膜を充填することにより形成されている。
このようなトレンチ分離を形成した後に、半導体基板の主表面上に、たとえば、厚膜ゲート絶縁膜を形成するために、長時間の熱処理、あるいは酸化処理を施す場合がある。
しかし、トレンチ分離構造を形成した後に、長時間の熱処理を施すと、半導体基板の熱膨張係数と、分離絶縁膜の熱膨張係数との差により、半導体基板に結晶欠陥が生じる場合がある。また、長時間の酸化処理を行うと、半導体基板の溝部の側面が酸化されることにより分離絶縁膜が膨張して同様に、半導体基板に結晶欠陥が生じる場合がある。半導体基板に結晶欠陥が生じると、たとえば、リーク電流が生じ、トランジスタが所定の動作を行わなくなるおそれがある。また、結晶欠陥に電子がトラップされると、トランジスタのしきい値電圧が変動して、半導体装置としての信頼性が大きく損なわれるおそれがある。そして、従来から、トレンチ分離構造を採用する一方で、半導体基板に結晶欠陥の発生の低減を図る手法が提案されている。
たとえば、特開2002−319638号公報に記載された半導体記憶装置は、シリコン基板と、シリコン基板上に形成された素子領域と、素子領域を区画する素子分離領域を有し、この素子分離領域は、断面形状がステップ状に屈曲したトレンチ溝を備える。
このトレンチ溝は、シリコン基板の表面側に位置する第1領域と、この第1領域から深さ方向に延びる第2領域を含んでいる。そして、トレンチ溝の第1領域は、シリコン酸化膜で充填され、第2領域は、内部に空洞を有している。
この第2領域に形成された空洞が、シリコン基板と第1領域内に充填されたシリコン酸化膜との間の応力を緩和する。
特開2000−183149号公報 特開2002−203896号公報 特開2003−158180号公報 特開2002−76299号公報 特開平11−186378号公報 特開2004−282048号公報 特開平11−284062号公報 特開平11−126819号公報 特開平11−243142号公報 特開2002−319638号公報
しかし、上記特許文献においては、半導体基板を平面視した際に、どの位置に空洞部を形成するのが好ましいのか、どのように選択的に形成するのが好ましいのか記載されていない。すなわち、上記特許文献においては、半導体基板の位置によって結晶欠陥による弊害に軽重が生じるという観点からの検討が何等されていない。
その一方で、トレンチ分離の分離幅は、位置によって異なり全ての分離領域内に空洞部を形成しようとすると、空洞部が分離絶縁膜の上面から開口するおそれがある。このように、分離絶縁膜に開口部が形成されると、洗浄工程において、洗浄液が空洞部内に浸入し、残渣等がトレンチ溝内に残留し、トランジスタの特性が大きく変動し、またその信頼性を大きく損ねるという問題がある。
本発明は、上記のような課題に鑑みてなされたものであり、その目的は、トレンチ分離構造を採用する半導体装置において、選択的に空洞部を形成することにより、結晶欠陥による弊害を効果的に抑制して、信用性の向上が図られた半導体装置およびその製造方法を提供する。
本発明に係る半導体装置は、1つの局面では、主表面を有する半導体基板と、前記半導体基板の主表面に形成された第1凹部と、該第1凹部内に形成された第1分離絶縁膜と、前記分離領域内に形成された空隙部とを有する第1分離領域と、前記半導体基板の主表面に形成され、前記第1凹部の幅より幅広の第2凹部と、該第2凹部内に充填された第2分離絶縁膜とを有する第2分離領域とを備える。
本発明に係る半導体装置は、他の局面では、半導体基板と、前記半導体基板の主表面上に形成された活性領域パターンと、前記半導体基板の主表面上に形成されたダミーパターンと、前記活性領域パターンと前記ダミーパターンとの間に位置するトレンチ分離領域と、前記トレンチ分離領域内に形成され空隙部とを備える。
本発明に係る半導体装置は、半導体基板と、前記半導体基板の主表面上に形成された活性領域と、前記活性領域を規定するように、前記半導体基板の主表面に形成されたトレンチ分離領域と、前記活性領域上に延在するように形成されたゲート電極と、前記ゲート電極の両側の前記活性領域に形成された第1、第2不純物領域と、前記活性領域の外周縁部であって、前記ゲート電極と交差する方向に延びる部分に沿って、前記トレンチ分離領域内に形成した空隙部とを備える。
本発明に係る半導体装置の製造方法は、半導体基板の主表面上に、第1絶縁膜を形成する工程と、前記第1絶縁膜上に第2絶縁膜を形成する工程と、前記第1絶縁膜と前記第2絶縁膜とをパターニングしてマスクを形成する工程と、前記マスクを用いて、前記半導体基板をエッチングして、トレンチを形成する工程と、前記トレンチの側壁をエッチングして、前記マスクを前記トレンチ内方に向けて張り出させる工程と、前記マスクを覆うように、第3絶縁膜を形成して、前記トレンチ内に第3絶縁膜を埋め込むとともに、トレンチ内に空隙部を形成する工程と、前記第3絶縁膜の上面から該第3絶縁膜の厚みを減じることで前記マスクを露出させる工程と、前記マスクを除去する工程とを備える。
本発明に係る半導体装置およびその製造方法によれば、空洞部を選択的に形成することにより、結晶欠陥による弊害を効果的に抑制することができる。
(実施の形態1)
図1から図28を用いて、本実施の形態1に係る半導体装置(半導体記憶装置)100について説明する。図1は、本実施の形態1に係る半導体装置100の平面図である。この図1に示されるように、半導体装置100は、ROM領域内に形成されたメモリセルMCが複数形成されたメモリセル領域R1と、メモリセルMCの駆動を制御する複数の周辺回路トランジスタSTが形成された周辺回路領域R2とを備えている。
なお、本実施の形態1においては、ROM領域内に形成されたメモリセル領域R1について着目しているが、RAM領域などの他の領域内に形成されたメモリセル領域においても、本発明を適用可能である。
メモリセル領域R1が位置する半導体基板1の主表面上には、複数の活性領域ARが形成されたメモリセルアレイ領域R1aと、このメモリセルアレイ領域R1aの周囲を取り囲み、複数のダミー活性領域DARが形成されたダミー領域R1bとが形成されている。
メモリセルアレイ領域R1a上には、碁盤目状に配置された複数の活性領域ARと、各活性領域ARを規定する分離領域30とが形成されている。また、このメモリセルアレイ領域R1a上には、活性領域AR上に形成され、一方向に向けて延在する複数のコントロールゲートCGと、このコントロールゲートCG下に位置する活性領域AR上に形成されたフローティングゲートFGとが形成されている。各活性領域ARは、四角形状(正方形形状)に形成されており、各活性領域AR間の距離は、たとえば、20nm程度とされている。そして、各活性領域AR間に位置する分離領域30内には、空隙部AGが形成されている。
ここで、周囲を活性領域ARによって囲まれた活性領域ARの外周縁部には、分離領域30Aが形成されており、この分離領域30A内には、空隙部AGが形成されている。そして、ダミー領域R1bのうち、メモリセルアレイ領域R1aとの境界領域には、複数のダミー活性領域DARが、メモリセルアレイ領域R1aの周囲を取り囲むように、形成されている。
そして、ダミー活性領域DARと活性領域ARとの間の距離と、活性領域AR同士間の距離とは、略同じとされている。このため、ダミー活性領域DARと活性領域ARとの間に位置する分離領域30内にも空隙部AGが形成されている。
