JP2007272956A - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
JP2007272956A
JP2007272956A JP2006094925A JP2006094925A JP2007272956A JP 2007272956 A JP2007272956 A JP 2007272956A JP 2006094925 A JP2006094925 A JP 2006094925A JP 2006094925 A JP2006094925 A JP 2006094925A JP 2007272956 A JP2007272956 A JP 2007272956A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
powder
treatment
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006094925A
Other languages
English (en)
Inventor
Ken Harasawa
建 原澤
Masahito Koyanagi
真仁 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006094925A priority Critical patent/JP2007272956A/ja
Publication of JP2007272956A publication Critical patent/JP2007272956A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

【課題】磁性層に微粒子化した強磁性粉末を用い、表面が平滑化されても、磁気ヘッドへの付着物の蓄積を防止し、高密度磁気記録において良好な電磁変換特性および耐久性を有する磁気記録媒体を提供すること。
【解決手段】非磁性支持体の一方の面に、強磁性粉末および結合剤を含む磁性層を少なくとも有する磁気記録媒体において、前記強磁性粉末の平均粉体サイズが30nm以下であり、原子間力顕微鏡(AFM)を用いて測定した中心面平均表面粗さRaが2.5nm以下であり、かつ、前記磁性層表面に特定のラッピングテープ処理を行った後の、X線光電子分光装置により測定した前記磁性層表面のC/Fe強度比(処理後)と、下記処理を行う前の磁性層表面のC/Fe強度比(処理前)との関係が、[C/Fe強度比(処理前)−C/Fe強度比(処理後)]≦0.1を満たすことを特徴とする磁気記録媒体。
【選択図】なし

Description

本発明は、高密度記録時に優れた電磁変換特性を発揮する磁気記録媒体に関するものである。
磁気記録技術は、媒体の繰り返し使用が可能であること、信号の電子化が容易であり周辺機器との組み合わせによるシステムの構築が可能であること、信号の修正も簡単にできること等の他の記録方式にない優れた特長を有することから、ビデオ、コンピューター用途等を始めとして様々な分野で幅広く利用されてきた。
そして、機器の小型化、記録再生信号の質の向上、記録の長時間化、記録容量の増大等の要求に対応するために、記録媒体に関しては、記録密度、信頼性、耐久性をより一層向上させることが常に望まれてきた。
例えば、音質及び画質の向上を実現するデジタル記録方式の実用化、ハイビジョンTVに対応した録画方式の開発に対応するために、従来システムよりも一層、短波長信号の記録再生ができかつヘッドと媒体の相対速度が大きくなっても信頼性、耐久性が優れた磁気記録媒体が要求されるようになっている。またコンピューター用途も増大するデーター量を保存するために大容量のデジタル記録媒体が開発されることが望まれている。磁気ディスクの分野においても、扱うデーター容量が急激に増加している今日において、フレキシブルディスク(FD)の大容量化が望まれている。高密度記録特性に優れる強磁性金属微粉末を用いた大容量ディスクは100MB以上の高密度FDが実用化されているが、さらに大容量かつ高転送速度のシステムが要求されている。
磁気記録媒体の高記録密度を達成するため、記録信号の短波長化および再生ヘッドのトラック幅の狭小化が強力に進められている。信号を記録する領域の長さが使用されていた磁性体の大きさと比較できる大きさになると明瞭な磁化遷移状態を作り出すことができないので、実質的に記録不可能となる。このため使用する最短波長に対し充分小さな粒子サイズの磁性体を開発する必要があり、磁性体の微粒子化が長年にわたり指向されている。
デジタル信号記録システムにおいて使用される磁気テープは、非磁性支持体上の一方の側に、膜厚が2.0〜3.0μmと比較的厚い単層構造の強磁性粉末、結合剤、及び研磨剤を含む磁性層が設けられており、また他方の側には、巻き乱れの防止や良好な走行耐久性を保つために、バック層が設けられている。しかし、上記のように比較的厚い単層構造磁性層においては、記録過程で自己減磁の問題、再生過程で出力が低下するという厚み損失の問題がある。
磁性層の厚み損失による再生出力の低下を改良するために、磁性層を薄層化することが知られており、非磁性支持体上に、無機質粉末を含み結合剤に分散してなる下層非磁性層と該非磁性層が湿潤状態にある内に強磁性粉末を結合剤に分散してなる1.0μm以下の厚みの上層磁性層を設けた磁気記録媒体が開示されている(例えば、特許文献1参照。)。
近年、テラバイト級の情報を高速に伝達するための手段が著しく発達し、莫大な情報をもつ画像およびデータ転送が可能となる一方、それらを記録、再生および保存するための高度な技術が要求されるようになってきた。ところが、現在では技術水準の向上とともに記録再生装置および磁気記録媒体ともにさらなる高記録容量化が要求されている。
磁気テープに関しては、オーディオテープ、ビデオテープ、コンピューターテープなど種々の用途があり、特にデータバックアップ用テープの分野では、バックアップの対象となるハードディスクの大容量化にともない、1巻当たり数10〜500GBの記録容量のものが商品化されている。
また、今後1TBを超える大容量バックアップテープが提案されており、その高記録容量化は不可欠である。
一方、近年、磁気抵抗(MR)を動作原理とする再生ヘッドが提案され、使用され始めている。下記特許文献2には、非磁性支持体上に非磁性層と磁性層をこの順に有し、磁性層に含まれる研磨材のモース硬度、粒径および含量を規定し、かつ、X線光電子分光装置により測定した磁性層表面のCl/Fe強度比およびN/Fe強度比を規定した磁気記録媒体が提案されている。この磁気記録媒体は、MRヘッドでの再生時、高密度記録された磁気記録媒体を高回転・高転送で再生した場合であっても安定した磁気記録再生が可能である。
ところで、記録容量をさらに高めるためには、より高い記録密度が必要であり、そのため現在では、磁性層における磁性体の微粒子化や、表面の平滑化が検討されている。また、異方性磁気抵抗効果型再生ヘッド(いわゆるAMRヘッド)や、更に感度の高い巨大磁気抵抗効果型再生ヘッド(いわゆるGMRヘッド)も提案されている。
しかし、磁性層における磁性体の微粒子化や、表面の平滑化が進むにつれ、磁気ヘッドに付着物が蓄積し、電磁変換特性を劣化させるという問題点が発生した。理由は、定かではないが、磁性体のサイズが小さくなり、かつ表面性が良化したことにより、ヘッドへの接触面積が増大し、ヘッドが磁性体に直接触れることにより、表面の遊離結合剤および磁性体に吸着した結合剤が削り取られていると推定される。なお、本発明者は、磁性層の結合剤量を低減する等の処方検討を行ったが、充分な結果を示さず、問題点の解決には至らなかった。
特開平8−306032号公報 特開2003−123228号公報
したがって本発明の目的は、磁性層に微粒子化した強磁性粉末を用い、表面が平滑化されても、磁気ヘッドへの付着物の蓄積を防止し、高密度磁気記録において良好な電磁変換特性および耐久性を有する磁気記録媒体を提供することにある。
本発明は、以下のとおりである。
1)非磁性支持体の一方の面に、強磁性粉末および結合剤を含む磁性層を少なくとも有する磁気記録媒体において、前記強磁性粉末の平均粉体サイズが30nm以下であり、原子間力顕微鏡(AFM)を用いて測定した中心面平均表面粗さRaが2.5nm以下であり、かつ、前記磁性層表面に下記処理を行った後の、X線光電子分光装置により測定した前記磁性層表面のC/Fe強度比(処理後)と、下記処理を行う前の磁性層表面のC/Fe強度比(処理前)との関係が、
[C/Fe強度比(処理前)−C/Fe強度比(処理後)]≦0.1
を満たすことを特徴とする磁気記録媒体。
磁性層表面の処理:ラッピングテ−プ(研磨層の中心線平均表面粗さRa0.1μm、平均砥粒サイズ0.5μm、研磨粒材質CrO2)を用い、その研磨層と磁性層表面とを、張力200gf(1.96N)、速度2m/秒の条件で摺動させ、磁性層表面の研磨処理を行い、研磨処理後の磁性層表面上の削れ物を、サファイヤブレードでかき取る(研磨層の中心線平均表面粗さRaは、小坂制作所(株)の三次元表面検査機を用い、針圧:φ2μm、針先荷重:30mg、掃引速度:0.1mm/sec 、掃引距離:0.2mm、測定箇所:20カ所、カットオフ:0.08mmの条件で測定したものである。)。
本発明によれば、カップリングを防止すると同時に磁性体をさらに微粒子化し、市場から要求される面記録密度の向上を達成し、かつ、高S/N比を実現した、とくに再生ヘッドとして巨大磁気抵抗効果型(GMR)ヘッドを用いた記録再生に好適な、磁気記録媒体を提供することができる。
以下、本発明をさらに詳細に説明する。
本発明の磁気記録媒体は、前記のように、原子間力顕微鏡(AFM)を用いて測定した中心面平均表面粗さRaが2.5nm以下であり、かつ、磁性層表面にラッピングテープ処理を行った後の、X線光電子分光装置により測定した前記磁性層表面のC/Fe強度比(処理後)と、処理を行う前の磁性層表面のC/Fe強度比(処理前)との関係が、下記数式
[C/Fe強度比(処理前)−C/Fe強度比(処理後)]≦0.1
を満たすことを特徴としている。
好ましくは、[C/Fe強度比(処理前)−C/Fe強度比(処理後)]は、0.06以下であり、さらに好ましくは0.02以下である。
原子間力顕微鏡(AFM)を用いて測定した中心面平均表面粗さRaが2.5nmを超えた場合は、電磁変換特性に悪影響を及ぼすほどに、磁気ヘッドに付着物が蓄積することはない。本発明では、前記Raが2.5nm以下という磁性層の超平滑化を行った際に生じる課題を解決するものである。
本発明で規定する磁性層表面の処理は、次のようにして行う。
ラッピングテ−プは、例えば、本発明の条件を満たす富士写真フイルム社製K10000(平均砥粒サイズ0.5μm、研磨粒材質CrO2)を用い、その研磨層と磁性層表面とを、張力200gf(1.96N)、テ−プ速度2m/秒(ラッピングテ−プ送り速度0.2mm/秒)の条件で図1のように摺動させ、磁性層表面の研磨処理を行い、研磨処理後の磁性層表面上の削れ物を、サファイヤブレードでかき取る。
図1に示すように、磁気記録媒体が、磁気テープ10としてガイドローラ11を経て図中矢印12方向に張力200gf(1.96N)、テ−プ速度2m/秒で進行している。同時に、磁気テープ10の磁性層面とラッピングテープ13の研磨層面とが接触するように、これもガイドローラ11を経て図中矢印14方向に、送り速度0.2mm/秒としてラッピングテープを進行させ、両者の摺動による磁性層表面の研磨処理を行う。なおラッピングテープの進行速度は、ラッピングテープ送り出しロール15および巻取りロール16の回転速度により制御する。同様に磁気テープ10の進行速度および張力は、図示しない磁気テープ送り出しロールおよび巻取りロールにより制御することができる。また、破線で示す水平方向および鉛直方向に対する磁気テープ10およびラッピングテープ13の、ガイドローラ11に対する進入角度は図1に示す通りであり、磁気テープ10の進入角度aは水平方向に対し50°であり、ラッピングテープの進入角度bは鉛直方向に対し20°である。また、鉛直方向に対して、進入角度と矢印12,14で示す送り方向の角度は対称である。
