JP2008007469A - 炭酸エステル及びその製造方法、並びに、磁気記録媒体 - Google Patents

炭酸エステル及びその製造方法、並びに、磁気記録媒体 Download PDF

Info

Publication number
JP2008007469A
JP2008007469A JP2006180578A JP2006180578A JP2008007469A JP 2008007469 A JP2008007469 A JP 2008007469A JP 2006180578 A JP2006180578 A JP 2006180578A JP 2006180578 A JP2006180578 A JP 2006180578A JP 2008007469 A JP2008007469 A JP 2008007469A
Authority
JP
Japan
Prior art keywords
carbonate
magnetic
magnetic layer
layer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006180578A
Other languages
English (en)
Inventor
Yoshihiko Mori
仁彦 森
Daisuke Urazoe
大祐 浦添
Hiroshi Hashimoto
博司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006180578A priority Critical patent/JP2008007469A/ja
Priority to US11/767,097 priority patent/US20080020243A1/en
Publication of JP2008007469A publication Critical patent/JP2008007469A/ja
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/02Preparation of esters of carbonic or haloformic acids from phosgene or haloformates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/71Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the lubricant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】高純度の炭酸エステルを簡便に得ることができる炭酸エステルの製造方法、及び、前記製造方法により得られた炭酸エステルを提供すること、前記炭酸エステルを用い、電磁変換特性、耐久性及び保存安定性に優れた磁気記録媒体を提供すること。
【解決手段】式(1)で表される飽和アルキル炭酸エステルを合成し前記炭酸エステルの粗生成物を得る工程、及び、飽和炭化水素溶媒と該飽和炭化水素溶媒に対して無限に相溶しない有機溶媒を含む溶媒とを用いて前記粗生成物を液液抽出し、前記炭酸エステルの精製物を得る工程を含むことを特徴とする炭酸エステルの製造方法、前記製造方法により得られる炭酸エステル、及び、前記炭酸エステルを用いた磁気記録媒体。式(1)中、R1及びR2は、それぞれ独立に飽和炭化水素基を表し、R1の炭素数とR2の炭素数との和は12以上50以下である。
【化1】
Figure 2008007469