なお、この図1においては、メモリセルアレイ領域Ra1の周縁部のうち、コントロールゲートCGの延在方向と交差する方向に延在する部分に沿って配列された活性領域ARと、この活性領域ARに対してコントロールゲートCGの延在方向に隣接するダミー活性領域DARとの間の距離は、活性領域AR同士間の距離より大きくされているが、同じとしてもよい。この場合には、全ての活性領域ARの周囲に位置する分離領域30内に空隙部AGが形成される。このように、活性領域AR間同士および、活性領域ARとダミー活性領域DARとの間の距離を狭めることにより、活性領域AR同士間および活性領域ARとダミー活性領域DAR間に位置する分離領域30内に空隙部AGを形成する。
すなわち、活性領域AR同士間の距離および、活性領域ARとダミー活性領域DARとの間の距離を調整することにより、形成される空隙部AGの位置を制御することができる。特に、メモリセルアレイ領域R1aの外周縁部に沿って配置された活性領域ARに、ダミー活性領域DARを近接させることにより、外周縁部に沿って配置された活性領域ARの周縁部に沿う空隙部AGを形成することができる。
周辺回路領域R2が位置する半導体基板1の主表面上には、複数の活性領域ARと、この活性領域AR上に形成された複数のゲート電極TGと、複数のダミー活性領域DARとが形成されている。
周辺回路領域R2内に形成された活性領域AR同士間の距離は、メモリセル領域R1内に形成された活性領域AR同士間の距離より大きく設定されている。また、周辺回路領域R2内に形成されたダミー活性領域DARと活性領域ARとの間の距離は、メモリセル領域R1内に形成されたダミー活性領域DARと活性領域ARとの間の距離より大きく設定されている。
このため、周辺回路領域R2内において、活性領域AR間および活性領域ARとダミー活性領域DARとの間に位置する分離領域30B内に、空隙部AGが形成されることが抑制されている。
図2(A)は、図1に示されたIIA−IIAにおける断面図であり、図2(B)は、図1に示されたIIB−IIB線における断面図である。この図2(A)に示されるように、メモリセルアレイ領域R1aが位置する半導体基板1の主表面には、複数の帯状に延びる分離領域(第1分離領域)30Aと、この分離領域30A間に形成された活性領域ARとが形成されている。
分離領域30Aは、半導体基板1の主表面に形成されたトレンチ溝(凹部)10Aと、このトレンチ溝10A内に形成された分離絶縁膜20Aとを備えている。分離絶縁膜20Aは、3層の絶縁膜20A1、20A2、20A3から構成されている。絶縁膜20A1は、トレンチ溝10Aの内壁面に沿って形成され、トレンチ溝10の側壁から底面にわたって形成されている。絶縁膜20A2は、絶縁膜20A1の上面上に形成されており、トレンチ溝10Aの開口部近傍において、トレンチ溝10Aの内方に向けて張り出すように突出している。そして、トレンチ溝10Aの開口部近傍において、トレンチ溝10Aの両側壁側から突出する絶縁膜20A2が接触して、トレンチ溝10Aの開口部を閉塞している。
絶縁膜20A3は、絶縁膜20A2の上面上に形成されており、絶縁膜20A2同士が接触する接触部分上に形成されている。図1およびこの図2(A)に示されるように、トレンチ溝10Aの幅W1は、一定となるように形成されている。このような分離領域30Aによって規定された活性領域ARの上面上には、シリコン酸化膜等からなるゲート絶縁膜11が形成されている。ゲート絶縁膜11の上面上には、たとえば、ポリシリコン膜等からなるフローティングゲートFGが形成されている。このフローティングゲートFGの上面上には、シリコン酸化膜、シリコン窒化膜、シリコン酸化膜を順次積層して形成されたONO絶縁膜12が形成されている。
そして、この絶縁膜12を介して、フローティングゲートFGの上面上に、コントロールゲートCGが形成されている。フローティングゲートFGと隣り合う半導体基板1の主表面上には、ソース領域として機能可能なLDD構造の不純物領域(第1不純物領域)SRと、ドレイン領域として機能可能なLDD構造の不純物領域(第2不純物領域)DRとが形成されている。
また、フローティングゲートFGおよびコントロールゲートCGの側面上には、シリコン酸化膜からなるサイドウォール状の絶縁膜13が形成されている。図2(B)に示されるように、周辺回路領域R2内に位置する半導体基板1の主表面上には、複数の分離領域30Bと、この分離領域30B間に位置する活性領域ARとが形成されている。
分離領域30Bは、トレンチ溝10Aの幅W1より幅W2が広いトレンチ溝10Bと、このトレンチ溝10B内に充填された絶縁膜20Bとを備えている。このトレンチ溝10Bの幅W2は、トレンチ溝10Bの延在方向にわたって一定となるように、形成されている。分離領域30B同士の間隔は、分離領域30A同士間の間隔より広く形成されている。絶縁膜20Bは、トレンチ溝10B内に充填されており、3層の絶縁膜20A1、20A2、20A3から構成されている。
分離領域30B間に位置する活性領域ARには、周辺回路トランジスタSTが形成されている。この周辺回路トランジスタSTは、ゲート絶縁膜11と、このゲート絶縁膜11の上面上に形成されたゲート電極TGと、ゲート電極TGの側方に位置する活性領域AR上に形成された不純物領域SR,DRとを備えている。ゲート絶縁膜11は、たとえば、シリコン酸化膜等からなる。ゲート電極TGは、たとえば、ポリシリコン膜から構成されている。このゲート電極TGの両側面上には、サイドウォール状の絶縁膜13が形成されている。
上記のように構成された半導体装置100の製造方法について説明する。図3(A)は、本実施の形態1に係る半導体装置100の製造工程の第1工程におけるメモリセル領域R1の断面図であり、図3(B)は、周辺回路領域R2における第1工程における断面図である。
図3(A)、(B)に示されるように、半導体基板1の主表面上に、シリコン酸化膜等からなる絶縁膜40を、たとえば、熱酸化処理により形成する。そして、形成され絶縁膜40上に、たとえば、シリコン窒化膜からなる絶縁膜41を形成する。そして、フォトリソグラフィを絶縁膜40、41に施して、図1に示される分離領域30のパターンに従ったマスクを形成する。
この絶縁膜40、41をマスクとして、半導体基板1にエッチングを施して、トレンチ溝10A、10Bを形成する。トレンチ溝10Aのアスペクト比は、2.5以上とされており、トレンチ溝10Bのアスペクト比は、1.5以下とされ、トレンチ溝10Aのアスペクト比の方が、トレンチ溝10Bのアスペクト比より大きく形成される。なお、トレンチ溝10Aの深さと、トレンチ溝10Bの深さは、略同じであり、200〜300nm程度とされている。この第1工程において、図1に示すダミー活性領域DARと、活性領域ARとが規定される。なお、上記数値は、例示であり、この数値に限られない。
そして、たとえば、CVD法(化学的気相蒸着法)等により、シリコン酸化膜等の絶縁膜20A1を堆積(形成)する。これにより、絶縁膜41、40からなるマスクを覆うとともに、トレンチ溝10A、10Bの側壁と底面に沿うように形成される。
図4(A)は、半導体装置100の第2工程におけるメモリセル領域R1の断面図であり、図4(B)は、半導体装置100の第2工程における周辺回路領域R2の断面図である。この図4(A)、(B)に示されるように、絶縁膜20A1の上面上に、たとえば、シリコン酸化膜等からなる絶縁膜20A2を形成する。
