JP2008003476A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2008003476A
JP2008003476A JP2006175285A JP2006175285A JP2008003476A JP 2008003476 A JP2008003476 A JP 2008003476A JP 2006175285 A JP2006175285 A JP 2006175285A JP 2006175285 A JP2006175285 A JP 2006175285A JP 2008003476 A JP2008003476 A JP 2008003476A
Authority
JP
Japan
Prior art keywords
forming apparatus
image forming
image height
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006175285A
Other languages
English (en)
Inventor
Yoshiaki Hayashi
善紀 林
Koichi Oshima
孝一 大嶋
Tatsuya Niimi
達也 新美
Katsuichi Ota
勝一 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006175285A priority Critical patent/JP2008003476A/ja
Publication of JP2008003476A publication Critical patent/JP2008003476A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】濃度むらが少なく、階調性が高い画像形成装置を提供する。
【解決手段】光源波長は500nm以下であり、走査光学系は1つ以上のプラスチックレンズ(6、7)から構成されており、中央像高に向かうビームがプラスチックレンズを通過する距離の合計をL0(w1+w2)、周辺像高に向かうビームが前記プラスチックレンズを通過する距離の合計をLe(w3+w4)とするとき、L0>Leを満足し、且つ、光源からのビームは直線偏光であり、該直線偏光の偏光方向は副走査方向に略平行である。このとき、走査レンズ6、7の光利用効率は周辺像高のほうが中央像高よりも大きくなる。したがって、感光体9の表面層の光利用効率は中央像高に比べ周辺像高が小さくなるので、両者の光利用効率が互いに相殺される。
【選択図】図1

Description

本発明は、複写機、プリンタ、ファクシミリ、これらのうちの少なくとも2つの機能を有する複合機、プロッタ等の画像形成装置に関する。
近年、レーザプリンタ、デジタル複写機等の画像形成装置において、益々、高画質化の要求が高まってきている。階調性や濃度の均一性は画像品質の中でも特に要求が高い項目となっている。
特許文献1には、折り返しミラーのコート条件と偏光方向の条件により、光走査装置のシェーディング(像高による光量むら)を低減する技術が開示されている。
特開2002−328327号公報
感光体に向かうビームの偏光方向と感光体の表面層の屈折率と入射角により、界面での透過率が変化し、光利用効率が像高により異なる。
しかしながら、光走査装置のシェーディング(像高による光量むら)を低減しようとしている公知文献は特許文献1等いくつかあるが、感光体の表面層の光利用効率までは考慮されておらず、最終的には濃度むらが発生する。
本発明は、濃度むらが少なく、階調性が高い画像形成装置を提供することを、その目的とする。
上記目的を達成するために、請求項1記載の発明では、光源と、該光源から出射したビームを偏向する偏向手段と、該偏向手段により偏向されたビームを像担持体に導く走査光学系とを有し、前記像担持体は感光層の表面に表面層を有する画像形成装置において、中央像高に対する周辺像高の光利用効率の変化が、前記表面層に対して逆特性となる光学部材を有することを特徴とする。
請求項2記載の発明では、請求項1記載の画像形成装置において、前記光源波長は500nm以下であり、前記走査光学系は1つ以上のプラスチックレンズから構成されており、中央像高に向かうビームが前記プラスチックレンズを通過する距離の合計をL0、周辺像高に向かうビームが前記プラスチックレンズを通過する距離の合計をLeとするとき、
L0>Le
を満足し、なおかつ、以下の条件を満足することを特徴とする。
(1)前記光源からのビームは直線偏光である。
(2)該直線偏光の偏光方向は副走査方向に略平行である。
請求項3記載の発明では、請求項1または2記載の画像形成装置において、前記走査光学系はビームを屈曲する反射部材を有し、以下の条件を満足することを特徴とする。
(1)前記光源からのビームは直線偏光である。
(2)該直線偏光の偏光方向は副走査方向に略平行である。
(3)前記反射部材の少なくとも1つへのビームの入射角は30deg以下である。
(4)前記反射部材のコーティング層数は2層以下である。
請求項4記載の発明では、請求項3記載の画像形成装置において、前記光源と前記偏向手段との間に前記像担持体上のビーム径を設定するための開口絞りを有し、なおかつ、以下の条件を満足することを特徴とする。
(1)前記光源は半導体レーザである。
