JP2008002413A - 冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法 - Google Patents

冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法 Download PDF

Info

Publication number
JP2008002413A
JP2008002413A JP2006174723A JP2006174723A JP2008002413A JP 2008002413 A JP2008002413 A JP 2008002413A JP 2006174723 A JP2006174723 A JP 2006174723A JP 2006174723 A JP2006174723 A JP 2006174723A JP 2008002413 A JP2008002413 A JP 2008002413A
Authority
JP
Japan
Prior art keywords
liquid
compressor
gas
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006174723A
Other languages
English (en)
Other versions
JP4311415B2 (ja
Inventor
Hidefumi Araki
秀文 荒木
Takanori Shibata
貴範 柴田
Shigeo Hatamiya
重雄 幡宮
Moriaki Tsukamoto
守昭 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006174723A priority Critical patent/JP4311415B2/ja
Priority to US11/767,805 priority patent/US8240122B2/en
Priority to EP07012501.8A priority patent/EP1873375A3/en
Publication of JP2008002413A publication Critical patent/JP2008002413A/ja
Application granted granted Critical
Publication of JP4311415B2 publication Critical patent/JP4311415B2/ja
Priority to US13/555,888 priority patent/US8402735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】中間冷却器での注水量を制御する場合、マージンを設定しなければならす、制御により注水量を適正に調節する精度には限界がある。そのため、被圧縮気体を飽和温度まで冷却しようと注水量を制御したとしても、実際には中間冷却器出口での被圧縮気体の温度は飽和温度よりも高い。本発明の目的は、注水量を制御することなく被冷却気体を飽和温度まで冷却可能な構成とし、圧縮機の信頼性低下の抑制と効率向上を達成することができる中間冷却装置を提供することにある。
【解決手段】上記目的を達成するため、本発明の中間冷却機構は、複数の圧縮段から構成される気体圧縮機の段間に設置され、前記圧縮機の被圧縮気体を冷却する冷却装置であって、前記被圧縮気体が所望量以上の液体の散布により冷却されるよう構成され、前記圧縮段に該液体が流入するのを抑制する手段を有する。
【選択図】図1