この絶縁膜20A2を形成するには、図示されないプラズマCVD装置の成膜ガスの流量を増加させる。ガスの供給量を過剰にすることにより、埋め込み性が劣化する。たとえば、N2Oガスの供給量を500sccm以上600sccm以下に設定し、SiH4のガス供給量を3sccm以上5sccm以下程度に設定するのが好ましい。
特に、絶縁膜20A2の成膜の際に、N2O/SiH4比を上げるのが好ましい。N2O/SiH4比を上げることにより、カバレッジ(Coverage)を劣化させることができ、埋め込み性を劣化させることができる。たとえば、N2O/SiH4比は、1〜2の範囲が好ましい。
さらに、絶縁膜20A2の成膜の際に、成膜温度を通常より低く設定する。成膜温度を低く設定すると、表面反応が停滞し、カバレッジを劣化させることができ、埋め込み性を劣化させることができる。たとえば、成膜温度は、200℃以上250℃以下の範囲が好ましい。
また、絶縁膜20A2の成膜の際に、プラズマ発生源のパワーを低く設定する。パワーを低く設定することにより、プラズマ密度が下がり、ラジカル(radical)が減少し、カバレッジが低くなり、埋め込み性が劣化する。たとえば、プラズマ発生源のパワーは、125W〜925W程度の範囲が好ましい。
そして、絶縁膜20A2の成膜の際に、成膜圧力を通常時より低下させる。成膜圧力が低下すると、成膜の指向性が向上して、トレンチ溝10Aの側面上に絶縁膜が形成されることが抑制される。たとえば、成膜圧力としては、10−2Torr以上数torr以下の範囲が好ましい。
このように、成膜ガスの流量と、N2O/SiH4比と、成膜温度と、成膜時のパワーと、成膜圧力とを調整することにより、絶縁膜20Aの埋め込み性を劣化させる。
このような成膜条件によって、絶縁膜20A2の埋め込み性を、絶縁膜20A1の埋め込み性より悪くする。
このため、絶縁膜20A2は、トレンチ溝10A内に充填され難く、絶縁膜20A2は、絶縁膜41の上面を覆うとともに、トレンチ溝10Aの開口部近傍に位置する側壁部に付着する。そして、開口部近傍に位置する側壁部に付着する絶縁膜20Aが、トレンチ溝10A内方に向けて突出するように成長する。さらに、絶縁膜20Aが成長することにより、トレンチ溝10Aの開口部を絶縁膜20Aの開口部を閉塞する。このようにして、絶縁膜20A2内に空隙部AGが形成される。なお、絶縁膜20A1によってトレンチ溝10A内が充填されることを抑制するために、絶縁膜20A2の膜厚を絶縁膜20A1の厚膜より厚く形成する。
ここで、形成されているトレンチ溝10Aの幅は、通常の製造工程におけるエッチングのばらつきの範囲内で、ほぼ一定とされているため、いずれかにトレンチ溝10A内において、絶縁膜20A1によってトレンチ溝10Aが充填されてしまうことを抑制することができる。これにより、活性領域ARの外周縁部に、連続的に空隙部AGを延在させることができる。
このように、本実施の形態1に係る半導体装置100の製造方法においては、絶縁膜20A2によって空隙部AGを形成する前に、絶縁膜20A1を予め堆積する。このように予め、絶縁膜20A1をトレンチ溝10A内に形成することにより、トレンチ溝10Aの開口部を狭くして、僅かな絶縁膜20A2であっても、開口部の閉塞を達成することができる。このように、僅かな絶縁膜20A2によって、開口部を閉塞することにより、空隙部AGの位置を半導体基板1の主表面側に位置させることができる。
なお、空隙部AGとは、この図4(A)に示されるような大きな空洞部の場合のみならず、シームのようなものも含む概念である。
その一方で、図4(B)に示されるように、トレンチ溝10Bは、アスペクト比が小さいため、絶縁膜20A2は、トレンチ溝10Bの内壁面に沿って形成された絶縁膜20A1の上面に堆積(形成)される。すなわち、トレンチ溝10Bのアスペクト比および絶縁膜20A2の成膜条件を上記のように設定することにより、絶縁膜20A2を堆積することにより、トレンチ溝10B内に空隙部が形成されることが抑制されている。
このように、トレンチ溝のアスペクト比の大きい領域と、小さい領域とを選択的に形成することにより、空隙部AGを備える分離領域と、空隙部AGが形成されない分離領域とを選択的に形成することができる。
また、トレンチ溝10Aおよび、トレンチ溝10Bの深さは、通常の製造工程におけるエッチングのばらつきの範囲内で、ほぼ一定とされている。このため、トレンチ溝10A内に形成される空隙部AGの上下方向の位置を正確に制御することができ、空隙部AGの上端部に開口部が形成されることを抑制することができる。また、アスペクト比の相違を溝幅で制御できるため、既存のトレンチ溝深さを変えることなく、容易に選択的に空隙部AGを形成することができる。
ここで、メモリセルアレイ領域R1aの外周縁部に沿って形成された活性領域ARと、ダミー活性領域DARとの間および、活性領域AR間にも空隙部AGが自己生成的に形成される。そして、活性領域AR同士間および、活性領域ARとダミー活性領域DARとの間に、空隙部AGを形成する。
図5(A)は、半導体装置100の第3工程におけるメモリセル領域R1における断面図であり、図5(B)は、半導体装置100の第3工程における周辺回路領域R2における断面図である。この図5(A)に示されるように、絶縁膜20A2の上面上に、シリコン酸化膜等からなる絶縁膜20A3を、CVD法等により、堆積(形成)する。
この絶縁膜20A3を形成することにより、トレンチ溝10Aの開口部上に位置する絶縁膜20A2内にシームが形成された場合においても、絶縁膜20A3によって形成されたシームの上端部を閉塞することができる。これにより、後の工程の洗浄工程において、空隙部AG内に洗浄液が浸入することを抑制することができる。
図6(A)は、半導体装置100の第4工程のメモリセル領域R1における断面図であり、図6(B)は、周辺回路領域R2における断面図である。
この図6(A)、(B)に示されるように、絶縁膜41、40からなるマスクをストッパーとして、絶縁膜20A3、20A2、20A1にCMP(化学的機械研磨)などを施して、平坦化する。図7(A)は、半導体装置100の第5工程におけるメモリセル領域R1における断面図であり、図7(B)は、半導体装置100の第5工程における周辺回路領域R2の断面図である。そして、図8(A)は、半導体装置100の第6工程を示すメモリセル領域R1における断面図であり、図8(B)は、第6工程における周辺回路領域R2の断面図である。
この図7(A)、(B)に示されるように、シリコン窒化膜等からなる絶縁膜41を、絶縁膜40をストッパーとしてエッチングする。そして、シリコン酸化膜などからなる絶縁膜40にエッチングを施して、除去する。この際、絶縁膜20A1、20A2、20A3の一部もエッチングされる。この後図2(A),(B)に示されるように、半導体基板1の主表面上に、熱酸化膜を施して、半導体基板1の主表面上に、シリコン酸化膜等からなる絶縁膜11を形成する。
ここで、熱処理を半導体基板1に施す際には、絶縁膜20A1、20A2、20A3の熱膨張係数は、半導体基板1の熱膨張係数より大きく、絶縁膜20A1、20A2、20A3は、膨張しようとする。