(2)半導体レーザの活性層が副走査方向に略平行である。
(3)前記開口絞りは主走査方向の開口幅が副走査方向の開口幅より広く設定されている。
請求項5記載の発明では、請求項1記載画像形成装置において、前記光学部材はビームを屈曲する反射部材であり、以下の条件を満足することを特徴とする。
(1)前記光源からのビームは直線偏光である。
(2)該直線偏光の偏光方向は主走査方向に略平行である。
(3)前記反射部材の少なくとも1つへのビームの入射角は45deg以上である。
(4)前記反射部材のコーティング層数は2層以下である。
請求項6記載の発明では、光源と、該光源から出射したビームを偏向する偏向手段と、該偏向手段により偏向されたビームを像担持体に導く走査光学系とを有し、前記像担持体は感光層の表面に表面層を有する画像形成装置において、前記表面層の中央像高に対する周辺像高の光利用効率の変化に対して逆特性となるように、前記表面層へ入射直前の中央像高に対する周辺像高の光量を変化させることを特徴とする。
請求項7記載の発明では、請求項1〜6のいずれかに記載の画像形成装置において、前記表面層は感光体輸送層からなることを特徴とする。
請求項8記載の発明では、請求項1〜6のいずれかに記載の画像形成装置にいて、前記表面層は互いに屈折率の異なる保護層と感光体輸送層からなることを特徴とする。
請求項9記載の発明では、請求項1〜8のいずれかに記載の画像形成装置において、前記光源は複数の発光部を有することを特徴とする。
請求項1記載の発明によれば、表面層を有する感光体を用いる場合に、感光体の表面層の像高変化に対する光利用効率の変化を相殺することができ、濃度むらを抑制できる。
請求項2記載の発明によれば、感光体の表面層の光利用効率は中央像高に比べ周辺像高が小さくなるので、両者の光利用効率が互いに相殺され、濃度むらを抑制できる。
請求項3記載の発明によれば、中央像高に対する周辺像高の反射率が大きくなるので、両者(感光体表面層と反射部材)の光利用効率が互いに相殺され、濃度むらを抑制できる。
請求項4記載の発明によれば、光利用効率を増大させることができ、なおかつ、主走査方向のビームスポット径を副走査方向のビームスポット径よりも小さくすることができ、画像形成する際に、主走査方向のデューティ(点灯時間)を考慮した場合、感光体面上で主走査/副走査に等方的な露光分布とすることができる。
請求項5記載の発明によれば、反射部材の反射率は周辺像高のほうが中央像高よりも小さくなり、両者(感光体表面層と反射部材)の光利用効率が互いに相殺され、濃度むらを抑制できる。
請求項6記載の発明によれば、中央像高に対して周辺像高の光量を電気的に補正することにより濃度むらを抑制できる。
請求項7記載の発明によれば、電荷輸送層を電荷発生層の表面側に設けることで、耐久性に優れ、なおかつ、高画質対応の画像形成装置を提供できる。
請求項8記載の発明によれば、保護層及び電荷輸送層を電荷発生層の表面側に設けることで、さらに耐久性を向上させることができ、なおかつ、高画質対応の画像形成装置を提供できる。
請求項9記載の発明によれば、マルチビーム化により、偏向手段(ポリゴンミラー)が低速回転であっても、高速な画像出力が可能になる。また、低消費電力、高耐久、低騒音が実現でき、環境面での貢献も大きい。
以下、本発明の一実施形態を図1乃至図3に基づいて説明する。
まず、図1に基づいて本実施形態に係る画像形成装置の構成及び動作の概要を説明する。画像形成装置としてのレーザプリンタ100は感光性の像担持体としての感光体9を有している。感光体9の周囲には、帯電手段としての帯電ローラ112、光走査装置117、現像装置113、転写ローラ114、クリーニング装置115が配備されている。
光走査装置117からのレーザ光束LBにより、帯電ローラ112と現像装置113との間で光書込による露光を行うようになっている。
図1において、符号116は定着装置、118は給紙カセット、119はレジストローラ対、120は給紙コロ、121は搬送路、122は排紙ローラ対、123は排紙トレイ、Pはシート状記録媒体としての転写紙をそれぞれ示している。
画像形成を行うときは、感光体9が時計回り方向に等速回転され、その表面が帯電ローラ112により均一帯電され、光走査装置117のレーザ光束LBの光書込による露光を受けて静電潜像が形成される。形成された静電潜像は所謂ネガ潜像であって画像部が露光されている。
この静電潜像は現像装置113により反転現像され、感光体9上にトナー画像が形成される。転写紙Pを収納した給紙カセット118は、画像形成装置100本体に脱着可能であり、図のごとく装着された状態において、収納された転写紙Pの最上位の1枚が給紙コロ120により給紙され、給紙された転写紙Pは、その先端部をレジストローラ対119に挟持される。レジストローラ対119は、感光体9上のトナー画像が転写位置へ移動するのにタイミングを合わせて、転写紙Pを転写部へ送り込む。
送り込まれた転写紙Pは、転写部においてトナー画像と重ね合わせられ、転写ローラ114の作用によりトナー画像を静電転写される。トナー画像を転写された転写紙Pは定着装置116へ送られ、定着装置116においてトナー画像を定着され、搬送路121を通り、排紙ローラ対122により排紙トレイ123上に排出される。
トナー画像が転写された後の感光体9の表面は、クリーニング装置115によりクリーニングされ、残留トナーや紙粉等が除去される。