Description

本発明は、空気や水蒸気などを圧縮する気体圧縮機の被圧縮流体の冷却装置,冷却装置を用いたガスタービンシステム,冷却装置を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法に関する。
空気や水蒸気を圧縮する気体圧縮機の中間冷却について、圧縮機の被圧縮気体を水の散布により冷却する方式が知られている。圧縮機での圧縮過程中の被圧縮気体のような高温の流体を冷却する方法に関し、例えば特開2005−274070号公報には、過熱蒸気に減温水を注水して飽和温度近くまで減温させる装置が開示されている。
圧縮機の中間冷却器内での注水により被圧縮気体を飽和温度近くまで冷却する方式では、過剰注水によるエロージョンや過少注水による冷却効率の低下を抑える必要がある。そのため従来、中間冷却器内への注水により被圧縮気体を飽和温度近くまで冷却する場合には、中間冷却器の出口側の蒸気温度等を元にした注水量の制御が必須であった。
特開2005−274070号公報
水を散布する方式の中間冷却器での散布水量を制御する場合、制御の基準となる計測値の計測誤差や、計測してから散布水量の加減作業が完了するまでの時間差を考える必要がある。これらを考慮したマージンを設定しなければならないために、制御により注水量を適正に調節する精度には限界がある。そのため、被圧縮気体を飽和温度まで冷却しようと注水量を制御したとしても、実際には中間冷却器出口での被圧縮気体の温度は飽和温度よりも高く、この分だけ圧縮機の効率は低い。本発明の目的は、圧縮機の効率向上を達成することができる冷却装置を提供することにある。
上記目的を達成するため、本発明の中間冷却機構は、複数の圧縮段から構成される気体圧縮機の段間に設置され、前記圧縮機の被圧縮気体を冷却する冷却装置であって、前記被圧縮気体が所望量以上の液体の散布により冷却されるよう構成され、前記圧縮段に該液体が流入するのを抑制する手段を有する。
本発明によると、圧縮機の効率向上を達成することができる冷却装置を提供できる。
圧縮機の圧縮効率の向上技術につき説明する。気体圧縮機では、被圧縮気体を中間冷却することにより被圧縮気体の密度を大きくして圧縮に必要な動力を低減し、圧縮効率を向上させる。また、圧縮機に吸入される被圧縮気体に水を散布して被圧縮気体を冷却し、被圧縮気体の熱や圧縮機内での昇温効果により散布された水を蒸発させることで、圧縮動力を低減させつつ圧縮機主流流体である被圧縮気体の流量を増加させる。
圧縮機の中間冷却装置内で被圧縮気体中に水を散布すると、圧縮機の圧縮動力を低減させつつ被圧縮気体の流量を増加させることができる。中間冷却器内で被圧縮気体の流量を増加させることは、同じ圧縮動力でより多くの気体を圧縮できたことを意味し、より一層の圧縮効率向上につながる。
以上説明したように、圧縮機の中間冷却器内で水を散布すると、被圧縮気体の冷却効果と散布水の蒸発による被圧縮気体の増量効果という二つの効果により圧縮機の圧縮効率は向上する。このとき圧縮効率が最大となるのは被圧縮気体を飽和温度まで冷却した場合である。したがって、圧縮効率を向上させるためには被圧縮気体を飽和温度まで冷却可能な程度の多量の水を散布することが望ましい。
しかしながら中間冷却機内での散布水量が多すぎると、中間冷却器内で蒸発しきれなかった散布水が圧縮機内に流入して高速回転する圧縮段に液滴が衝突することでエロージョンと呼ばれる機械的な侵食が発生し、圧縮機の信頼性が低下する。
圧縮機の信頼性を低下させることなく、できるだけ圧縮効率を向上させるためには、中間冷却器内で蒸発可能な水量を超えることがない範囲内でできるだけ多くの水を散布できるように散布水量を制御するのが望ましい。
適切な散布水量の判断方法として、例えば中間冷却器出口の被圧縮気体温度を基準とすることが考えられる。圧縮機主流の圧力は設計で決められる略一定の値であり、圧力一定であればその圧力での飽和温度も一義的に定まる。中間冷却器出口での被圧縮気体の温度を飽和温度より5℃〜10℃程度高くなるよう設定すれば、中間冷却器出口で被圧縮気体は過熱状態にあり、散布水が蒸発せず液体の状態で圧縮機に流入する可能性は少ない。
この例で、被圧縮気体の温度を飽和温度とせずに飽和温度より5℃〜10℃程度高くなるよう設定するのは、気体温度の計測誤差や、計測してから注水量の加減作業が完了するまでの時間差を考慮したマージンをとる必要があるためである。このマージンは、被圧縮気体温度が高くなるようにとる必要がある。中間冷却器出口で被圧縮気体温度が飽和温度より低くなった場合、ここでの被圧縮気体は飽和状態であるため散布水の一部が蒸発せず液体のまま残ってしまい、圧縮機の信頼性は低下する。
中間冷却器出口温度以外の測定値を基準とする技術も考えられる。しかし、圧縮機の信頼性を低下させないようにするためにはマージンを設定する必要があり、そのマージンは被圧縮気体の温度が高くなるように設定される。つまり、散布水量を制御する方法では被圧縮気体を飽和温度まで冷却することは困難である。
なお、以上説明した散布水量を制御する方法では、被圧縮気体が飽和状態でない限り、中間冷却器内に散布した水は全量蒸発することを前提とした。この前提条件が満たされていない中間冷却器では、蒸発せずに残る水量が多いために上記マージンをより多く設定しなければならず、被圧縮気体の冷却効果は低い。
この前提条件を満たすよう効率的に被圧縮気体と散布水とを熱交換させるためには、被圧縮気体と散布水との接触面積を広くすることが望ましい。このためには、中間冷却装置内の気液接触流路を長くする、散布水の液滴の大きさを微細なものとすること等が考えられるが、いずれにしても装置が大型化,複雑化して設備コストは高くなる。
これに対し本発明実施の形態の中間冷却装置は、散布水量の制御によるものではなく、構造的に、圧縮機の信頼性低下を抑制しつつ被圧縮気体を飽和温度まで冷却できるよう構成されている。
具体的には、圧縮機への散布水の流入を抑制する手段を有し、被圧縮気体は所望量以上の散布水により冷却されるよう構成されている。ここで所望量とは、中間冷却装置出口における被圧縮気体の温度を飽和温度まで冷却することが可能な程度の水量を意味する。
圧縮機への散布水の流入を抑制する手段としては、例えば、中間冷却器内において被圧縮気体を下方から上方へ流通させるように流路を構成し、被圧縮気体の入口と出口の間に水散布装置を設置し、水散布装置と被圧縮気体出口の間に、液体通過抑制装置であるミスト除去器を設置する方法がある。このような構成にすれば、蒸発せず液体のまま残った水の大半は重力の作用で流下し、被圧縮気体出口から圧縮機内へ流入する可能性は低い。一部の微細な液滴が被圧縮気体の流れにのって流路中を上方へ流れることも考えられるが、この微細な液滴は流路出口直前に設置されたミスト除去器に捕らえられて圧縮機内への流入が抑えられるため、信頼性低下を抑制できる。
このように構成することで、圧縮機の信頼性を低下させることなく被圧縮気体を飽和温度まで冷却することができる。つまり、本発明実施の形態の中間冷却装置を用いれば、散布水量を制御するものと比べてマージン設定が不要な分だけ被圧縮空気をさらに冷却することができ、圧縮効率のさらなる向上が可能である。これは重力の利用とミスト除去器の設置によって圧縮機への液水の流入を抑制した上で所望量以上の水を散布する構成とすることで、圧縮機の信頼性低下の抑制と被圧縮気体の飽和温度までの冷却を、原理的に両立できるよう構成したことによる。
以下実施例を用い、本発明の冷却装置について詳細に説明する。
図3を用い、本発明の実施例を詳細に説明する。図3は、本発明の一実施例である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。
本実施例の再生サイクルガスタービンシステムの主要な構成要素は、空気を圧縮する圧縮機10a,10bと、圧縮機10bで圧縮して得た圧縮空気をガスタービンの排ガスにより加熱する再生熱交換器60と、再生熱交換器60で加熱された空気と燃料50を燃焼させて燃焼ガスを生成する燃焼器12と、燃焼器12で生成された前記燃焼ガスにより駆動されるタービン14と、タービン14を駆動し再生熱交換器60で圧縮空気と熱交換した燃焼ガスが排ガスとして排出されるスタック82である。本実施例では、ガスタービンの圧力比は16、圧縮機10aと10bの圧力比はそれぞれ4、ガスタービンの吸気流量は、10kg/sのものを想定した。また、再生熱交換器の温度効率は90%、圧縮機とタービンのポリトロープ効率はそれぞれ90%および88%と想定した。ガスタービンの出力軸から得られる動力は発電機16によって電力に変換され送電系統に接続される。
本実施例における特徴的な構成要素は、圧縮機10aの吐出配管86aに設置された中間冷却機構である冷却塔36である。図2を用いて冷却塔36を詳細に説明する。