このように、絶縁膜20A1,20A2,30A3が熱膨張する際に、分離領域30A内に空隙部AGが形成されているため、絶縁膜20A1、20A2、20A3が、空隙部AGに向けて膨張する。これにより、絶縁膜20A1、20A2、20A3が半導体基板1に与える応力ストレスを、この空隙部AGで吸収することができる。したがって、半導体装置100の製造過程において、半導体基板1に与えられる応力ストレスを軽減することができ、半導体基板1に結晶欠陥を低減することができる。
特に、メモリセル領域R1が位置する半導体基板1の主表面において、結晶欠陥の発生が抑制されているため、結晶欠陥内に電子がトラップされることによるメモリセルのしきい値電圧の変動を抑制することができる。
また、チャネル長方向に結晶欠陥が形成されることを抑制することにより、チャネル長方向に配列した不純物領域SRと、不純物領域DRとの間にリーク電流が生じることを効果的に抑制することができる。
さらに、メモリセルアレイ領域R1aの外周縁部に沿って配置された活性領域ARにおいても、ダミー活性領域DARとの間に空隙部AGが形成されるため、結晶欠陥が形成されることを抑制することができる。上記のように、熱酸化処理により絶縁膜11を形成する際に限られず、半導体基板1や絶縁膜20A1、20A2、20A3が加熱される場合において、半導体基板1に結晶欠陥を抑制することができる。なお、図1において、活性領域AR同士の間隔を狭めることにより、活性領域AR間に位置する分離領域30内に自己生成的に空隙部AGを形成することができる。
図9は、従来の半導体装置であって、活性領域内に結晶欠陥が形成されている半導体装置の動作を実線Aで示したグラフであり、本実施の形態に係る半導体装置の動作を破線Bで示したグラフである。
この図9に示されるように、活性領域AR内に結晶欠陥が形成されている場合には、ゲート電極に印加された電圧の大きさに係わらず、ソース領域とドレイン領域との間にドレイン電流が流れる。その一方で、本実施の形態1に係る半導体装置100においては、ゲート電極に印加される電圧が所定電圧以上となると、ソース領域として機能する不純物領域SRと、ドレイン領域として機能する不純物領域DRとの間に電流が流れ、所定電圧以下となると、不純物領域SRと不純物領域DRとの間に流れる電流が小さくなり、良好に駆動していることが分かる。
図10は、本実施の形態1に係る半導体装置100の変形例を示す平面図であり、メモリセル領域R1における平面図である。この図10に示されるように、ダミー活性領域DARは、メモリセルアレイ領域R1aの外周縁部のうち、コントロールゲートCGの延在方向に延在する部分と隣接する部分に密集するように形成されている。これにより、パターンの局所的な粗密間差を低減することによって、絶縁膜41、40からなるマスクに活性領域ARおよびダミー活性領域DARのパターンを形成する際に、活性領域ARのパターンに形成不良の抑制を図ることができる。
図11は、本実施の形態1に係る半導体装置100のさらに他の変形例を示す平面図である。この図11に示されるように、半導体装置100は、長方形形状に形成された複数の活性領域ARを有するメモリセルアレイ領域R1aと、このメモリセルアレイ領域R1aの周囲に位置し、長方形形状に形成された複数のダミー活性領域DARが形成されたダミー領域R1bとを備えている。
この図11に示された半導体装置100においては、コントロールゲートCGが延在する方向に隣接する活性領域AR間に位置する分離領域30内に空隙部AGが形成されている。このように、活性領域ARの外周縁部のうち、コントロールゲートCGが延在する方向と交差する方向に延在する部分に沿って空隙部AGが形成されている。
また、メモリセルアレイ領域R1aの外周縁部のうち、コントロールゲートCGの延在方向と交差する方向に延在する部分に沿って配列された活性領域ARと、この活性領域ARに対して、コントロールゲートCGの延在する方向に隣接するダミー活性領域DARとの間に位置する分離領域30内にも、空隙部AGが形成されている。
各空隙部AGは、コントロールゲートCGの配列方向に隣接する活性領域AR間にて分断されており、各空隙部AGは、活性領域ARごとに分断されているため、
このため、半導体装置100の洗浄工程において、1の空隙部AGの上端部が開口している場合においても、各空隙部AGは分断されているため、全ての空隙部AG内に洗浄液が満たされる恐れがない。その一方で、この変形例においても、活性領域ARの外周縁部のうち、チャネル長方向に延在する部分に、結晶欠陥が形成されることを抑制することができる。
図12から図18は、本実施の形態1に係る半導体装置100の製造工程の他の製造工程を示す断面図である。図12は、図3(A)に示された半導体装置100の第1工程より前工程における製造工程を示す断面図である。
この図12に示されるように、半導体基板1の主表面上に、シリコン酸化膜からなる絶縁膜41を形成し、この絶縁膜41の上面上にシリコン窒化膜からなる絶縁膜40を形成する。
そして、この絶縁膜40、41にパターニングを施してマスクを形成し、このマスクを用いて、半導体基板1の主表面に、トレンチ溝10A2を形成する。その後、半導体基板1の主表面に、熱酸化処理を施して、トレンチ溝10A2の内表面上にシリコン酸化膜を形成する。そして、このトレンチ溝10Aの内表面上に形成されたシリコン酸化膜をウエットエッチング(等方性エッチング)により除去する。
これにより、トレンチ溝10A2の幅より幅広のトレンチ溝10A1を形成するとともに、このトレンチ溝10A1によって規定された活性領域ARを形成する。そして、この活性領域ARの上面上には、活性領域ARの幅より幅広のマスクが残留する。
具体的には、活性領域ARの上面上に形成された絶縁膜41と、この絶縁膜41の上面上に形成され、トレンチ溝10A1の内方に向けて突出する絶縁膜40とが、活性領域ARの上面上に形成される。図13は、図12に示された半導体記憶装置100の製造工程後の製造工程を示す断面図である。この図13において、上記図6に示す半導体装置100の第4工程と同様の条件で、トレンチ溝10A1内にシリコン酸化膜等の絶縁膜50を充填する。この際、トレンチ溝10A1内方に向けて突出する絶縁膜40が形成されているため、絶縁膜50を堆積する際に、絶縁膜50のうち、トレンチ溝10A1の開口部から突出する部分に、絶縁膜50が付着し易い。このため、トレンチ溝10A1の開口部が、絶縁膜50によって短期間のうちに、閉塞され、空隙部AG1が形成される。
このように、短期間のうちにトレンチ溝10A1の開口部を閉塞させることができるので、形成された空隙部AG1の上端部が半導体基板1の主表面の近傍に位置する。そして、図14は、上記図13に示された半導体記憶装置100の製造工程後の製造工程を示す断面図である。この図14に示されるように、絶縁膜40をストッパーとして、絶縁膜50を平坦化し、絶縁膜40、41をエッチングして除去する。
ここで、結晶欠陥は、トレンチ溝10A1の内表面のうち、半導体基板1の主表面側に形成され易い一方で、空隙部10A1が半導体基板1の主表面近傍にまで延在しているため、結晶欠陥の発生を良好に抑制することができる。
図15から図17は、本実施の形態1に係る半導体装置100の更に他の製造方法を示す断面図である。図15は、上記図12に示された半導体装置100の製造工程に対応する製造工程を示した断面図である。この図15に示されるように、図12に示すトレンチ溝10A1の内表面に熱処理を施して、たとえば、10nm程度の厚膜のシリコン酸化膜を形成する。この厚膜のシリコン酸化膜を除去すると、絶縁膜41がトレンチ溝10A3の開口部から大きく内方に突出するように形成されている。