【選択図】なし

Description

本発明は、潤滑剤として好適に用いることができる炭酸エステルの製造方法、前記製造方法により得られる炭酸エステル、及び、前記炭酸エステルを潤滑剤として用いた磁気記録媒体に関する。
磁気記録技術は、媒体の繰り返し使用が可能であること、信号の電子化が容易であり周辺機器との組み合わせによるシステムの構築が可能であること、信号の修正も簡単にできること等の他の記録方式にはない優れた特長を有することから、ビデオ、オーディオ、コンピューター用途等を始めとして様々な分野で幅広く利用されてきた。
近年の記録の大容量化、高記録密度化要求に応える磁気記録媒体は、その高度な電磁変換特性を達成するため極めて平滑な表面を有する。この平滑な表面を記録ヘッドが高速で摺動すると従来の技術では耐久性を確保することが極めて難しくなる。
磁気記録媒体における耐久性の改善のため、例えば、磁気記録媒体に潤滑剤としてカーボネート化合物を使用する磁気記録媒体が提案されている(特許文献1及び2)。
また、表面に特定の研磨剤突起密度を有し、酸加水分解速度を規定した磁気記録媒体が提案されている(特許文献3)。
特開平7−138586号公報 特開平8−77547号公報 特開2003−323711号公報
本発明が解決しようとする課題は、高純度の炭酸エステルを簡便に得ることができる炭酸エステルの製造方法、及び、前記製造方法により得られた炭酸エステルを提供することである。
また、本発明が解決しようとする他の課題は、前記炭酸エステルを用い、電磁変換特性、耐久性及び保存安定性に優れた磁気記録媒体を提供することである。
本発明が解決しようとする課題は、下記<1>、<2>または<3>に記載の手段によって解決された。
<1> 式(1)で表される飽和アルキル炭酸エステルを合成し前記式(1)で表される飽和アルキル炭酸エステルの粗生成物を得る工程、及び、飽和炭化水素溶媒と該飽和炭化水素溶媒に対して無限に相溶しない有機溶媒を含む溶媒とを用いて前記粗生成物を液液抽出し、式(1)で表される飽和アルキル炭酸エステルの精製物を得る工程を含むことを特徴とする炭酸エステルの製造方法、
Figure 2008007469
(式(1)中、R1及びR2は、それぞれ独立に飽和炭化水素基を表す。ただし、R1の炭素数とR2の炭素数との和は12以上50以下である。)
<2> 上記<1>に記載の製造方法により製造された炭酸エステル、
<3> 非磁性支持体上に、強磁性粉末を結合剤中に分散した磁性層を有し、該磁性層が上記<2>に記載の炭酸エステルを含有し、該磁性層表面に存在する突起数が式(2)を満足する磁気記録媒体。
0.01≦H15/H10≦0.20 (2)
(H10は磁性層表面に存在する高さ10nm未満の突起の単位面積あたりの数(個/μm2)を表し、H15は磁性層表面に存在する高さ15nm以上の突起の単位面積あたりの数(個/μm2)を表す。)
本発明によれば、高純度の炭酸エステルを簡便に得ることができる炭酸エステルの製造方法、及び、前記製造方法により得られた炭酸エステルを提供することができる。
また、本発明が解決しようとする他の課題は、前記炭酸エステルを用い、電磁変換特性、耐久性及び保存安定性に優れた磁気記録媒体を提供することができる。
(炭酸エステル及びその製造方法)
本発明の炭酸エステルの製造方法は、式(1)で表される飽和アルキル炭酸エステルを合成し前記式(1)で表される飽和アルキル炭酸エステルの粗生成物を得る工程、及び、飽和炭化水素溶媒と該飽和炭化水素溶媒に対して無限に相溶しない有機溶媒(以下、「極性有機溶媒」ともいう。)を含む溶媒とを用いて前記粗生成物を液液抽出し、式(1)で表される飽和アルキル炭酸エステルの精製物を得る工程(以下、「抽出工程」ともいう。)を含むことを特徴とする。
Figure 2008007469
(式(1)中、R1及びR2は、それぞれ独立に飽和炭化水素基を表す。ただし、R1の炭素数とR2の炭素数との和は12以上50以下である。)
また、本発明の炭酸エステルは、前記製造方法により得られた式(1)で表される飽和アルキル炭酸エステルであり、潤滑剤として好適に使用でき、磁気記録媒体に用いる潤滑剤として特に好適に使用できる。
なお、本発明において、前記製造方法により得られた式(1)で表される飽和アルキル炭酸エステルは、「本発明の化合物」、「本発明の炭酸エステル」又は「本発明のカーボネート化合物」ともいう。
磁気記録媒体に炭酸エステルを用いた場合、磁気記録媒体中の炭酸エステルはアルコール、原料に用いた塩基等の残存で、実用上好ましくない変色、結晶化などの悪影響が生じることがわかった。この対策として、炭酸エステルをヘプタンなどの飽和炭化水素溶媒に分配させ、アルコール及び原料に用いた塩基等の残存物を該飽和炭化水素溶媒と無限に相溶しない溶媒あるいは混合溶媒、好ましくはメタノール、アセトニトリルあるいはその混合物の相に分配させて、液−液系抽出を適用することにより、高い純度で本発明の炭酸エステルが得られることが分かった。
前記式(1)において、R1及びR2は、各々同じ又は異なるものであってもよい飽和炭化水素基であって、R1及びR2の両炭素数の和が12以上50以下の飽和炭化水素基である。
両炭素数の和は、好ましくは12〜40、更に好ましくは12〜30である。両炭素数の和が12未満であると、揮発性が高いため、磁気記録媒体に潤滑剤として用いた場合、走行時に磁性層表面から飛んでしまい走行停止を引き起こす。両炭素数の和が50よりも大きくなると、分子のモビリティが低くなるため、磁気記録媒体に潤滑剤として用いた場合、表面に必要量の潤滑剤が、しみ出て来ないため走行停止を引き起こす。
また、炭酸エステルの製造時において、本発明の炭酸エステルのR1及びR2の両炭素数の和が12未満であると、炭酸エステルの飽和炭化水素溶媒への溶解性が悪化するため、製法上好ましくなく、また、両炭素数の和が50よりも大きくなると、アルコール等の原料由来の残存物の極性有機溶媒への溶解性が悪化するため、製法上好ましくない。
また、R1及びR2における飽和炭化水素基は、直鎖でも分岐であってもよく、例えばシクロヘキシルのような環構造を有していてもよいが、直鎖又は分岐状飽和炭化水素基であることが好ましい。また、R1及びR2の何れか一方が直鎖であるものが好ましい。
直鎖状飽和炭化水素基の例としてはブチル、ヘキシル、オクチル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコサニル、ドコサニル等が好ましく挙げられる。
分岐状飽和炭化水素基の例としては2−ブチル、4−メチル−2−ペンチル、2,2−ジメチルプロピル、2,2−ジメチルブチル、2−エチルヘキシル、2,2,4,4−テトラペンチル、2−ブチルオクチル、2−ヘキサデシル、2−デシルテトラデシル等が好ましく挙げられる。
本発明の式(1)で表される炭酸エステル(カーボネート)化合物の合成方法としては、特に制限はなく公知の炭酸エステル合成法を用いることができ、クロロギ酸エステルとアルコールとを反応させる方法や、低級炭化水素基を有する炭酸エステルとアルコールとを反応させる方法、ジアリール炭酸エステルとアルコールとを反応させる方法、金属触媒を用い一酸化炭素とアルコールとを反応させる方法、ホスゲン又はトリホスゲン等のホスゲン等価体とアルコールとを反応させる方法等が例示できる。これらの中でも、異なる2つの飽和炭化水素基を容易に導入することができ、かつ、単一種の炭酸エステルを合成できる点から、クロロギ酸エステルと前記飽和炭化水素基を有するアルコールとを反応させることにより行う方法が好ましい。なお、前記低級炭化水素基とは、反応に用いるアルコールの飽和炭化水素基よりも炭素数が少ない炭化水素基であることを示す。
また、前記式(1)で表される飽和アルキル炭酸エステルの粗生成物とは、合成により得られた式(1)で表される飽和アルキル炭酸エステルを含む混合物であればよく、例えば、式(1)で表される飽和アルキル炭酸エステル合成後の反応溶液そのものやその濾過物、それらから溶媒を蒸発させた反応残渣等が挙げられる。
かかる合成反応の出発原料であるクロロギ酸エステルの具体例としては、クロロギ酸エチル、クロロギ酸ブチル、クロロギ酸sec−ブチル、クロロギ酸イソブチル、クロロギ酸イソプロピル、クロロギ酸2−エチルヘキシル、クロロギ酸メチル、クロロギ酸プロピル等の工業的に容易に入手できるものが好適である。
合成反応時における反応温度は、反応が進行する温度であれば特に制限はないが、0℃〜60℃の範囲で行うことが好ましく、より好ましくは0℃〜40℃、更に好ましくは0℃〜25℃である。
合成反応時における圧力は減圧条件でも常圧条件でもよいが、経費の面を考慮すると常圧条件が好ましい。
合成反応には触媒を用いていてもよいが、触媒を用いる場合は、反応原料であるクロロギ酸エステル化合物や低級炭化水素基やアリール基を有する炭酸エステル、ホスゲン類等のカーボネート反応基質に対して0.001〜1.0%の当量で用いることが好ましい。
かかる触媒の例としては、ピリジン、4−ジメチルアミノピリジン、2−メチルピリジン、4−メチルピリジン、イミダゾール、N−メチルイミダゾール、N−メチルモルホリン、ベンゾトリアゾール等の有機塩基、水酸化リチウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸塩、及び、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素塩が挙げられる。これらの中でも、ピリジン、4−ジメチルアミノピリジン、2−メチルピリジン、4−メチルピリジン、N−メチルイミダゾール、ベンゾトリアゾール等の中性時N−H結合の無い有機塩基又は水酸化リチウムが好ましいが、ピリジン、4−ジメチルアミノピリジン、2−メチルピリジン、4−メチルピリジンのピリジン及びその誘導体がより好ましい。
本発明の炭酸エステルの製造方法において、本発明のカーボネート化合物を反応液より取り出す方法としては、飽和炭化水素溶媒と該飽和炭化水素溶媒に対して無限に相溶しない有機溶媒を含む溶媒とを用いて液液抽出し、式(1)で表される飽和アルキル炭酸エステルの精製物を得る工程により行う方法を用いるが、さらに高純度の炭酸エステルとするため、前記抽出工程を複数回行ってもよく、また、他の方法による抽出、蒸留、結晶化等の分離方法を組み合わせて行ってもよい。
以下に前記抽出工程に使用する溶媒について述べる。
本発明の飽和アルキル炭酸エステルは飽和炭化水素系溶媒への溶解性が高いことから、抽出工程において使用する溶媒は飽和炭化水素溶媒と、飽和炭化水素溶媒と相分離する溶媒として飽和炭化水素溶媒と無限に相溶しない有機溶媒とを含む溶媒を用いることが肝要である。
本発明に用いることができる飽和炭化水素溶媒としては、本発明の飽和アルキル炭酸エステルを溶解するものであれば、特に制限はないが、溶媒の取り扱いや分離操作の容易性から、沸点が35〜220℃の飽和炭化水素溶媒であることが好ましく、ヘプタン、ヘキサン、デカン、ウンデカン、ドデカン、シクロヘキサン、又は、これらの混合溶媒であることがより好ましく、ヘプタン、又は、ヘキサンであることが更に好ましい。また、飽和炭化水素溶媒は、1種単独で用いてもよく、2種以上を任意の割合で混合して用いてもよい。
また、抽出工程に使用する極性有機溶媒は不純物を溶解する必要があり、反応で用いた塩基等を除去するためには水と無限大に相溶しうる有機溶媒が好ましい。
更に本発明の飽和アルキル炭酸エステル化合物の原料として用いるアルコールは水に対する溶解度が極めて低いため、未反応成分として系内に残存する該アルコールを不純物として取り除く必要がある場合もあるため、具体的な極性有機溶媒としては、メタノール、エタノール、プロパノール、アセトニトリル、エチレングリコール及び/又はプロピレングリコールを含む溶媒が好ましく、メタノール及び/又はアセトニトリルを含む溶媒がより好ましい。
上記の溶媒を単独で用いる以外でも、飽和炭化水素溶媒の反応系から、副生成物、残存する不純物を除去することができる混合溶媒を使用することができる。前記混合溶媒としては極性溶媒を含む溶媒であればよく、具体的には、メタノールと水の混合溶媒、アセトニトリルと水の混合溶媒、プロピレングリコールと水の混合溶媒、又は、メタノールとエチレングリコールの混合溶媒が好ましく例示できる。
また、本発明の炭酸エステルの製造方法に使用する飽和炭化水素溶媒と極性有機溶媒との組み合わせとしては、前述した飽和炭化水素溶媒の好ましい範囲及び前述した極性有機溶媒の好ましい範囲の組み合わせもまた好ましく、ヘプタン又はヘキサンと、メタノール、アセトニトリル、又は、メタノール若しくはアセトニトリルを少なくとも含む混合溶媒との組み合わせが特に好ましい。
また、飽和炭化水素溶媒と極性有機溶媒との具体的な組み合わせの例としては、ヘキサンとメタノール、ヘプタンとアセトニトリル、デカンとメタノール、オクタンとアセトニトリル、オクタンとメタノール、ドデカンとアセトンなどが好ましく挙げられるが、より好ましくはヘキサンとメタノール、ヘプタンとメタノール、ヘプタンとアセトニトリルの組み合わせが選ばれ、ヘキサンとメタノール、ヘプタンとメタノールの組み合わせがさらに好ましい。
本発明の製造方法を用いて不純物を除去されたカーボネート化合物は極めて純度が高く、ガスクロマトグラフィー等による検出が困難な成分をも取り除かれたものである。
(磁気記録媒体)
本発明の磁気記録媒体は、非磁性支持体上に、強磁性粉末を結合剤中に分散した磁性層を有し、該磁性層が本発明の炭酸エステルを含有し、該磁性層表面に存在する突起数が式(2)を満足する。
0.01≦H15/H10≦0.20 (2)
(H10は磁性層表面に存在する高さ10nm未満の突起の単位面積あたりの数(個/μm2)を表し、H15は磁性層表面に存在する高さ15nm以上の突起の単位面積あたりの数(個/μm2)を表す。)
本発明の磁気記録媒体は、従来の磁気記録媒体に比べ、極めて高度な耐久性、電磁変換特性、及び、保存安定性を達成するものである。
例えば、特開平7−138586号公報及び特開平8−77547号公報では、炭酸エステルが実施例に用いられているものの、比較的粗い表面を有し、十分な電磁変換特性を確保することが困難であった。
また、特開2003−323711号公報に記載されているように研磨剤に関する特定の突起密度の表面性にすることである程度の電磁変換特性と耐久性を確保できるものの、平滑な媒体で十分な耐久性を満足するには、潤滑性に優れるアルキル炭酸エステルが必要となる。特開2003−323711号公報に記載されているような脂肪酸エステルでは、耐久性が不十分であり、また、脂肪酸エステルでは加水分解反応が避けられず、保存安定性も不十分である。
高度な電磁変換特性と耐久性を有する本発明の磁気記録媒体を得るには、鋭意検討の結果、前記式(2)を満足する必要があることが分かった。
また、加水分解しにくいカーボネート骨格を有し、分子量の割に粘度が低い特徴を有するアルキル炭酸エステルを上記表面性の媒体に使用することで十分な、電磁変換特性と耐久性、保存性を全て満足できることが分かった。
本発明者らは、磁性層表面に存在している突起高さや各種潤滑剤と、電磁変換特性及び走行耐久性の関係について詳細に調べた。その結果、表面に本発明の炭酸エステルが適度に存在することによって、ヘッド/テープの摺動抵抗が小さくなるので耐久性を良好にできる上、従来の脂肪酸エステルに対して加水分解しにくい構造であるため、良好な保存安定性を確保できることが分かった。また、電磁変換特性、走行耐久性共に磁性層表面からの突起高さとの関係が強く、高い突起を少なくして低い突起を数多く形成することで、電磁変換特性を良好にでき、本発明の磁気記録媒体においては、磁性層表面に存在する突起について高さ10nm未満のものの単位面積あたりの数をH10、高さ15nm以上のものの単位面積あたりの数をH15としたときに、0.01≦H15/H10≦0.30の範囲では良好な電磁変換特性、走行耐久性の両立が図れる。より好ましいのは0.01≦H15/H10≦0.20のときである。H15/H10がこの範囲よりも小さいときは、高い突起が少なすぎるとヘッドに付着した汚れを除去する能力がなくなる等の原因で信頼性が劣化してしまう。逆に高い突起が多すぎるとスペーシングロスの影響が大きくなり、電磁変換特性が劣化してしまう。ただし、磁性層表面の突起高さのみの制御だけでは、十分な走行耐久性を確保できないことが分かった。
従来から磁性層表面に存在する潤滑剤の作用として、表面の潤滑剤量はヘッドとテープの摺動特性と密接な関係にあることが判っている。磁性層表面に潤滑剤が安定に存在することで、ヘッドとテープの摺動抵抗を小さくでき、走行耐久性を向上できる。近年の磁気記録媒体の高容量化の要求に伴って、磁性層は薄層化してゆく必要があり、薄層化にともない磁性層に含浸できる潤滑剤の量は少なくなってしまい、記録/再生ヘッドによる摺動で潤滑剤が次第に除去されてしまい潤滑剤が不足するため削れ、停止等を発生してしまうことがあった。また、磁気特性の向上のため磁性層表面はますます平滑化が必要であり、このため従来の潤滑剤では十分な走行性、繰り返し走行性、耐久性に効果を発揮し得なくなってきている。従来の潤滑油が少ない場合にはその潤滑効果を高めるため潤滑剤の量を多くすると、磁性塗膜の機械的強度は弱くなり、磁性層が削れ、削れ粉が走行経路を汚したり、あるいは十分な繰返し走行耐久性が得られなかったりした。
従来はステアリン酸ブチルの如き脂肪酸エステルとミリスチン酸の如き脂肪酸を混合して用いることが知られている。しかしながら、脂肪酸エステル及び脂肪酸を用いると高湿状態で走行させたとき、摩擦が大きくなり磁気テープの走行テンションが大きくなるという問題が生じた。
脂肪酸は単独で使用した場合は、滑性を得るためには、多量に用いる必要があり、この場合には磁性層が軟らかくなり、機械的強度が低下し、テープ/ヘッド間の相対速度に相当する高速摺動耐久性が劣化する欠点があった。また、脂肪酸と脂肪酸エステル化合物との併用は、高速摺動耐久性が良好となり、かつテンションも比較的小さくなるが、しかし85%RH(相対湿度)というような高湿条件においては走行テンションが大きくなる欠点を有していた。
本発明者らは、本発明の製造方法により製造された前記式(1)で表される飽和アルキル基を有した炭酸エステル(カーボネート)を潤滑剤として使用することで良好な走行耐久性を確保できることを見出した。本発明の飽和アルキル炭酸エステルは分子量の割に粘度が低いため流体潤滑性が高く、且つ脂肪酸エステルで無くカーボネートであるから加水分解しずらいため保存安定性が高い。
特開平8−77547号公報では不飽和アルキル炭酸エステルを使用した磁気記録媒体を開示しているが、この炭酸エステルは不飽和基を持つため結合剤への相溶性が高い。そのため薄層化した最上層あるいは単層磁性層だけに潤滑剤を添加しても表面に潤滑剤がわずかにしか出てこないため、走行耐久性において記録/再生ヘッドによる摺動で潤滑剤が次第に除去されてしまい走行停止等を引き起こしてしまう等の問題があった。そこで1〜5μmの厚みの下層に潤滑剤を添加し、不足する潤滑剤を下層に添加することで常に潤滑剤量を上層へ補うことを開示しているが、近年の高密度化を狙い下層厚みを1μm以下に薄層化した媒体では十分な耐久性を得られない。不飽和結合を含まない本発明の飽和アルキル炭酸エステルでは、結合剤への相溶性を適度に抑えることで十分な表面量を確保できることが分かった。
また、前述したように本発明の製造方法を用いて前記式(1)で表される炭酸エステルは不純物が除去され、極めて純度が高いため、使用した磁気記録媒体は電磁変換特性、耐久性及び保存性を全て満足できる。
磁気記録媒体表面の突起高さ分布を制御するには、例えば、以下のような方法が挙げられる。
1)研磨剤分散バインダー:研磨剤を結合剤と溶剤であらかじめ分散してから研磨剤を含まない磁性液に添加し、混合分散して磁性塗料とする方法、あるいは研磨剤と結合剤と溶剤をあらかじめ分散しておきこれに別途分散した研磨剤を含まない磁性液を混合し、必要に応じてさらに分散して磁性塗料とする方法において、研磨剤を分散する際のバインダーと、研磨剤を含まない磁性液中のバインダーの相溶性を高くする或いは低くする。相溶性が高ければ磁性層が塗布乾燥される際の研磨剤粒子の移動を抑制でき研磨剤の突出高さを低くでき、逆に相溶性を低くすれば研磨剤の突出高さを高くできる。
2)カレンダの強押し:高圧力、高温度の下、金属ロールなどの硬いロールで磁性層表面を成形し高い研磨剤突起を磁性層中に押し込ませる。線圧力としては、好ましくは2,000〜4,500N/cm(200〜450kg/cm)、より好ましくは2,500〜4,000N/cm(250〜400kg/cm)で処理温度は、好ましくは70〜110℃、より好ましくは80〜100℃である。また、処理速度は、好ましくは50〜400m/min、より好ましくは80〜300m/minである。線圧力及び処理温度が上記範囲であると、H15/H10が適切な範囲であり、走行耐久性及び電磁変換特性に優れる。
3)バインダーの調整:磁性層のバインダーの種類や配合比を調整してカレンダ前の磁性層のTgを小さくすると、同じ条件でカレンダしてもH15/H10は小さくなる。また、磁性体に対するバインダーの量を分散を損ねない程度に適度に少なくすると、カレンダ前の磁性層の空隙が多くなり、同じ条件でカレンダしてもH15/H10を小さくできる。
4)混練条件;磁性塗料の調整の際には、磁性体とバインダーと少量の溶剤で、ニーダーなどの装置を用いて強い剪断力で混練処理を行うのが一般的である。混練処理により磁性体とバインダーの吸着力が増し磁性層の充填度が大きくなりまた磁性層の強度が大きくなる。強く混練すると充填度が大きくなるが塗布後の磁性層の空隙が少なくなりカレンダされにくくなりH15/H10が大きくなる。
また、磁性体、非磁性下層に用いる非磁性粉体の粒子サイズ及び分散条件によっては、粉体の凝集物が磁性層及び非磁性下層に含まれる。そのような媒体の表面には粗大な突起を生じ、H15/H10は大きくなる。
5)ブレード処理:磁気テープを研磨テープにラッピングしたり、ダイヤモンド粉末などの硬い粉末を散りばめた回転ロールにラッピングさせて、磁性層を研磨処理し、研磨剤の突起をトップカットする。
I.磁性層
本発明の磁気記録媒体における磁性層は、本発明の飽和アルキル炭酸エステルを含有し、強磁性粉末を結合剤中に分散した層であり、磁気記録及びその再生に寄与する層である。