図2(主走査断面図)に基づいて、光走査装置117の構成要素と感光体9との配置関係を説明する。
光源としての半導体レーザ1からされた発散性の光束は、カップリングレンズ2により以後の光学系に適した光束形態(弱い収束光束、発散光束、もしくは平行光束)に変換される。
カップリングレンズ2からの光束は、像担持体としての感光体面上で所望のビーム径に設定するためのアパーチャ3を介し、副走査方向にのみパワーを有するシリンドリカルレンズ4により偏向手段としてのポリゴンミラー5近傍で主走査方向に長い線像を形成する。符号21はビームを折り返すためのミラーを示している。
ポリゴンミラー5によって偏向されたビームは走査光学系を構成する走査レンズ6、7および反射部材としての折り返しミラー8を介し、被走査面としての感光体9の面上を略等速的に走査する。
図3に感光体9の断面構造を示す。図に示すように、アルミニウム素管30の上に順に、ブロッキング層(樹脂膜、帯電時の電荷注入防止)31、アンダーコート層(白色顔料酸化チタン分散膜、モアレ防止用)32、電荷発生層33が形成され、電荷発生層33の上に電荷輸送層34が形成されている。
電荷輸送層34が感光体9の表面層である。電荷輸送層34は電荷を輸送する機能と電荷発生層33を保護する機能を有している。
このように、表面層を有する感光体では、表面層での光利用効率が像高により異なる。例えば、偏光方向が副走査方向に平行な場合、表面層での透過率は、表1の「感光体表面層」の欄で示すように、主走査方向周辺に行く程低下する。
このため、従来のように、光走査装置の方で像高間の光量ばらつきを低減しても最終的には画像上で濃度むらが発生する。
この問題を解消すべく、本実施形態では、中央像高に対する周辺像高の光利用効率の変化が、感光体9の表面層に対して逆特性となる光学部材を有することを特徴とする。このような特性を有する光学部材を設けることにより、感光体9の表面層の像高変化に対する光利用効率の変化を相殺することができ、濃度むらの少ない画像形成装置を提供できる。
以下、具体的構成及び条件等について説明する。
光源として波長が500nm以下の半導体レーザを用い、プラスチック製の走査レンズを用いると、材質を通過する光吸収が長波長の半導体レーザを用いる場合に比べ、大きくなる。
したがって、中央像高に向かうビームが前記プラスチックレンズ(走査レンズ6、7)を通過する距離の合計をL0(図2におけるw1+w2)、周辺像高に向かうビームが前記プラスチックレンズ(走査レンズ6、7)を通過する距離の合計をLe(図2におけるw3+w4)とするとき、
L0>Le
とすると、走査レンズ6、7の光利用効率は周辺像高のほうが、中央像高よりも大きくなる。
このとき、直線偏光としたビームを副走査方向に略平行とすると、感光体9の表面層の光利用効率は中央像高に比べ周辺像高が小さくなるので、両者の光利用効率が互いに相殺され、濃度むらを抑制できる。本実施形態では、走査レンズ6、7が「逆特性となる光学部材」である。
図4に基づいて第2の実施形態を説明する。なお、上記実施形態と同一部分は同一符号で示し、特に必要がない限り既にした構成上及び機能上の説明は省略して要部のみ説明する(以下の他の実施形態において同じ)。
本実施形態では、第1の実施形態に比べ、感光体9の表面層の構造が異なっている。図4に示すように、電荷発生層33の上に、電荷輸送層34、更にその表面側に保護層35が形成されており、電荷輸送層34と保護層35が合わさって表面層となっている。
次に第3の実施形態を説明する。
直線偏光としたビームを副走査方向に略平行とすると、感光体9の表面層の光利用効率は中央像高に比べ周辺像高が小さくなる。このとき、反射部材としての折り返しミラーの少なくとも1つ(本実施形態では折り返しミラー8)へのビームの入射角を30deg以下とし、なおかつ、折り返しミラー8のコート層数(反射用の金属コートを除く)を2層以下とする。
これにより、中央像高に対する周辺像高の反射率が大きくなるので、両者(感光体表面層と反射部材)の光利用効率が互いに相殺され、濃度むらを抑制できる。本実施形態では、折り返しミラー8が「逆特性となる光学部材」である。
図5に基づいて第4の実施形態を説明する。
半導体レーザ1は活性層1aに平行な方向に直線偏光を有するビームを出射する。
このとき、半導体レーザ1により出射したビームが副走査方向に平行な方向に直線偏光を有するとすると、図5に示すように、出射ビームは主走査方向に広い楕円状にビームは広がっていく。
この場合、光利用効率をできるだけ稼ぐためには、アパーチャ3の主走査方向の開口幅3aを副走査方向の開口幅3bより広く設定する必要がある。
これにより、光利用効率を増大させることができ、なおかつ、主走査方向のビームスポット径を副走査方向のビームスポット径よりも小さくすることができ、画像形成する際に、主走査方向のデューティ(点灯時間)を考慮した場合、感光体面上で主走査/副走査に等方的な露光分布とすることができる。
図6に基づいて第5の実施形態を説明する。
これまで、ビームの偏光方向は副走査方向に略平行とした構成について説明してきたが、以下のように、偏光方向を主走査方向に略平行としなければならない場合もある。
(1)マルチビーム時に所望の走査線間隔を得るために、半導体レーザ1の活性層1aを主走査方向に略平行にする場合(図6(a):発光部の説明図、図6(b):感光体面上に形成される複数の走査線の説明図)