図16は、図15に示された半導体装置100の製造工程の断面図である。この図16に示されるように、トレンチ溝10A1内に絶縁膜50を堆積する。この際、絶縁膜50が、大きくトレンチ溝10A1内方に向けて突出するように形成されているため、空隙部AG2が絶縁膜50内に形成される。
この空隙部AG2の上端部は、空隙部AG1の上端部より、半導体基板1の主表面側に形成されている。図17は、図16に示された半導体装置100の製造工程後の製造工程を示す断面図である。この図17に示されるように、絶縁膜40、41を除去する。
このように、トレンチ溝10A1の内壁面に熱酸化処理を施す、酸化温度、酸化時間等を調整することにより、トレンチ溝10A1の内壁面に形成される熱酸化膜の厚みを調整し、絶縁膜41がトレンチ溝10A2、10A3内方に向けて突出する突出量を調整することができる。これにより、形成される空隙部AGの上端部の位置を制御することができる。
さらに、絶縁膜40の突出量を調整することにより、絶縁膜50がトレンチ溝10A2、10A3の開口部を閉塞しきれず、空隙部AGの上端部に開口部が形成されることを抑制することができる。さらに、空隙部AGの位置を制御することにより、結晶欠陥が形成され易いトレンチ溝10A1の開口部付近にまで、空隙部AGを延在させることができ、結晶欠陥の発生を良好に抑制することができる。図18は、トレンチ形状によって、形成される空隙部AGの形状を示した断面図である。このように、形成するトレンチ溝のアスペクト比などを変更することにより、形成される空隙部の形状およびその位置を制御することができる。
(実施の形態2)
図19から図28を用いて、本実施の形態2に係る半導体装置200について説明する。なお、上記実施の形態1に係る半導体装置100と同様の構成については、同一の符号を付してその説明を省略する。図19は、本実施の形態2に係る半導体装置200のRAM領域を示した平面図である。この半導体装置200のRAM領域が位置する半導体基板1の主表面上には、フルCMOSSRAM(スタティック半導体記憶装置)の複数のメモリセルMC1、MC2が形成されている。
図28は、このメモリセルMC1の等価回路を示した回路図である。図28を用いて、SRAMのメモリセルMC1の構成について簡単に説明する。メモリセルMC1は、フルCMOSセル構造を有し、第1と第2インバータと、2つのアクセスNMOSトランジスタN3,N4とを有する。
第1インバータは、第1ドライバNMOSトランジスタN1と第1ロードPMOSトランジスタP1とを含み、第2インバータは、第2ドライバNMOSトランジスタN2と第2ロードPMOSトランジスタP2とを含む。第1インバータと第2インバータは互いの入力と出力とを接続したフリップフロップを形成し、フリップフロップの第1の記憶ノードNaに第1アクセスNMOSトランジスタN3のソースが接続され、フリップフロップの第2の記憶ノードNbに第2アクセスNMOSトランジスタN4のソースが接続される。
記憶ノードNaは、第1アクセスNMOSトランジスタN3を介してビット線BL1に接続され、記憶ノードNbは、第2アクセスNMOSトランジスタN4を介してビット線BL2に接続される。さらに第1と第2アクセスNMOSトランジスタN3、N4のゲートはワード線WLに接続され、第1と第2ロードPMOSトランジスタP1、P2のソースは電源線VDDに接続される。
次に、上記のフルCMOSSRAMのメモリセル1のレイアウトについて説明する。図19に示すように、Nウエル領域の両側にPウエル領域を設ける。
そして、半導体基板1の主表面上に、選択的に分離領域30を形成することにより、Pウエル領域内に活性領域2a〜2dを規定する。さらに、活性領域2a、2dに選択的にリンなどのN型不純物を注入して不純物領域を形成し、Nウエル領域内に形成された活性領域2b、2cに選択的にボロン等のP型不純物を注入して不純物拡散領域を形成する。本明細書では、活性領域2a、2b、2c、2dは、トランジスタのソース/ドレインとなる領域と、該領域間に位置し該領域とは逆の導電型の領域(基板部分)とを含む領域である。
活性領域2a,2dと活性領域2b,2cは、ともに直線状の形状を有し、同じ方向(Pウエル領域およびNウエル領域の延在方向)に延在する。それにより、Pウエル領域やNウエル領域の幅や形成位置のばらつきを小さくすることができる。
本実施の形態におけるメモリセル1は、6つのMOSトランジスタで構成される。具体的にはメモリセル1は、第1と第2ドライバNMOSトランジスタN1,N2と、第1と第2アクセスNMOSトランジスタN3,N4と、第1と第2ロードPMOSトランジスタP1,P2とで構成される。
第1と第2アクセスNMOSトランジスタN3,N4および第1と第2ドライバNMOSトランジスタN1,N2は、Nウエル領域の両側のPウエル領域上にそれぞれ形成され、第1と第2ロードPMOSトランジスタP1,P2は、中央のNウエル領域上に形成される。
第1アクセスNMOSトランジスタN3は、ソース/ドレインとなる領域を含む活性領域2aと、ポリシリコン配線3aとの交差部に形成され、第2アクセスNMOSトランジスタN4は、ソース/ドレインとなる領域を含む活性領域2dと、ポリシリコン配線3dとの交差部に形成される。
第1ドライバNMOSトランジスタN1は、ソース/ドレインとなる領域を含む活性領域2aと、ポリシリコン配線3bとの交差部に形成され、第2ドライバNMOSトランジスタN2は、ソース/ドレインとなる領域を含む活性領域2dと、ポリシリコン配線3cとの交差部に形成される。
第1ロードPMOSトランジスタP1は、ソース/ドレインとなる領域を含む活性領域2bと、ポリシリコン配線3bとの交差部に形成され、第2アクセスPMOSトランジスタP2は、ソース/ドレインとなる領域を含む活性領域2cと、ポリシリコン配線3cとの交差部に形成される。
ポリシリコン配線3a〜3dは、各MOSトランジスタのゲートとなり、図1に示すように、同じ方向に延在する。すなわち、ポリシリコン配線3a〜3dは、Pウエル領域とNウエル領域が延在する方向(図1における縦方向)に垂直な方向(図1における横方向)であって、Pウエル領域とNウエル領域が並ぶ方向に延在する。
活性領域2a、2d、活性領域2b、2cおよびポリシリコン配線3a〜3dを覆うように、層間絶縁膜を形成し、これに活性領域2a、2d、活性領域2b、2cおよびポリシリコン配線3a,3dに達するコンタクト部4a〜4lを形成する。このコンタクト部4a〜4l内には、上層配線との接続用の導電層を埋め込まれている。
なお、コンタクト部4a,4lはゲートに達するゲートコンタクトであり、コンタクト部4f,4gは、不純物拡散領域とポリシリコン配線とに達する共通コンタクト(Shared Contact)であり、それ以外のコンタクト部4b,4c,4d,4e,4h,4i,4j,4kは不純物拡散領域に達する拡散コンタクトである。