<強磁性粉末>
本発明の磁気記録媒体に使用される強磁性粉末は、コバルト含有強磁性酸化鉄又は強磁性合金粉末でSBET比表面積が、好ましくは40〜80m2/g、より好ましくは50〜70m2/gである。結晶子サイズは、好ましくは12〜25nm、より好ましくは13〜22nmであり、特に好ましくは14〜20nmである。長軸長は、好ましくは0.05〜0.25μmであり、より好ましくは0.07〜0.2μmであり、特に好ましくは0.08〜0.15μmである。
強磁性粉末としては、イットリウムを含むFe、Fe−Co、Fe−Ni、Co−Ni−Feが挙げられ、強磁性粉末中のイットリウム含有量は、鉄原子に対してイットリウム原子の比、Y/Feが0.5原子%〜20原子%が好ましく、更に好ましくは5〜10原子%である。上記範囲であると、強磁性粉末の高σS化でき、また、鉄の含有量が適度であるため、磁気特性が良好であり、電磁変換特性に優れる。さらに、鉄100原子%に対して20原子%以下の範囲内で、アルミニウム、ケイ素、硫黄、スカンジウム、チタン、バナジウム、クロム、マンガン、銅、亜鉛、モリブデン、ロジウム、パラジウム、錫、アンチモン、ホウ素、バリウム、タンタル、タングステン、レニウム、金、鉛、リン、ランタン、セリウム、プラセオジム、ネオジム、テルル、ビスマス等を含むことができる。また、強磁性金属粉末が少量の水、水酸化物又は酸化物を含むものなどであってもよい。
本発明の磁気記録媒体において、コバルト、イットリウムを導入した強磁性粉末の製造方法の一例を示す。第一鉄塩とアルカリを混合した水性懸濁液に、酸化性気体を吹き込むことによって得られるオキシ水酸化鉄を出発原料とする例を挙げることができる。このオキシ水酸化鉄の種類としては、α−FeOOHが好ましく、その製法としては、第一鉄塩を水酸化アルカリで中和してFe(OH)2の水性懸濁液とし、この懸濁液に酸化性ガスを吹き込んで針状のα−FeOOHとする第一の製法がある。一方、第一鉄塩を炭酸アルカリで中和してFeCO3の水性懸濁液とし、この懸濁液に酸化性気体を吹き込んで紡錘状のα−FeOOHとする第この製法がある。このようなオキシ水酸化鉄は第一鉄塩水溶液とアルカリ水溶液とを反応させて水酸化第一鉄を含有する水溶液を得て、これを空気酸化等により酸化して得られたものであることが好ましい。この際、第一鉄塩水溶液にNi塩や、Ca塩、Ba塩、Sr塩等のアルカリ土類元素の塩、Cr塩、Zn塩などを共存させても良く、このような塩を適宣選択して用いることによって粒子形状(軸比)などを調製することができる。
第一鉄塩としては、塩化第一鉄、硫酸第一鉄等が好ましい。またアルカリとしては水酸化ナトリウム、アンモニア水、炭酸アンモニウム、炭酸ナトリウム等が好ましい。また、共存させることができる塩としては、塩化ニッケル、塩化カルシウム、塩化バリウム、塩化ストロンチウム、塩化クロム、塩化亜鉛等の塩化物が好ましい。次いで、鉄にコバルトを導入する場合は、イットリウムを導入する前に、硫酸コバルト、塩化コバルト等のコバルト化合物の水溶液を前記のオキシ水酸化鉄のスラリーに撹拌混合する。コバルトを含有するオキシ水酸化鉄のスラリーを調製した後、このスラリーにイットリウムの化合物を含有する水溶液を添加し、撹拌混合することによって導入することができる。
本発明の強磁性粉末には、イットリウム以外にもネオジム、サマリウム、プラセオジウム、ランタン、ガドリニウム等を導入することができる。これらは、塩化イットリウム、塩化ネオジム、塩化サマリウム、塩化プラセオジウム、塩化ランタン等の塩化物、硝酸ネオジム、硝酸ガドリニウム等の硝酸塩などを用いて導入することができ、これらは、二種以上を併用しても良い。強磁性粉末の形状に特に制限はないが、通常は針状、粒状、サイコロ状、米粒状及び板状のものなどが使用される。とくに針状の強磁性粉末を使用することが好ましい。
本発明の磁性層に使用する強磁性粉末としては六方晶フェライト粉末も使用できる。
六方晶フェライトとしてバリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライトの各置換体、Co置換体等がある。具体的にはマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、更に一部スピネル相を含有したマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト等が挙げられ、その他所定の原子以外にAl、Si、S、Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nb、Zrなどの原子を含んでもかまわない。例えば、Co−Ti、Co−Ti−Zr、Co−Ti−Zn、Ni−Ti−Zn,Nb−Zn−Co、Sb−Zn−Co、Nb−Zn等の元素を添加したものを好ましく使用することができる。原料・製法によっては特有の不純物を含有するものもある。
粒子サイズは六角板径で好ましくは10〜200nm、より好ましくは20〜100nmである。また、磁気抵抗ヘッドで再生する場合は、低ノイズにする必要があり、板径は40nm以下が好ましい。上記範囲であると、熱揺らぎが生じにくく安定な磁化が得られ、また、ノイズを低く抑えることができる。
板状比(板径/板厚)は1〜15が好ましく、より好ましくは2〜7である。板状比が上記範囲であると、十分な配向性が得られ、また、粒子間のスタッキングが少なくノイズを低く抑えることができる。この粒子サイズ範囲のBET法による比表面積(SBET)は10〜200m2/gを示す。比表面積は概ね粒子板径と板厚からの算術計算値と符号する。
結晶子サイズは、好ましくは50〜450Å(5〜45nm)、より好ましくは100〜350Å(10〜35nm)である。粒子板径・板厚の分布は通常狭いほど好ましい。数値化は困難であるが粒子TEM写真より500粒子を無作為に測定する事で比較できる。分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差で表すとσ/平均サイズ=0.1〜2.0である。粒子サイズ分布をシャープにするには粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことも行われている。たとえば酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。
磁性体で測定される抗磁力Hcは500 Oe〜5,000 Oe(39.8kA/m〜398kA/m)程度まで作成できる。Hcは高い方が高密度記録に有利であるが、記録ヘッドの能力で制限される。抗磁力Hcは、800 Oe〜4,000 Oe(63.7kA/m〜318.4kA/m)であることが好ましく、より好ましくは1,500 Oe(119.4kA/m)以上3,500 Oe(278.6kA/m)以下である。ヘッドの飽和磁化が1.4テスラーを越える場合は、2,000 Oe以上にすることが好ましい。Hcは粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。
飽和磁化σsは40emu/g〜80emu/g(40A・m2/kg〜80A・m2/kg)である。σsは高い方が好ましいが微粒子になるほど小さくなる傾向がある。σs改良のためマグネトプランバイトフェライトにスピネルフェライトを複合すること、含有元素の種類と添加量の選択等が良く知られている。またW型六方晶フェライトを用いることも可能である。
磁性体を分散する際に磁性体粒子表面を分散媒、ポリマーに合った物質で処理することも行われている。表面処理剤は無機化合物、有機化合物が使用される。主な化合物としてはSi、Al、P等の酸化物又は水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。量は磁性体に対して好ましくは0.1〜10%である。
磁性体のpHも分散に重要である。通常4〜12程度で分散媒、ポリマーにより最適値があるが、媒体の化学的安定性、保存性から6〜10程度が好ましく選択される。磁性体に含まれる水分も分散に影響する。分散媒、ポリマーにより最適値があるが、好ましくは0.01〜2.0%である。
六方晶フェライトの製法としては、(1)酸化バリウム・酸化鉄・鉄を置換する金属酸化物とガラス形成物質として酸化ホウ素等を所望のフェライト組成になるように混合した後溶融し、急冷して非晶質体とし、次いで再加熱処理した後、洗浄・粉砕してバリウムフェライト結晶粉体を得るガラス結晶化法、(2)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後100℃以上で液相加熱した後洗浄・乾燥・粉砕してバリウムフェライト結晶粉体を得る水熱反応法、(3)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し1,100℃以下で処理し、粉砕してバリウムフェライト結晶粉体を得る共沈法等があるが、本発明は製法を選ばない。
また、本発明の磁気記録媒体における磁性層に使用することができる強磁性粉末としては、窒化鉄粒子も使用することができる。
本発明に用いることができる窒化鉄粒子は、Fe及びNを少なくとも構成元素とした球状または回転楕円状の窒化鉄系磁性体である。ここで、「球状」とは粒子径の最大長/最小長の比が1以上2未満である粒子を意味し、「回転楕円体」とは粒子径の最大長/最小長の比が2以上4未満である粒子を意味する。
以下にこの窒化鉄系磁性体及びその製造方法を説明する。
Fe及びNを少なくとも構成元素として有する球状または楕円状の窒化鉄系磁性体
窒化鉄粒子は、少なくともFe162相を含むことが望ましく、他の窒化鉄の相を含まないことが好ましい。これは、窒化鉄(Fe4NやFe3N相)の結晶磁気異方性は1×10-1J/cm3(1×105erg/cc)程度であるのに対し、Fe162相は2〜7×10-1J/cm3(2〜7×106erg/cc)の高い結晶磁気異方性を有するからである。これにより、微粒子化した際にも高い保磁力を維持することができる。
この高い結晶磁気異方性は、Fe162相の結晶構造に起因する。結晶構造は、N原子がFeの八面体格子間位置に規則的に入った体心正方晶であり、N原子が格子に入る際の歪が、高い結晶磁気異方性の発生原因と考えられる。Fe162相の磁化容易軸は窒化により伸びたC軸である。
Fe162相を含む粒子の形状は球状ないし回転楕円状であることが好ましい。さらに好ましくは球状である。これは、立方晶であるα−Feの等価な3方向のうち一方向が窒化により選ばれc軸(磁化容易軸)となるため、粒子形状が針状であれば、磁化容易軸が短軸方向、長軸方向にある粒子が混在することになり好ましくないからである。一つの粒子の最大径を長軸長、最小径を短軸長として、長軸長/短軸長の軸比の平均値は好ましくは、1〜2であり、より好ましくは1〜1.5であり、粒径と記載されたものは長軸長を表すものとする。
磁性体であるFe162相の粒径としては5〜50nmが好ましく、10〜30nmが更に好ましい。これは、粒径が小さくなると熱揺らぎの影響が大きくなり、超常磁性化し、磁気記録媒体に適さなくなるからである。また、磁気粘性のためヘッドで高速記録する際の保磁力が高くなり、記録しづらくなるからである。一方、粒径が大きいと、飽和磁化を小さくすることができないため、記録時の保磁力が高くなりすぎ、記録をすることが困難となるからである。また、粒子サイズが大きいと、磁気記録媒体としたときの粒子性のノイズが高くなるからである。
粒径分布は、単分散であることが好ましくい。これは一般的には、単分散の方が、媒体ノイズが下がるためである。粒径の変動係数は好ましくは20%以下(1〜20%)であり、より好ましくは15%以下(2〜15%)であり、さらに好ましくは、10%以下(2〜10%)である。
なお、本明細書において「粒径の変動係数」とは、円相当径での粒径分布の標準偏差を求め、これを平均粒径で除したものを意味する。また「組成の変動係数」とは、粒径の変動係数と同様に、合金ナノ粒子の組成分布の標準偏差を求め、これを平均組成で除したものを意味する。本発明においては、これらの値を100倍して%表示とする。
粒径及び粒径の変動係数は、カーボン膜を貼り付けたCu200メッシュに希釈した合金ナノ粒子を載せて乾燥させ、TEM(日本電子(株)製1200EX)で10万倍で撮影したネガを粒径測定器(カールツァイス社製KS−300)で測定される算術平均粒径から算出することができる。
Fe162相を含む粒子において、鉄に対する窒素の含有量は、1.0〜20.0atm%が好ましく、さらに好ましくは5.0〜18.0atm%、より好ましくは8.0〜15.0atm%であるのがより好ましい。これは、窒素が少なすぎると、Fe162相の形成量が少なくなるからであり、保磁力増加は窒化による歪に起因しており、窒素が少なくなると保磁力が低くなるからである。窒素が多すぎると、Fe162相は準安定相であるため、分解して安定相である他の窒化物となり、この結果、飽和磁化が過度に低下するからである。
微粒子のFe162相は酸化安定性に乏しく、表面化合物相が無ければ発火する懸念があるためである。そこで、酸化物、窒化物、炭化物からなる表面化合物層を有するコア/シェル構造とすることが好ましく、酸化安定性の観点から、表面化合物層は酸化物であることが好ましい。
表面化合物層は、Fe162相を徐酸化して形成することも出来るが、希土類元素あるいはホウ素、シリコン、アルミニウム、リンの中から選ばれた少なくとも1種の元素を含む表面化合物層を用いることが好ましい。
表面化合物層の厚さは1〜5nmが好ましい。これは、1nmより薄いと、酸化安定性に劣り、5nmより厚いと、磁性粉末中に占める表面化合物層の割合が増加して、粒子サイズが小さくなるにつれて、適度な飽和磁化量を維持できなくなるからである。
表面化合物層の組成は、鉄に対する希土類元素あるいはホウ素、シリコン、アルミニウム、リンの総含有量は、0.1〜40.0atm%が好ましく、さらに好ましくは1.0〜30.0atm%、より好ましくは3.0〜25.0atm%であるのがよい。これらの元素が少なすぎると、表面化合物層の形成が困難となり、磁性粉末の磁気異方性が減少するだけでなく、酸化安定性に劣る。またこれらの元素が多すぎると、飽和磁化の過度な低下が起こりやすい。
Fe162相の飽和磁化(σs)は、50〜150emu/g(50〜150A・m2/kg)であることが好ましく、70〜130emu/g(70〜130A・m2/kg)であることがより好ましい。飽和磁化が高いと記録時の保磁力が高くなり、記録ヘッドで記録できなくなるからである。また、再生においても、飽和磁化を高くしてもMRヘッドが飽和し出力の向上が望めないからである。一方、低すぎると、再生出力が低くなることから好ましくない。
また、この磁性粉末は、BET比表面積(SBET)が40〜100m2/gであることが好ましい。これは、BET比表面積が小さすぎると、粒子サイズが大きくなり、磁気記録媒体に適用すると粒子性ノイズが高くなり、また磁性層の表面平滑性が低下して、再生出力が低下しやすい。
また、BET比表面積が大きすぎると、Fe162相を含む粒子が凝集しやすくなり均一な分散物を得ることが難しく、平滑な表面を得ることが難しくなるからである。
〔α−Feの合成〕
Fe162相を含む粒子の製造方法について、説明する。Fe162相はα−Feを窒化することにより得られる。α−Feを得るには鉄系酸化物または水酸化物(たとえば、ヘマタイト、マグネタイト、ゲータイトなど)を気相中で還元して得る方法と、液相中で合成する方法がある。まず、気相中で還元する方法について説明する。鉄系酸化物または水酸化物の平均粒子サイズは、とくに限定されないが、通常は、5〜100nm程度であるのが望ましい。粒子サイズが小さすぎると、還元処理時に粒子間焼結が生じやすく、また粒子サイズが大きすぎると、還元処理が不均質となりやすく、粒子径や磁気特性の制御が困難となる。
そこで、鉄系酸化物又は水酸化物に対して、希土類元素あるいはホウ素、シリコン、アルミニウム、リンなどの中から選ばれた少なくとも1種の元素を含む化合物を被着させ、焼結を防止することが好ましい。希土類元素の被着は、アルカリまたは酸の水溶液中に出発原料を分散させ、これに希土類元素の塩を溶解させ、中和反応などにより原料粉末に希土類元素を含む水酸化物や水和物を沈殿析出することにより行うことができる。ホウ素、シリコン、アルミニウム、リンなどの中から選ばれた少なくとも1種の元素を含む化合物を被着させる場合は、原料粉末を浸漬した溶液にこれらの化合物を溶解させ、吸着により被着させるか、沈澱析出を行うことにより被着させる。
水酸化物や水和物に対して、希土類元素とホウ素、シリコン、アルミニウム、リンなどの中から選ばれた少なくとも1種の元素を同時にあるいは交互に被着させてもよい。また、これらの被着処理を効率良く行うために、還元剤、pH緩衝剤、粒径制御剤などの添加剤を混入させることも好ましく行われる。
次に、化合物を被着させた水酸化物や水和物を、還元性ガス気流中で加熱した。還元ガスは、水素ガス、一酸化炭素ガスを用いることができる。処理後H2Oとなる水素が環境適性の観点から好ましく用いられる。
還元温度としては、250〜600℃とするのが好ましく、より好ましくは300〜500℃である。この温度範囲では、還元温度が十分に進み、粒子の焼結も防止できる。
気相還元での粒子の焼結を避ける方法として、α−Feを液相中で合成する方法が好ましく用いられる。鉄ナノ粒子(大きさがナノオーダーの鉄粒子)の製造法としては、沈殿法で分類すると、1級アルコールを用いるアルコール還元法、2級アルコール、3級アルコール、2価または3価の多価アルコールを用いるポリオール還元法、熱分解法、超音波分解法、強力還元剤還元法が知られている。さらに、前記製造法は、反応系で分類すると、高分子存在法、高沸点溶媒法、正常ミセル法、逆ミセル法などが知られている。
まず、粒径の制御が容易で単分散の分産物を得やすく、本発明において好ましく用いられる逆ミセル法について説明を行う。
[鉄ナノ粒子の逆ミセル合成法]
次に合金ナノ粒子の製造方法を説明する。
合金ナノ粒子は、1種以上の金属化合物を含む逆ミセル溶液(I)と還元剤を含む逆ミセル溶液(II)とを混合して還元処理を施す還元工程と、必要に応じて前記還元処理後に熟成処理を施す熟成工程とにより製造できる。かかる製造方法により、鉄ナノ粒子が製造される。以下、各工程について説明する。
〔還元工程〕
まず、界面活性剤を含有する非水溶性有機溶媒と1種以上の金属化合物を含む水溶液とを混合した逆ミセル溶液(I)を調製する。逆ミセル溶液(I)は、鉄ナノ粒子を形成するのに用いられる鉄塩が含有される。
前記界面活性剤としては、油溶性界面活性剤が用いられる。具体的には、スルホン酸塩型(例えば、エーロゾルOT(和光純薬製))、4級アンモニウム塩型(例えば、セチルトリメチルアンモニウムブロマイド)、エーテル型(例えば、ペンタエチレングリコールドデシルエーテル)などが挙げられる。
前記界面活性剤を溶解する非水溶性有機溶媒として好ましいものは、アルカン及びエーテルである。アルカンは、炭素数7〜12のアルカン類であることが好ましい。具体的には、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカンが挙げられる。一方、エーテルは、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテルが好ましい。
非水溶性有機溶媒中の界面活性剤の添加量は、20〜200g/lであることが好ましい。
金属化合物の水溶液に含有される金属化合物としては、硝酸塩、硫酸塩、塩酸塩、酢酸塩、塩素イオンを配位子とする金属錯体の水素酸、塩素イオンを配位子とする金属錯体のカリウム塩、塩素イオンを配位子とする金属錯体のナトリウム塩、シュウ酸イオンを配位子とする金属錯体のアンモニウム塩などが挙げられ、本発明の製造方法では、これらを任意に選択して使用することができる。
各々の金属化合物水溶液中の金属化合物としての濃度は、0.1〜2,000μmol/mlであることが好ましく、1〜500μmol/mlであることがより好ましい。
得られる粒子が均一な組成を有するよう、金属化合物水溶液中にキレート剤を添加することが好ましい。具体的には、DHEG(二ヒドロキシエチルグリシン)、IDA(イミノ二酢酸)、NTP(ニトリロ三プロピオン酸)、HIDA(二ヒドロキシエチルイミノ二酢酸)、EDDP(エチレンジアミン二プロピオン酸二塩酸塩)、BAPTA(二アミノフェニルエチレングリコール四酢酸四カリウム塩水和物)などをキレート剤として使用することが好ましい。また、キレート安定度定数(logK)は、10以下であることが好ましい。
キレート剤の添加量は、金属化合物1モル当たり、0.1〜10モルであることが好ましく、0.3〜3モルであることがより好ましい。
次に、還元剤を含む逆ミセル溶液(II)を調製する。逆ミセル溶液(II)は、界面活性剤を含有する非水溶性有機溶媒と還元剤水溶液とを混合させて調製することができる。2種以上の還元剤を用いる場合、これらを一緒に混合して逆ミセル溶液(II)としてもよいが、溶液の安定性や作業性等を考慮し、それぞれ別々に非水溶性有機溶媒に混合して、別々の逆ミセル溶液((II’)、(II”)等)として調製し、これらを適宜混合等して使用することが好ましい。
還元剤水溶液は、例えば、アルコール類;ポリアルコール類;H2;HCHO、S26 2-、H2PO2 -、BH4 -、N25 +、H2PO3 -等と水とからなり、これらの還元剤を単独または2種以上を併用することが好ましい。
水溶液中の還元剤量は、金属塩1モルに対して3〜50モルであることが好ましい。
逆ミセル溶液(II)で用いられる界面活性剤及び非水性有機溶媒としては、逆ミセル溶液(I)で用いたものを挙げることができる。
逆ミセル溶液(I)及び(II)のそれぞれに含有される水及び界面活性剤の重量比(水/界面活性剤)は、20以下とすることが好ましい。重量比が20以下であれば、沈殿が発生しにくく、かつ均一の粒子を得ることができる。重量比は、15以下であることがより好ましく、0.5〜10であることがさらに好ましい。
逆ミセル溶液(I)と(II)の水及び界面活性剤の重量比は同一でも異なっていてもかまわないが、系を均一にするために重量比は同一であることが好ましい。