(2)走査光学系の偏向面と被走査面の間の副走査方向の横倍率の絶対値が大きい場合に主走査方向のアパーチャ径が副走査方向のアパーチャ径よりも小さく設定したほうがよい場合がある。
この場合、偏光方向を主走査方向に略平行とした方が光利用効率が向上する。
このとき、感光体の表面層の光利用効率は周辺像高のほうが中央像高よりも大きくなる。この場合には、反射部材の少なくとも1つ(本実施形態では折り返しミラー8)へのビームの入射角は45deg以上とし、
折り返しミラー8のコーティング層数は2層以下とすれば、折り返しミラー8の反射率は周辺像高の方が中央像高よりも小さくなり、両者(感光体表面層と反射部材)の光利用効率が互いに相殺され、濃度むらを抑制することができる。本実施形態では、折り返しミラー8が「逆特性となる光学部材」である。
次に、第6の実施形態を説明する。
上記各実施形態では光学的に濃度むらを補正する方式を説明してきたが、中央像高に対して周辺像高の光量を電気的に補正しても良い。方法としては下記3通りが考えられるが、いずれの方式を選択しても良い。
(1)1画素を書き込む発光時間を像高により変化させる
(2)1画素を書き込むパワーを像高により変化させる
(3)(1)と(2)の組み合わせ
但し、細かい階調性を実現する場合には、補正量はできるだけ小さくしたほうが良く、そのためには上記各実施形態の構成は必須となる。
図7に基づいて第7の実施形態(多色画像形成装置)を説明する。
本実施形態に係る多色画像形成装置(カラー画像形成装置)としてのレーザカラープリンタでは、ローラ130a、130b、130c間に張設された中間転写ベルト131の展張面に沿って感光性の像担持体としてのドラム状の感光体9Y(イエロー)、9M(マゼンタ)、9C(シアン)、9K(ブラック)が並設されている。
感光体9Yの周囲には、反時計回り方向に順に、図示しない帯電手段、露光手段としての共通の光走査装置117’、現像手段132Y、中間転写ベルト131の内側に設けられる図示しない1次転写ローラ、図示しないクリーニング手段、図示しない除電手段等が配置されている。感光体9M、9C、9Kにおいても同様である。
各色の画像情報に基づいて各々レーザビームL1、L2、L3、L4で各感光体9Y、9M、9C、9K上に各色成分画像の静電潜像が形成され、各現像手段132Y、132M、132C、132Kにより可視像化される。
各色のトナー像は中間転写ベルト131上に順次重ね合わせて転写される。重ね合わせ画像は、給紙カセット133から所定のタイミングで給紙される転写紙(記録媒体)に2次転写ローラ134により一括転写される。カラー画像転写後、中間転写ベルト131は図示しないクリーニング手段で清掃される。転写紙は定着装置135へ送られてここで熱と圧力によりカラー画像を定着される。
定着を終えた転写紙は、装置本体を略垂直に搬送されて排紙ローラ対136により装置上面の排紙トレイ137に排出される。
次に第8の実施形態を説明する。
本実施形態では複数光源又は複数光源部によるマルチビーム化を特徴としている。ポリゴンミラー5が低速回転であっても、高速な画像出力が可能になる。また、低消費電力、高耐久、低騒音が実現でき、環境面での貢献も大きい。
以下、実施例を説明する。
[実施例1〜4における条件]
光源波長:780nmで偏光方向は副走査方向に略平行とする。ここで、略平行とは副走査方向に対し、±20degの範囲に入っていることを指す。
・カップリングレンズ焦点距離:27mm
・カップリング作用:コリメート作用
・ポリゴンミラー
偏向反射面数:5
内接円半径:18mm
・光源側からのビームの入射角と走査光学系の光軸とがなす角:58度
偏向器以降のレンズデータを以下に示す。
走査レンズ6の第1面及び走査レンズ7の両面は式(1)、(2)で表現される。
・主走査非円弧式
主走査面内における面形状は非円弧形状をなしており、光軸における主走査面内の近軸
曲率半径をRm、光軸からの主走査方向の距離をY、円錐常数をK、高次の係数をA1、A2、A3、A4、A5、A6、・・とするとき、光軸方向のデプスをXとして次の多項式で表している。
X=(Y^2/Rm)/[1+√{1−(1+K)(Y/Rm)^2}+
+A1・Y+A2・Y^2+A3・Y^3+A4・Y^4+A5・Y^5+A6・Y^6+・・ (1)
ここで奇数次のA1、A3、A5・・をゼロ以外の数値を代入した場合、主走査方向に非対称形状を有する。
・副走査曲率式
副走査曲率が主走査方向に応じて変化する式を(2)で示す。
Cs(Y)=1/Rs(0)+B1・Y+B2・Y^2+B3・Y^3+B4・Y^4+B5・Y^5+・・ (2)
ここでYの奇数乗係数のAs1、As3、As5・・がゼロ以外の数値を代入した場合、副走査の曲率半径が主走査方向に非対称となる。
また、走査レンズ6の第2面は共軸非球面であり、以下の式で表現される。
・共軸非球面
光軸における近軸 曲率半径をR、光軸からの主走査方向の距離をY、円錐常数をK、高次の係数をA1、A2、A3、A4、A5、A6、・・とするとき、光軸方向のデプスをXとして次の多項式で表している。
X=(Y^2/R)/[1+√{1−(1+K)(Y/Rm)^2}+
+A1・Y+A2・Y^2+A3・Y^3+A4・Y^4+A5・Y^5+ A6・Y^6+・・ (3)
走査レンズ6の第1面の形状
Rm=−279.9、Rs= −61.
K −2.900000+E01
A4 1.755765−E07
A6 −5.491789−E11
A8 1.087700−E14