図28において、第1ドライバNMOSトランジスタN1のドレインとなるN型不純物拡散領域と、第1アクセスNMOSトランジスタN3のドレインとなるN型不純物拡散領域は、これらのトランジスタに共有されている。このN型不純物拡散領域上に形成されるコンタクト部4c、第1金属配線5aおよびコンタクト部(共通コンタクト)4fを介して、第1ドライバNMOSトランジスタN1のドレインと第1アクセスNMOSトランジスタN3のドレインとが、第1ロードトランジスタP1のドレインと接続される。この端子が、図2に示す等価回路図の記憶ノードNaとなる。
同様に、第2ドライバNMOSトランジスタN2のドレインであるN型不純物拡散領域と第2アクセスNMOSトランジスタN3のドレインであるN型不純物拡散領域は、コンタクト部4j、第1金属配線5bおよびコンタクト部(共通コンタクト)4gを介して第2ロードトランジスタP2のドレインと接続される。この端子が図28に示す等価回路図の記憶ノードNbとなる。
図20は、図19のXX−XX線における断面図である。この図20に示されるように、半導体基板1の主表面上には、選択的に形成された分離領域30Aと、この分離領域30A間に位置する半導体基板1の主表面上に形成された活性領域2a〜2dが形成されている。分離領域30A内には、空隙部AGが形成されている。
そして、ポリシリコン配線3cが、複数の分離領域30Aおよび活性領域2b、2c、2dに跨って延在している。また、ポリシリコン配線3aも同様に、複数の分離領域30Aおよび活性領域2aに跨って延在している。
さらに、このポリシリコン配線3a、3cを覆う層間絶縁膜と、ポリシリコン配線3a、3cに電圧を印加可能なコンタクト部4a、4fが形成されている。
図21は、図19のXXI−XXI線における断面図である。この図21および図19において、活性領域2aと活性領域2cとの間に位置する半導体基板1の主表面には、分離領域30Bが形成されている。この分離領域30Bの分離幅は、分離領域30Aの分離幅より大きい。そして、分離領域30B内には、シリコン酸化膜等の分離絶縁膜が充填されている。このように、空隙部AGは、活性領域2a〜2d間のうち、幅の狭い領域に選択的に形成されている。そして、活性領域2a〜2dの延在方向に沿って延在しており、第1と第2ドライバNMOSトランジスタN1,N2と、第1と第2アクセスNMOSトランジスタN3,N4と、第1と第2ロードPMOSトランジスタP1,P2との各ゲート長方向に延在している。
このため、製造過程において、各トランジスタが位置する各活性領域2a〜2dのゲート長方向に結晶欠陥が生じることを効果的に抑制することができる。
図22から図27を用いて、本実施の形態2に係る半導体装置200の製造方法について説明する。
図22は、本実施の形態2に係る半導体装置200の製造工程の第1工程を示す平面図であり、図23は、第1工程における断面図である。
図22および図23に示されるように、半導体基板1の主表面上に絶縁膜40、41を形成し、この絶縁膜40、41にパターニングを施して、形成する活性領域2a〜2dに従ったパターンを有するマスクを形成する。そして、このマスクを用いて、半導体基板1にエッチングを施して、半導体基板1の主表面に、活性領域2a〜2dとトレンチ溝10Aとを形成する。
図24は、本実施の形態2に係る半導体装置200の製造工程の第2工程を示す断面図である。
図24において、熱処理酸化を施して、形成したトレンチ溝10Aの内表面上に、熱酸化膜を形成する。そして、この熱酸化膜に等方性エッチングを施して、トレンチ溝10Aのトレンチ幅を大きくする。これにより、絶縁膜41が活性領域2a〜2d上から、トレンチ溝10Aの内方に向けて突出するようになる。
その後、シリコン酸化膜等の絶縁膜20を堆積する。この際、上記実施の形態1と同様に、絶縁膜40がトレンチ溝10Aの内方に向けて突出しているので、絶縁膜20を堆積すると、空隙部AGが形成される。
図25は、本実施の形態2に係る半導体装置200の製造工程の第3工程を示す断面図であり、図26は、第4工程を示す断面図である。
図25に示されるように、絶縁膜40、41からなるマスクを除去するとともに、半導体基板1の主表面に、熱酸化処理を施して半導体基板1の主表面上に、絶縁膜11を形成する。この際、各分離領域30A内に空隙部AGが形成されているので、絶縁膜20が熱膨張する際に、半導体基板1の主表面に結晶欠陥が形成されることを抑制することができる。さらに、図26に示されるように、半導体基板1の絶縁膜11を介して、ポリシリコン膜40を堆積する。
図27は、半導体装置200の製造工程の第5工程を示す平面図である。この図27に示されるように、導電膜40にパターニングを施して、半導体基板1の主表面上に、ポリシリコン配線3a〜3dを形成する。
以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。さらに、上記数値などは、例示であり、上記数値および範囲にかぎられない。
本発明は、半導体装置およびその製造方法に関し、特に、トレンチ分離構造を有する半導体装置およびその製造方法に好適である。
本実施の形態1に係る半導体装置の平面図である。 (A)は、図1に示されたIIA−IIAにおける断面図であり、(B)は、図1に示されたIIB−IIB線における断面図である。 (A)は、本実施の形態1に係る半導体装置の製造工程の第1工程におけるメモリセル領域の断面図であり、(B)は、周辺回路領域における第1工程における断面図である。 (A)は、半導体装置の第2工程におけるメモリセル領域の断面図であり、(B)は、半導体装置の第2工程における周辺回路領域の断面図である。 (A)は、半導体装置の第3工程におけるメモリセル領域における断面図であり、(B)は、半導体装置の第3工程における周辺回路領域における断面図である。 (A)は、半導体装置の第4工程のメモリセル領域における断面図であり、(B)は、周辺回路領域における断面図である。 (A)は、半導体装置の第5工程におけるメモリセル領域における断面図であり、(B)は、半導体装置の第5工程における周辺回路領域の断面図である。 (A)は、半導体装置の第6工程を示すメモリセル領域における断面図であり、(B)は、第6工程における周辺回路領域の断面図である。 活性領域内に結晶欠陥が形成されている半導体装置と本実施の形態1に係る半導体装置の動作を示したグラフである。 本実施の形態1に係る半導体装置の変形例を示す平面図であり、メモリセル領域における平面図である。 本実施の形態1に係る半導体装置のさらに他の変形例を示す平面図である。 図3(A)に示された半導体装置の第1工程より前工程における製造工程を示す断面図である。 図12に示された半導体記憶装置の製造工程後の製造工程を示す断面図である。 図13に示された半導体記憶装置の製造工程後の製造工程を示す断面図である。 図12に示された半導体装置の製造工程に対応する製造工程を示した断面図である。 図15に示された半導体装置の製造工程の断面図である。 図16に示された半導体装置の製造工程後の製造工程を示す断面図である。 トレンチ形状によって、形成される空隙部の形状を示した断面図である。 本実施の形態2に係る半導体装置の領域を示した平面図である。 図19のXX−XX線における断面図である。 図19のXXI−XXI線における断面図である。 本実施の形態2に係る半導体装置の製造工程の第1工程を示す平面図である。 本実施の形態2に係る半導体装置の製造工程の第1工程を示す断面図である。 本実施の形態2に係る半導体装置の製造工程の第2工程を示す断面図である。 本実施の形態2に係る半導体装置の製造工程の第3工程を示す断面図である。 本実施の形態2に係る半導体装置の製造工程の第4工程を示す断面図である。 本実施の形態2に係る半導体装置の製造工程の第5工程を示す平面図である。 メモリセルMC1の等価回路を示した回路図である。