以上のようにして調製した逆ミセル溶液(I)と(II)とを混合する。混合方法は特に限定されるものではないが、還元の均一性を考慮して、逆ミセル溶液(I)を撹拌しながら、逆ミセル溶液(II)を添加して混合することが好ましい。混合終了後、還元反応を進行させることになるが、その際の温度は−5〜30℃の範囲で一定の温度とする。還元温度が−5℃以上であれば、水相が凝結することもなく還元反応を均一にすることができ、また30℃以下であれば、凝集または沈殿が起こりにくく、系を安定化させることができる。好ましい還元温度は0〜25℃であり、さらに好ましくは5〜25℃である。
ここで、前記「一定温度」とは、設定温度をT(℃)とした場合、温度がT±3℃の範囲にあることをいう。なお、このようにした場合であっても、当該Tの上限及び下限は、上記還元温度(−5〜30℃)の範囲にあるものとする。
還元反応の時間は、逆ミセル溶液(I)及び(II)の量等により適宜設定する必要があるが、1〜30分とすることが好ましく、5〜20分とすることがより好ましい。
還元反応は、合金の粒径分布の単分散性に大きな影響を与えるため、できるだけ高速撹拌(例えば約3,000rpm以上)しながら行うことが好ましい。
好ましい撹拌装置は高剪断力を有する撹拌装置であり、詳しくは撹拌羽根が基本的にタービン型あるいはパドル型の構造を有し、さらに、その羽根の端又は羽根と接する位置に鋭い刃を付けた構造であり、羽根をモーターで回転させる撹拌装置である。具体的には、ディゾルバー(特殊機化工業(株)製)、オムニミキサー(ヤマト科学(株)製)、ホモジナイザー((株)SMT製)などの装置が有用である。これらの装置を用いることにより、単分散なナノ粒子を安定な分散液として合成することができる。
前記逆ミセル溶液(I)及び(II)の反応後に、アミノ基またはカルボキシ基を1〜3個有する少なくとも1種の分散剤を、作製しようとする合金ナノ粒子1モル当たりに0.001〜10モル添加することが好ましい。分散剤の添加量は、0.001〜10モルであれば、合金ナノ粒子の単分散性をより向上させることができ、かつ凝集も起こらない。
前記分散剤としては、合金ナノ粒子表面に吸着する基を有する有機化合物が好ましい。具体的には、アミノ基、カルボキシ基、スルホン酸基又はスルフィン酸基を1〜3個有するものであり、これらを単独又は併用して用いることができる。
構造式としては、R−NH2、H2N−R−NH2、H2N−R(NH2)−NH2、R−COOH、HOCO−R−COOH、HOCO−R(COOH)−COOH、R−SO3H、HOSO2−R−SO3H、HOSO2−R(SO3H)−SO3H、R−SO2H、HOSO−R−SO2H、HOSO−R(SO2H)−SO2Hで表される化合物であり、式中のRは直鎖、分岐若しくは環状の飽和又は不飽和の炭化水素残基である。
分散剤として特に好ましい化合物はオレイン酸である。オレイン酸はコロイドの安定化において周知の界面活性剤であり、鉄ナノ粒子を保護するのに用いられる。オレイン酸の比較的長い鎖は粒子間の強い磁気相互作用を打ち消す重要な立体障害を与える(オレイン酸は18炭素鎖を有し、長さは2nm程度(20オングストローム程度)であり、二重結合を1つ有する)。オレイン酸は、例えばオリーブ油などから容易に入手できる安価な天然資源であるため好ましい。また、オレイン酸から誘導されるオレイルアミンもオレイン酸同様有用な分散剤である。
その他、エルカ酸やリノール酸など類似の長鎖カルボン酸もオレイン酸と同様に用いることができる(例えば、8〜22の炭素原子を有する長鎖有機酸を単独又は組み合わせて用いることができる。)。
分散剤の添加時期は、特に限定されるものではないが、還元反応直後から下記の熟成工程開始までの間であることが好ましい。かかる分散剤を添加することで、より単分散で、凝集のない鉄ナノ粒子を得ることができる。
〔熟成工程〕
本発明の製造方法は、前記還元反応が終了した後、さらに反応後の溶液を熟成温度まで昇温させる熟成工程を有する。
熟成温度は、30〜90℃の間で一定の温度とすることが好ましく、その温度は、前記還元反応の温度より高くすることが適当である。また、熟成時間は、5〜180分とすることが好ましい。熟成温度及び熟成時間が上記範囲内であれば、凝集や沈殿が起こり難く、かつ反応を完結させ、組成を一定にすることができる。より好ましい熟成温度及び熟成時間は40〜80℃、10〜150分であり、さらに好ましい熟成温度及び熟成時間は40〜70℃、20〜120分である。
ここで、前記「一定温度」とは、還元反応の温度の場合と同義(但し、この場合、「還元温度」は「熟成温度」となる)であるが、特に、上記熟成温度の範囲(30〜90℃)内で、前記還元反応の温度より5℃以上高いことが好ましく、10℃以上高いことがより好ましい。当該温度を5℃以上高くすることにより、処方通りの組成を得ることができる。
以上のような熟成工程では、熟成時の温度で撹拌速度を適宜調整することにより、所望の粒径を有する鉄ナノ粒子を作製することができる。
前記熟成を行った後は、水と1級アルコールとの混合溶液で前記熟成後の溶液を洗浄し、その後、1級アルコールで沈殿化処理を施して沈殿物を生成させ、該沈殿物を有機溶媒で分散させる洗浄・分散工程を設けることが好ましい。かかる洗浄・分散工程を設けることにより、不純物が除去され、磁気記録媒体の磁性層形成時の塗布性をより向上させることができる。
上記洗浄及び分散は、少なくともそれぞれ1回、好ましくはそれぞれ2回以上行う。
洗浄で用いられる1級アルコールは、特に限定されるものではないが、メタノール、エタノール等が好ましい。水と1級アルコールの体積混合比(水/1級アルコール)は、10/1〜2/1の範囲にあることが好ましく、5/1〜3/1の範囲にあることがより好ましい。水の比率が高いと、界面活性剤が除去されにくくなることがあり、逆に1級アルコールの比率が高いと、凝集を起こしてしまうことがある。
鉄を還元析出あるいは熱析出させる際に保護コロイドを存在させる事でナノ粒子を安定して調製することができる。熱析出には鉄カルボニルを熱分解して鉄を得る方法が知られている。保護コロイドとしてはポリマーや界面活性剤を使用することが好ましい。前記ポリマーとしては、ポリビニルアルコール(PVA)、ポリN−ビニル−2−ピロリドン(PVP)、ゼラチン等が挙げられる。なかでも、特に好ましくはPVPである。また、分子量は2万〜6万が好ましく、より好ましくは3万〜5万である。ポリマーの量は生成する硬磁性ナノ粒子の重量の0.1〜10倍であることが好ましく、0.1〜5倍がより好ましい。
保護コロイドとして好ましく用いられる界面活性剤は、式:R−Xで表される長鎖有機化合物である「有機安定剤」を含むことが好ましい。上記式中のRは、直鎖若しくは分岐ハイドロカーボン又はフルオロカーボン鎖である「テール基」であり、通常8〜22個の炭素原子を含む。また、上記式中のXは、ナノ粒子表面に特定の化学結合を提供する部分(X)である「ヘッド基」であり、スルフィネート(−SOOH)、スルホネート(−SO2OH)、ホスフィネート(−POOH)、ホスホネート(−OPO(OH)2)、カルボキシレート、及び、チオールのいずれかであることが好ましい。
前記有機安定剤としては、スルホン酸類(R−SO2OH)、スルフィン酸類(R−SOOH)、ホスフィン酸類(R2POOH)、ホスホン酸類(R−OPO(OH)2)、カルボン酸類(R−COOH)、チオール類(R−SH)等のいずれかであることが好ましい。これらの中でも、オレイン酸が特に好ましい。
オレイン酸はコロイドの安定化において周知の界面活性剤であり、鉄系ナノ粒子の保護に好適である。オレイン酸は18炭素鎖を有し、その長さは〜20オングストローム(〜2nm)である。また、オレイン酸には脂肪族ではなく二重結合が1つ存在する。そして、オレイン酸の比較的長い鎖は粒子間の強い磁気相互作用を打ち消す重要な立体障害を与える。エルカ酸やリノール酸など類似の長鎖カルボン酸もオレイン酸同様に(例えば、8〜22の間の炭素原子を有する長鎖有機酸を単独で又は組み合わせて用いることができる)用いられてきが、オレイン酸は(オリーブ油など)容易に入手できる安価な天然資源であるので、特に好ましい。
前記ホスフィンと有機安定剤との組み合わせ(トリオルガノホスフィン/酸等)は、粒子の成長及び安定化に対する優れた制御性を提供することができる。ジデシルエーテル及びジドデシルエーテルも用いることができるが、フェニルエーテル又はn−オクチルエーテルはその低コスト及び高沸点のため溶媒として好適に用いられる。
反応は必要なナノ粒子及び溶媒の沸点により80℃〜360℃の範囲の温度で行うことが好ましく、80℃〜240℃がより好ましい。温度が上記範囲であると、粒子が十分成長し、また、粒子の成長に対する制御性に優れ、副産物の生成が抑制することができる。
粒子サイズを大きくするため、種晶法を用いることが好ましい。その際、種晶の鉄粒子の酸化が懸念されるため、予め粒子を水素化処理することが好ましい。
鉄ナノ粒子合成後に溶液から塩類を除くことは、ナノ粒子の分散安定性を向上させる意味から好ましい。脱塩にはアルコールを過剰に加え、軽凝集を起こし、自然沈降あるいは遠心沈降させ塩類を上澄みと共に除去する方法があるが、このような方法では凝集が生じやすいため、限外濾過法を採用することが好ましい。
〔窒化処理〕
窒化処理に先立ち、鉄ナノ粒子の酸化が懸念される場合には、水素あるいは水素と不活性ガス(H2、Ar、He等)との混合ガス気流中還元処理を行うことができる。温度としては200℃〜300℃が好ましく、より好ましくは250℃〜300℃である。上記範囲であると、粒子の融着が起こらず、また、十分に還元することができる。
鉄ナノ粒子を窒素含有ガス気流中で加熱することでFe162相を得ることができる。
窒化ガスについては、窒素ガス、窒素+水素の混合ガス、アンモニアガス等が使用できるが、アンモニアガスが使用に便宜である。
NH3雰囲気中での窒化処理は、アンモニア(NH3)気流中あるいはアンモニアガスを含んだ混合ガス気流中(例えばアルゴン、水素、窒素のいずれか一つ以上のガスを含んだ、アンモニアガスとの混合ガス)で行うのが好ましく、しかも100〜250℃の比較的低温度域で行うのがより好ましい。窒化処理温度が上記範囲であると、Fe162相が十分得られ、また、Fe162相生成の進行が十分速い。なお、これらのガスは高純度(5N以上)もしくは酸素量が数ppm以下であることが好ましい。
100〜250℃の温度範囲で0.5〜48時間の範囲が工業的に好ましく、処理時間は粒径にも依存するが、0.5〜24時間で処理することがより好ましい。
このような窒化処理にあたり、得られる磁性粉末中の鉄に対する窒素の含有量が1.0〜20原子%となるように、窒化処理の条件を選択することが望ましい。上記窒素の量が少なすぎると、Fe162の生成量が少ないため、保磁力向上の効果が少なくなる。また上記窒素の量が多すぎると、Fe4NやFe3N相などが形成されやすくなり、保磁力がむしろ低下し、さらに飽和磁化の過度な低下を引き起こしやすい。
〔酸化皮膜〕
酸化皮膜を形成するには酸素濃度1〜5%の不活性ガス(N2、Ar、He、Ne等)の雰囲気下で0〜100℃の温度で1〜10時間処理することにより前述の厚みの酸化皮膜を形成することができる。
希土類元素を被着するには、通常は、アルカリまたは酸の水溶液中に出発原料を分散させ、これに希土類元素の塩を溶解させ、中和反応などにより、Fe162を主に含む粒子に希土類元素を含む水酸化物や水和物を沈殿析出させるようにすればよい。
また、シリコンやアルミニウムさらに必要によりホウ素やリンなどの元素で構成された化合物を溶解させ、これにFe162を主に含む粒子を浸漬して、Fe162を主に含む粒子に対して、シリコンやアルミニウムなどを被着させるようにしてもよい。これらの被着処理を効率良く行うため、還元剤、pH緩衝剤、粒径制御剤などの添加剤を混入させてもよい。
これらの被着処理として、希土類元素とシリコン、アルミニウムなどを同時にあるいは交互に被着させるようにしてもよい。
<結合剤(バインダー)>
本発明において、磁性層に用いることができる結合剤としては、従来公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂やこれらの混合物が使用される。
熱可塑性樹脂としては、ガラス転移温度が好ましくは−100〜150℃、数平均分子量が好ましくは1,000〜200,000、より好ましくは10,000〜100,000、重合度が好ましくは50〜1,000である。
このような例としては、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクルリ酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラール、ビニルアセタール、ビニルエーテル、等を構成単位として含む重合体又は共重合体、ポリウレタン樹脂、各種ゴム系樹脂が挙げられる。
また、熱硬化性樹脂または反応型樹脂としては、フェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコーン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネートプレポリマーの混合物、ポリエステルポリオールとポリイソシアネートの混合物、ポリウレタンとポリイソシアネートの混合物等が挙げられる。
これらの樹脂については朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。また、公知の電子線硬化型樹脂を非磁性層(下層)、又は、磁性層(上層)に使用することも可能である。これらの例とその製造方法については特開昭62−256219号公報に詳細に記載されている。以上の樹脂は単独又は組み合わせて使用できるが、好ましいものとして塩化ビニル樹脂、塩化ビニル−酢酸ビニル樹脂、塩化ビニル−酢酸ビニル−ビニルアルコール樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、及び、ニトロセルロースよりなる群から選ばれる少なくとも1種とポリウレタン樹脂の組み合わせ、又はこれらにポリイソシアネートを組み合わせたものが挙げられる。
前記結合剤の具体的な例としては、ユニオンカーバイト社製VAGH、VYHH、VMCH、VAGF、VAGD、VROH、VYES、VYNC、VMCC、XYHL、XYSG、PKHH、PKHJ、PKHC、PKFE、日信化学工業社製MPR−TA、MPR−TA5、MPR−TAL、MPR−TSN、MPR−TMF、MPR−TS、MPR−TM、電気化学社製1000W、DX80、DX81、DX82、DX83、日本ゼオン社製MR110、MR100、400X110A、日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バーノックD−400、D−210−80、クリスボン6109、7209、東洋紡社製UバイロンR8200、UR8300、RV530、RV280、大日精化社製ダイフェラミン4020、5020、5100、5300、9020、9022、7020、三菱化成社製MX5004、三洋化成社製サンプレンSP−150、旭化成社製サランF310、F210などが挙げられる。
磁性層に用いることができる結合剤としては、上記の中でも、塩化ビニル系バインダー、又は、ポリウレタン系バインダーが好ましく、特に好ましくは極性基を含有し骨格に芳香環を3.5mmol/g〜7mmol/g含むポリウレタンである。
前記ポリウレタン系バインダーとしては、ポリエステルウレタン、ポリエーテルウレタン、ポリカーボネートウレタン、ポリエーテルエステルウレタン、アクリル系ポリウレタン等を好適に用いることができる。前記のポリウレタン系バインダーは上記潤滑剤との親和性が高く表面潤滑剤量を最適な範囲に制御することができるため好ましい。
結合剤が有していてもよい極性基は、スルホン酸塩、スルファミン酸塩、スルホベタイン、リン酸塩、ホスホン酸塩などが好ましい。極性基の量は1×10-5eq/g〜2×10-4eq/gが好ましい。
磁性層のバインダー量は、硬化剤を含めて強磁性粉末100重量部に対し10〜25重量部であることが好ましく、非磁性下層のバインダー量は、非磁性粉末100重量部に対し25〜40重量部であることが好ましく、また、磁性層及び非磁性下層のバインダー量は下層の方にバインダー量を多くすることが好ましい。
特に非磁性下層用バインダーは、SO3Naのような強い極性基と骨格に芳香環を多く含有する骨格が好ましい。これにより潤滑剤と非磁性下層バインダーとの親和性がより高まり、潤滑剤が非磁性下層に多く且つ安定的に存在することができる。
潤滑剤とバインダーとの親和性が適度であると、バインダーと潤滑剤とが完全に分子レベルで相溶せず、潤滑剤は上層に移行することができるため好ましい。
<研磨剤>
本発明の磁気記録媒体における磁性層は、研磨剤を含有することが好ましい。
研磨剤としては無機質非磁性粉末が使用できる。無機質非磁性粉末としては、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の無機質化合物から選択することができる。無機質化合物としては例えば、α化率90〜100%のα−アルミナ、β−アルミナ、γ−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、コランダム、窒化珪素、チタンカーバイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、硫酸バリウム、二硫化モリブデンなどを単独又は組み合わせて使用することができる。特に好ましいのは、α−アルミナ、べんがら、酸化クロムである。
本発明に用いることができる研磨剤は、磁性層表面に存在している研磨剤の突出高さ分布であるH15/H10が、上記範囲になるように、種類、量、粒径、組み合わせ、形状等を種々変えて使用する。
研磨剤を1種のみ使用する場合、本発明で使用する研磨剤の平均粒径は、0.05〜0.4μmのものが好ましく、0.1〜0.3μmのものがより好ましい。また、平均粒径より0.1μm以上大きい粒径の粒子が1〜40%存在していることが好ましく、5〜30%であることがより好ましく、10〜20%であることが最も好ましい。この研磨剤単体での粒子サイズは、実際の磁性層表面に存在している研磨剤粒子の粒子サイズに影響は与えるが等しくはない。磁性層表面に存在する研磨剤粒子の粒子サイズは研磨剤の分散条件等よっても変化するし、塗布乾燥工程でも磁性層表面に出やすい粒子と出にくい粒子がある。
平均粒径の異なる2種以上の研磨剤を組み合わせて使用することもできる。この場合は使用する2種以上の研磨剤の実際の使用比率に応じた加重平均値において、平均粒径と平均粒径より0.1μm以上大きい粒径の粒子が上記の範囲になるようにすることができる。
また、2種の研磨剤それぞれの分散条件を変えて、粒子サイズを制御することもできる。例えば研磨剤Aをあらかじめ結合剤と溶剤とともに分散しておき、これと、粉体のままの研磨剤Bを、別途結合剤と溶剤とともに混練処理した強磁性金属粉末の混練処理液に添加して、分散処理を行えば、研磨剤Aと研磨剤Bで分散処理条件を違えることができる。すなわち、Bに比べてAは強く分散される。研磨剤粉末のタップ密度は、好ましくは0.05〜2g/ml、より好ましくは0.2〜1.5g/mlである。
研磨剤粉末の含水率は、好ましくは0.05〜5重量%、より好ましくは0.2〜3重量%である。研磨剤の比表面積は、好ましくは1〜100m2/g、より好ましくは5〜50m2/gである。DBPを用いた吸油量は、好ましくは5〜100ml/100g、より好ましくは10〜80ml/100gである。比重は、好ましくは1〜12、より好ましくは3〜6である。形状は針状、球状、多面体状、板状のいずれでもよい。これらの研磨剤の表面は、当該研磨剤の主成分とは異なる化合物で、その少なくとも一部が被覆されていてもよい。この例として、Al23、SiO2、TiO2、ZrO2、SnO2、Sb23、ZnOを挙げることができる。特にAl23、SiO2、TiO2、ZrO2を用いると分散性が良好になる。これらは組み合わせて使用してもよいし、単独で用いてもよい。
磁性層に用いることができる研磨剤の粉末の具体例としては、昭和電工(株)製のナノタイト;住友化学工業(株)製のHit100、Hit82、Hit80、Hit70、Hit60A、Hit55、AKP20、AKP30、AKP50、ZA−G1;レイノルズ製のERC−DBM、HP−DBM、HPF−DBM、HPFX−DBM、HPS−DBM、HPSX−DBM;不二見研摩材製のWA8000、WA10000;上村工業(株)製のUB20、UB40B、メカノックスU4;昭和軽金属(株)製のUA2055、UA5155、UA5305;日本化学工業(株)製のG−5、クロメックスM、クロメックスS1、クロメックスU2、クロメックスU1、クロメックスX10、クロメックスKX10;日本電工(株)製のND803、ND802、ND801;東ソー(株)製のF−1、F−2、UF−500;戸田工業(株)製のDPN−250、DPN−250BX、DPN−245、DPN−270BXTF−100、TF−120、TF−140、DPN−550BX、TF−180;昭和鉱業(株)製のA−3、B−3;セントラル硝子(株)製のベータSiC、UF;イビデン(株)製のベータランダムスタンダード、ベータランダムウルトラファイン;帝国化工製のJR401、MT500B;石原産業(株)製のTY−50、TTO−51B、TTO−55A、TTO−55B、TTO−55C、TTO−55S、TTO−55D、SN−100、E270、E271;チタン工業(株)製のSTT−4D、STT−30D、STT−30、STT−65C;テイカ(株)製のMT−100S、MT−100T、MT−150W、MT−500B、MT−600B、MT−100F、MT−500HD;堺化学工業(株)製のFINEX−25、BF−1、BF−10、BF−20、ST−M;北開化学製のHZn、HZr3M、同和鉱業(株)製のDEFIC−Y、DEFIC−R、日本アエロジル(株)製のAS2BM、TiO2P25;宇部興産(株)製の100A、500A;チタン工業(株)製のY−LOP、及び、これらを焼成したものが挙げられる。
<添加剤>