A10 −3.183245−E19
A12 −2.635276−E24

B1 −2.066347−E06
B2 5.727737−E06
B3 3.152201−E08
B4 2.280241−E09
B5 −3.729852−E11
B6 −3.283274−E12
B7 1.765590−E14
B8 1.372995−E15
B9 −2.889722−E18
B10 −1.984531−E19
走査レンズ6の第2面の形状
R=−83.6
K −0.549157
A4 2.748446−E07
A6 −4.502346−E12
A8 −7.366455−E15
A10 1.803003−E18
A12 2.727900−E23
走査レンズ7の第1面の形状
Rm=6950、Rs=110.9
K 0.000000+00
A4 1.549648−E08
A6 1.292741−E14
A8 −8.811446−E18
A10 −9.182312−E22
B1 −9.593510−E07
B2 −2.135322−E07
B3 −8.079549−E12
B4 2.390609−E12
B5 2.881396−E14
B6 3.693775−E15
B7 −3.258754−E18
B8 1.814487−E20
B9 8.722085−E23
B10 −1.340807−E23
走査レンズ7の第2面の形状
Rm=766、Rs=−68.22
K 0.000000+00
A4 −1.150396−E07
A6 1.096926−E11
A8 −6.542135−E16
A10 1.984381−E20
A12 −2.411512−E25
B2 3.644079−E07
B4 −4.847051−E13
B6 −1.666159−E16
B8 4.534859−E19
B10 −2.819319−E23
また、使用波長における走査レンズ6、7の屈折率は全て1.524である。
以下に光学配置を示す。
偏向面から走査レンズ6の第1面までの距離d1:64mm
走査レンズ6の中心肉厚d2:22.6mm
走査レンズ1第2面から走査レンズ7の第1面までの距離d3:75.9mm
走査レンズ7の中心肉厚d4:4.9mm
走査レンズ7の第2面から被走査面までの距離d5:158.7mm
このとき、走査レンズ7と被走査面(感光体9)の間に折り返しミラー8が配備されている。
光源は半導体レーザであり、偏光方向は副走査方向に略平行とする。
また、走査レンズは全てプラスチック製であり、5mm長に対し、1%の吸収があるものとする。
(実施例1)
副走査断面内における折り返しミラー8への入射角:20deg
ミラーのコート条件は以下のとおりとする。アルミ層(反射層)の上にMgF(屈折率1.37)とTiO(屈折率2.3)の2層コ−ト(屈折率1.70)で蒸着している。なお、2層コートの膜厚は使用波長λのとき、それぞれλ/4である。
また、感光体は図3に示す構成となっており、電荷輸送層の屈折率は1.67である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表1に示す。
表1から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例2)
実施例1から感光体のみが図4に示す構成に変更している。
保護層の屈折率は1.5、電荷輸送層の屈折率は1.67である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表2に示す。
表2から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例3)
実施例1から折り返しミラー8への入射角及びミラーのコート条件のみを変更している。
副走査断面内におけるミラーへの入射角:29deg
ミラーのコート条件は以下のとおりとする。アルミ層(反射層)の上にSiO(屈折率1.7)の単層コ−トで蒸着している。なお、単層コートの膜厚は使用波長λのとき、λ/2である。
このとき、中央像高に対する周辺像高の光利用効率の比(%)を表3に示す。
表3から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例4)
実施例3から感光体のみを図4に示す構成に変更している。保護層の屈折率は1.5、電荷輸送層の屈折率は1.67である。
このとき、中央像高に対する周辺像高の光利用効率の比(%)を表4に示す。
表4から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
[実施例5〜8についての条件]
実施例1〜4に対し、偏光方向を変更する。具体的には、偏光方向は主走査方向に略平行とする。ここで、略平行とは主走査方向に対し、±20degの範囲に入っていることを意味する。
(実施例5)
副走査断面内における折り返しミラー8への入射角:50deg
ミラーのコート条件は以下のとおりとする。アルミ層(反射層)の上にSiO(屈折率1.7)の単層コ−トで蒸着している。なお、単層コートの膜厚は使用波長λのとき、λ/2である。
また、感光体は図3に示す構成となっており、電荷輸送層の屈折率は1.67である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表5に示す。