なお、サファイヤブレードでの掻き取りは、次のようにして行う。
上記の研磨処理後の磁性層表面上の削れ物は、図2に示すような装置を用い、サファイヤブレードでかき取る。すなわち、図2において、研磨処理後の磁気テープ20は、正三角形状の第1サファイヤブレード21の頂点に磁性層面が接触するように、張力100gf(0.98N)、テ−プ速度2m/秒で進行している。続いて、磁気テープ20は、ガイドローラ22を経て、正三角形状の第2サファイヤブレード23の頂点に磁性層面が接触するように進行し、磁性層表面上の削れ物がかき取られる。磁気テープ20の進行速度および張力は、図示しない磁気テープ送り出しロールおよび巻取りロールにより制御することができる。また、磁気テープ20の、第1サファイヤブレード21、ガイドローラ22および第2サファイヤブレード23に対する進入角度および送り方向の角度は図2に示す通りである。
数式[C/Fe強度比(処理前)−C/Fe強度比(処理後)]≦0.1
を満たす手段としては、例えば作製後の磁気記録媒体の磁性層を表面処理する方法が挙げられる。表面処理としては例えば、磁性層表面をコロナ放電処理またはプラズマ放電処理する方法や、ブレード処理(ラッピングテープ処理)、が挙げられる。ラッピングテ−プによるブレ−ド処理は、使用するラッピングテ−プの粗さ、磨耗性等を、処理するテ−プにあわせ選択し、かつテ−プキズ等を考慮してテンションを低めに設定して複数回数処理するのが好ましい。使用するラッピングテ−プの研磨材質は、α-Fe2O3(酸化鉄)、Cr2O3(酸化クロム)、SiC(炭化珪素)、Al2O3(酸化アルミニウム)、ダイヤモンド、SiO2(シリカ)等が挙げられる。またその平均砥粒サイズは、0.1〜1μmの範囲が好ましい。またラッピングテ−プの表面性は、処理する媒体との摩擦力でテ−プが伸びない、またはハンドリングできるような表面性を選択する。また磁性層表面をコロナ放電処理またはプラズマ放電処理する方法は、磁気記録媒体の表面バインダを除去の度合いを勘案して処理電力を設定することが望ましい。
また、本発明における磁性層表面のC/Fe強度比を求めるための、X線光電子分光分析は、次の条件で行う。
媒体をヘキサン中に5分間浸し、表面に存在する潤滑剤成分を除去する。得られた試料を英国Kratos社製X線光分光装置Axis-Ultraに導入し、以下の条件で測定を行う。
照射X線 モノクロAl/Kα 12kV,10mA、測定スペクトル Fe 2p 3/2ピ−ク(分析条件 step 0.1ev、50ms/step、sweep 5)、C 1sピーク(分析条件 step 0.1ev、50ms/step、sweep3)で得られたスペクトルからピーク面積の強度を求めて、強度比をとってC/Fe値を算出する。
次に、本発明の磁気記録媒体を構成する各成分について説明する。
[非磁性支持体]
本発明に用いられる非磁性支持体は、ポリエチレンテレフタレ−ト、ポリエチレンナフタレート、等のポリエステル類、ポリオレフィン類、セルロ−ストリアセテ−ト、ポリカ−ボネ−ト、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォン、ポリアラミド、芳香族ポリアミド、ポリベンゾオキサゾ−ルなどの公知のフィルムが使用できる。ポリエチレンナフタレ−ト、ポリアミドなどの高強度支持体を用いることが好ましい。また必要に応じ、磁性面と非磁性支持体面の表面粗さを変えるため特開平3−224127号公報に示されるような積層タイプの支持体を用いることもできる。これらの支持体にはあらかじめコロナ放電処理、プラズマ処理、易接着処理、熱処理、除塵処理、などをおこなっても良い。また本発明の支持体としてアルミまたはガラス基板を適用することも可能である。
中でもポリエステル支持体(以下、単にポリエステルという)が好ましい。このようなポリエステルはポリエチレンテレフタレート、ポリエチレンナフタレートなどジカルボン酸およびジオールからなるポリエステルである。
主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。
また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。
これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸及び/または2,6−ナフタレンジカルボン酸、ジオール成分として、エチレングリコール及び/または1,4−シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。
中でも、ポリエチレンテレフタレートまたはポリエチレン−2,6−ナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6−ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。特に好ましくはポリエチレン−2,6−ナフタレートを主要な構成成分とするポリエステルである。
なお、本発明に用いられるポリエステルは、二軸延伸されていてもよいし、2層以上の積層体であってもよい。
また、ポリエステルは、さらに他の共重合成分が共重合されていても良いし、他のポリエステルが混合されていても良い。これらの例としては、先に挙げたジカルボン酸成分やジオール成分、またはそれらから成るポリエステルを挙げることができる。
本発明に用いられるポリエステルには、フィルム時におけるデラミネーションを起こし難くするため、スルホネート基を有する芳香族ジカルボン酸またはそのエステル形成性誘導体、ポリオキシアルキレン基を有するジカルボン酸またはそのエステル形成性誘導体、ポリオキシアルキレン基を有するジオールなどを共重合してもよい。
中でもポリエステルの重合反応性やフィルムの透明性の点で、5−ナトリウムスルホイソフタル酸、2−ナトリウムスルホテレフタル酸、4−ナトリウムスルホフタル酸、4−ナトリウムスルホ−2,6−ナフタレンジカルボン酸およびこれらのナトリウムを他の金属(例えばカリウム、リチウムなど)やアンモニウム塩、ホスホニウム塩などで置換した化合物またはそのエステル形成性誘導体、ポリエチレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール−ポリプロピレングリコール共重合体およびこれらの両端のヒドロキシ基を酸化するなどしてカルボキシル基とした化合物などが好ましい。この目的で共重合される割合としては、ポリエステルを構成するジカルボン酸を基準として、0.1〜10モル%が好ましい。
また、耐熱性を向上する目的では、ビスフェノール系化合物、ナフタレン環またはシクロヘキサン環を有する化合物を共重合することができる。これらの共重合割合としては、ポリエステルを構成するジカルボン酸を基準として、1〜20モル%が好ましい。
本発明において、ポリエステルの合成方法は、特に限定があるわけではなく、従来公知のポリエステルの製造方法に従って製造できる。例えば、ジカルボン酸成分をジオール成分と直接エステル化反応させる直接エステル化法、初めにジカルボン酸成分としてジアルキルエステルを用いて、これとジオール成分とでエステル交換反応させ、これを減圧下で加熱して余剰のジオール成分を除去することにより重合させるエステル交換法を用いることができる。この際、必要に応じてエステル交換触媒あるいは重合反応触媒を用い、あるいは耐熱安定剤を添加することができる。
また、合成時の各過程で着色防止剤、酸化防止剤、結晶核剤、すべり剤、安定剤、ブロッキング防止剤、紫外線吸収剤、粘度調節剤、消泡透明化剤、帯電防止剤、pH調整剤、染料、顔料、反応停止剤などの各種添加剤の1種又は2種以上を添加させてもよい。
また、ポリエステルにはフィラーが添加されてもよい。フィラーの種類としては、球形シリカ、コロイダルシリカ、酸化チタン、アルミナ等の無機粉体、架橋ポリスチレン、シリコーン樹脂等の有機フィラー等が挙げられる。
また、支持体を高剛性化するために、これらの材料を高延伸したり、表面に金属や半金属または、これらの酸化物の層を設けることもできる。
本発明において、非磁性支持体であるポリエステルの厚みは、好ましくは3〜80μm、より好ましくは3〜50μm、とくに好ましくは3〜10μmである。また支持体表面の中心面平均粗さ(Ra)は、4nm以下、より好ましくは2nm以下である。このRaは、WYKO社製HD2000で測定した。
また、非磁性支持体の長手方向及び幅方向のヤング率は、6.0GPa以上が好ましく、7.0GPa以上がさらに好ましい。
本発明の磁気記録媒体は、前記の非磁性支持体の少なくとも一方の面に強磁性粉末と結合剤とを含む磁性層を設けたものであり、非磁性支持体と磁性層との間に実質的に非磁性である非磁性層(下層)を設けたものが好ましい。
[磁性層]
磁性層に含まれる強磁性粉末として、その体積が1000〜20000nmであることが好ましく、2000〜8000nmであることが更に好ましい。この範囲とすることにより、熱揺らぎにより磁気特性の低下を有効に抑えることができると共に低ノイズを維持したまま良好なC/N(S/N)を得ることができる。強磁性粉末としては、特に制限はないが、強磁性金属粉末、六方晶フェライト粉末または窒化鉄系粉末が好ましい。
針状粉末の体積は、形状を円柱と想定して長軸長、短軸長から求める。
板状粉末の場合は、形状を角柱(六方晶系フェライト粉末の場合は6角柱)と想定して板径、軸長(板厚)から体積を求める。
窒化鉄系粉末の場合は、形状を球と想定して体積を求める。
磁性体のサイズは、磁性層を適当量剥ぎ取る。剥ぎ取った磁性層30〜70mgにn−ブチルアミンを加え、ガラス管中に封かんし熱分解装置にセットして140℃で約1日加熱する。冷却後にガラス管から内容物を取り出し、遠心分離し、液と固形分を分離する。分離した固形分をアセトンで洗浄し、TEM用の粉末試料を得る。この試料を日立製透過型電子顕微鏡H−9000型を用いて粒子を撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粒子写真を得る。粒子写真から目的の磁性体を選びデジタイザ−で粉体の輪郭をトレースしカ−ルツァイス製画像解析ソフトKS−400で粒子のサイズを測定する。500個の粒子のサイズを測定する。
なお、本明細書において、磁性体等の粉体のサイズ(以下、「粉体サイズ」と言う)は、(1)粉体の形状が針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粉体を構成する長軸の長さ、即ち長軸長で表され、(2)粉体の形状が板状乃至柱状(ただし、厚さ乃至高さが板面乃至底面の最大長径より小さい)場合は、その板面乃至底面の最大長径で表され、(3)粉体の形状が球形、多面体状、不特定形等であって、かつ形状から粉体を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、該粉体の平均粉体サイズは、上記粉体サイズの算術平均であり、500個の一次粒子について上記の如く測定を実施して求めたものである。一次粒子とは、凝集のない独立した粉体をいう。
また、該粉体の平均針状比は、上記測定において粉体の短軸の長さ、即ち短軸長を測定し、各粉体の(長軸長/短軸長)の値の算術平均を指す。ここで、短軸長とは、上記粉体サイズの定義で(1)の場合は、粉体を構成する短軸の長さを、同じく(2)の場合は、厚さ乃至高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、粉体の形状が特定の場合、例えば、上記粉体サイズの定義(1)の場合は、平均粉体サイズを平均長軸長と言い、同定義(2)の場合は平均粉体サイズを平均板径と言い、(最大長径/厚さ乃至高さ)の算術平均を平均板状比という。同定義(3)の場合は平均粉体サイズを平均直径(平均粒径、平均粒子径ともいう)という。粉体サイズ測定において、標準偏差/平均値をパーセント表示したものを変動係数と定義する。