符号の説明
1 メモリセル、2a,2b,2c,2d 活性領域、3a ポリシリコン配線、10A、10B トレンチ溝、30,30A,30B 分離領域、AR 活性領域。

Claims (19)

  1. 主表面を有する半導体基板と、
    前記半導体基板の主表面に形成された第1凹部と、該第1凹部内に形成された第1分離絶縁膜と、前記分離領域内に形成された空隙部とを有する第1分離領域と、
    前記半導体基板の主表面に形成され、前記第1凹部の幅より幅広の第2凹部と、該第2凹部内に充填された第2分離絶縁膜とを有する第2分離領域と、
    を備えた半導体装置。
  2. 前記第1凹部の深さと前記第2凹部の深さとが同じである、請求項1に記載の半導体装置。
  3. 前記第1凹部の幅が一定である、請求項1または請求項2に記載の半導体装置。
  4. 前記空隙部は、該第1分離領域の長手方向に連続的に延びる、請求項1に記載の半導体装置。
  5. 前記半導体基板の主表面に形成された活性領域と、
    前記活性領域上に形成されたゲート電極と、
    前記ゲート電極を挟んで隣り合う前記活性領域に形成された第1、第2不純物領域と、
    をさらに備え、
    前記第1分離領域は、前記活性領域の外周縁部のうち少なくとも、前記ゲート電極が延在する方向と交差する方向に延在する部分に沿って形成された、請求項1から請求項4のいずれかに記載の半導体装置。
  6. 前記第1分離領域は、前記活性領域を取り囲むように形成された、請求項5に記載の半導体装置。
  7. 前記半導体基板は、情報を記憶可能なメモリセルが形成されるメモリセル領域と、
    前記メモリセルの動作制御を行う周辺回路領域とを備え、
    前記第1分離領域を前記メモリセル領域内に形成し、前記第2分離領域を前記周辺回路領域内に形成した、請求項1から請求項6のいずれかに記載の半導体装置。
  8. 半導体基板と、
    前記半導体基板の主表面に形成された活性領域パターンと、
    前記半導体基板の主表面に形成されたダミーパターンと、
    前記活性領域パターンと前記ダミーパターンとの間に位置する第1トレンチ分離領域と、
    前記第1トレンチ分離領域内に形成され空隙部と、
    を備えた半導体装置。
  9. 前記活性領域パターンを取り囲むように、前記ダミーパターンが形成された、請求項8に記載の半導体装置。
  10. 前記活性領域パターン上に形成されたゲート電極と、
    前記ゲート電極を挟んで隣り合う前記活性領域パターンに形成された第1、第2不純物領域とをさらに備え、
    前記空隙部は、前記活性領域パターンの外周縁部のうち少なくとも、前記ゲート電極の延在方向と交差する方向に延在する部分に沿って形成された、請求項8または請求項9に記載の半導体装置。
  11. 前記活性領域パターンを取り囲むように前記空隙部が形成された、請求項8から請求項10のいずれかに記載の半導体装置。
  12. 前記半導体基板は、情報を記憶可能なメモリセルが形成されるメモリセル領域と、
    前記メモリセルの動作制御を行う周辺回路領域とを備え、
    前記第1トレンチ分離領域を前記メモリセル領域内に形成し、該第1トレンチ分離領域の分離幅より幅広の第2トレンチ分離領域を前記周辺回路領域内に形成した、請求項8から請求項11のいずれかに記載の半導体装置。
  13. 半導体基板と、
    前記半導体基板の主表面に形成された活性領域と、
    前記活性領域を規定するように、前記半導体基板の主表面に形成されたトレンチ分離領域と、
    前記活性領域上に延在するように形成されたゲート電極と、
    前記ゲート電極の両側の前記活性領域に形成された第1、第2不純物領域と、
    前記活性領域の外周縁部であって、前記ゲート電極と交差する方向に延びる部分に沿って、前記トレンチ分離領域内に形成した空隙部と、
    を備える半導体装置。
  14. 半導体基板の主表面上に、第1絶縁膜を形成する工程と、
    前記第1絶縁膜上に第2絶縁膜を形成する工程と、
    前記第1絶縁膜と前記第2絶縁膜とをパターニングしてマスクを形成する工程と、
    前記マスクを用いて、前記半導体基板をエッチングして、トレンチを形成する工程と、
    前記トレンチの側壁をエッチングして、前記マスクを前記トレンチ内方に向けて張り出させる工程と、
    前記マスクを覆うように、第3絶縁膜を形成して、前記トレンチ内に第3絶縁膜を埋め込むと共に、トレンチ内に空隙部を形成する工程と、
    前記第3絶縁膜の上面から該第3絶縁膜の厚みを減じることで前記マスクを露出させる工程と、
    前記マスクを除去する工程と、
    を備えた半導体装置の製造方法。
  15. 前記トレンチ分離内方への前記マスクの張り出し量を調整することで、前記空隙部の位置を制御する、請求項14に記載の半導体装置の製造方法。
  16. 前記トレンチは、第1トレンチと、該第1トレンチの幅より幅広の第2トレンチとを含み、
    前記トレンチを形成する工程は、前記第1トレンチと第2トレンチとを形成する工程を含み、
    前記空隙部を形成する工程は、前記第1トレンチ内に前記第3絶縁膜を埋め込み、前記第1トレンチ内に前記空隙部を形成する一方で、前記第2トレンチ内に前記第3絶縁膜を充填する工程を含む、請求項14または請求項15に記載の半導体装置の製造方法。
  17. 半導体基板の主表面上に、選択的にマスクを形成する工程と、
    前記マスクを用いて、前記半導体基板をエッチングして、トレンチを形成する工程と、
    前記トレンチの側壁と底面に沿うように第1絶縁膜を形成する工程と、
    前記マスクと前記第1絶縁膜とを覆い、前記トレンチ内に空隙部を形成するように、第2絶縁膜を堆積する工程と、
    前記第2絶縁膜の上面から厚みを減じて前記マスクを露出する工程と、
    前記マスクを除去する工程と、
    を備えた半導体装置の製造方法。
  18. 前記第2絶縁膜の厚みは、前記第1絶縁膜の厚みより厚い、請求項17に記載の半導体装置の製造方法。
  19. 前記トレンチを形成する工程は、第1トレンチと該第1トレンチの幅より広幅の第2トレンチとを形成する工程と、
    前記第2絶縁膜を形成する工程は、前記第1トレンチ内に前記空隙部を形成する工程を含む請求項17または請求項18に記載の半導体装置の製造方法。
JP2006189648A 2006-07-10 2006-07-10 半導体装置およびその製造方法 Withdrawn JP2008021675A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189648A JP2008021675A (ja) 2006-07-10 2006-07-10 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189648A JP2008021675A (ja) 2006-07-10 2006-07-10 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008021675A true JP2008021675A (ja) 2008-01-31