図2は、冷却塔36の詳細図を示す。図2に示した冷却塔36aには、塔の下部に落下した循環水を塔内の充填物71の上方に再循環させる循環ポンプ6が設置されている。また、液溜り74には給水ポンプ7と調整弁38により補給水を供給可能である。被圧縮空気の入口であるガス分散器70は、吐出配管86aを介して圧縮機10aから導いた圧縮空気が冷却塔36a内のある部分に集中することのないよう分散させるために設置される。このガス分散器70は、上方から落下する液滴の流入を避けるため下向きに開口部を有している。図2に示した冷却塔36は充填物71を用いた充填塔である。充填物71はガス分散器70の上方に気液接触の有効面積を広くするために設置される。充填物71としては、例えば化学プラントなどで一般的に用いられる体積あたりの表面積が大きな構造物が用いられる。本実施例では、充填物71として市販の不規則充填物を利用する。冷却塔36aの塔径は、充填物71の性能仕様として一般的に開示されているフラッディング特性から1.8m のものを適用した。フラッディング(Flooding)とは、上向きのガス流れに対向して液膜を流下させる充填塔や多孔板塔において、ガスの流速が増加した場合に、ガスの流れから受ける上向きの力によって散布水が下向きに流れることができなくなる現象である。充填物71の充填高さは、35℃程度の水を散布した際に冷却塔36aの出口での空気温度が60℃前後になることを想定し、高さ0.8m のものを適用した。圧縮機への液体の流入を抑制する流体通過抑制装置であるミスト除去器72は、充填物71の表面で上向きの空気流と下向きの液膜流とのせん断力によって生じたエントレインメントなどの液滴を除去し、液滴の下流側圧縮機10bへの流入を抑制する。そのためミスト除去器72は充填物71,液分散器80の上方に設置することが望ましい。循環ポンプ6は、冷却塔36aの下部の液溜り74から、配管76を介して液相水を吸入する。
本実施例では循環ポンプ6の吐出水は熱交換器90にて低温の冷却水91と熱交換する。熱交換器90により冷却された循環水は、調整弁84で流量を調整され、充填物の上方に設置された液分散器80から冷却塔36aに供給される。液分散器80は化学プラントなどで一般的に用いられており、充填物の全面に可及的均等に液相水を散布する機能を持つ。冷却塔36aには、液溜り74の水位を所望の位置に制御するために水位計78が設置されており、液溜り74の水位が低下した場合には、配管75の調整弁38を操作して水源から補給水を供給する。液溜り74の水位が上昇した場合には、配管79の調整弁
39を操作して液相水を系外へ排出する。
次に、図3を用いて、本実施例の中間冷却機構を備えた、再生サイクルガスタービン発電システムの定常時の動作を説明する。
図示しない吸気室に吸い込まれた空気は、図示しない吸気フィルタによって煤塵などを除去されたあと、圧縮機10aで約400kPaまで圧縮される。圧縮された空気は冷却塔36に流入する。冷却塔36では、熱交換器90によって冷却された、空気とほぼ同じ質量流量の約35℃の水が充填物71の表面に散布される。気温15℃,相対湿度60%の大気条件の場合、冷却塔36の入口での圧縮空気の露点温度は約29℃であり、露点温度より高温な水と気液接触することにより、空気は加湿されながら冷却される。
図5は、本実施例の、冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示したものであり、(a)は温度、(b)は絶対湿度、(c)は加湿量を示す。図5(a)に示すように、冷却塔36の下方から流入した約174℃の空気(実線)は、上方から充填物71の表面を流下する約35℃の液膜(破線)と熱交換しながら、上方に流動するにつれて低温となる。液膜と空気の気液界面は、液膜の温度に対応する飽和水蒸気圧の湿り空気で覆われる。図5(b)に示すように、充填物71の下部領域では、液膜表面における湿り空気の絶対湿度(破線)が主流の湿り空気の絶対湿度(実線)より高いため、水蒸気圧力差を原動力として、図5(c)に示すように液膜表面から主流空気中に水蒸気が移動する。その結果として、上方に流動するにつれて主流空気の絶対湿度は高くなる。しかし、充填物71の上部領域では液膜水温が低いためにこの関係が逆転し、主流空気中の絶対湿度が高くなり、主流空気中の湿分が凝縮して液膜に移動する。本実施例のように、約35℃の低温水を約174℃の圧縮空気に接触させた場合、低温水から空気への加湿量は比較的少なく空気質量の約0.6質量%であった。一方、冷却塔出口の空気温度は約62℃まで冷却される。つまり主流空気は冷却塔36で100℃以上冷却されたことになる。充填物71から落下した液膜水は冷却塔36の液溜り74に流下する。蒸発により失われた水分は給水ポンプ7と調整弁
38を介して液溜り74に補給される。熱交換器90には液溜り74から約55℃の熱水が循環ポンプ6により供給される。熱交換器90では、低温の冷却水91との熱交換により約55℃の熱水が約35℃まで冷却され、再び冷却塔36に供給される。
冷却塔36により62℃程度まで冷却された圧縮空気は、吸入配管85bから圧縮機
10bに吸入され、1600kPaまで圧縮される。この時の温度は、約240℃となる。本実施例では、圧縮機10bの吸気温度が約62℃、吐出温度が約240℃と比較的低いため、これらの温度が高温な場合と比較して圧縮動力が大幅に低減できる。
表1に、本実施例で示した圧力比が4である圧縮機を2基直列に接続した圧力比が16である仮想的な圧縮機において、中間冷却機構を設けた場合と設けなかった場合の圧縮動力を比較した表を示す。中間冷却機構により主流空気を約62℃まで冷却した場合、圧縮動力が約17%低減できることがわかる。
Figure 2008002413
吐出配管86bの約240℃の圧縮空気は、再生熱交換器60の被加熱流体流路に流入し、約560℃のタービン14の排ガスと熱交換し、約530℃まで加熱される。この圧縮空気は、再生熱交換器60の被加熱流体出口配管61から燃焼器12に供給され、燃料50とともに燃焼し、約1300℃の燃焼ガスとなる。燃焼器12に供給される圧縮空気は再生熱交換器60で加熱されているため、このとき必要な燃料50の流量は再生熱交換器60が無い場合よりも大幅に節約でき、プラント熱効率が向上する。高温の燃焼ガスは、タービン14に供給され、図示しない静翼と動翼とを通過することにより、膨張過程を経て熱エネルギーが回転運動エネルギーに変換される。回転運動エネルギーは、同じ軸に連結された発電機16を駆動し、電気エネルギーとして取り出される。膨張過程を経てタービン14から排出される約560℃の燃焼排ガスは、再生熱交換器60の排ガス流路に供給され、前述の通り圧縮空気の加熱に利用される。さらに、再生熱交換器60から排出された340℃程度の燃焼排ガスは、スタック82に導かれ、大気中に放出される。
本実施例では、冷却塔36内で散布する前の液水を、熱交換器90で冷却している。このような構成とすることで、冷却塔での主流空気の冷却効率を向上できる。この熱交換器90は液体と液体の熱交換を行うので、気体と液体の熱交換を行う熱交換器よりも総括熱伝達率が大きく、コンパクトに構成できる利点がある。さらに、熱交換器90を流れる水の温度は最大55℃程度であり、高い耐食性は必要とされない。そのため熱交換器90としてはプレート式など比較的安価なものを用いることが出来る。
本実施例ではまた、液溜り74の液水をポンプ6で循環させて液分散器80からの散布水として利用している。散布された水のうち、主流空気との熱交換後も蒸発せずに残った水は液溜り74に流下する。このように、主流空気の冷却のために散布した液水の一部を再び散布可能な構成とすることで、水の有効利用を図り、外部からの供給水量を削減することができる。
冷却塔36の圧力容器,充填物71などは、化学プラントで一般的に利用される量産品であり比較的安価である。また、冷却塔36から熱交換器90を経由して循環する循環水のうち蒸発するのは液膜表面の一部であり、不純物は循環水に濃縮する。なお、補給水に含まれている不純物が濃縮することによる液溜り74の水質悪化を抑制するため、調整弁39を操作して連続的あるいは断続的に液相水の一部を系外へ排出することが望ましい。
図1は、本実施例の中間冷却機構を適用したシンプルサイクルガスタービンを示す。ここまでは図3を用いて再生サイクルガスタービンに対して中間冷却機構を適用した例を説明してきたが、図1に示すように、シンプルサイクルガスタービンに対して本実施例の中間冷却機構を適用してもよい。シンプルサイクルまたは再生サイクルに対して中間冷却機構を適用した場合の利点は、前述のように圧縮動力を低減できる点である。また、圧縮空気を冷却することにより圧縮機の部材の高温化を回避し寿命を延ばす効果もある。なお、タービン高温部材の冷却に圧縮機からの抽気を用いる場合には、圧縮機を中間冷却することでタービン部材の冷却に用いる冷却空気の温度を低下させることができ、冷却空気量を節約できる。
再生サイクルガスタービンについては、中間冷却作用により圧縮機10bの吐出温度も低下することから、再生熱交換器60で排ガスから回収できる排熱回収量が増加するという効果も得られる。つまり、発電効率の点では、図3で示した再生サイクルガスタービンに本実施例の中間冷却機構を適用した場合の方が、シンプルサイクルガスタービンに適用するよりもより高い効果を得られる。
図7は、冷却塔36の詳細図を示す。図7に示した冷却塔36bは、図2に示した冷却塔36aにおける充填物71のかわりに多孔板92を用いた多孔板塔である。冷却塔36に多孔板92を用いた場合、塔内のガスおよび液体の幾何学的な流量分配が良く、充填塔よりも汚れに対して強いという特徴がある。多孔板塔と比較した充填塔のメリットは、体積あたりの接触効率が高く、圧力損失が少ない点である。