<強磁性金属粉末>
本発明の磁気記録媒体における磁性層に用いられる強磁性金属粉末としては、Feを主成分とするもの(合金も含む)であれば、特に限定されないが、α−Feを主成分とする強磁性合金粉末が好ましい。これらの強磁性粉末には所定の原子以外にAl、Si、S、Sc、Ca、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、Bなどの原子を含んでもかまわない。Al、Si、Ca、Y、Ba、La、Nd、Co、Ni、Bの少なくとも1つがα−Fe以外に含まれるものが好ましく、特に、Co,Al,Yが含まれるのが好ましい。さらに具体的には、CoがFeに対して10〜40原子%、Alが2〜20原子%、Yが1〜15原子%含まれるのが好ましい。
上記強磁性金属粉末には後述する分散剤、潤滑剤、界面活性剤、帯電防止剤などで分散前にあらかじめ処理を行ってもかまわない。また、強磁性金属粉末は、少量の水、水酸化物又は酸化物を含むものであってもよい。強磁性金属粉末の含水率は0.01〜2%とするのが好ましい。結合剤の種類によって強磁性金属粉末の含水率は最適化するのが好ましい。強磁性金属粉末のpHは、用いる結合剤との組合せにより最適化することが好ましい。その範囲は通常、6〜12であるが、好ましくは7〜11である。また強磁性金属粉末には可溶性のNa、Ca、Fe、Ni、Sr、NH、SO、Cl、NO、NOなどの無機イオンを含む場合がある。これらは、本質的に無い方が好ましい。各イオンの総和が300ppm以下程度であれば、特性には影響しない。また、本発明に用いられる強磁性金属粉末は空孔が少ないほうが好ましくその値は20容量%以下、さらに好ましくは5容量%以下である。
強磁性金属粉末の平均長軸長は、30nm以下であり、10〜30nmが好ましく、20〜30nmが更に好ましい。
また強磁性金属粉末の結晶子サイズは50〜140Åが好ましく、50〜100Åが更に好ましく、50〜90Åが特に好ましい。
この結晶子サイズは、X線回折装置(理学電機製RINT2000シリーズ)を使用し、線源CuKα1、管電圧50kV、管電流300mAの条件で回折ピークの半値幅からScherrer法により求めた平均値である。
強磁性金属粉末のBET法による比表面積(SBET)は、45〜120m/g以上が好ましく、50〜100m/gであることがさらに好ましい。45m/g未満ではノイズが高くなり、120m/gを超えると表面性が得にくく好ましくない。この範囲であれば良好な表面性と低いノイズの両立が可能となる。強磁性金属粉末の含水率は0.01〜2%とするのが好ましい。
結合剤の種類によって強磁性粉末の含水率は最適化するのが好ましい。強磁性粉末のpHは、用いる結合剤との組合せにより最適化することが好ましい。その範囲は4〜12であるが、好ましくは6〜10である。
強磁性粉末は必要に応じ、表面処理を行いAl、Si、Pまたはこれらの酸化物などの形になっていてもかまわない。その量は強磁性粉末に対し0.1〜10%であり表面処理を施すと脂肪酸などの潤滑剤の吸着が100mg/m以下になり好ましい。
強磁性金属粉末には可溶性のNa、Ca、Fe、Ni、Srなどの無機イオンを含む場合があるが200ppm以下であれば特に特性に影響を与える事は少ない。また、本発明に用いられる強磁性金属粉末は、空孔が少ないほうが好ましく、その値は20容量%以下、さらに好ましくは5容量%以下である。
また強磁性金属粉末の形状については、先に示した粒子体積を満足すれば針状、粒状、米粒状又は板状いずれでもかまわないが、特に針状の強磁性粉末を使用することが好ましい。針状強磁性金属粉末の場合、平均針状比は4〜12が好ましく、さらに好ましくは5〜8である。強磁性金属粉末の抗磁力(Hc)は、好ましくは159.2〜278.5kA/m(2000〜3500Oe)であり、さらに好ましくは167.1〜238.7kA/m(2100〜3000Oe)である。また、飽和磁束密度は、好ましくは150〜300mT(1500〜3000G)であり、さらに好ましくは160〜290mTである。また飽和磁化(σs)は、好ましくは90〜140A・m/kg(90〜140emu/g)であり、さらに好ましくは100〜120A・m/kgである。磁性体自体のSFD(switching field distribution)は小さい方が好ましく、0.6以下であることが好ましい。SFDが0.6以下であると、電磁変換特性が良好で、出力が高く、また磁化反転がシャープでピークシフトが小さくなり、高密度デジタル磁気記録に好適である。Hc分布を小さくするためには、強磁性金属粉末においてはゲータイトの粒度分布を良くする、単分散αFeを使用する、粒子間の焼結を防止するなどの方法がある。
強磁性金属粉末は、公知の製造方法により得られたものを用いることができ、下記の方法を挙げることができる。焼結防止処理を行った含水酸化鉄、酸化鉄を水素などの還元性気体で還元してFe又はFe−Co粒子などを得る方法、複合有機酸塩(主としてシュウ酸塩)と水素などの還元性気体で還元する方法、金属カルボニル化合物を熱分解する方法、強磁性金属の水溶液に水素化ホウ素ナトリウム、次亜リン酸塩あるいはヒドラジンなどの還元剤を添加して還元する方法、金属を低圧の不活性気体中で蒸発させて粉末を得る方法などである。このようにして得られた強磁性金属粉末は公知の徐酸化処理が施される。含水酸化鉄、酸化鉄を水素などの還元性気体で還元し、酸素含有ガスと不活性ガスの分圧、温度、時間を制御して表面に酸化皮膜を形成する方法が、減磁量が少なく好ましい。
<強磁性六方晶フェライト粉末>
強磁性六方晶フェライト粉末には、例えば、バリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライト、それらのCo等の置換体等がある。より具体的には、マグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、さらに一部にスピネル相を含有したマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト等が挙げられる。その他、所定の原子以外にAl、Si、S,Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nbなどの原子を含んでもかまわない。一般には、Co−Zn、Co−Ti、Co−Ti−Zr、Co−Ti−Zn、Ni−Ti−Zn、Nb−Zn−Co、Sb−Zn−Co、Nb−Zn等の元素を添加した物を使用できる。また原料・製法によっては特有の不純物を含有するものもある。好ましいその他の原子およびその含有率は、前記の強磁性金属粉末の場合と同様である。
六方晶フェライト粉末の粒子サイズは、上述の体積を満足するサイズであることが好ましいが、平均板径は、30nm以下であり、10〜30nmが好ましく、15〜25nmがさらに好ましい。
平均板状比は1〜15であり、さらに1〜7であることが好ましい。平均板状比が1〜15であれば、磁性層で高充填性を保持しながら充分な配向性が得られ、かつ、粒子間のスタッキングによるノイズ増大を抑えることができる。また、上記粒子サイズの範囲内におけるBET法による比表面積(SBET)は、40m/g以上が好ましく、40〜200m/gであることがさらに好ましく、60〜100m/gであることが最も好ましい。
六方晶フェライト粉末の粒子板径・板厚の分布は、通常狭いほど好ましい。粒子板径・板厚を数値化することは、粒子TEM写真より500粒子を無作為に測定することで比較できる。粒子板径・板厚の分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差で表すと、σ/平均サイズ=0.1〜1.0である。粒子サイズ分布をシャープにするには、粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことも行われている。例えば、酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。
六方晶フェライト粉末の抗磁力(Hc)は、143.3〜318.5kA/m(1800〜4000Oe)の範囲とすることができるが、好ましくは159.2〜238.9kA/m(2000〜3000Oe)である。さらに好ましくは191.0〜214.9kA/m(2200〜2800Oe)である。
抗磁力(Hc)は、粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。
六方晶フェライト粉末の飽和磁化(σs)は30〜80A・m/kg(emu/g)である。飽和磁化(σs)は高い方が好ましいが、微粒子になるほど小さくなる傾向がある。飽和磁化(σs)の改良のため、マグネトプランバイトフェライトにスピネルフェライトを複合することや、含有元素の種類と添加量の選択等がよく知られている。またW型六方晶フェライトを用いることも可能である。磁性体を分散する際に磁性体粒子表面を分散媒、ポリマーに合った物質で処理することも行われている。表面処理剤としては、無機化合物及び有機化合物が使用される。主な化合物としてはSi、Al、P等の酸化物又は水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。添加量は磁性体の質量に対して0.1〜10質量%である。磁性体のpHも分散に重要である。通常4〜12程度で分散媒、ポリマーにより最適値があるが、媒体の化学的安定性、保存性から6〜11程度が選択される。磁性体に含まれる水分も分散に影響する。分散媒、ポリマーにより最適値があるが通常0.01〜2.0%が選ばれる。
六方晶フェライト粉末の製法としては、(1)酸化バリウム・酸化鉄・鉄を置換する金属酸化物とガラス形成物質として酸化ホウ素等を所望のフェライト組成になるように混合した後溶融し、急冷して非晶質体とし、次いで再加熱処理した後、洗浄・粉砕してバリウムフェライト結晶粉体を得るガラス結晶化法、(2)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後100℃以上で液相加熱した後洗浄・乾燥・粉砕してバリウムフェライト結晶粉体を得る水熱反応法、(3)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し1100℃以下で処理し、粉砕してバリウムフェライト結晶粉体を得る共沈法等があるが、本発明は製法を選ばない。六方晶フェライト粉末は、必要に応じ、Al、Si、P又はこれらの酸化物などで表面処理を施してもかまわない。その量は強磁性粉末に対し0.1〜10%であり表面処理を施すと脂肪酸などの潤滑剤の吸着が100mg/m以下になり好ましい。強磁性粉末には可溶性のNa、Ca、Fe、Ni、Srなどの無機イオンを含む場合がある。これらは、本質的に無い方が好ましいが、200ppm以下であれば特に特性に影響を与えることは少ない。
[窒化鉄磁性粒子]
窒化鉄磁性粒子におけるFe162相の平均粒径とは、Fe162粒子の表面に層が形成されている場合は、当該層を含まないFe162粒子そのものをいう。
本発明の磁性粒子はFe162相を少なくとも含むが、他の窒化鉄の相を含まないことが好ましい。これは、窒化鉄(Fe4NやFe3N相)の結晶磁気異方性は1×105erg/cc程度であるのに対し、Fe162相は2〜7×106erg/ccの高い結晶磁気異方性を有するからである。これにより、微粒子化した際にも高い保磁力を維持する事ができる。この高い結晶磁気異方性は、Fe162相の結晶構造に起因する。結晶構造は、N原子がFeの八面体格子間位置に規則的に入った体心正方晶であり、N原子が格子に入る際の歪が、高い結晶磁気異方性の発生原因と考えられる。Fe162相の磁化容易軸は窒化により伸びたC軸である。