本発明の磁気記録媒体における磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラック、などを挙げることができる。また、添加剤として、前記炭酸エステル以外の潤滑剤を併用してもよい。
これら添加剤としては、例えば、二硫化タングステン、グラファイト、フッ化黒鉛、シリコーンオイル、極性基を持つシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、ポリフェニルエーテル、フェニルホスホン酸、ベンジルホスホン酸基、フェネチルホスホン酸、α−メチルベンジルホスホン酸、1−メチル−1−フェネチルホスホン酸、ジフェニルメチルホスホン酸、ビフェニルホスホン酸、ベンジルフェニルホスホン酸、α−クミルホスホン酸、トルイルホスホン酸、キシリルホスホン酸、エチルフェニルホスホン酸、クメニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ヘプチルフェニルホスホン酸、オクチルフェニルホスホン酸、ノニルフェニルホスホン酸等の芳香族環含有有機ホスホン酸及びそのアルカリ金属塩、オクチルホスホン酸、2−エチルヘキシルホスホン酸、イソオクチルホスホン酸、イソノニルホスホン酸、イソデシルホスホン酸、イソウンデシルホスホン酸、イソドデシルホスホン酸、イソヘキサデシルホスホン酸、イソオクタデシルホスホン酸、イソエイコシルホスホン酸等のアルキルホスホン酸及びそのアルカリ金属塩、リン酸フェニル、リン酸ベンジル、リン酸フェネチル、リン酸α−メチルベンジル、リン酸1−メチル−1−フェネチル、リン酸ジフェニルメチル、リン酸ビフェニル、リン酸ベンジルフェニル、リン酸α−クミル、リン酸トルイル、リン酸キシリル、リン酸エチルフェニル、リン酸クメニル、リン酸プロピルフェニル、リン酸ブチルフェニル、リン酸ヘプチルフェニル、リン酸オクチルフェニル、リン酸ノニルフェニル等の芳香族リン酸エステル及びそのアルカリ金属塩、リン酸オクチル、リン酸2−エチルヘキシル、リン酸イソオクチル、リン酸イソノニル、リン酸イソデシル、リン酸イソウンデシル、リン酸イソドデシル、リン酸イソヘキサデシル、リン酸イソオクタデシル、リン酸イソエイコシル等のリン酸アルキルエステル及びそのアルカリ金属塩、アルキルスルホン酸エステル及びそのアルカリ金属塩、フッ素含有アルキル硫酸エステル及びそのアルカリ金属塩、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オレイン酸、リノール酸、リノレン酸、エライジン酸、エルカ酸等の炭素数10〜24の不飽和結合を含んでも分岐していてもよい一塩基性脂肪酸及びこれらの金属塩、又は、ステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸アミル、ステアリン酸イソオクチル、ミリスチン酸オクチル、ラウリル酸ブチル、ステアリン酸ブトキシエチル、アンヒドロソルビタンモノステアレート、アンヒドロソルビタンジステアレート、アンヒドロソルビタントリステアレート等の炭素数10〜24の不飽和結合を含んでも分岐していてもよい一塩基性脂肪酸と炭素数2〜22の不飽和結合を含んでも分岐していてもよい1〜6価アルコール、炭素数12〜22の不飽和結合を含んでも分岐していてもよいアルコキシアルコール又はアルキレンオキサイド重合物のモノアルキルエーテルのいずれか一つとからなるモノ脂肪酸エステル、ジ脂肪酸エステル又は多価脂肪酸エステル、炭素数2〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが使用できる。また、上記炭化水素基以外にもニトロ基及びF、Cl、Br、CF3、CCl3、CBr3等の含ハロゲン炭化水素等炭化水素基以外の基が置換したアルキル基、アリール基、アラルキル基を持つものでもよい。
また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフエノールエチレンオキサイド付加体等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウムまたはスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルホン酸、硫酸エステル基等の酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸またはリン酸エステル類、アルキルベタイン型等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。
上記分散剤、併用してもよい潤滑剤等の添加剤は必ずしも純粋ではなく主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれても構わない。これらの不純分は30重量%以下が好ましく、さらに好ましくは10重量%以下である。
これらの添加物の具体例としては、例えば、日本油脂社製:NAA−102、ヒマシ油硬化脂肪酸、NAA−42、カチオンSA、ナイミーンL−201、ノニオンE−208、アノンBF、アノンLG、竹本油脂社製:FAL−205、FAL−123、新日本理化社製:エヌジェルブOL、信越化学社製:TA−3、ライオンアーマー社製:アーマイドP、ライオン社製:デュオミンTDO、日清製油社製:BA−41G、三洋化成社製:プロファン2012E、ニューポールPE61、イオネットMS−400等が挙げられる。
本発明の磁気記録媒体における磁性層で用いられる有機溶剤は、公知のものが使用できる。有機溶剤は、任意の比率でアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン等のケトン類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、イソプロピルアルコール、メチルシクロヘキサノールなどのアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル、酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル、ジオキサンなどのグリコールエーテル系、ベンゼン、トルエン、キシレン、クレゾールなどの芳香族炭化水素類、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロロヒドリン、クロロベンゼン、ジクロロベンゼン等の塩素化炭化水素類、N,N−ジメチルホルムアミド、ヘキサン、テトラヒドロフラン、等を使用することができる。
これら有機溶媒は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物、水分等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。本発明で用いる有機溶媒は磁性層と非磁性層でその種類は同じであることが好ましい。その添加量は変えてもかまわない。非磁性層に表面張力の高い溶媒(シクロヘキサノン、ジオキサンなど)を用い塗布の安定性を上げる、具体的には上層溶剤組成の算術平均値が非磁性層溶剤組成の算術平均値を下回らないことが肝要である。分散性を向上させるためにはある程度極性が強い方が好ましく、溶剤組成の内、誘電率が15以上の溶剤が50%以上含まれることが好ましい。また、溶解パラメータは8〜11であることが好ましい。
本発明の磁気記録媒体における磁性層で用いられるこれらの分散剤、界面活性剤は磁性層及び後述する非磁性層でその種類、量を必要に応じ使い分けることができる。例えば、無論ここに示した例のみに限られるものではないが、分散剤は極性基で吸着もしくは結合する性質を有しており、磁性層においては主に強磁性粉末の表面に、また後述する非磁性層においては主に非磁性粉末の表面に前記の極性基で吸着もしくは結合し、一度吸着した有機リン化合物は金属あるいは金属化合物等の表面から脱着しがたいと推察される。したがって、本発明の強磁性粉末表面あるいは後述する非磁性粉末表面は、アルキル基、芳香族基等で被覆されたような状態になるので、強磁性粉末あるいは非磁性粉末の結合剤樹脂成分に対する親和性が向上し、さらに強磁性粉末あるいは非磁性粉末の分散安定性も改善される。また、界面活性剤量を調節することで塗布の安定性を向上させるなどが考えられる。また本発明で用いられる添加剤のすべてまたはその一部は、磁性層あるいは非磁性層用塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。
また、本発明の磁気記録媒体における磁性層には、必要に応じてカーボンブラックを添加することができる。
カーボンブラックの種類はゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。放射線硬化層のカーボンブラックは所望する効果によって、以下のような特性を最適化すべきであり、併用することでより効果が得られることがある。
カーボンブラックの比表面積は、好ましくは100〜500m2/g、より好ましくは150〜400m2/g、DBP吸油量は、好ましくは20〜400ml/100g、より好ましくは30〜200ml/100gである。カーボンブラックの粒子径は、好ましくは5〜80nm、より好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
本発明に用いることができるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000,1300,1000,900,800,880,700、VULCAN XC−72、三菱化成工業社製#3050B,#3150B,#3250B,#3750B,#3950B,#950,#650B,#970B,#850B,MA−600,MA−230,#4000,#4010、コロンビアカーボン社製CONDUCTEX SC、RAVEN 8800,8000,7000,5750,5250,3500,2100,2000,1800,1500,1255,1250、アクゾー社製ケッチェンブラックEC、ケッチェン・ブラック・インターナショナル社製ケッチェンブラックECなどが挙げられる。
カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。本発明で使用できるカーボンブラックは例えば「カーボンブラック便覧」(カーボンブラック協会編)を参考にすることができる。
これらのカーボンブラックは単独または組み合わせで使用することができる。カーボンブラックを使用する場合、磁性体の重量に対して0.1〜30重量%で用いることが好ましい。カーボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカーボンブラックにより異なる。したがって本発明で使用されるこれらのカーボンブラックは、磁性層でその種類、量、組み合わせを変え、粒子サイズ、吸油量、電導度、pHなどの先に示した諸特性を基に目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。
II.非磁性層
次に、非磁性層(非磁性下層、下層塗布層)に関する詳細な内容について説明する。
本発明の磁気記録媒体は、非磁性支持体と磁性層との間に、非磁性粉末を結合剤に分散させた少なくとも1層の非磁性層を有していてもよい。
結合剤としては、上記の磁性層の結合剤と同じ樹脂であることが好ましい。
<非磁性粉末>
非磁性層に使用する非磁性粉末は、無機物質でも有機物質でもよい。また、非磁性層には非磁性粉末と共に、必要に応じてカーボンブラックを混合してもよい。
本発明における下層塗布層に用いられる無機粉末は、非磁性粉末であり、例えば、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の無機質化合物から選択することができる。
無機化合物としては例えばα化率90%以上のα−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、ゲータイト、コランダム、窒化珪素、チタンカ−バイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二硫化モリブデンなどが単独又は組み合わせで使用される。特に好ましいのは、粒度分布の小ささ、機能付与の手段が多いこと等から、二酸化チタン、酸化亜鉛、酸化鉄、硫酸バリウムであり、更に好ましいのは二酸化チタン、α酸化鉄である。
これら非磁性粉末の粒子サイズは0.005〜2μmが好ましいが、必要に応じて粒子サイズの異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くして同様の効果をもたせることもできる。とりわけ好ましいのは非磁性粉末の粒子サイズは0.01μm〜0.2μmである。特に、非磁性粉末が粒状金属酸化物である場合は、平均粒子径0.08μm以下が好ましく、針状金属酸化物である場合は、長軸長が0.3μm以下であることが好ましい。タップ密度は、好ましくは0.05〜2g/ml、より好ましくは0.2〜1.5g/mlである。非磁性粉末の含水率は、好ましくは0.1〜5重量%、より好ましくは0.2〜3重量%、更に好ましくは0.3〜1.5重量%である。非磁性粉末のpHは2〜11であるが、pHは5.5〜10の間が特に好ましい。非磁性粉末の比表面積は、好ましくは1〜100m2/g、より好ましくは5〜80m2/g、更に好ましくは10〜70m2/gである。非磁性粉末の結晶子サイズは0.004μm〜1μmが好ましく、0.04μm〜0.1μmが更に好ましい。DBP(ジブチルフタレート)を用いた吸油量は、好ましくは5〜100ml/100g、より好ましくは10〜80ml/100g、更に好ましくは20〜60ml/100gである。比重は、好ましくは1〜12、より好ましくは3〜6である。形状は針状、球状、多面体状、板状のいずれでも良い。
強熱減量は20重量%以下であることが好ましく、本来ないことが最も好ましいと考えられる。本発明に用いられる上記非磁性粉末のモース硬度は4以上10以下のものが好ましい。これらの粉体表面のラフネスファクターは0.8〜1.5が好ましく、更に好ましいラフネスファクターは0.9〜1.2である。非磁性粉末のSA(ステアリン酸)吸着量は、好ましくは1〜20μmol/m2、より好ましくは2〜15μmol/m2、さらに好ましくは3〜8μmol/m2である。非磁性粉末の25℃での水への湿潤熱は200erg/cm2〜600erg/cm2(20μJ/cm2〜60μJ/cm2)の範囲にあることが好ましい。また、この湿潤熱の範囲にある溶媒を使用することができる。pHは3〜6の間にあることが好ましい。非磁性粉末の水溶性Naは0〜150ppm、水溶性Caは0〜50ppmであることが好ましい。
これらの非磁性粉末の表面にはAl23、SiO2、TiO2、ZrO2、SnO2、Sb23、ZnO、Y23で表面処理することが好ましい。特に分散性に好ましいのはAl23、SiO2、TiO2、ZrO2であるが、更に好ましいのはAl23、SiO2、ZrO2である。これらは組み合わせて使用しても良いし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いても良いし、先ずアルミナで処理した後にその表層をシリカで処理する方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
本発明の磁気記録媒体における下層塗布層に用いられる非磁性粉末の具体的な例としては、昭和電工製ナノタイト、住友化学製HIT−100,ZA−G1、戸田工業社製αヘマタイトDPN−250,DPN−250BX,DPN−245,DPN−270BX,DBN−SA1,DBN−SA3、石原産業製酸化チタンTTO−51B,TTO−55A,TTO−55B,TTO−55C,TTO−55S,TTO−55D,SN−100、αヘマタイトE270,E271,E300,E303、チタン工業製酸化チタンSTT−4D,STT−30D,STT−30,STT−65C、αヘマタイトα−40、テイカ製MT−100S,MT−100T,MT−150W,MT−500B,MT−600B,MT−100F,MT−500HD、堺化学製FINEX−25,BF−1,BF−10,BF−20,ST−M、同和鉱業製DEFIC−Y,DEFIC−R、日本アエロジル製AS2BM,TiO2P25、宇部興産製100A,500A、及びそれを焼成したものが挙げられる。
特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
α−酸化鉄(ヘマタイト)は以下のような諸条件の基で実施される。即ち、本発明に用いることができるα−Fe23粒子粉末は、通常の(1)第一鉄水溶液に等量以上水酸化アルカリ水溶液を加えて得られる水酸化第一鉄コロイドを含む懸濁液をpH11以上にて80℃以下の温度で酸素含有ガスを通気して酸化反応を行うことにより針状ゲータイト粒子を生成させる方法、(2)第一鉄塩水溶液と炭酸アルカリ水溶液とを反応させて得られるFeCO3を含む懸濁液に酸素含有ガスを通気して酸化反応を行うことにより紡錘状を呈したゲータイト粒子を生成させる方法、(3)第一鉄塩水溶液に等量未満の水酸化アルカリ水溶液または炭酸アルカリ水溶液を添加して得られる水酸化第一鉄コロイドを含む第一鉄塩水溶液に酸素含有ガスを通気して酸化反応を行うことにより針状ゲータイト核粒子を生成させ、次いで、該針状ゲータイト核粒子を含む第一鉄塩水溶液に、該第一鉄塩水溶液中のFe2+に対し等量以上の水酸化アルカリ水溶液を添加した後、酸素含有ガスを通気して前記針状ゲータイト核粒子を成長させる方法、及び(4)第一鉄水溶液と等量未満の水酸化アルカリ又は炭酸アルカリ水溶液を添加して得られる水酸化第一鉄コロイドを含む第一鉄塩水溶液に酸素含有ガスを通気して酸化反応を行うことにより針状ゲータイト核粒子を生成させ、次いで、酸性乃至中性領域で前記針状ゲータイト核粒子を成長させる方法等により得られた針状ゲータイト粒子を前駆体粒子とする。
なお、ゲータイト粒子の生成反応中に粒子粉末の特性向上等のために通常添加されているNi、Zn、P、Si等の異種元素が添加されていても支障はない。前駆体粒子である針状ゲータイト粒子を200〜500℃の温度範囲で脱水するか、必要に応じて、更に350〜800℃の温度範囲で加熱処理により焼き鈍しをして針状α−Fe23粒子を得る。尚、脱水または焼き鈍しされる針状ゲータイト粒子の表面にP、Si、B、Zr、Sb等の焼結防止剤が付着していても支障はない。350〜800℃の温度範囲で加熱処理により焼き鈍しをするのは、脱水されて得られた針状α−Fe23粒子の粒子表面に生じている空孔を焼き鈍しにより、粒子の極表面を溶融させて空孔をふさいで平滑な表面形態とさせることが好ましいからである。
本発明において用いられるα−Fe23粒子粉末は前記脱水又は焼き鈍しをして得られた針状α−Fe23粒子を水溶液中に分散して懸濁液とし、Al化合物を添加しpH調整をして前記α−Fe23粒子の粒子表面に前記添加化合物を被覆した後、濾過、水洗、乾燥、粉砕、必要により更に脱気・圧密処理等を施すことにより得られる。
用いられるAl化合物は酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩やアルミン酸ソーダ等のアルミン酸アルカリ塩を使用することができる。
この場合のAl化合物添加量はα−Fe23粒子粉末に対してAl換算で0.01〜50重量%である。上記範囲であると、結合剤樹脂中における分散が十分であり、粒子表面に浮遊するAl化合物同士が少なく、Al化合物同士が相互作用しにくいため好ましい。
本発明における下層の非磁性粉末においては、Al化合物とともにSi化合物を始めとして、P、Ti、Mn、Ni、Zn、Zr、Sn、Sbから選ばれる化合物の1種または2種以上を用いて被覆することもできる。Al化合物とともに用いるこれらの化合物の添加量はそれぞれα−Fe23粒子粉末に対して0.01〜50重量%の範囲であることが好ましい。上記範囲であると、添加による分散性向上の効果が十分得られ、また、粒子表面以外に浮遊する化合物同士が少なく、前記化合物同士が相互作用しにくいため好ましい。
二酸化チタンの製法に関しては以下の通りである。これらの酸化チタンの製法は主に硫酸法と塩素法がある。硫酸法はイルミナイトの源鉱石を硫酸で蒸解し、Ti,Feなどを硫酸塩として抽出する。硫酸鉄を晶析分離して除き、残りの硫酸チタニル溶液を濾過精製後、熱加水分解を行って、含水酸化チタンを沈澱させる。これを濾過洗浄後、夾雑不純物を洗浄除去し、粒径調節剤などを添加した後、80〜1,000℃で焼成すれば粗酸化チタンとなる。ルチル型とアナターゼ型は加水分解の時に添加される核剤の種類によりわけられる。この粗酸化チタンを粉砕、整粒、表面処理などを施して作成する。塩素法の原鉱石は天然ルチルや合成ルチルが用いられる。鉱石は高温還元状態で塩素化され、TiはTiCl4に、FeはFeCl2となり、冷却により固体となった酸化鉄は液体のTiCl4と分離される。得られた粗TiCl4は精留により精製した後核生成剤を添加し、1,000℃以上の温度で酸素と瞬間的に反応させ、粗酸化チタンを得る。この酸化分解工程で生成した粗酸化チタンに顔料的性質を与えるための仕上げ方法は硫酸法と同じである。
表面処理は上記酸化チタン素材を乾式粉砕後、水と分散剤を加え、湿式粉砕、遠心分離により粗粒分級が行われる。その後、微粒スラリーは表面処理槽に移され、ここで金属水酸化物の表面被覆が行われる。まず、所定量のAl、Si、Ti、Zr、Sb、Sn、Znなどの塩類水溶液を加え、これを中和する酸、またはアルカリを加えて、生成する含水酸化物で酸化チタン粒子表面を被覆する。副生する水溶性塩類はデカンテーション、濾過、洗浄により除去し、最終的にスラリーpHを調節して濾過し、純水により洗浄する。洗浄済みケーキはスプレードライヤーまたはバンドドライヤーで乾燥される。最後にこの乾燥物はジェットミルで粉砕され、製品になる。
また、水系ばかりでなく酸化チタン粉体にAlCl3、SiCl4の蒸気を通じその後水蒸気を流入してAl、Si表面処理を施すことも可能である。その他の顔料の製法については、G. D. Parfitt and K. S. W. Sing“Characterization of Powder Surfaces”Academic Press, 1976を参考にすることができる。