表5から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例6)
実施例1から感光体のみを図4に示す構成に変更している。
保護層の屈折率は1.5、電荷輸送層の屈折率は1.67である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表6に示す。
表6から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例7)
実施例5から折り返しミラー8のコート条件のみを変更している。
アルミ層(反射層)の上にMgF(屈折率1.37)とTiO(屈折率2.3)の2層コ−ト(屈折率1.70)で蒸着している。なお、2層コートの膜厚は使用波長λのとき、それぞれλ/4である。
このとき、中央像高に対する周辺像高の光利用効率の比(%)を表7に示す。
表7から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例8)
実施例6から折り返しミラー8のコート条件のみを変更している。
アルミ層(反射層)の上にMgF(屈折率1.37)とTiO(屈折率2.3)の2層コ−ト(屈折率1.70)で蒸着している。なお、2層コートの膜厚は使用波長λのとき、それぞれλ/4である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表8に示す。
表8から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、折り返しミラー8の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
[実施例9、10の条件]
実施例1〜4に対し、以下を変更する。
光源波長:405nmで、偏光方向は副走査方向に略平行とする。ここで、略平行とは副走査方向に対し、±20degの範囲に入っていることを示す。
カップリングレンズからの出射光束は弱い発散光束とし、走査光学系の配置は実施例1〜8と同じにしても、良好な光学特性となるように設定している。
・使用波長における走査レンズの屈折率は全て1.546である。
・走査レンズは全てプラスチック製であり、5mm長に対し、2.5%の吸収があるものとする。
(実施例9)
走査レンズはプラスチック製で、ノンコートであり、
L0=27.5、Le=16.7である。
また、感光体は図3に示す構成となっており、電荷輸送層の屈折率は1.67である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表9に示す。
表9から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、走査レンズ6、7の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例10)
実施例9から感光体のみを図4に示す構成に変更している。
保護層の屈折率は1.5、電荷輸送層の屈折率は1.67である。このとき、中央像高に対する周辺像高の光利用効率の比(%)を表10に示す。
表10から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、走査レンズ6、7の逆特性によりキャンセルされ、全体としては改善されている。
Figure 2008003476
(実施例11)
実施例1の構成において、光走査装置の光量を電気的に補正するものである。
下記の(1)、(2)、(3)のいずれの方式を用いても良い。
(1)画素を書き込む発光時間を像高により変化させる
(2)1画素を書き込むパワーを像高により変化させる
(3)(1)と(2)の組み合わせ
このとき、中央像高に対する周辺像高の光利用効率の比(%)を表11に示す。
表11から明らかなように、感光体表面層における周辺像高の光利用効率の低下が、光走査装置からの光量の逆特性制御によりキャンセルされ、全体としては改善されている。
Figure 2008003476
本発明の第1の実施形態に係る画像形成装置の概要構成図である。 光走査装置周辺の主走査断面図である。 感光体の概要断面図である。 第2の実施形態に係る感光体の概要断面図である。 第4の実施形態に係る要部斜視図である。 第5の実施形態に係る発光部と走査線の説明図である。 第7の実施形態に係る多色画像形成装置の概要構成図である。
符号の説明
1 光源としての半導体レーザ
3 開口絞りとしてのアパーチャ
5 偏向手段としてのポリゴンミラー
6、7 光学部材としての走査レンズ
8 光学部材又は反射部材としての折り返しミラー
9 像担持体としての感光体
34 表面層又は感光体輸送層としての電荷輸送層
35 表面層としての保護層

Claims (9)

  1. 光源と、該光源から出射したビームを偏向する偏向手段と、該偏向手段により偏向されたビームを像担持体に導く走査光学系とを有し、前記像担持体は感光層の表面に表面層を有する画像形成装置において、
    中央像高に対する周辺像高の光利用効率の変化が、前記表面層に対して逆特性となる光学部材を有することを特徴とする画像形成装置。
  2. 請求項1記載の画像形成装置において、
    前記光源波長は500nm以下であり、前記走査光学系は1つ以上のプラスチックレンズから構成されており、中央像高に向かうビームが前記プラスチックレンズを通過する距離の合計をL0、周辺像高に向かうビームが前記プラスチックレンズを通過する距離の合計をLeとするとき、