Fe162相を含む粒子の形状は粒状ないし楕円状であることが好ましい。さらに好ましくは球状である。これは、立方晶であるα−Feの等価な3方向のうち一方向が窒化により選ばれc軸(磁化容易軸)となるため、粒子形状が針状であれば、磁化容易軸が短軸方向、長軸方向にある粒子が混在することになり好ましくないからである。従って、長軸長/短軸長の軸比の平均値は好ましくは、2以下(例えば、1〜2)であり、より好ましくは1.5以下(例えば、1〜1.5)である。
粒径は窒化する前の鉄粒子の粒径で決まり、単分散であることが好ましい。これは一般的には、単分散の方が、媒体ノイズが下がるためである。そして、Fe162を主相とする窒化鉄系磁性粉末の粒径は、鉄粒子の粒径で決まり、鉄粒子の粒径分布は単分散であることが好ましい。これは粒子サイズの大きい粒子と小さい粒子で窒化の度合いが異なり、磁気特性が異なるためである。この意味からも窒化鉄系磁性粉末の粒径分布は単分散であることが好ましい。
磁性体であるFe162相の粒径としては9〜11nmである。これは、粒径が小さくなると熱揺らぎの影響が大きくなり、超常磁性化し、磁気記録媒体に適さなくなるからである。また、磁気粘性のためヘッドで高速記録する際の保磁力が高くなり、記録しづらくなるからである。一方、粒径が大きいと、飽和磁化を小さくすることが出来ないため、記録時の保磁力が高くなりすぎ、記録をすることが困難となるからである。また、粒子サイズが大きいと、磁気記録媒体としたときの粒子性のノイズが高くなるからである。粒径分布は、単分散であることが好ましい。これは一般的には、単分散の方が、媒体ノイズが下がるためである。粒径の変動係数は15%以下(好ましくは2〜15%)であり、さらに好ましくは、10%以下(好ましくは2〜10%)である。
Fe162を主相とする窒化鉄系磁性粉末は、その表面が酸化皮膜で覆われていることが好ましい。これは、微粒子Fe162は酸化しやすく、窒素雰囲気でハンドリングを要するからである。
酸化皮膜は、希土類元素及び/またはシリコン、アルミニウムから選ばれる元素を含んでいることが好ましい。これにより、従来の鉄、Coを主成分とするいわゆるメタル粒子と同様の粒子表面を有することとなり、メタル粒子を取り扱っていた工程との親和性が高くなるからである。希土類元素は、Y,La,Ce,Pr,Nd,Sm,Tb,Dy,Gdが好ましく用いられ、特にYが分散性の観点から好ましく用いられる。
また、シリコンおよびアルミニウム以外に、必要に応じて、ホウ素やリンを含ませるようにしてもよい。さらに、炭素、カルシウム、マグネシウム、ジルコニウム、バリウム、ストロンチウムなども有効な元素として含ませてもよい。これらの他の元素と希土類元素および/またはシリコン、アルミニウムとを併用することにより、より高い形状維持性と分散性能を得ることができる。
表面化合物層の組成は、鉄に対する希土類元素あるいはホウ素、シリコン、アルミニウム、リンの総含有量は、0.1〜40.0原子%が好ましく、さらに好ましくは1.0〜30.0原子%、より好ましくは3.0〜25.0原子%であるのがよい。これらの元素が少なすぎると、表面化合物層の形成が困難となり、磁性粉末の磁気異方性が減少するだけでなく、酸化安定性に劣る。またこれらの元素が多すぎると、飽和磁化の過度な低下が起こりやすい。
酸化皮膜の厚みは1〜5nmが好ましく、2〜3nmがより好ましい。この範囲より薄いと酸化安定性が低くなりやすく、厚いと実質的に粒子サイズが小さくなりにくくなることがあることによる。
Fe162を主相とする窒化鉄系の磁性粒子の磁気特性としては、その保磁力(Hc)が、79.6〜318.4kA/m(1,000〜4,000Oe)であることが好ましく、159.2〜278.6kA/m(2000〜3500Oe)であることがより好ましい。さらに好ましくは、197.5〜237kA/m(2500〜3000Oe)である。これは、Hcが低いと、例えば面内記録の場合、隣の記録ビットの影響を受けやすくなり、高記録密度に適さなくなることがあるからであり、高すぎると記録されづらくなることがあるからである。
飽和磁化は80〜160Am2/kg(80〜160emu/g)が好ましく、80〜120Am2/kg(80〜120emu/g)がより好ましい。これは低すぎると、信号が弱くなることがあり、高すぎると例えば面内記録の場合、隣の記録ビットに影響を及ぼしやすくなり、高記録密度に適さなくなるためである。角型比としては、0.6〜0.9が好ましい。
また、この磁性粉末は、BET比表面積が40〜100m2/gであることが好ましい。これは、BET比表面積が小さすぎると、粒子サイズが大きくなり、磁気記録媒体に適用すると粒子性ノイズが高くなり、また磁性層の表面平滑性が低下して、再生出力が低下しやすい。また、BET比表面積が大きすぎると、Fe162相を含む粒子が凝集しやすくなり均一な分散物を得ることが難しく、平滑な表面を得ることが難しくなるからである。
窒化鉄系粉末の平均粒径は、前述のように30nm以下であり、好ましくは5〜25nmであり、更に好ましくは10〜20nmである。
窒化鉄磁性粒子の製造方法については、公知技術を適用でき、例えばWO2003/079332記載の方法を参考にできる。
[結合剤]
本発明の磁気記録媒体の磁性層、非磁性層、及びバック層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他の公知技術は、それらを互いに適宜適用することができる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関する公知技術が適用できる。
本発明に使用される結合剤としては従来公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂やこれらの混合物が使用される。熱可塑性樹脂としては、ガラス転移温度が−100〜150℃、数平均分子量が1,000〜200,000、好ましくは10,000〜100,000、重合度が約50〜1000程度のものである。
このような例としては、塩化ビニル、酢酸ビニル、ビニルアルコ−ル、マレイン酸、アクルリ酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラ−ル、ビニルアセタ−ル、ビニルエ−テル、等を構成単位として含む重合体または共重合体、ポリウレタン樹脂、各種ゴム系樹脂がある。また、熱硬化性樹脂または反応型樹脂としてはフェノ−ル樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコ−ン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネ−トプレポリマ−の混合物、ポリエステルポリオ−ルとポリイソシアネ−トの混合物、ポリウレタンとポリイソシアネートの混合物等があげられる。これらの樹脂については朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。また、公知の電子線硬化型樹脂を各層に使用することも可能である。これらの例とその製造方法については特開昭62−256219号公報に詳細に記載されている。以上の樹脂は単独または組合せて使用できるが、好ましいものとして塩化ビニル樹脂、塩化ビニル酢酸ビニル共重合体、塩化ビニル酢酸ビニルビニルアルコ−ル共重合体、塩化ビニル酢酸ビニル無水マレイン酸共重合体、から選ばれる少なくとも1種とポリウレタン樹脂の組合せ、またはこれらにポリイソシアネ−トを組み合わせたものがあげられる。
ポリウレタン樹脂の構造はポリエステルポリウレタン、ポリエ−テルポリウレタン、ポリエ−テルポリエステルポリウレタン、ポリカ−ボネ−トポリウレタン、ポリエステルポリカ−ボネ−トポリウレタン、ポリカプロラクトンポリウレタンなど公知のものが使用できる。ここに示したすべての結合剤について、より優れた分散性と耐久性を得るためには必要に応じ、−COOM,−SO3 M、−OSO3 M、−P=O(OM)2、−O−P=O(OM)2 、(以上につきMは水素原子、またはアルカリ金属塩基)、−OH、−NR2 、−N+3(Rは炭化水素基)、エポキシ基、−SH、−CN、などから選ばれる少なくともひとつ以上の極性基を共重合または付加反応で導入したものを用いることが好ましい。このような極性基の量は10-1〜10-8モル/gであり、好ましくは10-2〜10-6モル/gである。
本発明に用いられるこれらの結合剤の具体的な例としてはダウケミカル社製VAGH、VYHH、VMCH、VAGF、VAGD,VROH,VYES,VYNC,VMCC,XYHL,XYSG,PKHH,PKHJ,PKHC,PKFE,日信化学工業社製、MPR−TA、MPR−TA5,MPR−TAL,MPR−TSN,MPR−TMF,MPR−TS、MPR−TM、MPR−TAO、電気化学社製1000W、DX80,DX81,DX82,DX83、100FD、日本ゼオン社製MR−104、MR−105、MR110、MR100、MR555、400X−110A、日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バ−ノックD−400、D−210−80、クリスボン6109,7209,東洋紡社製バイロンUR8200,UR8300、UR−8700、RV530,RV280、大日精化社製、ダイフェラミン4020,5020,5100,5300,9020,9022、7020,三菱化学社製、MX5004,三洋化成社製サンプレンSP−150、旭化成社製サランF310,F210などが挙げられる。
本発明の非磁性層、磁性層に用いられる結合剤は非磁性粉末または磁性粉末に対し、5〜50質量%の範囲、好ましくは10〜30質量%の範囲で用いられる。塩化ビニル系樹脂を用いる場合は5〜30質量%、ポリウレタン樹脂を用いる場合は2〜20質量%、ポリイソシアネ−トは2〜20質量%の範囲でこれらを組み合わせて用いることが好ましいが、例えば、微量の脱塩素によりヘッド腐食が起こる場合は、ポリウレタンのみまたはポリウレタンとイソシアネートのみを使用することも可能である。本発明において、ポリウレタンを用いる場合はガラス転移温度が−50〜150℃、好ましくは0℃〜100℃、破断伸びが100〜2000%、破断応力は0.05〜10kg/mm(0.49〜98MPa)、降伏点は0.05〜10kg/mm(0.49〜98MPa)が好ましい。
本発明に用いるポリイソシアネ−トとしては、トリレンジイソシアネ−ト、4,4’−ジフェニルメタンジイソシアネ−ト、ヘキサメチレンジイソシアネ−ト、キシリレンジイソシアネ−ト、ナフチレン−1,5−ジイソシアネ−ト、o−トルイジンジイソシアネ−ト、イソホロンジイソシアネ−ト、トリフェニルメタントリイソシアネ−ト等のイソシアネ−ト類、また、これらのイソシアネ−ト類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネ−ト等を使用することができる。これらのイソシアネート類の市販されている商品名としては、日本ポリウレタン社製、コロネートL、コロネ−トHL,コロネ−ト2030、コロネ−ト2031、ミリオネ−トMR,ミリオネ−トMTL、武田薬品社製、タケネ−トD−102,タケネ−トD−110N、タケネ−トD−200、タケネ−トD−202、住友バイエル社製、デスモジュ−ルL,デスモジュ−ルIL、デスモジュ−ルN,デスモジュ−ルHL,等がありこれらを単独または硬化反応性の差を利用して二つもしくはそれ以上の組合せで各層とも用いることができる。