図8は、冷却塔36の詳細図を示す。図8に示した冷却塔36cは、図2に示した冷却塔36aにおいて充填物71を設置するかわりにスプレイノズル93から液滴を多量に噴霧する構成としたスプレイ塔である。スプレイ塔は充填塔や多孔板塔と比較してガス側の圧力損失が少ないという利点がある。
液滴と主流空気との熱交換が空間で行われるスプレイ塔では特に、所定の大きさ以上の液滴を散布することが望ましい。所定の大きさとは、一つの液滴について水が完全に蒸発してしまうことなく、液滴の一部が蒸発せずに液体のまま液溜り74に着水する程度の多きさを意味する。
ここで、例えば液滴径10μmから20μm程度の微細な液滴を噴霧して冷却塔36c内で完全蒸発させようとする場合を考えると、不純物が液滴から析出することを抑制するため、噴霧用の水には不純物を極微量まで除去した純水を用いることが望ましい。冷却塔36c内の空間で不純物が析出した場合、不純物が冷却塔36cの内壁等に付着したり、極小な不純物が主流空気に導かれ圧縮機中に同伴し圧縮機を傷める可能性がある。そこで、図8に示したスプレイ塔は、スプレイノズル93から液滴径100μm以上の比較的大きな液滴を多量に噴霧可能な構成とし、噴霧した液滴の表面の一部だけが蒸発するようにしている。蒸発せず液体のままの液滴は液溜りに流下後、ポンプで再循環され、再びスプレイノズル93からの噴霧に用いられる。このような構成とすることで、図8に示すスプレイ塔では水中の不純物は蒸発せずに液滴中に残るため、不純物を極微量まで除去した純水を用意しなくても、不純物の冷却塔内壁への付着や圧縮機中への流入を抑制でき、冷却塔の冷却効率の低下や圧縮機の信頼性の低下を抑えることができる。
冷却塔として充填塔や多孔板塔を用いた場合には、液滴の大部分が充填物71や多孔板92といった構造物上に付着した状態で主流空気と熱交換する。そのため、不純物の冷却塔内壁への付着や圧縮機内への流入の可能性は低い。しかしこの場合でも所定の大きさ以上の液滴を散布する構成とすれば、圧縮機の信頼性を更に高められるだけでなく、充填物71や多孔板92,ミスト除去器72といった構造物への不純物の付着を抑制することができ、不純物を極微量まで除去した純水を用意しなくても、主流空気の圧力損失の増大や冷却効率の低下を抑えることができる。
本実施例では、圧縮機の中間冷却機構とし、図2に示した冷却塔36aである充填塔を用いる例を示したが、充填塔のかわりに図7に示した多孔板塔や図8に示したスプレイ塔を用いても構わない。要は、主流空気と液滴との接触面積を増やすことができればよい。気液接触面積を広くすることで熱交換の効率が向上し、液滴の効率的な蒸発を促し冷却塔36を小型化,低コスト化できる。冷却塔36の冷却効率も一段と高めることができる。
次に、図3を用いて、本実施例のガスタービンシステムの起動時における冷却塔36の運用方法を説明する。圧縮機10a,10bを起動する前に、冷却塔36の内部には給水ポンプ7により所定の水位まで水を注入しておく。ここで所定の水位とは、各システムに固有に定められる設計水位であり、少なくとも冷却塔の運転中に循環水が不足することがない程度の水量が確保できる程度の水位である。その後、冷却塔36の液溜り74の水を循環ポンプ6により熱交換器90に供給する。熱交換器90で低温の冷却水91と熱交換した水は、調整弁84を経由して冷却塔36の液分散器80に供給する。液分散器80から充填物71の表面に散布された水は液溜り74に落下し、循環ポンプ6に吸入され、以下同じ経路を循環する。
この状態で、図示しない駆動装置により圧縮機10a,10bを駆動する。圧縮機を駆動すると、圧縮機の内部では圧力の上昇とともに空気の露点温度が上昇する。圧縮機10aの構成部材が低温のうちは、空気中の湿分が凝縮し凝縮水が発生する。この凝縮水は冷却塔36のミスト除去器72に捕集され液溜り74に流下する。この凝縮水量が多い場合には液溜り74の水位が上昇するので、配管79の調整弁39を自動制御して余分な水を系外へ排出する。時間の経過とともに圧縮機10aの構成部材が暖められて圧縮機10aの吐出空気温度が定常状態となると、冷却塔36の作用により圧縮機10bの吸入配管85bより下流も定常状態に達する。
このように、冷却塔36の充填物71への散水を開始した後に空気の圧縮を開始することが望ましい理由は、以下二点の問題の発生を抑制するためである。第一の問題は、圧縮機を起動した後に冷却塔36の散水を開始した場合、圧縮機10bの吸入温度,圧力,流量が急激に変動し、圧縮機10bの流量・圧力比が不安定に振動するサージ領域に入り、圧縮機10bの信頼性が低下する点である。圧縮機10bは圧縮機10aと同軸で直列に接続されているため、圧縮機10aも圧力比や流量の影響を受け、同様に信頼性が低下する。第二の問題は、冷却塔36の散水なしで圧縮機を駆動した場合、冷却塔36の内部温度は174℃程度まで上昇し、機器および配管も高温になる点である。このような高温状態の冷却塔36で水を噴霧した場合、高温の部材に接触した液相水の突沸現象により急激に圧力が上昇する可能性がある。
つまり、予め冷却塔36への散水を開始した後に空気の圧縮を開始することにより、圧縮機10の流路内での急激な温度や圧力,流量の変化を回避することができ、圧縮機10や冷却塔36の信頼性の低下を抑制することができる。また、本実施例では冷却塔36にミスト除去器72を設置しており、圧縮機の起動前に散水を開始しても、圧縮機内にドレンが流入する可能性は低い。そのため、圧縮機起動前に散水を開始する場合でもエロージョンを抑制する手段を新たに設けなくてもよい。
一方、本実施例のガスタービンシステムの停止時における冷却塔36の運用方法に関しては、圧縮機10a,10bを停止してから冷却塔36への散水を停止することが望ましい。圧縮機の駆動中に冷却塔36への散水を停止した場合、それぞれの圧縮機10a,
10bにおいて、吐出温度,圧力,流量が急激に変化し、圧縮機のサージ現象や噴霧水の突沸が起きる可能性があるためである。上述のように圧縮機10a,10bを停止してから、冷却塔36への散水を停止することにより、圧縮機10a,10b駆動中の被圧縮流体の急激な温度変化や圧力変化を回避することができ、圧縮機10や冷却塔36の信頼性の低下を抑制することができる。
次に、図4を用いて、本発明の中間冷却機構を備えた再生サイクルガスタービンシステムの別の実施例を示す。図4は本発明の一実施例である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。実施例1で示した中間冷却機構を備えた再生サイクルガスタービンシステムでは、圧縮空気の冷却効果は100℃以上あり、圧縮空気への加湿量は空気質量の0.6 質量%である。本実施例は、実施例1で示したシステムと比較して、圧縮空気の冷却効果を小さくし圧縮空気の加湿による効果を大きくした、中間冷却機構を備えた再生サイクルガスタービンシステムを示す。本実施例で示したシステムの、実施例1で示したシステムとの構成上の相違点は、熱交換器90および冷却水91を使用しない点である。循環ポンプ6の吐出水は、冷却されることなく調整弁84により流量が調整されて充填物の上方に設置された液分散器80に供給される。
図4を用いて、本実施例における中間冷却機構の定常時の動作を説明する。圧縮機10aにより、約400kPaまで圧縮された空気は、吐出配管86aから、冷却塔36に流入する。冷却塔36では、循環ポンプ6から供給された約65℃の熱水が充填物の表面に散布されている。気温15℃,相対湿度60%の大気条件の場合、冷却塔36への入口での圧縮空気の露点温度は約29℃であり、露点温度より高温な熱水と気液接触させることにより冷却塔36では空気が加湿される。
図6は、本実施例の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示したものであり、(a)は温度、(b)は絶対湿度、(c)は加湿量を示す。図6(a)に示すように、冷却塔36の下方から流入した約174℃の空気(実線)は、上方から充填物71の表面を流下する約
65℃の液膜(破線)と熱交換しながら上方に流動するにつれて低温となる。図6(b)に示すように、充填物71設置部の全ての領域において液膜表面の湿り空気の絶対湿度
(破線)が主流空気の絶対湿度(実線)より高いため、水蒸気圧力差を駆動力として、図6(c)に示すように、液膜表面から主流空気中に水蒸気が移動する。その結果として、上方に流動するにつれ主流空気中の絶対湿度は単調増加する。実施例1では、約35℃の水を散布していたため、主流の空気と液膜表面の空気の絶対湿度が充填物の上方では逆転していたが、本実施例では逆転しない。約65℃の熱水を約174℃の圧縮空気に接触させる本実施例では、空気への加湿量は空気質量の3.2 質量%である。一方、冷却塔出口の空気温度は82℃である。つまり、空気は冷却塔36で約90℃冷却される。充填物から落下した液膜水は、冷却塔36の液溜り74に流下する。蒸発により失われた水分は給水ポンプ7,調整弁38を介して補給され、約65℃の熱水として循環ポンプ6から熱交換器90に供給される。