    L0>Le
    を満足し、なおかつ、以下の条件を満足することを特徴とする画像形成装置。
    (1)前記光源からのビームは直線偏光である。
    (2)該直線偏光の偏光方向は副走査方向に略平行である。
  3. 請求項1または2記載の画像形成装置において、
    前記走査光学系はビームを屈曲する反射部材を有し、以下の条件を満足することを特徴とする画像形成装置。
    (1)前記光源からのビームは直線偏光である。
    (2)該直線偏光の偏光方向は副走査方向に略平行である。
    (3)前記反射部材の少なくとも1つへのビームの入射角は30deg以下である。
    (4)前記反射部材のコーティング層数は2層以下である。
  4. 請求項3記載の画像形成装置において、
    前記光源と前記偏向手段との間に前記像担持体上のビーム径を設定するための開口絞りを有し、なおかつ、以下の条件を満足することを特徴とする画像形成装置。
    (1)前記光源は半導体レーザである。
    (2)半導体レーザの活性層が副走査方向に略平行である。
    (3)前記開口絞りは主走査方向の開口幅が副走査方向の開口幅より広く設定されている。
  5. 請求項1記載画像形成装置において、
    前記光学部材はビームを屈曲する反射部材であり、以下の条件を満足することを特徴とする画像形成装置。
    (1)前記光源からのビームは直線偏光である。
    (2)該直線偏光の偏光方向は主走査方向に略平行である。
    (3)前記反射部材の少なくとも1つへのビームの入射角は45deg以上である。
    (4)前記反射部材のコーティング層数は2層以下である。
  6. 光源と、該光源から出射したビームを偏向する偏向手段と、該偏向手段により偏向されたビームを像担持体に導く走査光学系とを有し、前記像担持体は感光層の表面に表面層を有する画像形成装置において、
    前記表面層の中央像高に対する周辺像高の光利用効率の変化に対して逆特性となるように、前記表面層へ入射直前の中央像高に対する周辺像高の光量を変化させることを特徴とする画像形成装置。
  7. 請求項1〜6のいずれかに記載の画像形成装置において、
    前記表面層は感光体輸送層からなることを特徴とする画像形成装置。
  8. 請求項1〜6のいずれかに記載の画像形成装置にいて、
    前記表面層は互いに屈折率の異なる保護層と感光体輸送層からなることを特徴とする画像形成装置。
  9. 請求項1〜8のいずれかに記載の画像形成装置において、
    前記光源は複数の発光部を有することを特徴とする画像形成装置。
JP2006175285A 2006-06-26 2006-06-26 画像形成装置 Pending JP2008003476A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175285A JP2008003476A (ja) 2006-06-26 2006-06-26 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175285A JP2008003476A (ja) 2006-06-26 2006-06-26 画像形成装置

Publications (1)

Publication Number Publication Date
JP2008003476A true JP2008003476A (ja) 2008-01-10

Family

ID=39007884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175285A Pending JP2008003476A (ja) 2006-06-26 2006-06-26 画像形成装置

Country Status (1)

Country Link
JP (1) JP2008003476A (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134682A (ja) * 1989-10-20 1991-06-07 Canon Inc 画像形成装置
JPH0980334A (ja) * 1995-09-07 1997-03-28 Canon Inc 走査光学装置
JPH11109269A (ja) * 1997-10-03 1999-04-23 Canon Inc マルチビーム走査光学装置
JPH11281911A (ja) * 1998-03-30 1999-10-15 Fuji Photo Optical Co Ltd 光走査光学系
JP2002277803A (ja) * 2001-01-11 2002-09-25 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2003021948A (ja) * 2001-07-06 2003-01-24 Canon Inc 電子写真装置及びプロセスカートリッジ
JP2004078192A (ja) * 2001-01-11 2004-03-11 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2004198728A (ja) * 2002-12-18 2004-07-15 Ricoh Co Ltd 画像形成装置及びプロセスカートリッジ