本発明における磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラックなどを挙げることができる。これら添加剤としては、例えば、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素、フッ化黒鉛、シリコーンオイル、極性基を持つシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、ポリフェニルエーテル、フェニルホスホン酸、ベンジルホスホン酸、フェネチルホスホン酸、α−メチルベンジルホスホン酸、1−メチル−1−フェネチルホスホン酸、ジフェニルメチルホスホン酸、ビフェニルホスホン酸、ベンジルフェニルホスホン酸、α−クミルホスホン酸、トルイルホスホン酸、キシリルホスホン酸、エチルフェニルホスホン酸、クメニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ヘプチルフェニルホスホン酸、オクチルフェニルホスホン酸、ノニルフェニルホスホン酸等の芳香族環含有有機ホスホン酸及びそのアルカリ金属塩、オクチルホスホン酸、2−エチルヘキシルホスホン酸、イソオクチルホスホン酸、イソノニルホスホン酸、イソデシルホスホン酸、イソウンデシルホスホン酸、イソドデシルホスホン酸、イソヘキサデシルホスホン酸、イソオクタデシルホスホン酸、イソエイコシルホスホン酸等のアルキルホスホン酸及びそのアルカリ金属塩、リン酸フェニル、リン酸ベンジル、リン酸フェネチル、リン酸α−メチルベンジル、リン酸1−メチル−1−フェネチル、リン酸ジフェニルメチル、リン酸ビフェニル、リン酸ベンジルフェニル、リン酸α−クミル、リン酸トルイル、リン酸キシリル、リン酸エチルフェニル、リン酸クメニル、リン酸プロピルフェニル、リン酸ブチルフェニル、リン酸ヘプチルフェニル、リン酸オクチルフェニル、リン酸ノニルフェニル等の芳香族リン酸エステル及びそのアルカリ金属塩、リン酸オクチル、リン酸2−エチルヘキシル、リン酸イソオクチル、リン酸イソノニル、リン酸イソデシル、リン酸イソウンデシル、リン酸イソドデシル、リン酸イソヘキサデシル、リン酸イソオクタデシル、リン酸イソエイコシル等のリン酸アルキルエステル及びそのアルカリ金属塩、アルキルスルホン酸エステル及びそのアルカリ金属塩、フッ素含有アルキル硫酸エステル及びそのアルカリ金属塩、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オレイン酸、リノール酸、リノレン酸、エライジン酸、エルカ酸等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸及びこれらの金属塩、又はステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸アミル、ステアリン酸イソオクチル、ミリスチン酸オクチル、ラウリル酸ブチル、ステアリン酸ブトキシエチル、アンヒドロソルビタンモノステアレート、アンヒドロソルビタントリステアレート等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸と、炭素数2〜22の不飽和結合を含んでも分岐していても良い1〜6価アルコール、炭素数12〜22の不飽和結合を含んでも分岐していても良いアルコキシアルコールまたはアルキレンオキサイド重合物のモノアルキルエーテルのいずれか一つとからなるモノ脂肪酸エステル、ジ脂肪酸エステル又は多価脂肪酸エステル、炭素数2〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが使用できる。また、上記炭化水素基以外にもニトロ基およびF、Cl、Br、CF、CCl、CBr等の含ハロゲン炭化水素等炭化水素基以外の基が置換したアルキル基、アリール基、アラルキル基を持つものでもよい。
また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフエノールエチレンオキサイド付加体等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウム又はスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルホン酸、硫酸エステル基等の酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸又はリン酸エステル類、アルキルベタイン型等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。
上記潤滑剤、帯電防止剤等は必ずしも純粋ではなく主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれても構わない。これらの不純分は30質量%以下が好ましく、さらに好ましくは10質量%以下である。
これらの添加物の具体例としては、例えば、日本油脂社製:NAA−102、ヒマシ油硬化脂肪酸、NAA−42、カチオンSA、ナイミーンL−201、ノニオンE−208、アノンBF、アノンLG、竹本油脂社製:FAL−205、FAL−123、新日本理化社製:エヌジエルブOL、信越化学社製:TA−3、ライオン社製:アーマイドP、ライオン社製:デュオミンTDO、日清オイリオ社製:BA−41G、三洋化成社製:プロフアン2012E、ニューポールPE61、イオネットMS−400等が挙げられる。
また、本発明における磁性層には、必要に応じてカーボンブラックを添加することができる。磁性層で使用可能なカーボンブラックとしては、ゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を挙げることができる。比表面積は5〜500m/g、DBP吸油量は10〜400ml/100g、粒子径は5〜300nm、pHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
本発明に用いられるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、905、800、700、VULCAN XC−72、旭カーボン社製#80、#60、#55、#50、#35、三菱化学社製#2400B、#2300、#900、#1000、#30、#40、#10B、コロンビアンカーボン社製CONDUCTEX SC、RAVEN150、50、40、15、RAVEN−MT−P、ケッチェン・ブラック・インターナショナル社製ケッチェンブラックECなどが挙げられる。カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用したりしてもかまわない。また、カーボンブラックを磁性塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは単独又は組み合せで使用することができる。カーボンブラックを使用する場合、磁性体の質量に対して0.1〜30質量%で用いることが好ましい。カーボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカーボンブラックにより異なる。したがって本発明で使用されるこれらのカーボンブラックは、磁性層及び非磁性層でその種類、量、組み合せを変え、粒子サイズ、吸油量、電導度、pHなどの先に示した諸特性を基に目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。本発明の磁性層で使用できるカーボンブラックは、例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。
[研磨剤]
本発明に用いられる研磨剤としてはα化率90%以上のα−アルミナ、β−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、コランダム、人造ダイアモンド、窒化珪素、炭化珪素チタンカ−バイト、酸化チタン、二酸化珪素、窒化ホウ素、など主としてモ−ス硬度6以上の公知の材料が単独または組合せで使用される。また、これらの研磨剤同士の複合体(研磨剤を他の研磨剤で表面処理したもの)を使用してもよい。これらの研磨剤には主成分以外の化合物または元素が含まれる場合もあるが主成分が90%以上であれば効果にかわりはない。これら研磨剤の粒子サイズは0.01〜2μが好ましく、特に電磁変換特性を高めるためには、その粒度分布が狭い方が好ましい。また耐久性を向上させるには必要に応じて粒子サイズの異なる研磨剤を組み合わせたり、単独の研磨剤でも粒径分布を広くして同様の効果をもたせることも可能である。タップ密度は0.3〜2g/cc、含水率は0.1〜5%、pHは2〜11、比表面積は1〜30m2/gが好ましい。本発明に用いられる研磨剤の形状は針状、球状、サイコロ状、板状のいずれでも良いが、形状の一部に角を有するものが研磨性が高く好ましい。具体的には住友化学社製AKP−12、AKP−15、AKP−20、AKP−30、AKP−50、HIT−20、HIT−30、HIT−55、HIT−60、HIT−70、HIT−80、HIT−100、レイノルズ社製、ERC−DBM、HP−DBM、HPS−DBM、不二見研磨剤社製、WA10000、上村工業社製、UB20、日本化学工業社製、G−5、クロメックスU2、クロメックスU1、戸田工業社製、TF100、TF140、イビデン社製、ベータランダムウルトラファイン、昭和鉱業社製、B−3などが挙げられる。これらの研磨剤は必要に応じ非磁性層に添加することもできる。非磁性層に添加することで表面形状を制御したり、研磨剤の突出状態を制御したりすることができる。これら磁性層、非磁性層の添加する研磨剤の粒径、量はむろん最適値に設定すべきものである。
本発明で用いられる有機溶剤は公知のものが使用できる。本発明で用いられる有機溶媒は、任意の比率でアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン、等のケトン類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、イソプロピルアルコール、メチルシクロヘキサノールなどのアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル、酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル、ジオキサンなどのグリコールエーテル系、ベンゼン、トルエン、キシレン、クレゾール、クロルベンゼンなどの芳香族炭化水素類、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロルヒドリン、ジクロルベンゼン等の塩素化炭化水素類、N,N−ジメチルホルムアミド、ヘキサン等を使用することができる。
これら有機溶媒は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物、水分等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。本発明で用いる有機溶媒は磁性層と非磁性層でその種類は同じであることが好ましい。その添加量は変えてもかまわない。非磁性層に表面張力の高い溶媒(シクロヘキサノン、ジオキサンなど)を用い塗布の安定性を上げる、具体的には上層溶剤組成の算術平均値が非磁性層溶剤組成の算術平均値を下回らないことが肝要である。分散性を向上させるためにはある程度極性が強い方が好ましく、溶剤組成の内、誘電率が15以上の溶剤が50%以上含まれることが好ましい。また、溶解パラメータは8〜11であることが好ましい。