下層塗布層にカ−ボンブラックを混合させて公知の効果である表面電気抵抗Rsを下げること、光透過率を小さくすることができるとともに、所望のマイクロビッカース硬度を得ることができる。また、下層にカーボンブラックを含ませることで潤滑剤貯蔵の効果をもたらすことも可能である。カーボンブラックの種類はゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。下層のカーボンブラックは所望する効果によって、以下のような特性を最適化すべきであり、併用することでより効果が得られることがある。
下層のカーボンブラックの比表面積は、好ましくは100〜500m2/g、より好ましくは150〜400m2/g、DBP吸油量は、好ましくは20〜400ml/100g、より好ましくは30〜200ml/100gである。カーボンブラックの粒子径は、好ましくは5〜80nm、より好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
本発明に用いられるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000,1300,1000,900,800,880,700、VULCAN XC−72、三菱化成工業社製#3050B,#3150B,#3250B,#3750B,#3950B,#950,#650B,#970B,#850B,MA−600,MA−230,#4000,#4010、コロンビアカーボン社製CONDUCTEX SC、RAVEN 8800,8000,7000,5750,5250,3500,2100,2000,1800,1500,1255,1250、アクゾー社製ケッチェンブラックEC、ケッチェン・ブラック・インターナショナル社製ケッチェンブラックECなどが挙げられる。
カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記無機質粉末に対して50重量%を越えない範囲、非磁性層総重量の40%を越えない範囲で使用することが好ましい。これらのカーボンブラックは単独、又は組合せで使用することができる。本発明で使用できるカーボンブラックは例えば「カーボンブラック便覧」(カーボンブラック協会編)を参考にすることができる。
また下層塗布層には有機質粉末を目的に応じて、添加することもできる。例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は特開昭62−18564号公報、特開昭60−255827号公報に記されているようなものが使用できる。
下層塗布層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
III.非磁性支持体
本発明に用いることのできる非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。
これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理などを行ってもよい。また、本発明に用いることのできる非磁性支持体の表面粗さはカットオフ値0.25mmにおいて中心平均粗さRa3〜10nmが好ましい。
IV.平滑化層
本発明の磁気記録媒体には、平滑化層を設けてもよい。平滑化層とは、非磁性支持体表面の突起を埋めるための層であり、非磁性支持体上に磁性層を設けた磁気記録媒体の場合は非磁性支持体と磁性層の間、非磁性支持体上に非磁性層及び磁性層をこの順に設けた磁気記録媒体の場合には非磁性支持体と非磁性層の間に設けられる。
平滑化層は、放射線硬化型化合物を放射線照射により硬化させて形成することができる。放射線硬化型化合物とは、紫外線または電子線などの放射線を照射すると重合または架橋を開始し、高分子化して硬化する性質を有する化合物をいう。
V.バックコート層
一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して繰り返し走行性が強く要求される。このような高い保存安定性を維持させるために、非磁性支持体の非磁性層及び磁性層が設けられた面とは反対の面にバックコート層を設けることもできる。バックコート層用塗料は、研磨剤、帯電防止剤などの粒子成分と結合剤とを有機溶媒に分散させる。粒状成分として各種の無機顔料やカーボンブラックを使用することができる。また、結合剤としては、例えば、ニトロセルロース、フェノキシ樹脂、塩化ビニル系樹脂、ポリウレタン等の樹脂を単独又はこれらを混合して使用することができる。
VI.層構成
本発明で用いられる磁気記録媒体の構成において、非磁性支持体の好ましい厚さは、3〜80μmである。また、非磁性支持体と非磁性層又は磁性層の間に平滑化層を設けた場合、平滑化層の厚さは0.01〜0.8μmであることが好ましく、0.02〜0.6μmであることがより好ましい。また、非磁性支持体の非磁性層及び磁性層が設けられた面とは反対側の面に設けられたバックコート層の厚さは、0.1〜1.0μmであることが好ましく、0.2〜0.8μmであることがより好ましい。
磁性層の厚さは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、0.01〜0.5μm以下であることが好ましく、0.02〜0.3μmであることがより好ましく、0.03〜0.2μmであることがさらに好ましい。また、磁性層の厚さ変動率は±50%以内が好ましく、さらに好ましくは±40%以内である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
非磁性層の厚さは、0.2〜3.0μmであることが好ましく、0.3〜2.5μmであることがより好ましく、0.4〜2.0μmであることがさらに好ましい。なお、本発明の磁気記録媒体における非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT(100G)以下または抗磁力が7.96kA/m(100 Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
VII.製造方法
本発明で用いられる磁気記録媒体の磁性層塗布液を製造する工程は、少なくとも混練工程、分散工程、及び、これらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる六方晶フェライト強磁性粉末又は強磁性金属粉末、非磁性粉末、結合剤、カーボンブラック、研磨材、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニーダを用いる場合は磁性粉末又は非磁性粉末と結合剤のすべてまたはその一部(但し、全結合剤の30%以上が好ましい)及び磁性体100重量部に対し15〜500重量部の範囲で混練処理されることが好ましい。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用液および非磁性層用液を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
本発明の磁気記録媒体の製造方法は、例えば、走行下にある非磁性支持体の表面に磁性層用塗布液を所定の膜厚となるように塗布する。ここで複数の磁性層用塗布液を逐次あるいは同時に重層塗布してもよく、下層の磁性層用塗布液と上層の磁性層用塗布液とを逐次あるいは同時に重層塗布してもよい。上記磁性層用塗布液もしくは下層の磁性層用塗布液を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。
磁性層塗布液の塗布層は、磁気テープの場合、磁性層塗布液の塗布層中に含まれる強磁性粉末にコバルト磁石やソレノイドを用いて長手方向に磁場配向処理を施す。ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、コバルト磁石を斜めに交互に配置すること、ソレノイドで交流磁場を印加するなど公知のランダム配向装置を用いることが好ましい。等方的な配向とは強磁性金属粉末の場合、一般的には面内2次元ランダムが好ましいが、垂直成分をもたせて3次元ランダムとすることもできる。六方晶フェライトの場合は一般的に面内および垂直方向の3次元ランダムになりやすいが、面内2次元ランダムとすることも可能である。また異極対向磁石など公知の方法を用い、垂直配向とすることで円周方向に等方的な磁気特性を付与することもできる。特に高密度記録を行う場合は垂直配向が好ましい。また、スピンコートを用いて円周配向としてもよい。
乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できるようにすることが好ましく、塗布速度は20〜1,000m/分、乾燥風の温度は60℃以上が好ましい。また磁石ゾーンに入る前に適度の予備乾燥を行うこともできる。
乾燥された後、塗布層に表面平滑化処理を施す。表面平滑化処理には、例えばスーパーカレンダーロールなどが利用される。表面平滑化処理を行うことにより、乾燥時の溶剤の除去によって生じた空孔が消滅し磁性層中の強磁性粉末の充填率が向上するので、電磁変換特性の高い磁気記録媒体を得ることができる。
カレンダ処理ロールとしてはエポキシ、ポリイミド、ポリアミド、ポリアミドイミド等の耐熱性プラスチックロールを使用する。また金属ロールで処理することもできる。本発明の磁気記録媒体は、表面の中心面平均粗さが、カットオフ値0.25mmにおいて0.1〜4.0nmの範囲であることが好ましく、0.5〜3.0nmの範囲という極めて優れた平滑性を有する表面であることがより好ましい。その方法として、例えば上述したように特定の強磁性粉末と結合剤を選んで形成した磁性層を上記カレンダ処理を施すことにより行われる。カレンダ処理条件としては、カレンダーロールの温度を60〜100℃の範囲とすることが好ましく、より好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cmの範囲とすることが好ましく、より好ましくは200〜450kg/cmの範囲であり、特に好ましくは300〜400kg/cmの範囲である。
熱収縮率低減手段として、低テンションでハンドリングしながらウエッブ状で熱処理する方法と、バルクまたはカセットに組み込んだ状態などテープが積層した形態で熱処理する方法(サーモ処理)があり、両者が利用できる。前者は、バックコート層表面の突起写りの影響が少ないが、熱収縮率を大きく下げることができない。一方、後者のサーモ処理は、熱収縮率を大幅に改善できるが、バックコート層表面の突起写りの影響を強く受けるため、磁性層が面荒れし、出力低下及びノイズ増加を引き起こす。特に、サーモ処理を伴う磁気記録媒体で、高出力、低ノイズの磁気記録媒体を供給することができる。得られた磁気記録媒体は、裁断機、打抜機などを使用して所望の大きさに裁断して使用することができる。
VIII.物理特性
本発明の磁気記録媒体における磁性層の飽和磁束密度は、好ましくは100〜300mT(1,000〜3,000G)である。また磁性層の抗磁力(Hr)は、好ましくは143.3〜318.4kA/m(1,800〜4,000Oe)であるが、より好ましくは159.2〜278.6kA/m(2,000〜3,500Oe)である。抗磁力の分布は狭い方が好ましく、SFDおよびSFDrは0.6以下、さらに好ましくは0.2以下である。
本発明の磁気記録媒体に使用するヘッドに対する摩擦係数は、温度−10〜40℃、湿度0〜95%の範囲において好ましくは0.5以下であり、より好ましくは0.3以下である。また、帯電位は−500〜+500V以内が好ましい。磁性層の0.5%伸びでの弾性率は、面内各方向で好ましくは0.98〜19.6GPa(100〜2,000kg/mm2)、破断強度は、好ましくは98〜686MPa(10〜70kg/mm2)、磁気記録媒体の弾性率は、面内各方向で好ましくは0.98〜14.7GPa(100〜1,500kg/mm2)、残留のびは、好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は、好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.1%以下である。
磁性層のガラス転移温度(110Hzで測定した動的粘弾性測定の損失弾性率の極大点)は50〜180℃が好ましく、非磁性層のそれは0〜180℃が好ましい。損失弾性率は1×107〜8×108Pa(1×108〜8×109dyne/cm2)の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向において10%以内でほぼ等しいことが好ましい。
磁性層中に含まれる残留溶媒は好ましくは100mg/m2以下、さらに好ましくは10mg/m2以下である。塗布層が有する空隙率は非磁性層、磁性層とも好ましくは30容量%以下、さらに好ましくは20容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が保存安定性は好ましいことが多い。
デジタルオプチカルプロフィメーター(WYKO製TOPO−3D)を用いて測定した磁性層の中心面表面粗さRaは、好ましくは4.0nm以下であり、より好ましくは3.0nm以下であり、さらに好ましくは2.0nm以下である。磁性層の最大高さSRmaxは、0.5μm以下、十点平均粗さSRzは0.3μm以下、中心面山高さSRpは0.3μm以下、中心面谷深さSRvは0.3μm以下、中心面面積率SSrは20〜80%、平均波長Sλaは5〜300μmが好ましい。磁性層の表面突起は0.01〜1μmの大きさのものを0〜2,000個の範囲で任意に設定することが可能であり、これにより電磁変換特性、摩擦係数を最適化することが好ましい。これらは支持体のフィラーによる表面性のコントロールや磁性層に添加する粉末の粒径と量、カレンダ処理のロール表面形状などで容易にコントロールすることができる。カールは±3mm以内とすることが好ましい。
本発明の磁気記録媒体における非磁性層と磁性層との間では、目的に応じ非磁性層と磁性層でこれらの物理特性を変えることができるのは容易に推定されることである。例えば、磁性層の弾性率を高くし保存安定性を向上させると同時に非磁性層の弾性率を磁性層より低くして磁気記録媒体のヘッドへの当りをよくするなどである。
本発明の磁気記録媒体は、磁気記録媒体に磁気記録された信号を再生するヘッドについては特に制限はないが、MRヘッドのために用いることが好ましい。本発明の磁気記録媒体の再生にMRヘッドを用いる場合、MRヘッドには特に制限はなく、例えばGMRヘッドやTMRヘッドを用いることもできる。また、磁気記録に用いるヘッドは特に制限されないが、飽和磁化量が1.0T以上であることが好ましく、1.5T以上であることがより好ましい。
以下、実施例に基づき本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例中の「部」は、断らない限り「重量部」の意味である。
(実施例1)
〔潤滑剤Aの合成例〕
フラスコに、1−オクタデカノール108.2部、ヘキサン290部及びピリジン35部を入れ、撹拌しながら冷却した。このフラスコにさらに冷却と攪拌を続けながらクロロギ酸2−エチルヘキシル42部を2時間かけて滴下した。さらにこのフラスコ内部を撹拌しながら、室温に出して6時間経過させた。この反応液に水を加えて撹拌し、静置して分液漏斗を用いて水層を廃棄し、メタノールを加えて撹拌、静置、メタノール相を分離する操作を3回繰り返した。残ったヘキサン溶液を減圧濃縮し、153部の無色透明液体である潤滑剤Aが得られた。
この液体を酢酸エチルで10倍希釈して、うち1μlを薄層クロマトグラフィーで分離したが、1−オクタデカノールは検出されなかった。
Figure 2008007469
(実施例2)
〔潤滑剤Bの合成例〕
実施例1のメタノールをアセトニトリルに変更した以外は同様の操作を行ったところ、150部の無色透明液体である潤滑剤Bが得られた。
この液体を酢酸エチルで10倍希釈して、うち1μlを薄層クロマトグラフィーで分離したが、1−オクタデカノールは検出されなかった。
(比較例1)
〔潤滑剤Cの合成例〕
実施例1のメタノールを水に変更した以外は同様の操作を行い、水相を廃棄したヘキサン溶液を減圧濃縮したところ、室温で結晶成分が多数析出し、潤滑剤Cを得た。
これを再度ヘキサンで10倍希釈して、うち1μlを薄層クロマトグラフィーで分離したところ、1−オクタデカノールが検出された。
(実施例3及び4)
〔潤滑剤D及びEの合成例〕
実施例1の1−オクタデカノール、クロロギ酸2−エチルヘキシルをそれぞれ、表1中のR1,R2の構造を有するアルコール、クロロギ酸エステルに変更した以外は、実施例1と同様の抽出処理を行い、潤滑剤D及びEを得た。
得られた潤滑剤D及びEをそれぞれ酢酸エチルで10倍希釈して、うち1μlを薄層クロマトグラフィーで分離したが、それぞれは対応するアルコールは検出されなかった。
Figure 2008007469
(合成例1及び2)
実施例1の1−オクタデカノール、クロロギ酸2−エチルヘキシルをそれぞれ、表1中のR1,R2の構造を有するアルコール、クロロギ酸エステルに変更した以外は、実施例1と同様の抽出処理を行い、潤滑剤F及びGを得た。
Figure 2008007469
(合成例3)
〔潤滑剤H(ノナデカン酸2−エチルヘキシル)の合成〕
ノナデカン酸29.8重量部と2−エチル−1−ヘキサノール19.5重量部とトルエン86.5重量部にp−トルエンスルホン酸1水和物0.1重量部を加えて撹拌しながら4時間加熱還流し、そのままトルエンを留去した。この反応液から減圧蒸留にて脂肪酸エステルである潤滑剤Hを得た。
Figure 2008007469
(実施例5〜10及び比較例2〜7)
<上層用磁性液の調製>
強磁性金属粉末(Co/Fe=30原子%、Hc:2,350エルステッド(187kA/m)、SBET:55m2/g、表面処理層:Al23,SiO2、Y23、平均長軸長:50nm、平均針状比:7、σs:120A・m2/kg)100部をオープンニーダーで10分間粉砕し、次いで、
カーボンブラック(平均粒径80nm) 2部
塩化ビニル樹脂(日本ゼオン(株)製MR−110) 10部
ポリエステルポリウレタン(東洋紡績(株)製UR8300) 6部(固形分)
メチルエチルケトン/シクロヘキサノン=1/1 60部
を加えて60分間混練した。この混練物にオープンニーダーを運転しながら、
メチルエチルケトン/シクロヘキサノン=1/1 200部
を6時間かけて添加した。次いで、
α−Al23分散液 20部
を加えてサンドグラインダーで120分間分散した。さらに
ポリイソシアネート 4部(固形分)
(日本ポリウレタン工業(株)製コロネート3041)
ステアリン酸 1部
下記表1中に記載の潤滑剤 2部
ステアリン酸アミド 0.2部
トルエン 50部
を加えて20分間撹拌混合した。その後、1μmの平均孔径を有するフィルターを用いて濾過し、磁性塗料を調製した。
<下層用非磁性液の調製>
酸化チタン(平均粒径0.035μm、結晶型ルチル、TiO2含有量90%以上、表面処理層;アルミナ、SBET35〜42m2/g、真比重4.1、pH6.5〜8.0)85部、及びカーボンブラック(ケッチェンブラックEC(ケッチェン・ブラック・インターナショナル社製))15部をオープンニーダーで10分間粉砕し、次いで塩化ビニル系共重合体MR110(日本ゼオン製)を17部及びスルホン酸含有ポリウレタン樹脂東洋紡製UR8200 10部(固形分)、及びシクロヘキサノン60部を添加して60分間混練し、次いで、
メチルエチルケトン/シクロヘキサノン=6/4 200部
を加えてサンドミルで120分間分散した。これに表1の潤滑剤と
ポリイソシアネート(日本ポリウレタン製コロネート3041) 5部(固形分)
ステアリン酸 1部
下記表1中に記載の潤滑剤 2部
オレイン酸 1部
メチルエチルケトン 50部
を加え、さらに20分間撹拌混合したあと、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性塗料を調製した。
得られた非磁性塗料を1.5μmに、さらにその直後に磁性塗料を乾燥後の厚さが0.2μmになるように、厚さ62μmのポリエチレンテレフタレート支持体の表面に同時重層塗布した。磁性塗料が未乾燥の状態で5,000ガウスのCo磁石と4,000ガウスのソレノイド磁石で磁場配向を行い、溶剤を乾燥したものを金属ロール−金属ロール−金属ロール−金属ロール−金属ロール−金属ロール−金属ロールの組み合せによるカレンダー処理を(速度100m/min、線圧300kg/cm、温度90℃)で行った後1/2インチ幅にスリットした。
<測定方法>
1.磁性層表面の突起高さ分布
突起高さ分布は、原子間力顕微鏡(AFM;デジタルインストルメンツ(株)製ナノスコープ)により求めた。探針には正四面体で1/2稜角=35゜、曲率半径100nm以下のものを用いて、コンタクトモードでVer.3.25のソフトウェアで行った。測定試料は15μm×15μm角で、測定結果は3次の補正を行って傾き等の補正を行い、Roughness Analysisのピーク数を求めるコマンドで処理して突起分布を求めた。
2.電磁変換特性
記録ヘッド(MIGギャップ0.15μm、1.8T)と再生用MRヘッドをドラムテスタ−にとりつけて測定した。ヘッドとメディアの相対速度1〜3m/min、面記録密度0.57Gbit/(インチ)2で測定した時の再生出力を測定し比較例2を0dBとした相対値で示した。
3.耐久性、保存安定性
テープの摺動耐久性を40℃10%環境下で磁性層面をAlTiC製の円柱棒に接触させて荷重100g(T1)をかけ、2m/secの摺動速度で繰り返し10,000パスまで摺動を行ったあとのテープダメージを以下のランクで評価した。
また、LTO−G3カートリッジ用のリールにテ−プを600m巻いた状態で60℃90%6ヶ月保存した。保存後のテープも同様に評価した。
優秀:ややキズが見られるが、キズのない部分の方が多い。
良好:キズがない部分よりもキズがある部分の方が多い。
不良:磁性層が完全に剥離している。
下記表1に、実施例5〜10及び比較例2〜7における評価結果を示す。
Figure 2008007469