JP2004279581A (ja) * 2003-03-13 2004-10-07 Ricoh Co Ltd 光走査装置および画像形成装置
JP2005156933A (ja) * 2003-11-26 2005-06-16 Fuji Xerox Co Ltd 光走査装置
JP2005266775A (ja) * 2004-02-18 2005-09-29 Canon Inc 光走査装置
JP2006106735A (ja) * 2004-10-07 2006-04-20 Toshiba Corp 光走査装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134682A (ja) * 1989-10-20 1991-06-07 Canon Inc 画像形成装置
JPH0980334A (ja) * 1995-09-07 1997-03-28 Canon Inc 走査光学装置
JPH11109269A (ja) * 1997-10-03 1999-04-23 Canon Inc マルチビーム走査光学装置
JPH11281911A (ja) * 1998-03-30 1999-10-15 Fuji Photo Optical Co Ltd 光走査光学系
JP2002277803A (ja) * 2001-01-11 2002-09-25 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2004078192A (ja) * 2001-01-11 2004-03-11 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2003021948A (ja) * 2001-07-06 2003-01-24 Canon Inc 電子写真装置及びプロセスカートリッジ
JP2004198728A (ja) * 2002-12-18 2004-07-15 Ricoh Co Ltd 画像形成装置及びプロセスカートリッジ
JP2004279581A (ja) * 2003-03-13 2004-10-07 Ricoh Co Ltd 光走査装置および画像形成装置
JP2005156933A (ja) * 2003-11-26 2005-06-16 Fuji Xerox Co Ltd 光走査装置
JP2005266775A (ja) * 2004-02-18 2005-09-29 Canon Inc 光走査装置
JP2006106735A (ja) * 2004-10-07 2006-04-20 Toshiba Corp 光走査装置

Similar Documents

Publication Publication Date Title
JP5515723B2 (ja) 光走査装置、画像形成装置および光通信システム
JP2004354734A (ja) 光走査装置及び画像形成装置
JP2008052247A (ja) 光走査装置および画像形成装置
JP2006309090A (ja) 走査光学系、光走査装置、画像形成装置およびカラー画像形成装置
JP5116559B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4970864B2 (ja) 光走査装置、及びその光走査装置を備える光書込装置、並びにその光走査装置またはその光書込装置を備える画像形成装置
JP2007114484A (ja) 光走査装置及びそれを用いた画像形成装置
JP2009145569A (ja) 走査光学装置及びそれを用いた画像形成装置
US7791632B2 (en) Optical scanning device and image forming apparatus using the same
JP2011039476A (ja) 光走査装置および画像形成装置
US8675034B2 (en) Optical scanning apparatus and image forming apparatus
JP2004302062A (ja) マルチビーム光走査装置
JP2004054133A (ja) 走査光学系
US6954222B2 (en) Manufacturing method of scanning optical system
JP2009169248A (ja) 光走査装置及びそれを用いた画像形成装置
KR101884397B1 (ko) 광 주사 장치 및 이를 채용한 전자 사진 방식의 화상 형성 장치
JP4713377B2 (ja) 光走査装置および画像形成装置
JP2004361627A (ja) 光走査装置及びそれを用いた画像形成装置
JP2007316115A (ja) 走査光学装置及びそれを用いた画像形成装置
JP2007298685A (ja) 光走査装置および画像形成装置
JP2005241727A (ja) 光走査装置及びそれを用いた画像形成装置
JP2008003476A (ja) 画像形成装置
JP2005070125A (ja) 光走査装置及びそれを用いた画像形成装置
JP5751528B2 (ja) 画像形成装置
JP4378416B2 (ja) 走査光学装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327