本発明で使用されるこれらの分散剤、潤滑剤、界面活性剤は、磁性層、さらに後述する非磁性層でその種類、量を必要に応じて使い分けることができる。例えば、無論ここに示した例のみに限られるものではないが、分散剤は極性基で吸着又は結合する性質を有しており、磁性層では主に強磁性金属粉末の表面に、また非磁性層では主に非磁性粉末の表面に前記の極性基で吸着又は結合し、例えば、一度吸着した有機リン化合物は、金属又は金属化合物等の表面から脱着し難いと推察される。したがって、本発明の強磁性金属粉末表面又は非磁性粉末表面は、アルキル基、芳香族基等で被覆されたような状態になるので、該強磁性金属粉末又は非磁性粉末の結合剤成分に対する親和性が向上し、さらに強磁性金属粉末あるいは非磁性粉末の分散安定性も改善される。また、潤滑剤としては遊離の状態で存在するため非磁性層、磁性層で融点の異なる脂肪酸を用い、表面へのにじみ出しを制御する、沸点や極性の異なるエステル類を用い表面へのにじみ出しを制御する、界面活性剤量を調節することで塗布の安定性を向上させる、潤滑剤の添加量を非磁性層で多くして潤滑効果を向上させるなどが考えられる。また本発明で用いられる添加剤のすべて又はその一部は、磁性層又は非磁性層用の塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。
[非磁性層]
次に非磁性層に関する詳細な内容について説明する。本発明の磁気記録媒体は、非磁性支持体上に非磁性粉末と結合剤を含む非磁性層を有することができる。非磁性層に使用できる非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。
具体的には二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO、SiO、Cr、α化率90〜100%のα−アルミナ、β−アルミナ、γ−アルミナ、α−酸化鉄、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、2硫化モリブデン、酸化銅、MgCO、CaCO、BaCO、SrCO、BaSO、炭化珪素、炭化チタンなどが単独又は2種類以上を組み合わせて使用される。好ましいのは、α−酸化鉄、酸化チタンである。
非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでもあってもよい。非磁性粉末の結晶子サイズは、4nm〜500nmが好ましく、40〜100nmがさらに好ましい。結晶子サイズが4nm〜500nmの範囲であれば、分散が困難になることもなく、また好適な表面粗さを有するため好ましい。これら非磁性粉末の平均粒径は、5nm〜500nmが好ましいが、必要に応じて平均粒径の異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くしたりして同様の効果をもたせることもできる。とりわけ好ましい非磁性粉末の平均粒径は、10〜200nmである。5nm〜500nmの範囲であれば、分散も良好で、かつ好適な表面粗さを有するため好ましい。
非磁性粉末の比表面積は、1〜150m/gであり、好ましくは20〜120m/gであり、さらに好ましくは50〜100m/gである。比表面積が1〜150m/gの範囲内にあれば、好適な表面粗さを有し、かつ、所望の結合剤量で分散できるため好ましい。ジブチルフタレート(DBP)を用いた吸油量は、5〜100ml/100g、好ましくは10〜80ml/100g、さらに好ましくは20〜60ml/100gである。比重は1〜12、好ましくは3〜6である。タップ密度は0.05〜2g/ml、好ましくは0.2〜1.5g/mlである。タップ密度が0.05〜2g/mlの範囲であれば、飛散する粒子が少なく操作が容易であり、また装置にも固着しにくくなる傾向がある。非磁性粉末のpHは2〜11であることが好ましいが、pHは6〜9の間が特に好ましい。pHが2〜11の範囲にあれば、高温、高湿下又は脂肪酸の遊離により摩擦係数が大きくなることはない。非磁性粉末の含水率は、0.1〜5質量%、好ましくは0.2〜3質量%、さらに好ましくは0.3〜1.5質量%である。含水量が0.1〜5質量%の範囲であれば、分散も良好で、分散後の塗料粘度も安定するため好ましい。強熱減量は、20質量%以下であることが好ましく、強熱減量が小さいものが好ましい。
また、非磁性粉末が無機粉体である場合には、モース硬度は4〜10のものが好ましい。モース硬度が4〜10の範囲であれば耐久性を確保することができる。非磁性粉末のステアリン酸吸着量は、1〜20μmol/mであり、さらに好ましくは2〜15μmol/mである。非磁性粉末の25℃での水への湿潤熱は、200〜600erg/cm(200〜600mJ/m)の範囲にあることが好ましい。また、この湿潤熱の範囲にある溶媒を使用することができる。100〜400℃での表面の水分子の量は1〜10個/100Åが適当である。水中での等電点のpHは、3〜9の間にあることが好ましい。これらの非磁性粉末の表面には表面処理が施されることによりAl、SiO、TiO、ZrO、SnO、Sb、ZnOが存在することが好ましい。特に分散性に好ましいのはAl、SiO、TiO、ZrOであるが、さらに好ましいのはAl、SiO、ZrOである。これらは組み合わせて使用してもよいし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いてもよいし、先ずアルミナで処理した後にその表層をシリカで処理する方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
本発明の非磁性層に用いられる非磁性粉末の具体的な例としては、例えば、昭和電工製ナノタイト、住友化学製HIT−100、ZA−G1、戸田工業社製DPN−250、DPN−250BX、DPN−245、DPN−270BX、DPB−550BX、DPN−550RX、石原産業製酸化チタンTTO−51B、TTO−55A、TTO−55B、TTO−55C、TTO−55S、TTO−55D、SN−100、MJ−7、α−酸化鉄E270、E271、E300、チタン工業製STT−4D、STT−30D、STT−30、STT−65C、テイカ製MT−100S、MT−100T、MT−150W、MT−500B、T−600B、T−100F、T−500HDなどが挙げられる。堺化学製FINEX−25、BF−1、BF−10、BF−20、ST−M、同和鉱業製DEFIC−Y、DEFIC−R、日本アエロジル製AS2BM、TiO2P25、宇部興産製100A、500A、チタン工業製Y−LOP及びそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
非磁性層には非磁性粉末と共に、カーボンブラックを混合し表面電気抵抗を下げ、光透過率を小さくすると共に、所望のマイクロビッカース硬度を得ることができる。非磁性層のマイクロビッカース硬度は、通常25〜60kg/mm(245〜588MPa)、好ましくはヘッド当りを調整するために、30〜50kg/mm(294〜490MPa)であり、薄膜硬度計(日本電気製HMA−400)を用いて、稜角80度、先端半径0.1μmのダイヤモンド製三角錐針を圧子先端に用いて測定することができる。詳細は「薄膜の力学的特性評価技術」リアライズ社を参考にできる。光透過率は一般に波長900nm程度の赤外線の吸収が3%以下、たとえばVHS用磁気テープでは0.8%以下であることが規格化されている。このためにはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。
本発明の非磁性層に用いられるカーボンブラックの比表面積は100〜500m/g、好ましくは150〜400m/g、DBP吸油量は20〜400ml/100g、好ましくは30〜200ml/100gである。カーボンブラックの粒子径は5〜80nm、好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
本発明の非磁性層に用いることができるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、800、880、700、VULCAN XC−72、三菱化学社製#3050B、#3150B、#3250B、#3750B、#3950B、#950、#650B、#970B、#850B、MA−600、コロンビアカーボン社製CONDUCTEX SC、RAVEN8800、8000、7000、5750、5250、3500、2100、2000、1800、1500、1255、1250、ケッチェン・ブラック・インターナショナル社製ケッチェンブラックECなどが挙げられる。
また、カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記無機粉末に対して50質量%を越えない範囲、非磁性層総質量の40%を越えない範囲で使用できる。これらのカーボンブラックは単独、または組み合せで使用することができる。本発明の非磁性層で使用できるカーボンブラックは例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。
また非磁性層には目的に応じて有機質粉末を添加することもできる。このような有機質粉末としては、例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は、特開昭62−18564号公報、特開昭60−255827号公報に記されているようなものが使用できる。
非磁性層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
また、本発明の磁気記録媒体は、下塗り層を設けてもよい。下塗り層を設けることによって支持体と磁性層又は非磁性層との接着力を向上させることができる。下塗り層としては、溶剤への可溶性のポリエステル樹脂が使用される。
[層構成]
本発明で用いられる磁気記録媒体の厚み構成は、非磁性支持体の厚みが前述のように3〜80μm、より好ましくは3〜50μm、とくに好ましくは3〜10μmである。また、非磁性支持体と非磁性層又は磁性層の間に下塗り層を設けた場合、下塗り層の厚みは、0.01〜0.8μm、好ましくは0.02〜0.6μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には10〜150nmであり、好ましくは20〜120nmであり、さらに好ましくは30〜100nmであり、とくに好ましくは30〜80nmである。また、磁性層の厚み変動率は±50%以内が好ましく、さらに好ましくは±30%以内である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
本発明の非磁性層の厚みは、0.1〜3.0μmであり、0.3〜2.0μmであることが好ましく、0.5〜1.5μmであることが更に好ましい。なお、本発明の磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT以下又は抗磁力が7.96kA/m(100Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
[バック層]
本発明の磁気記録媒体には、非磁性支持体の他方の面にバック層を設けるのが好ましい。バック層には、カーボンブラックと無機粉末が含有されていることが好ましい。結合剤、各種添加剤は、磁性層や非磁性層の処方が適用される。バック層の厚みは、0.9μm以下が好ましく、0.1〜0.7μmが更に好ましい。
[製造方法]
本発明で用いられる磁性層用塗料、非磁性層用塗料またはバック層用塗料を製造する工程は、少なくとも混練工程、分散工程、及びこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨材、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初又は途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用塗料、非磁性層用塗料またはバック層用塗料を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