Claims (3)

  1. 式(1)で表される飽和アルキル炭酸エステルを合成し前記式(1)で表される飽和アルキル炭酸エステルの粗生成物を得る工程、及び、
    飽和炭化水素溶媒と該飽和炭化水素溶媒に対して無限に相溶しない有機溶媒を含む溶媒とを用いて前記粗生成物を液液抽出し、式(1)で表される飽和アルキル炭酸エステルの精製物を得る工程を含むことを特徴とする
    炭酸エステルの製造方法。
    Figure 2008007469
    (式(1)中、R1及びR2は、それぞれ独立に飽和炭化水素基を表す。ただし、R1の炭素数とR2の炭素数との和は12以上50以下である。)
  2. 請求項1に記載の製造方法により製造された炭酸エステル。
  3. 非磁性支持体上に、強磁性粉末を結合剤中に分散した磁性層を有し、
    該磁性層が請求項2に記載の炭酸エステルを含有し、
    該磁性層表面に存在する突起数が式(2)を満足する
    磁気記録媒体。
    0.01≦H15/H10≦0.20 (2)
    (H10は磁性層表面に存在する高さ10nm未満の突起の単位面積あたりの数(個/μm2)を表し、H15は磁性層表面に存在する高さ15nm以上の突起の単位面積あたりの数(個/μm2)を表す。)
JP2006180578A 2006-06-30 2006-06-30 炭酸エステル及びその製造方法、並びに、磁気記録媒体 Abandoned JP2008007469A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006180578A JP2008007469A (ja) 2006-06-30 2006-06-30 炭酸エステル及びその製造方法、並びに、磁気記録媒体
US11/767,097 US20080020243A1 (en) 2006-06-30 2007-06-22 Carbonic acid ester, production process therefor, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180578A JP2008007469A (ja) 2006-06-30 2006-06-30 炭酸エステル及びその製造方法、並びに、磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2008007469A true JP2008007469A (ja) 2008-01-17