本実施例で示したシステムは、蒸発量が空気質量の約3.2 質量%であり冷却塔36における補給水量が比較的多い点で、蒸発量が空気質量の約0.6 質量%である実施例1と異なる。空気流量の約3.2 質量%分の蒸発量増加により、圧縮機10aでは、100%の質量流量に必要な圧縮仕事で103.2% の質量流量の湿り空気を圧縮できたことになり、質量流量あたりの圧縮動力を低減できたことになる。
冷却塔36により約82℃まで冷却されて質量流量が3.2% 増加した圧縮空気は、吸入配管85bから圧縮機10bに吸入され、1600kPa程度まで圧縮される。この時の温度は、約260℃である。本実施例では圧縮機10bの吸気温度が約82℃、吐出温度が約260℃と比較的低いため、これらの温度が高温な場合と比較して圧縮動力が大幅に低減できる。その他の作用,機能は実施例1と同様である。
本実施例のように冷却塔36の循環水を冷却しない場合、圧縮空気の中間冷却は循環水を冷却する実施例1と比べて噴霧水の蒸発潜熱による部分が大きく、空気の冷却幅は加湿とともに上昇する湿り空気の露点温度の制約を受けやすい。一方、実施例1で用いる熱交換器90を必要としないため設備コストを低減できる。また、燃焼用空気に添加されている湿分が多いほど燃焼時の窒素酸化物の生成量は抑えられる。
なお、本実施例における冷却塔36の起動停止方法は、循環水ポンプ6の下流側の熱交換器90を起動しない点が異なるのみで、実施例1とほぼ同様である。
次に、図9を用いて、本発明の別の実施例を示す。図9は本発明の一実施例である圧縮機の中間冷却機構を備えた水蒸気ヒートポンプシステムを示す。本実施例は、圧縮機を流れる流体が空気ではなく水蒸気である点で実施例1および実施例2と異なる。
本実施例の主要な構成要素は、大気圧以下の条件下で外部から導入した温水40の熱により液水35を蒸発させて水蒸気を生成する蒸発器42と、図示しない駆動装置によって駆動され、蒸発器42で生成した水蒸気を加圧する圧縮機110a,110b,110c,110dと、前記圧縮機110dで加圧した高温の水蒸気を需要先に供給する吐出配管25である。圧縮機110a,110b,110c,110dは、同軸で直列に接続されており、徐々に水蒸気の圧力を上昇させる構成となっている。さらに、本実施例の特徴的な構成要素としては、圧縮機110aの吐出配管186aに接続された冷却塔136a,圧縮機110bの吐出配管186bに接続された冷却塔136b,圧縮機110cの吐出配管186cに接続された冷却塔136cがある。これら冷却塔136a,136b,
136cには、塔の下部に落下した循環水を塔内の充填物71の上方に再循環させる循環ポンプ6a,6b,6cがそれぞれ設置されている。また、蒸発器42には、補給水ポンプ5と調整弁83により補給水31が必要なだけ供給可能である。冷却塔136aには、給水ポンプ7と調整弁38aにより、蒸発器42の液水35が供給可能である。さらに、冷却塔136b,136cには、それぞれ冷却塔136a,136bの循環ポンプ6a,6bの吐出水が給水可能に配管されており、これらの配管には調整弁38b,38cがそれぞれ設置されている。冷却塔136a,136b,136cの構造,機能は、実施例1の冷却塔36とほぼ同様である。ただし、本実施例のように冷却塔36の内部圧力が系外の圧力より低い場合には、配管79に図示しない加圧ポンプなどを設置して、液相水を系外の圧力より高圧として排出する。
次に、本実施例のヒートポンプシステムの定常状態における運用方法を説明する。
蒸発器42には、外部熱源により約70℃に温められた温水40が供給される。利用する外部熱源の例としては、工場,ごみ焼却場,火力発電設備,内燃機関などの排熱があげられる。前記蒸発器42の液水35は、温水40との間接熱交換により約63℃に保持される。約63℃に保持するための方法としては、例えば、温水40の供給流量や温度を制御する方法がある。約63℃に保持された液水35の液面は、63℃の飽和水蒸気圧である23kPa程度の水蒸気と約63℃の液相水の気液平衡状態となる。蒸発器42の上部空間の空気は排出されており、絶対圧力23kPa程度の水蒸気で満たされた空間となる。この状態で圧縮機110aを駆動することにより、吸入配管185aから、圧縮機110aの吸込容量に応じた体積の水蒸気が吸引される。この吸引により、液水35の液面では連続的に液水35が蒸発して水蒸気が生成され液水35から多量の蒸発潜熱を奪うことになるが、この熱は温水40との熱交換により賄われる。
圧縮機110aに吸引された温度約63℃,圧力23kPa程度の水蒸気は、圧縮機
110aにより、約48kPaまで加圧され、温度は約145℃の過熱蒸気となる。この約145℃の過熱蒸気は、冷却塔136aのガス分散器70から冷却塔136aの内部へ流入し、充填物71の表面で、液分散器80から散布された、飽和温度である約80℃よりも低温の熱水の液膜と気液接触する。
図10は、本実施例の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,流量,蒸気圧の分布をそれぞれ表すグラフを示したものであり、(a)は温度、(b)は流量、(c)は蒸気圧を示す。
充填物71の表面には、散布された熱水が液膜を形成して流下しており、図10(a)に示すように、充填物の上部領域では、高温の過熱蒸気との温度差に基づく伝熱により、熱水が加熱され、下方に流下するに従い高温となる。熱水が加熱される温度の上限は、塔内圧力の飽和温度である約80℃である。充填物の下部領域では、約145℃の過熱蒸気により、温度差に基づく伝熱により熱水が加熱され、充填物の表面を流下する約80℃の熱水が加熱される。この熱量は、塔内の飽和温度が約80℃であるため熱水の温度上昇には利用されず、熱水が蒸発する潜熱として利用され、図10(b)に示すように熱水の一部が水蒸気となる。この作用により、水蒸気の質量流量は充填物を通過後には約5パーセント増加している。一方、過熱蒸気は熱水に顕熱を奪われることにより、図10(a)に示すように、上方に流れるに従って温度が低下する。熱水が液膜表面から蒸発する際、蒸発する水は不純物を含まない純粋な水蒸気であり、補給水に固形物や金属イオン,酸化物などの不純物が含有していた場合、それらは液膜水中に残り濃縮する。従って、補給水中に不純物が混入していても、冷却塔136にて主流蒸気に付加される蒸気は不純物を含んでいないため冷却塔136の下流側にある圧縮機や機器類には影響を及ぼさない。本実施例の冷却塔36を用いれば、不純物を極微量まで除去した補給水を用いなくても圧縮機や計器類の信頼性の低下を抑制できる。
充填物から流下した散布水は、飽和温度である約80℃となり、冷却塔136aの液溜り74に落下して収集される。流下する水量は、図10(b)に示すように蒸発により減少するので、液溜り74の水量を維持するため水位計78で水位を計測し調整弁38を自動制御して配管75から補給水を供給する。低温な水との混合により液溜り74の水温は飽和温度である約80℃よりも数℃低温となる。
この作用により、過熱蒸気は温度が冷却塔136における飽和温度である約80℃近くまで低下し、流量が若干増加する。エネルギーの変化としては、過熱蒸気の顕熱のエネルギーが潜熱のエネルギーに変換されており、結果的には水蒸気の温度が低下して流量が増加している。圧縮機110aは、増加前の流量の水蒸気を圧縮する動力しか必要としていないため、より少ない圧縮動力でより多くの質量流量の水蒸気を圧縮できたことになる。
充填物71の表面を流下する液膜と、上向きに流れる水蒸気とのせん断力により、液膜表面からは、エントレインメントと呼ばれる微細なミストが発生する。充填物71の流路を上向きに流れる水蒸気と、微細なミストは、充填物71を通過したあと、上方にあるミスト除去器72に流入する。ミスト除去器72では、ミストの大部分が除去され、飽和温度の乾き水蒸気となった状態で冷却塔36aから出た水蒸気は、配管73により圧縮機
10bに流入する。ここでミストを除去する目的は、圧縮機の回転部分に液滴が衝突し、エロージョンと呼ばれる機械的な侵食が発生することを防ぐためである。ミスト除去器で捕集されたミストは、ミスト同士が結合して大きな液滴となると、重力により落下し、散布水として充填物表面を流下する。
また、本実施例の圧縮機110bでは、冷却塔136の作用により中間冷却を行うことにより、中間冷却を行わない方式のものと比べ低温な蒸気を圧縮する。そのため同じ圧力比で圧縮する場合、少ない動力で圧縮することが可能である。本実施例の圧縮機110bの吐出蒸気は圧力約95kPa,温度約158℃の過熱蒸気である。この過熱蒸気を圧縮機110cで圧縮する際、圧縮動力を減らすため、冷却塔136bにより冷却塔136aで説明した場合と同様の動作で過熱蒸気を飽和温度近くまで冷却し、質量流量が若干増加した水蒸気に調整する。以下、圧縮機110dで圧縮する際にも、冷却塔136cで過熱蒸気を飽和温度近くまで冷却し、質量流量を増加させる。その結果、圧縮機110dの入口での蒸気の温度は約117℃、圧力は約179kPaとなり、圧縮機110dの出口での蒸気の温度は約187℃、圧力は約312kPaとなる。この過熱水蒸気は、吐出配管25により、熱利用設備に供給され、利用される。