本発明の磁気記録媒体の製造方法では、例えば、走行下にある非磁性支持体の表面に磁性層用塗料を所定の膜厚となるようにして磁性層を塗布して形成する。ここで複数の磁性層用塗料を逐次又は同時に重層塗布してもよく、非磁性層用塗料と磁性層用塗料とを逐次又は同時に重層塗布してもよい。上記磁性層用塗料又は非磁性層用塗料を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。
磁性層用塗料の塗布層は、磁気テープの場合、磁性層用塗料の塗布層中に含まれる強磁性粉末にコバルト磁石やソレノイドを用いて磁場配向処理してもかまわない。ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、コバルト磁石を斜めに交互に配置すること、ソレノイドで交流磁場を印加するなど公知のランダム配向装置を用いることが好ましい。等方的な配向とは強磁性金属粉末の場合、一般的には面内2次元ランダムが好ましいが、垂直成分をもたせて3次元ランダムとすることもできる。また異極対向磁石など公知の方法を用い、垂直配向とすることで円周方向に等方的な磁気特性を付与することもできる。特に高密度記録を行う場合は垂直配向が好ましい。また、スピンコートを用いて円周配向することもできる。
乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できる様にすることが好ましく、塗布速度は20m/分〜1000m/分、乾燥風の温度は60℃以上が好ましい、また磁石ゾーンに入る前に適度の予備乾燥を行うこともできる。
このようにして得られた塗布原反は、一旦巻き取りロールにより巻き取られ、しかる後、この巻き取りロールから巻き出され、カレンダー処理に施される。
カレンダー処理には、例えばスーパーカレンダーロールなどが利用される。カレンダー処理によって、表面平滑性が向上するとともに、乾燥時の溶剤の除去によって生じた空孔が消滅し磁性層中の強磁性粉末の充填率が向上するので、電磁変換特性の高い磁気記録媒体を得ることができる。カレンダー処理する工程は、塗布原反の表面の平滑性に応じて、カレンダー処理条件を変化させながら行うことが好ましい。
塗布原反は、概ね、巻き取りロールの芯側から外側に向かって光沢値が低下し、長手方向において品質にばらつきがあることがある。なお光沢値は、表面粗さRaと相関(比例関係)があることが知られている。したがって、カレンダー処理工程で、カレンダー処理条件、例えばカレンダーロール圧力を変化させず一定に保持すると、塗布原反の巻き取りによって生じた長手方向における平滑性の相違について何ら対策が講じられていないことになり、最終製品も長手方向に品質のばらつきが生じる。
したがって、カレンダー処理工程で、カレンダー処理条件、例えばカレンダーロール圧力を変化させ、塗布原反の巻き取りによって生じた長手方向における平滑性の相違を相殺するのが好ましい。具体的には、巻き取りロールから巻き出された塗布原反の芯側から外側に向かってカレンダーロールの圧力を低下させていくのが好ましい。本発明者らの検討によれば、カレンダーロールの圧力を下げると光沢値は低下する(平滑性が低下する)ことが見出されている。これにより、塗布原反の巻き取りによって生じた長手方向における平滑性の相違が相殺され、長手方向において品質にばらつきのない最終製品が得られる。
なお、前記ではカレンダーロールの圧力を変化させる例について説明したが、これ以外にも、カレンダーロール温度、カレンダーロール速度、カレンダーロールテンションを制御することによって行うことができる。塗布型媒体の特性を考慮すると、カレンダーロール圧力、カレンダーロール温度を制御するのが好ましい。カレンダーロール圧力を低くする、あるいはカレンダーロール温度を低くすることにより、最終製品の表面平滑性は低下する。逆に、カレンダーロール圧力を高くする、あるいはカレンダーロール温度を高くすることにより、最終製品の表面平滑性は高まる。
これとは別に、カレンダー処理工程後に得られた磁気記録媒体を、サーモ処理して熱硬化を進行させることもできる。このようなサーモ処理は、磁性層用塗料の配合処方により適宜決定すればよいが、例えば35〜100℃であり、好ましくは50〜80℃である。またサーモ処理時間は、12〜72時間、好ましくは24〜48時間である。
カレンダーロールとしてはエポキシ、ポリイミド、ポリアミド、ポリアミドイミド等の耐熱性プラスチックロールを使用する。また金属ロールで処理することもできる。
本発明の磁気記録媒体は、前述の通り極めて優れた平滑性を有する表面であることが好ましい。そのために採用されるカレンダー処理条件としては、カレンダーロールの温度を60〜100℃の範囲、好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cm(98〜490kN/m)の範囲であり、好ましくは200〜450kg/cm(196〜441kN/m)の範囲であり、特に好ましくは300〜400kg/cm(294〜392kN/m)の範囲の条件が好ましい。
得られた磁気記録媒体は、裁断機などを使用して所望の大きさに裁断して使用することができる。裁断機としては、特に制限はないが、回転する上刃(雄刃)と下刃(雌刃)の組が複数設けられたものが好ましく、適宜、スリット速度、噛み合い深さ、上刃(雄刃)と下刃(雌刃)の周速比(上刃周速/下刃周速)、スリット刃の連続使用時間等が選定される。
[物理特性]
本発明に用いられる磁気記録媒体の磁性層の飽和磁束密度は100〜400mTが好ましい。また磁性層の抗磁力(Hc)は、143.2〜318.3kA/m(1800〜4000Oe)が好ましく、159.2〜278.5kA/m(2000〜3500Oe)が更に好ましい。抗磁力の分布は狭い方が好ましく、SFD及びSFDrは0.6以下、さらに好ましくは0.3以下である。
本発明で用いられる磁気記録媒体のヘッドに対する摩擦係数は、温度−10〜40℃、湿度0〜95%の範囲において0.50以下であり、好ましくは0.3以下である。また、表面固有抵抗は、好ましくは磁性面10〜108Ω/sq、帯電位は−500V〜+500V以内が好ましい。磁性層の0.5%伸びでの弾性率は、面内各方向で好ましくは0.98〜19.6GPa(100〜2000kg/mm)、破断強度は、好ましくは98〜686MPa(10〜70kg/mm)、磁気記録媒体の弾性率は、面内各方向で好ましくは0.98〜14.7GPa(100〜1500kg/mm)、残留のびは、好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は、好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.1%以下である。
磁性層のガラス転移温度(動的粘弾性測定装置、レオバイブロン等により、110Hzで測定した動的粘弾性測定の損失正接の極大点)は50〜180℃が好ましく、非磁性層のそれは0〜180℃が好ましい。損失弾性率は1×10〜8×10Pa(1×10〜8×10dyne/cm)の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向において10%以内でほぼ等しいことが好ましい。
磁性層中に含まれる残留溶媒は好ましくは20mg/m以下、さらに好ましくは50mg/m以下である。塗布層が有する空隙率は非磁性層、磁性層とも好ましくは30容量%以下、さらに好ましくは10容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が走行耐久性は好ましいことが多い。
磁性層の十点平均粗さRzは30nm以下が好ましい。これは支持体のフィラーによる表面性のコントロールやカレンダ処理のロール表面形状などで容易にコントロールすることができる。カールは±3mm以内とすることが好ましい。
本発明の磁気記録媒体は、目的に応じ非磁性層と磁性層でこれらの物理特性を変えることができる。例えば、磁性層の弾性率を高くし走行耐久性を向上させると同時に非磁性層の弾性率を磁性層より低くして磁気記録媒体のヘッドへの当たりを良くすることができる。
本発明の磁気記録媒体における再生方法としては、最大線記録密度200KFCI以上で磁気記録された信号をAMRヘッドまたはGMRヘッドにより再生するのが好ましい。
シールド間距離は、例えば0.08μm〜0.2μm、再生トラック幅は、例えば0.5μm〜3.5μmである。
本発明の磁気記録媒体がテープ状磁気記録媒体の場合、再生ヘッドとしてAMRヘッドやGMRヘッドを用いることで、従来に比べ高周波領域で記録した信号であっても高いS/Nでの再生が可能である。従って、本発明の磁気記録媒体は、より高密度記録用のコンピュータデータ記録用の磁気テープやディスク状の磁気記録媒体として最適である。
以下に本発明を実施例によりさらに具体的に説明する。なお、ここに示す成分、割合、操作、順序等は本発明の精神から逸脱しない範囲で変更し得るものであり、下記の実施例に制限されるべきものではない。また、実施例中の「部」特に示さない限り質量部を示す。
(実施例1)
磁性層用塗料の調製
強磁性板状六方晶フェライト粉末 100部
酸素を除く組成(モル比):Ba/Fe/Co/Zn=1/9/0.2/1
Hc:176kA/m(2200Oe)、
平均板径:21nm、平均板状比:3
BET比表面積:65m2/g、σs:49A・m2/kg(49emu/g)
ポリウレタン樹脂 17部
分岐側鎖含有ポリエステルポリオール/
ジフェニルメタンジイソシアネート系
−SONa=400eq/ton
α−Al23(平均粒径0.15μm) 5部
ダイヤモンド粉末(平均粒径60nm) 1部
カーボンブラック(平均粒径20nm) 1部
シクロヘキサノン 110部
メチルエチルケトン 100部
トルエン 100部
ブチルステアレート 2部
ステアリン酸 1部
非磁性層用塗料の調製
非磁性無機質粉体 85部
α−酸化鉄
表面処理層:Al23、SiO2、平均長軸長:0.15μm
タップ密度:0.8、平均針状比:7、BET比表面積:52m2/g
pH8、DBP吸油量:33ml/100g
カーボンブラック 15部
DBP吸油量:120ml/100g、pH:8
BET比表面積:250m2/g、揮発分:1.5%
塩化ビニル樹脂(日本ゼオン社製MR104) 10部
ポリウレタン樹脂 10部
分岐側鎖含有ポリエステルポリオール/
ジフェニルメタンジイソシアネート系
−SONa=150eq/ton
フェニルホスホン酸 3部
シクロヘキサノン 140部
メチルエチルケトン 170部
ブチルステアレート 2部
ステアリン酸 1部
バック層用塗料の調製
非磁性無機質粉体 85部
α−酸化鉄
表面処理層:Al23、SiO2、平均長軸径:0.15μm、
タップ密度:0.8、針状比:7、BET比表面積:52m2/g
pH8、DBP吸油量:33ml/100g
カーボンブラック 20部
DBP吸油量:120ml/100g、pH:8
BET比表面積:250m2/g、揮発分:1.5%
塩化ビニル共重合体(日本ゼオン社製MR104) 13部
ポリウレタン樹脂(東洋紡社製バイロンUR8200) 6部
フェニルホスホン酸 3部
アルミナ粉末(平均粒径0.25μm) 5部
シクロヘキサノン 140部
メチルエチルケトン 170部
ブチルステアレート 2部
ステアリン酸 1部