Family

ID=38971808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180578A Abandoned JP2008007469A (ja) 2006-06-30 2006-06-30 炭酸エステル及びその製造方法、並びに、磁気記録媒体

Country Status (2)

Country Link
US (1) US20080020243A1 (ja)
JP (1) JP2008007469A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215177A (ja) * 2008-03-07 2009-09-24 Fujifilm Corp 炭酸エステルの精製方法および製造方法
JP2013526042A (ja) * 2010-04-28 2013-06-20 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション イリジウムおよび関連する第viii族の燐光性金属多環化合物に基づくエレクトロルミネセント素子
US8604233B2 (en) 2009-03-30 2013-12-10 Fujifilm Corporation Lubricant composition, magnetic recording medium, and novel polyether compound
CN114746940A (zh) * 2020-02-28 2022-07-12 西部数据技术公司 在nft上累积光学透明材料以改进可靠性的原位nft预处理

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5500508B2 (ja) * 2010-03-31 2014-05-21 三菱マテリアル株式会社 微粒多結晶ダイヤモンド焼結体の製造法
JP5802224B2 (ja) * 2013-01-31 2015-10-28 富士フイルム株式会社 磁気記録媒体
JP6597775B2 (ja) * 2015-05-18 2019-10-30 ソニー株式会社 磁気記録媒体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138586A (ja) * 1993-11-15 1995-05-30 Nisshin Fine Chem Kk カーボネート化合物含有潤滑剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040154A1 (de) * 1990-12-15 1992-06-17 Henkel Kgaa Guerbetcarbonate
US5338878A (en) * 1993-01-29 1994-08-16 Amoco Corporation Alkyl carbonate extraction process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138586A (ja) * 1993-11-15 1995-05-30 Nisshin Fine Chem Kk カーボネート化合物含有潤滑剤

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215177A (ja) * 2008-03-07 2009-09-24 Fujifilm Corp 炭酸エステルの精製方法および製造方法
US8604233B2 (en) 2009-03-30 2013-12-10 Fujifilm Corporation Lubricant composition, magnetic recording medium, and novel polyether compound
JP2013526042A (ja) * 2010-04-28 2013-06-20 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション イリジウムおよび関連する第viii族の燐光性金属多環化合物に基づくエレクトロルミネセント素子
CN114746940A (zh) * 2020-02-28 2022-07-12 西部数据技术公司 在nft上累积光学透明材料以改进可靠性的原位nft预处理

Also Published As

Publication number Publication date
US20080020243A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP2008243317A (ja) 磁気記録媒体及びその製造方法
JP2006286114A (ja) 磁気記録媒体
JP2007294079A (ja) 磁気テープ
JP2007273038A (ja) 磁気記録媒体
JP2004273070A (ja) 磁気記録媒体
JP2008007469A (ja) 炭酸エステル及びその製造方法、並びに、磁気記録媒体
JP2007294085A (ja) 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2002358625A (ja) 磁気記録媒体
JP2007294086A (ja) 磁気記録媒体、リニア磁気記録再生システムおよび磁気記録再生方法
JP5049037B2 (ja) 炭酸エステル及び磁気記録媒体
JP2004334946A (ja) 磁気記録媒体
JP2007305208A (ja) 磁気記録媒体およびその製造方法
JP2006277838A (ja) 磁気記録媒体
JPH10312525A (ja) 磁気記録媒体
JP2005105408A (ja) 磁性粒子およびその製造方法、並びに、磁気記録媒体
JP2007294075A (ja) 磁気記録媒体
JP2007272956A (ja) 磁気記録媒体
JP4599321B2 (ja) 磁気記録媒体の製造方法
JP2006048897A (ja) 磁気記録媒体
JP2008037904A (ja) エーテル化合物、潤滑剤及び磁気記録媒体
JP2003030813A (ja) 磁気記録媒体
JP2006286074A (ja) 磁気記録媒体
JP2003036520A (ja) 磁気記録媒体
JP2002304716A (ja) 磁気記録媒体
JPH11250448A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120420