本実施例では、冷却塔136a,136b,136cの作用により、圧縮機110b,110c,110dでは、少ない圧縮動力でより多くの質量流量の水蒸気を圧縮できる効果があり、それぞれの圧縮機において過熱蒸気よりも低温な飽和蒸気を圧縮するため、より少ない動力で圧縮することができる。システム全体としては、より少ない動力でより多量の水蒸気を圧縮できることになり、効率が相乗効果的に上昇する。
図11を用いて本実施例の効果を定量的に説明する。図11は、本実施例の冷却塔を
136を作動させる場合と作動させない場合の温度,圧力,質量流量の推移を示したものであり、(a)は温度、(b)は圧力、(c)は質量流量を示す。
圧縮機110dの吐出配管186dの温度は、冷却塔を作動させる場合には、図11
(a)に実線で示したように約187℃であるに対し、冷却塔を作動させない場合には、破線で示したように、約370℃になる。そのため、同じ圧縮機を用いた場合、吐出圧力が前者は圧力約312kPaであるに対し、後者は約206kPaまでしか上昇できない。一般的な産業用の水蒸気の利用先では、通常は飽和蒸気として利用されるため、約312kPaと約206kPaでは水蒸気の利用価値が大きく異なる。さらに、本実施例では作動媒体である水蒸気の増量効果も得られる。冷却塔136を作動させる場合には水蒸気の量が1.17 倍となるに対し、冷却塔136を作動させない場合、増加量はゼロである。
なお、補給水に含まれている不純物が濃縮して液溜り74の水質が悪化することを防ぐため、前記実施例1および前記実施例2と同様、調整弁39を操作して、連続的あるいは断続的に液相水の一部を系外へ排出することが望ましい。
また、本実施例では、冷却塔136a,136b,136cの液溜り74への補給水源として、なるべく温度が近い水源を利用するよう計画したが、低温の補給水31からそれぞれの冷却塔へ直接補給してもよい。この場合も基本的な動作はほぼ同様である。ただし、それぞれの液分散器80からの散水水温が低くなるため、過熱蒸気から奪われる顕熱が増加し水蒸気の新たな生成量が減少することになるが、主流水蒸気の冷却効果は高くなる。
このように本実施例によれば、水蒸気圧縮機110において、コンパクトかつ低コストであり、不純物を極微量まで除去した純水を必要としない中間冷却機構を提供することができ、中間冷却の際に、過熱蒸気が保有していた熱エネルギーを、水蒸気の質量エネルギーに変換できるため、システム全体の効率を高めることができる。
なお、循環ポンプ6や給水ポンプ7として、本実施例では機械式を想定したが、吐出配管25や、吐出配管186のより高圧な水蒸気を利用して、蒸気ジェットポンプを構成することも可能である。この場合、機器を簡素化でき、機械式のポンプと比較して、軸封部分からの流体のリークや、外部からの不純物の混入の可能性を少なくすることができる。
次に、本実施例の水蒸気ヒートポンプシステムの起動方法を説明する。圧縮機110a,110b,110c,110dを起動する前に、冷却塔136a,136b,136cの内部には、所定の水位まで水を注入しておく。注水が完了した後、調整弁84a,84b,84cを開け、冷却塔136a,136b,136cの充填物71に水を散水し、循環ポンプ6a,6b,6cにより、それぞれの冷却塔内で水を循環させる。
この状態で、圧縮機110a,110b,110c,110dを駆動させ、吸入配管
185,吐出配管186,冷却塔136の内部に存在する空気を、圧縮機の流体駆動作用により吐出配管25から図示しない排気スタックを経由させて徐々に大気中に排出させる。この際、圧縮機110a,110b,110c,110dを駆動するのではなく、図示しない真空ポンプを用いて空気を排出してもよい。空気の排出を圧縮機110で行うように設計すれば、排気用の真空ポンプは不要である。一方、排気用の真空ポンプにより空気を排出するよう設計すれば、圧縮機110を低圧の水蒸気専用に設計でき、定常運転時に高い性能を発揮する圧縮機を適用可能である。圧縮機110にて空気を排出させる場合には、水蒸気だけでなく、空気を圧縮する場合にもサージなどの不安定事象が発生しないように圧縮機の流量・圧力比特性を設計する必要があるからである。
蒸発器42の上部空間は、空気が排出された後は、絶対圧力約23kPaの水蒸気で満たされた空間となる。また、冷却塔136a,136b,136cでは、圧縮機110a,110b,110c,110dが駆動されると、温度と圧力が定常状態に到達し起動が完了する。この間、温度が上昇する過程で、起動時に低温であった冷却塔136,吸入配管185,吐出配管186を昇温するために水蒸気の熱が使われ、一部の水蒸気は凝縮する。この凝縮水は冷却塔136のミスト除去器72に捕集され、液溜り74に流下する。起動時に水蒸気の凝縮量が多い場合には液溜り74の水位が上昇するので、配管79の調整弁39を自動制御して液相水を系外へ排出する。
以上説明したように、水蒸気の圧縮は、冷却塔136の充填物71への散水を開始した後に開始することが望ましい。この理由は、以下二点の問題の発生を抑制するためである。一点目の問題は、圧縮機を起動した後に冷却塔の散水を開始すると、各圧縮機110a,110b,110c,110dの吐出温度,圧力,流量が急激に変動し、圧縮機の流量・圧力比が不安定に振動するサージ領域に入る可能性があり、圧縮機の信頼性が低下することである。二点目の問題は、冷却塔の散水なしで圧縮機を駆動した場合、最も下流側の冷却塔36cの水蒸気温度は約300℃となり、機器および配管も高温になることである。このような高温状態の冷却塔136に散水を開始した場合、高温の部材に接触した液相水の突沸現象が生じて急激な圧力上昇に至る可能性がある。本実施例のように、予め冷却塔136への散水を開始した後に水蒸気の圧縮を開始することにより、水蒸気流路内での急激な温度や圧力,流量の変化を回避することができ、信頼性の高い運転を行うことができる。
一方、本実施例の水蒸気ヒートポンプシステムを停止させる際には、起動時と逆の手順、すなわち圧縮機を停止してから冷却塔136への散水を停止することが望ましい。圧縮機の駆動中に冷却塔136への散水を停止した場合、それぞれの圧縮機110a,110b,110c,110dにおいて、水蒸気の吐出温度,圧力,流量が急激に変化し、圧縮機のサージ領域への遷移や、散水の突沸が起きる可能性があるためである。
本実施例のように、圧縮機を停止してから、冷却塔136への散水を停止することにより、圧縮機の駆動中に被圧縮流体の急激な温度や圧力,流量の変化を回避することができ、信頼性の高い運転を行うことができる。
各実施例では、複数の圧縮機を用い、各圧縮機間に冷却塔36,冷却塔136を設けた例を示したが、本発明は複数の圧縮機を用いた場合に限られるものではなく、圧縮機は一台でも複数段のものを用いた場合であれば適用できる。複数段圧縮機を用いた場合には圧縮機各段の段間に冷却塔36,冷却塔136を設ければ、各実施例で示したものと同様の効果が得られる。
本発明の実施例1である中間冷却機構を適用したシンプルサイクルガスタービンシステムを示す。 本発明の実施例1の冷却塔36の詳細図を示す。 本発明の実施例1である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。 本発明の実施例2である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。 本発明の実施例1の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示す。 本発明の実施例2の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示す。 本発明の冷却塔36の詳細図を示す。 本発明の冷却塔36の詳細図を示す。 本発明の実施例3である圧縮機の中間冷却機構を備えた水蒸気ヒートポンプシステムを示す。 本発明の実施例3の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,流量,蒸気圧の分布をそれぞれ表すグラフを示す。 本発明の実施例3の冷却塔を作動させる場合と作動させない場合の温度,圧力,質量流量の推移を示す。
符号の説明
5…補給水ポンプ、6,6a,6b,6c…循環ポンプ、7…給水ポンプ、10a,
10b、110,110a,110b,110c,110d…圧縮機、12…燃焼器、
14…タービン、16…発電機、25,86,86a,86b、186,186a,186b,186c,186d…吐出配管、31…補給水、35…液水、36,36a,36b,36c,136,136a,136b,136c,136d…冷却塔、38,39,83,84…調整弁、40…温水、42…蒸発器、50…燃料、60…再生熱交換器、61…出口配管、70…ガス分散器、71…充填物、72…ミスト除去器、74…液溜り、75,76,79…配管、78…水位計、80…液分散器、82…スタック、85,85a,85b,185,185a,185b,185c,185d…吸入配管、90…熱交換器、91…冷却水、92…多孔板、93…スプレイノズル。