上記の磁性層用塗料、非磁性層用塗料、バック層用塗料のそれぞれについて、各成分をオープンニーダーで240分間混練した後、サンドミルで磁性層用塗料は24時間、非磁性層用塗料は24時間、バック層用塗料は24時間分散した。得られた分散液に3官能性低分子量ポリイソシアネート化合物(日本ポリウレタン製 コロネート3041)をそれぞれ4部加え、更に20分間撹拌混合したあと、0.5μmの平均孔径を有するフィルターを用いて濾過し、各塗料を調製した。次に非磁性支持体(ポリエチレンナフタレート(PEN)製、厚み6μm、磁性層形成面のRa=1.5nm、バック層形成面のRa=2nm)上に上記非磁性層用塗料を乾燥後の厚さが1.5μmになるように塗布後、100℃で乾燥させた後、その上に磁性層用塗料を乾燥後の厚さが60nmになるように塗布乾燥させた。磁性体が金属磁性粉の場合、塗布し乾燥前に長手に方向に6000Oe(480kN/m)の磁場を印加し乾燥させる。次に、この非磁性支持体の非磁性層および磁性層の形成面とは反対面側に、上記のバック層用塗料を、乾燥およびカレンダ処理後のバックコート層の厚さが0.5μmとなるように塗布し、乾燥した。その後金属ロ−ルからなる7段のカレンダーで速度100m/min、線圧350kg/cm(343kN/m)、温度100℃でカレンダー処理を行った。その後70℃24時間の熱処理を行い1/2インチ幅にスリットし作成した。得られた磁気テープに対し、富士写真フイルム製KX15000(平均砥粒サイズ0.5μm、研磨粒材質CrO2)を用い、図1で説明した前記表面処理方法と同様な処理を3回実施した。
得られた磁気テープについて、原子間力顕微鏡(AFM)を用いて中心面平均表面粗さRaを測定した。
装置:日本Veeco社製 Nanoscope III
モード:AFMモード(コンタクトモード)
測定範囲:40μm角
スキャンライン:512*512
スキャンスピード:2Hz
スキャン方向:テープ長手方向
また、磁気テープの磁性層表面に下記処理を行い、前述の測定条件により、X線光電子分光装置を用いて磁性層表面のC/Fe強度比(処理後)と、下記処理を行う前の磁性層表面のC/Fe強度比(処理前)との関係、すなわち[C/Fe強度比(処理前)−C/Fe強度比(処理後)]を算出した。
磁性層表面の処理:表面のRaが0.1μmである研磨層を備えたラッピングテープ(富士写真フイルム社製K10000、平均砥粒サイズ0.5μm、研磨粒材質CrO2)を用い、その研磨層と磁性層表面とを、張力200gf(1.96N)、速度2m/秒の条件で摺動させ、磁性層表面の研磨処理を行い、研磨処理後の磁性層表面上の削れ物を、サファイヤブレードでかき取る。サファイヤブレードでのかき取り方法は、前述のとおりである。
さらに、得られた磁気テープについて、電磁変換特性の測定を行った。
リニアテスタ−(相対速度4m/sec)を用い、Bs=1.7T Gap長0.2μmのライトヘッドを用い、線記録密度200kFCIの信号を記録し、AMRヘッド(再生トラック幅3.5μm、シールド間距離0.18μm)で再生した。200kFCIの出力と0〜400kFCIの積分ノイズの比を測定した。実施例1を基準とした。
(実施例2)および(比較例1〜3)
実施例1において、磁性体のサイズ、媒体のRa、表面処理の有無を表1に示したように変更したこと以外は、実施例1を繰り返した。
(比較例4)
実施例1において、下記の磁性層用塗料を用い、磁性体のサイズ、媒体のRa、表面処理の有無を表1に示したように変更したこと以外は、実施例1を繰り返した。
磁性層用塗料の調製
強磁性針状金属粉末 100部
組成:Fe/Co/Al/Y=62/25/5/8
表面処理層:Al23、Y23
Hc:167kA/m(2100Oe)、結晶子サイズ:8nm
平均長軸長:35nm、針状比:6、BET比表面積:90m2/g
σs:110A・m2/kg(110emu/g)
ポリウレタン樹脂 15部
分岐側鎖含有ポリエステルポリオール/
ジフェニルメタンジイソシアネート系
−SONa=70eq/ton
フェニルホスホン酸 3部
α−Al23(平均粒子サイズ0.15μm) 2部
カーボンブラック(平均粒子サイズ 20nm) 2部
シクロヘキサノン 110部
メチルエチルケトン 100部
トルエン 100部
ブチルステアレート 2部
ステアリン酸 1部
結果を表1に示す。
Figure 2007272956
注)BaFeとは、バリウムフェライトを意味する。MPとは、強磁性金属粉末を意味する。ΔC/Feとは、前記の[C/Fe強度比(処理前)−C/Fe強度比(処理後)]を意味する。測定不可とは、ヘッドの目詰まりで測定不可であることを意味する。
表1の結果から、Raが2.5nm以下という極めて平滑化された磁性層を有し、またそこに含まれる強磁性粉末が微粒子化されていても、適切なΔC/Feを有することにより、磁気ヘッドへの付着物の蓄積が防止され、良好な電磁変換特性および耐久性を提供できることがわかる。
本発明で規定するラッピングテープを用いた磁性層表面の研磨処理を説明するための図である。 研磨処理後の磁性層表面上の削れ物を、サファイヤブレードで掻き取る工程を説明するための図である。
符号の説明
10,20 磁気テープ
11,22 ガイドローラ
13 ラッピングテープ
21 第1サファイヤブレード
23 第2サファイヤブレード

Claims (2)

  1. 非磁性支持体の一方の面に、強磁性粉末および結合剤を含む磁性層を少なくとも有する磁気記録媒体において、前記強磁性粉末の平均粉体サイズが30nm以下であり、原子間力顕微鏡(AFM)を用いて測定した中心面平均表面粗さRaが2.5nm以下であり、かつ、前記磁性層表面に下記処理を行った後の、X線光電子分光装置により測定した前記磁性層表面のC/Fe強度比(処理後)と、下記処理を行う前の磁性層表面のC/Fe強度比(処理前)との関係が、
    [C/Fe強度比(処理前)−C/Fe強度比(処理後)]≦0.1
    を満たすことを特徴とする磁気記録媒体。
    磁性層表面の処理:ラッピングテ−プ(研磨層の中心線平均表面粗さRa0.1μm、平均砥粒サイズ0.5μm、研磨粒材質CrO2)を用い、その研磨層と磁性層表面とを、張力200gf(1.96N)、速度2m/秒の条件で摺動させ、磁性層表面の研磨処理を行い、研磨処理後の磁性層表面上の削れ物を、サファイヤブレードでかき取る(研磨層の中心線平均表面粗さRaは、小坂制作所(株)の三次元表面検査機を用い、針圧:φ2μm、針先荷重:30mg、掃引速度:0.1mm/sec 、掃引距離:0.2mm、測定箇所:20カ所、カットオフ:0.08mmの条件で測定したものである。)。
  2. 前記非磁性支持体と磁性層との間に、非磁性粉末および結合剤を含む非磁性層が設けられていることを特徴とする請求項1に記載の磁気記録媒体。
JP2006094925A 2006-03-30 2006-03-30 磁気記録媒体 Pending JP2007272956A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094925A JP2007272956A (ja) 2006-03-30 2006-03-30 磁気記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094925A JP2007272956A (ja) 2006-03-30 2006-03-30 磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2007272956A true JP2007272956A (ja) 2007-10-18

Family

ID=38675618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094925A Pending JP2007272956A (ja) 2006-03-30 2006-03-30 磁気記録媒体

Country Status (1)

Country Link
JP (1) JP2007272956A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027646A (ja) * 2015-07-28 2017-02-02 富士フイルム株式会社 磁気テープおよびその製造方法
JP2019021362A (ja) * 2017-07-19 2019-02-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006163A (ja) * 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 無機粉体含有塗布層の吸着化合物の分析方法
JP2004342171A (ja) * 2003-05-13 2004-12-02 Sony Corp 磁気記録媒体の製造方法
JP2005149622A (ja) * 2003-11-17 2005-06-09 Tdk Corp 磁気記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006163A (ja) * 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 無機粉体含有塗布層の吸着化合物の分析方法
JP2004342171A (ja) * 2003-05-13 2004-12-02 Sony Corp 磁気記録媒体の製造方法
JP2005149622A (ja) * 2003-11-17 2005-06-09 Tdk Corp 磁気記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027646A (ja) * 2015-07-28 2017-02-02 富士フイルム株式会社 磁気テープおよびその製造方法
JP2019021362A (ja) * 2017-07-19 2019-02-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置

Similar Documents

Publication Publication Date Title
JP2007305197A (ja) 磁気記録媒体
JP2006286114A (ja) 磁気記録媒体
JP2007273037A (ja) 磁気記録媒体およびその製造方法
JP2005332458A (ja) 磁気記録媒体
JP2005332459A (ja) 磁気記録媒体
JP2007265574A (ja) 磁気記録媒体
JP2007273039A (ja) 磁気記録媒体
JP2007294079A (ja) 磁気テープ
JP2009088287A (ja) 窒化鉄粉末、窒化鉄粉末の製造方法、および磁気記録媒体
US8236434B2 (en) Magnetic recording medium, magnetic signal reproduction system and magnetic signal reproduction method
JP2007273038A (ja) 磁気記録媒体
JP4459248B2 (ja) 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
WO2007119628A1 (ja) 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2007294084A (ja) 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2007294085A (ja) 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2009087466A (ja) 磁気記録媒体
JP2007273041A (ja) 磁気記録媒体
JP2007294086A (ja) 磁気記録媒体、リニア磁気記録再生システムおよび磁気記録再生方法
US20070231613A1 (en) Magnetic recording medium
JP2007305208A (ja) 磁気記録媒体およびその製造方法
JP2006277838A (ja) 磁気記録媒体
JP2006107543A (ja) 磁気テープカートリッジ
JP2007272956A (ja) 磁気記録媒体
JP4599321B2 (ja) 磁気記録媒体の製造方法
JP2007294083A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907