Family

ID=39077457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189648A Withdrawn JP2008021675A (ja) 2006-07-10 2006-07-10 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2008021675A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146693A (ja) * 2011-01-06 2012-08-02 Toshiba Corp 半導体記憶装置及びその製造方法
JP2013120942A (ja) * 2011-12-07 2013-06-17 Samsung Electronics Co Ltd 半導体装置の製造方法及び半導体装置
US8569839B2 (en) 2010-01-20 2013-10-29 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
WO2014038683A1 (ja) * 2012-09-04 2014-03-13 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
JP2017011311A (ja) * 2016-10-13 2017-01-12 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US10038010B2 (en) 2016-12-06 2018-07-31 Samsung Electronics Co., Ltd. Semiconductor device
USRE48450E1 (en) 2009-09-15 2021-02-23 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
US11069732B2 (en) 2016-01-26 2021-07-20 Canon Kabushiki Kaisha Semiconductor device and method for manufacturing semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48450E1 (en) 2009-09-15 2021-02-23 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
US8569839B2 (en) 2010-01-20 2013-10-29 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
JP2012146693A (ja) * 2011-01-06 2012-08-02 Toshiba Corp 半導体記憶装置及びその製造方法
JP2013120942A (ja) * 2011-12-07 2013-06-17 Samsung Electronics Co Ltd 半導体装置の製造方法及び半導体装置
WO2014038683A1 (ja) * 2012-09-04 2014-03-13 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
US9331144B2 (en) 2012-09-04 2016-05-03 Ps4 Luxco S.A.R.L. Semiconductor device and method for producing the same
US11069732B2 (en) 2016-01-26 2021-07-20 Canon Kabushiki Kaisha Semiconductor device and method for manufacturing semiconductor device
JP2017011311A (ja) * 2016-10-13 2017-01-12 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US10038010B2 (en) 2016-12-06 2018-07-31 Samsung Electronics Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP4461154B2 (ja) 半導体装置
TWI382528B (zh) 半導體記憶裝置及其製造方法
EP2648220B1 (en) Floating gate memory device with trench isolation and method for manufacturing thereof
US7521318B2 (en) Semiconductor device and method of manufacturing the same
US7915691B2 (en) High density SRAM cell with hybrid devices
JP2008021675A (ja) 半導体装置およびその製造方法
KR20180131075A (ko) 집적회로 소자 및 그 제조 방법
JP2006344809A (ja) 半導体装置及びその製造方法
JP4566086B2 (ja) 半導体装置の製造方法
US20080303066A1 (en) Semiconductor device
JP2012039077A (ja) 半導体装置及びその製造方法
KR100749109B1 (ko) 반도체 기억 장치 및 반도체 장치군
JP4811901B2 (ja) 半導体装置
US8748978B2 (en) Sense-amp transistor of semiconductor device and method for manufacturing the same
JP2008041895A (ja) 半導体装置およびその製造方法
US9634008B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7994587B2 (en) Semiconductor device and semiconductor device manufacturing method
US7687368B2 (en) Semiconductor device manufacturing method
WO2014126214A1 (ja) 半導体装置
US7977723B2 (en) Semiconductor device
JP5543768B2 (ja) 不揮発性半導体記憶装置
JP5691412B2 (ja) 半導体装置及びその製造方法
JP2008192676A (ja) 半導体記憶装置及びその製造方法
JP2010027797A (ja) 半導体装置及び半導体装置の製造方法。
JP2009147086A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006