Claims (15)

  1. 複数の圧縮段から構成される気体圧縮機の段間に設置され、前記圧縮機の被圧縮気体を冷却する冷却装置であって、
    前記被圧縮気体が所望量以上の液体の散布により冷却されるよう構成され、前記圧縮段に該液体が流入するのを抑制する手段を有することを特徴とする冷却装置。
  2. 複数の圧縮段から構成される気体圧縮機の段間に設置され、入口から流入した前記圧縮機の被圧縮気体を冷却して出口から流出させる冷却装置であって、
    前記被圧縮気体は所望量以上の液体の散布により冷却されるよう構成され、前記圧縮段へ該液体が流入するのを抑制する手段を有し、
    前記入口は前記液体を散布する散布装置より下方に、前記出口は前記散布装置より上方に設けられたことを特徴とする冷却装置。
  3. 複数の圧縮段から構成される気体圧縮機の段間に設置され、前記圧縮機の被圧縮気体と所望量以上の液体とが直接接触するよう構成され、前記被圧縮気体と前記液体との接触面積を広くするための気液接触機構を有し、
    前記圧縮段への液体の流入を抑制する手段を備えたことを特徴とする冷却装置。
  4. 請求項3に記載の冷却装置であって、
    前記気液接触機構は、表面積の大きな構造物,多孔板、もしくは液滴を多量に噴霧可能な構成の少なくとも一つを用いたものであることを特徴とする冷却装置。
  5. 複数の圧縮段から構成される気体圧縮機の段間に設けられた冷却装置であって、
    前記圧縮機の被圧縮気体が流入する入口を有し、前記入口から流入した前記被圧縮気体は前記入口よりも上部に設置された液体散布装置から散布された所望量以上の液体との直接接触熱交換により冷却され、前記冷却された被圧縮気体は前記液体散布装置よりも上部に設置された液体通過抑制装置を通過した後、該液体通過抑制装置よりも上部に設けられた出口から流出するよう構成された冷却装置。
  6. 請求項1に記載の冷却装置であって、
    前記所望量以上の液体の散布とは、所定の大きさ以上の液滴を所望量以上噴霧することであることを特徴とする冷却機構。
  7. 請求項1に記載の中間冷却装置であって、
    散布した液体の一部は回収され、回収された液体は再び散布可能な構成としたことを特徴とする冷却装置。
  8. 請求項1に記載の中間冷却装置であって、
    前記被圧縮気体に散布する前の前記液体を冷却する冷却機構を備えたことを特徴とする冷却装置。
  9. 空気を圧縮する圧縮機と、前記圧縮機で圧縮された圧縮空気と燃料を燃焼させる燃焼器と、該燃焼器で発生した高温の燃焼ガスから回転動力を得るタービンとを有するガスタービンシステムにおいて、
    前記圧縮機は複数の圧縮段から構成された複数段圧縮機であり、
    前記圧縮機の段間に、前記被圧縮空気を所望量以上の液体の散布により冷却するよう構成され、前記圧縮段への該液体の流入を抑制する手段を有する冷却器を備えたことを特徴とするガスタービンシステム。
  10. 請求項9に記載のガスタービンシステムにおいて、
    前記被圧縮気体を、前記燃焼器に供給する前に前記タービン駆動後の燃焼ガスにより昇温させる再生サイクルを利用する構成としたことを特徴とするガスタービンシステム。
  11. 水を外部熱源との熱交換により蒸発させて水蒸気を生成する蒸発器と、前記水蒸気を圧縮する複数の圧縮段から構成された蒸気圧縮機と、前記蒸気圧縮機で圧縮された高温高圧の水蒸気を水蒸気利用施設に供給する供給配管を備えたヒートポンプシステムにおいて、
    前記蒸気圧縮機の段間に、前記被圧縮水蒸気を所望量以上の液体の散布により冷却するよう構成され、前記圧縮段中への該液体の流入を抑制する手段を有する冷却装置を備えたことを特徴とするヒートポンプシステム。
  12. 請求項11に記載のヒートポンプシステムにおいて、
    前記散布用液体を流通させるための動力の一部として、前記蒸気圧縮機の段間または前記供給配管から抽気した水蒸気を利用することを特徴とするヒートポンプシステム。
  13. 複数の気体圧縮機の圧縮機間に設置され、前記複数の圧縮機の被圧縮気体を冷却する冷却装置であって、
    前記被圧縮気体が所望量以上の液体の散布により冷却されるよう構成され、前記圧縮機に該液体が流入するのを抑制する手段を有することを特徴とする冷却装置。
  14. 複数の圧縮段から構成される気体圧縮機の被圧縮気体を、前記複数の圧縮段の段間で液体を散布することにより冷却する被圧縮気体の冷却方法において、
    前記圧縮段への該液体の流入を抑制する手段を設けた冷却装置内で、前記被圧縮気体に所望量以上の液体を噴霧することを特徴とする被圧縮気体の冷却方法。
  15. 複数の圧縮段から構成される気体圧縮機の段間に設置され、
    前記気体圧縮機の被圧縮気体を所望量以上の液体の散布により冷却し、
    前記圧縮段中への液体の流入を抑制する手段を有する冷却装置の運転方法であって、
    前記被圧縮気体の流路に液体を散布している状態で、前記気体圧縮機を起動または停止させることを特徴とする冷却装置の運転方法。
JP2006174723A 2006-06-26 2006-06-26 冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法 Expired - Fee Related JP4311415B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006174723A JP4311415B2 (ja) 2006-06-26 2006-06-26 冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法
US11/767,805 US8240122B2 (en) 2006-06-26 2007-06-25 Cooling apparatus of a gas turbine system
EP07012501.8A EP1873375A3 (en) 2006-06-26 2007-06-26 Cooling system for a gas turbine compressor
US13/555,888 US8402735B2 (en) 2006-06-26 2012-07-23 Cooling apparatus, gas turbine system using cooling apparatus, heat pump system using cooling system, cooling method, and method for operating cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174723A JP4311415B2 (ja) 2006-06-26 2006-06-26 冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009043316A Division JP2009133318A (ja) 2009-02-26 2009-02-26 複数の中間冷却器を備えた圧縮機を有するシステム,冷却方法

Publications (2)

Publication Number Publication Date
JP2008002413A true JP2008002413A (ja) 2008-01-10
JP4311415B2 JP4311415B2 (ja) 2009-08-12

Family

ID=38227731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174723A Expired - Fee Related JP4311415B2 (ja) 2006-06-26 2006-06-26 冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法

Country Status (3)

Country Link
US (2) US8240122B2 (ja)
EP (1) EP1873375A3 (ja)
JP (1) JP4311415B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033559A1 (ja) * 2009-09-16 2011-03-24 株式会社日立製作所 熱併給発電プラント及びバイオマス改質複合発電プラント
US8192144B2 (en) 2007-09-28 2012-06-05 Hitachi, Ltd. Compressor and heat pump system
JP4972708B2 (ja) * 2009-01-30 2012-07-11 株式会社日立製作所 蒸気を利用するプラント及びそのプラントの運転方法並びに蒸気供給装置及び蒸気供給方法
KR20150077964A (ko) * 2013-12-30 2015-07-08 이주선 기계식 증기 재압축기를 위한 과열증기 냉각장치
JP2017138090A (ja) * 2016-02-04 2017-08-10 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012011718B1 (pt) * 2009-11-18 2020-05-05 Shell Int Research método e aparelho para manipular uma corrente de gás de evaporação
US9546574B2 (en) * 2010-12-28 2017-01-17 Rolls-Royce Corporation Engine liquid injection
US20120060535A1 (en) * 2011-03-04 2012-03-15 General Electric Company Heat pump water heater with external inlet tube
US8419844B1 (en) * 2011-10-03 2013-04-16 Abhijeet Madhukar Kulkarni Mist/moisture removal using fixed bed trickle columns
FR2983245B1 (fr) * 2011-11-25 2014-01-10 Air Liquide Procede et appareil d'alimentation en azote d'une chambre de combustion
ITCO20120030A1 (it) * 2012-06-06 2013-12-07 Nuovo Pignone Srl Compressori ad alto rapporto di pressione con intercooler multiplo e relativi metodi
CN103277346B (zh) * 2013-06-28 2015-06-24 唐山怡人鼓风机制造有限公司 可水冷却降温的多级鼓风机
CN105102195B (zh) * 2014-02-11 2017-10-13 刘凯 泵式蒸压系统及其蒸汽和压力的提供方法
US10767561B2 (en) * 2014-10-10 2020-09-08 Stellar Energy Americas, Inc. Method and apparatus for cooling the ambient air at the inlet of gas combustion turbine generators
ES2634028B1 (es) * 2016-02-26 2018-10-15 Alejandro DESCO SÁNCHEZ Turbina de gas con dos etapas de compresión y enfriamiento intermedio mediante máquina frigorífica
JP6880232B2 (ja) * 2017-04-11 2021-06-02 シーメンス アクティエンゲゼルシャフト 保全方法
FR3111416B1 (fr) * 2020-06-12 2022-07-08 Clauger Desurchauffeur de fluide frigorigene sous forme gazeuse et installation mettant en œuvre un cycle frigorifique associee
CN112302964B (zh) * 2020-10-29 2022-07-08 西安西热节能技术有限公司 一种独立凝汽式汽动给水泵效率的测定方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784571A (en) * 1957-03-12 Evaporative air cycle cooler
US1471112A (en) * 1919-12-13 1923-10-16 B F Sturtevant Co Apparatus for cooling air
US2407165A (en) * 1941-06-21 1946-09-03 Kreitner Johann Method and means for improving power production in combustion turbines
US2372846A (en) * 1942-08-05 1945-04-03 Nettel Frederick Water distillation
US4051888A (en) * 1973-07-07 1977-10-04 Daikin Kogyo Co., Ltd. Low temperature energy carrying apparatus and method
DE2638983A1 (de) * 1976-08-30 1978-03-02 Kurt Dipl Chem Dr Dannhaeuser Verfahren und anordnung zur kuehlleistungsgesteuerten regelung der abflutwassermenge in wasser-rueckkuehlern
FR2404737A1 (fr) * 1977-09-28 1979-04-27 Uniscrew Ltd Machine motrice a injection d'eau
JPS55160265A (en) 1979-04-25 1980-12-13 Gen Electric Multiistage open cycle heat pump
JPS5786600A (en) 1980-11-18 1982-05-29 Setsuo Yamamoto Gas compressor
JPH03128281A (ja) 1989-10-16 1991-05-31 Fujitsu Ltd 熱転写インクシートの製造方法
JPH03279683A (ja) 1990-03-28 1991-12-10 Hitachi Ltd 多段圧縮機
JP3128281B2 (ja) 1991-09-09 2001-01-29 ダイセル化学工業株式会社 新規な化合物及び分離剤
US5669217A (en) * 1995-09-25 1997-09-23 Anderson; J. Hilbert Method and apparatus for intercooling gas turbines
ATE218673T1 (de) * 1996-07-10 2002-06-15 Vattenfall Ab Publ Verfahren und vorrichtung zum liefern von mechanischer arbeit und, wenn gewünscht, wärme in einem gasverdampfungsturbinenprozess
JPH11270352A (ja) * 1998-03-24 1999-10-05 Mitsubishi Heavy Ind Ltd 吸気冷却型ガスタービン発電設備及び同発電設備を用いた複合発電プラント
US6484508B2 (en) * 1998-07-24 2002-11-26 General Electric Company Methods for operating gas turbine engines
DE60135308D1 (de) * 2000-02-23 2008-09-25 Schlom Leslie Wärmetauscher zum kühlen und zur verwendung im vorkühler der turbinenluft-aufbereitung
US20010054354A1 (en) * 2000-06-21 2001-12-27 Baudat Ned P. Direct turbine air chiller/scrubber system
GB0211350D0 (en) * 2002-05-16 2002-06-26 Rolls Royce Plc A gas turbine engine
JP4179496B2 (ja) * 2002-10-08 2008-11-12 川崎重工業株式会社 常圧燃焼タービンシステム
JP2004300928A (ja) 2003-03-28 2004-10-28 Tokyo Electric Power Co Inc:The 多段圧縮機、ヒートポンプ、並びに熱利用装置
JP4100316B2 (ja) 2003-09-30 2008-06-11 株式会社日立製作所 ガスタービン設備
DE10355353A1 (de) * 2003-11-25 2005-07-21 Alstom Technology Ltd Verfahren und Vorrichtung zum Kühlen einer Gasströmung
JP2005274070A (ja) 2004-03-25 2005-10-06 Shinei Giken:Kk 過熱蒸気の減温方法及びその装置
JP5151014B2 (ja) 2005-06-30 2013-02-27 株式会社日立製作所 ヒートポンプ装置及びヒートポンプの運転方法
US7712301B1 (en) * 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
JP4371278B2 (ja) * 2007-08-07 2009-11-25 株式会社日立製作所 高湿分利用ガスタービン設備

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192144B2 (en) 2007-09-28 2012-06-05 Hitachi, Ltd. Compressor and heat pump system
JP4972708B2 (ja) * 2009-01-30 2012-07-11 株式会社日立製作所 蒸気を利用するプラント及びそのプラントの運転方法並びに蒸気供給装置及び蒸気供給方法
WO2011033559A1 (ja) * 2009-09-16 2011-03-24 株式会社日立製作所 熱併給発電プラント及びバイオマス改質複合発電プラント
JP5331890B2 (ja) * 2009-09-16 2013-10-30 株式会社日立製作所 熱併給発電プラント及びバイオマス改質複合発電プラント
KR20150077964A (ko) * 2013-12-30 2015-07-08 이주선 기계식 증기 재압축기를 위한 과열증기 냉각장치
KR101582297B1 (ko) 2013-12-30 2016-01-06 선테코 유한회사 기계식 증기 재압축기를 위한 과열증기 냉각장치
JP2017138090A (ja) * 2016-02-04 2017-08-10 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
US20120282080A1 (en) 2012-11-08
US20090056303A1 (en) 2009-03-05
US8402735B2 (en) 2013-03-26
EP1873375A3 (en) 2014-05-14
EP1873375A2 (en) 2008-01-02
JP4311415B2 (ja) 2009-08-12
US8240122B2 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
JP4311415B2 (ja) 冷却装置,冷却装置を用いたガスタービンシステム,冷却機構を用いたヒートポンプシステム,冷却方法,冷却装置の運転方法
JP2008175149A (ja) 圧縮機の吸気噴霧装置
JP4099944B2 (ja) ガスタービン発電設備及び空気増湿装置
JP4150950B2 (ja) ガスタービン入口の空気の水飽和/過飽和システム用制御システム及びガスタービン
JPH11324710A (ja) ガスタービン発電プラント
CN204301389U (zh) 结合蒸发冷却与机械制冷的发电厂冷却塔节水系统
JP2007016640A (ja) 高湿分利用ガスタービン設備
JP2005105908A (ja) ガスタービン設備
JPH1172027A (ja) 排気再循環型コンバインドプラント
JP2009133318A (ja) 複数の中間冷却器を備えた圧縮機を有するシステム,冷却方法
US20110173947A1 (en) System and method for gas turbine power augmentation
US20130139517A1 (en) Solar Assisted Gas Turbine System
JP2001214757A (ja) ガスタービン設備
JP5433590B2 (ja) ガスタービンシステム
JP5422747B2 (ja) 太陽熱利用コンバインドサイクルプラント
JP6137831B2 (ja) 高湿分空気利用ガスタービンコージェネレーションシステム
JP4483505B2 (ja) ガスタービン設備とその制御装置,ガスタービン設備の制御方法及びタービン冷却部の冷却方法
JP2002322916A (ja) ガスタービン吸気冷却装置
JP4120699B2 (ja) ガスタービン発電設備及び空気増湿装置
JPH11287132A (ja) ガスタ―ビン,コンバインドサイクルプラント及び圧縮機
JP2004132297A (ja) 吸気冷却装置及び吸気冷却方法及びガスタービンプラント
JP3567090B2 (ja) ガスタービン,コンバインドサイクルプラント及び圧縮機
JP4923010B2 (ja) 吸気に水を噴霧する圧縮機を有する設備
JP5483625B2 (ja) ガスタービンシステム
RU2334112C2 (ru) Способ повышения кпд парогазовой энергоустановки

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees