JP2007506262A - フライアイコンデンサ及びそれを用いた照明系 - Google Patents

フライアイコンデンサ及びそれを用いた照明系 Download PDF

Info

Publication number
JP2007506262A
JP2007506262A JP2006525788A JP2006525788A JP2007506262A JP 2007506262 A JP2007506262 A JP 2007506262A JP 2006525788 A JP2006525788 A JP 2006525788A JP 2006525788 A JP2006525788 A JP 2006525788A JP 2007506262 A JP2007506262 A JP 2007506262A
Authority
JP
Japan
Prior art keywords
optical
fly
eye
polarization
light distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006525788A
Other languages
English (en)
Inventor
コーラー イェス
Original Assignee
カール・ツァイス・エスエムティー・アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・アーゲー filed Critical カール・ツァイス・エスエムティー・アーゲー
Publication of JP2007506262A publication Critical patent/JP2007506262A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lenses (AREA)

Abstract

【課題】 均質化効果以上に、入射光の分布に追加効果も与えるフライアイコンデンサを、特にマイクロリソグラフィ投影露光装置の照明系や、そのようなフライアイコンデンサを有する照明系にも使用できるようにする。
【解決手段】 入力光分布を出力光分布に変換するためのフライアイコンデンサ(115;215;315;415)において、複数の光チャネルを生じるために光学群(21、22;121、122;221、222;40;140)の少なくとも1つのラスター配列を有するフライアイコンデンサ(115;215;315;415)であって、光学群(21、22;121、122;221、222;40;140)の少なくとも一部は、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段(30;121、122;230;40;140)を有する、フライアイコンデンサ。
【選択図】 図1

Description

本発明は、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有する、入力光分布を出力光分布に変換するためのフライアイコンデンサに関し、また、主光源からの光で照明表面を照明するための照明系、特にマイクロリソグラフィ投影露光システム用の照明系であって、上記形式の少なくとも1つのフライアイコンデンサを有する照明系に関する。
たとえば、マイクロリソグラフィ投影露光装置に使用されているような照明系では、主光源からの光が、光源と異なった形状の照明表面に伝達される。この場合、光源からの光でこの照明表面をできる限り均質に照明するという問題が生じる。この目的のために、照明系に均質化装置がしばしば使用される。そのような均質化効果をもたらす2つの装置が、すなわちインテグレータロッド装置と、フライアイインテグレータとも呼ばれるフライアイコンデンサとが特に一般的である。
インテグレータロッド装置は実質的に長いロッドを備え、それは多くの場合に矩形断面を有し、光源に面するロッド端部で入射した光がその側面で何度も全反射し、それにより、照明表面に面するロッド端部で、混合された、したがってほぼ均質化した形で光が出射する。ロッドの側面での全反射の回数は、光がロッドに入射するとき、これらの側面に対するそれの入射角によってほぼ決まる。各全反射において、反射表面及び入射光の放射方向と直交する表面によって形成される平面に対して垂直である電界強度ベクトルの成分は通常、この平面に平行な成分の場合より強く反射される。光ビームの部分ビームは異なった角度でインテグレータロッドに入るので、ロッドはビーム全体に角依存型の偏光変化効果を与え、それにより、たとえば、入射する光の非偏光ビームをロッドの出口側で部分的に偏光させることができる。ロッドの偏光変化効果はそれの構造によって発生し、追加的な偏光影響手段がなければ、わずかな程度に抑制されるのみであろう。
フライアイコンデンサは、複数の光チャネルを生じる光学群のラスター配列を有する。フライアイコンデンサでの均質化効果は、光源の多数の像(二次光源)を光チャネルによって形成し、次にそれらの光を重ね合わせることによって達成される。この重ね合わせは、光源の空間的及び時間的光強度変動間に一定の均等化をもたらす。インテグレータロッドと異なって、フライアイコンデンサは一般的に、それの機能によって生じる偏光変化効果を有しない。
マイクロリソグラフィ投影露光装置を動作させるために、レチクルと呼ばれる物体を照明系の照明表面に付着させて、照明系の下流側に配置された投影対物レンズによって投影対物レンズの像面上に配置されたウェハ上に結像する。たとえば、この下流側の投影対物レンズの構造しだいで、照明表面上での光分布が特定の偏光状態、すなわち偏光状態の特定の位置依存型または角依存型分布を有することが好都合であろう。たとえば、照明表面上の光分布を非偏光または円偏光することが望ましいであろう。主光源からの光の偏光状態が固定しており、そのため、これに影響を与えることができないか、影響を与えるには困難を伴う場合、照明表面上に特定の偏光状態を設定するために、照明系内に偏光変化手段を設ければ有益であることがこれによってわかるであろう。
米国特許第6,257,726B1号は、LCDディスプレイの内容を壁又は別の平坦面上に投影することができる投影装置用の照明系を記載している。これを達成するために、LCDディスプレイを可能な限り最も強い直線偏光で照明しなければならない。照明系は、非偏光を与える光源で動作する。偏光コンバータが、光を直線偏光に、ほとんど損失を伴わないで変換する。偏光コンバータは、多くの同一の光チャネルを生じるフライアイプレートを有する。プリズム構造が、各光チャネルで同じように、入射する非偏光を直線偏光に変換する。
欧州特許第0764858号は、入射光ビームを、光がほぼ半径方向に偏光している出射光ビームに変換する光学装置を記載している。これは、各々の場合に結晶軸方向が互いに系統的に異なり、かつ入射した直線偏光ビームが、円筒対称的に、すなわち接線または半径方向に偏光したビームに変換されるように全体的に並べられたλ/2プレートからなる複数の「ハニカム」を有するラスタープレートによって達成される。
米国特許第6,257,726B1号 欧州特許第0764858号
本発明は、均質化効果以上に、入射光の分布に追加効果も与えるフライアイコンデンサを、特にマイクロリソグラフィ投影露光装置の照明系や、そのようなフライアイコンデンサを有する照明系にも使用できるようにすることを目的とする。
この目的は、請求項1の特徴を有するフライアイコンデンサと、請求項14の特徴を有する照明系とによって達成される。
発明を実施するための形態
好都合な発展が、従属請求項に明記されている。特許請求の範囲全体の記載は、本願の明細書の記載の内容の一部となる。
入力光分布を出力光分布に変換するための本発明によるフライアイコンデンサは、多数の光チャネルを生じるために光学群のラスター配列を有する。これらの光チャネルを通過する光の偏光状態に影響を与えるために、フライアイコンデンサは、光学群の少なくとも一部に偏光変化手段を有する。
したがって、本発明によるフライアイコンデンサは、主光源から上記コンデンサに入射する光の、均質化に必要な幾何分布、及びこの光が個々の光チャネルを通過するときにその偏光状態に特定の影響を与えることの2つの機能を果たす。偏光に影響を与えるために多数の光チャネルを設けることにより、光チャネルの数の関数としてある程度は正確に事前に定めることができる位置依存型変化を有する空間変動を、フライアイコンデンサからの出力光分布での偏光状態で達成することができる。
本発明によるフライアイコンデンサの利点は、その均質化性質に加えて、個別に制御することができる偏光変化性質も有することにある。
フライアイコンデンサにおいて、光学群は、複数のレンズを有することが多い。1つの光学群内のフライアイコンデンサが、光路上に前後して配置された2つのレンズを有する場合、本出願では、光路において最初に通過するレンズを「視野レンズ」、2番目のレンズを「瞳レンズ」と呼ぶ。光学群のラスター配列はハニカムアレイに似ていることから、個々のチャネルにはめ込まれたレンズのことを「ハニカムレンズ」と言う。この理由のため、本出願では、光路において最初に通過するラスター配列のレンズを「視野ハニカムレンズ」と呼び、光路において2番目に通過するレンズを「瞳ハニカムレンズ」と呼ぶ。「ハニカムレンズ」の断面形状は六角形でよいが、六角形と異なってもよい。たとえば、ハニカムレンズが円形または矩形でもよい。
フライアイコンデンサが瞳ハニカムレンズ及び視野ハニカムレンズを備える少なくとも1つの光学群を有する場合、かつ瞳ハニカムレンズ及び/又は視野ハニカムレンズに複屈折材料の少なくとも1層が塗布されている場合、この層によって遅延効果を達成することができる。複屈折層に入射する光に規定の、たとえば直線偏光状態がある場合、層の厚さ及び複屈折材料を適当に選択することにより、層から出る光の偏光状態を円、直線または楕円偏光として設定することができる。加えて、適当ならば、複屈折材料の光軸を適当な向きにすることにより、層を通過する光の偏光方向を個別に変化させる、特に回転させることができる。別法として、または複屈折材料の層に加えて、偏光を変化させるために偏光変化層スタックまたは複屈折構造を使用することができる。
瞳ハニカムレンズ及び/又は視野ハニカムレンズを複屈折材料から作製する場合、これも同様に、光チャネルを通過する光の偏光に特定の影響を与えることができる。この場合には、この偏光影響効果を達成するために、フライアイコンデンサの光学群に追加の光学素子を加える必要がない。
本出願のために、非可視波長範囲、特に遠紫外線(DUV)までの紫外線範囲では、光を放射光とも呼ぶことに注意されたい。本出願の意味の「レンズ」は、屈折及び回折の両方の作用をする光学素子であることができる。
フライアイコンデンサの複数の、またはすべての光学群を反射面として構成することが有益であろう。反射式に働く光学群でも同様に偏光変化効果を達成するために、複屈折材料の層を反射面に塗布することができ、光学群に当たった光は、この層の後側に塗布されている反射面で反射するので、この層を2度にわたって通過することができる。この場合、複屈折層を形成する材料が高い複屈折効果を有していなければならないことに留意する必要があり、そうでなければ、偏光状態に有効に影響を与えるために必要な層厚さが非常に大きくなり、十分な光強さを層が通過させなくなるであろう。高い複屈折効果を有するそのような材料は、たとえばMgFである。
フライアイコンデンサの発展では、光学群は、終端面が湾曲し、したがってレンズとして作用する複屈折材料製の小ロッドを有する。このように、小ロッドの長さの有効厚さを有する偏光変化複屈折「レンズ」が導入される。したがって、偏光変化効果を達成するために、複屈折性が非常に低く、そのために実際に顕著な遅延を達成するためには相当な厚さが必要である材料を使用することができる。複屈折作用が比較的弱いそのような材料は、たとえばBaF又はCaFである。これらの材料の小ロッドは頑丈であり、かつ比較的容易に作成されることができる。
本発明の発展では、偏光変化手段として使用される材料の光軸が、少なくとも2つの光学群で異なった向きを有する。この手段により、これらの光学群を通過する光の偏光方向は異なった影響を受け、それにより、偏光方向の位置依存型変動をハニカムコンデンサからの出力光分布で達成することができる。
フライアイコンデンサ内の偏光変化手段として使用される少なくとも2つの光学群の材料の厚さが異なる場合、これにより、光チャネルによって決まる遅延効果を生じることができる。これは、フライアイコンデンサからの出力光分布における偏光状態に位置依存型変動を設定することができるようにする。
本発明によるフライアイコンデンサの発展では、少なくとも1つの光学群が、応力/複屈折材料製の光学素子を有し、この材料の光学的性質を設定するために、応力装置が設けられる。この場合、応力/複屈折材料に対する外部機械的作用によって応力をかけることにより、偏光分布を個別に制御することができる。必要ならば、そのような制御は動作中でも、すなわち照明光がフライアイコンデンサを通過している間も可能であり、それにより、発生し、かつ偏光状態の変化をおそらく必要とする外部影響に反応することが可能である。
本発明によるフライアイコンデンサの上記発展の改良では、光学群をラスター配列するために、少なくとも1つの応力/複屈折光学素子に機械力を加えるための応力素子として作用する少なくとも1つのくさびを有する少なくとも1つのキャリヤグリッドを利用する。その結果、応力複屈折材料は、くさびによって加えられる外部からの機械的圧力の結果として、その光学的性質を変化させることができ、それにより、遅延効果に、さらに必要であれば、光学素子の偏光回転効果にも外部から特定の影響を与えることができる。
偏光変化手段として使用される複屈折材料がCaF又はBaFからなる場合、その結晶軸を適当な向きにすれば、これは固有複屈折性を示す。この目的のために、たとえば、結晶の<110>方向を照明透過方向にほぼ平行な向きにすることができる。したがって、これらの材料からなる適当な厚さの複屈折レンズ又は小ロッドを作製することにより、複屈折材料を通過する光の偏光状態を顕著に変化させることが可能である。この場合に使用すべき厚さは、実際的な取り扱い又はマイクロリソグラフィ投影露光装置の照明系内への組み込みに不利になる全体寸法をこのコンデンサが超えない限り、これらの材料からフライアイコンデンサまたはその透明構成部品を構成することが可能になる範囲内にある。
偏光変化のために使用される複屈折材料がMgFである場合、利用可能な偏光変化効果が生じる厚さは、CaF又はBaFの場合よりはるかに薄い。これは、MgFが残りの2つの材料よりはるかに高い固有複屈折性を示すからである。複屈折材料による吸収が決定的な役割を果たす場合、MgFの薄い層を使用することが特に適当である。
偏光変化手段が光チャネルの一部の偏光状態を変化させ、それにより、偏光変化が多数の光チャネルにわたって不規則的に、または統計的に分布するようにしたフライアイコンデンサを使用して、フライアイコンデンサを通過する光に対して偏光解消効果を達成できるようにすることができる。
フライアイコンデンサが偏光解消効果を有するようにする場合、統計的な偏光分布を得るために、レンズまたは小ロッドの作製用に高い複屈折効果を有するMgF又は他の材料を使用することが有益であることがわかる。フライアイコンデンサの個々の光チャネルを通る光路が通常は同一長さではないことは、MgFを使用したとき、これらのわずかな差異のために、チャネル毎に顕著に異なる遅延効果が生じるという結果をもたらす。波長が157nmの場合のλ/2遅延素子用の層厚さが約5μmであることを、ここでもう一度思い出されたい。MgFから作製されたハニカムレンズをフライアイコンデンサに使用する場合、作製中にレンズ厚さに約1μmの範囲の差異を導入することが有益であり、それにより、光分布に対して追加的な偏光解消効果をもたらすことができるであろう。
本発明はまた、主光源からの光で照明表面を照明するために使用することができ、かつ本発明によるフライアイコンデンサを有する照明系、特にマイクロリソグラフィ投影露光システム用の照明系に関する。そのような照明装置では、フライアイコンデンサの個々の光チャネルの偏光変化に適当な影響を与えることにより、照明表面上に所定の偏光分布を設定することができる。
光路においてフライアイコンデンサの下流側で、個々の光チャネルで出射する光を重ね合わせるための第1光学装置が、この光学装置の下流側に位置する照明系の第1平面上に配置される場合、照明光用の均質化装置としてのフライアイコンデンサの機能を果たすためにこれを使用することができる。この均質化効果は、第1平面上のハニカムコンデンサの個々の光チャネルから到来する光を少なくとも部分的に重ね合わせることによって達成される。一般的に、第1平面の下流側に位置する適当な投影対物レンズによって、第1平面上に生じた光分布が照明系の照明表面上に投影される。
フライアイコンデンサの偏光変化効果は、瞳内の第1平面上に、すなわち、第1平面の任意の視野点で観察することができる角分布に表される。この角分布に観察することができる偏光分布は、光チャネルによって生じる位置依存型偏光分布と一致する。一方、第1平面上で個々のチャネルを重ね合わせることにより、位置分布において偏光状態のいずれの明瞭な割り当ても行われることができない。したがって、偏光維持投影対物レンズによって第1平面を照明系の照明表面上に投影する場合、照明表面上の光分布は、フライアイコンデンサの光チャネルに設定された位置依存型偏光分布によって決定される角依存型偏光分布を有する。
本発明の上記発展において、フライアイコンデンサから到来する光を重ね合わせる第1平面の下流側に第2光学装置が配置されており、この第2光学装置は、第1平面上の光分布を第2光学装置の下流側に位置する第2平面に伝達し、フーリエ変換によって第1平面上の光分布及び第2表面上の光分布を互いにほぼ対応付けることができる場合、この第2平面上では、角分布及び位置分布の役割が第1平面と比べて入れ替わる。
したがって、瞳で観察された第1平面上の、すなわち角分布の偏光分布が、第2光学装置によって第2平面上の位置依存型偏光分布に変換される。したがって、第2平面を照明系の照明表面上に投影することにより、位置依存型偏光分布を上記照明表面上に設定することができる。
拡散プレート又は別の拡散素子を第1平面上、または第1平面の付近にはめ込んだ場合、拡散効果を適当に選択すれば、第1平面上の角分布におそらく生じる隙間をふさぐことができる。第1平面上の角分布を第2平面上の位置分布に伝達するために第2光学装置を使用する場合、結果的に光の実質的に均質な視野分布を第2平面上に達成することができる。
さらなる実施形態では、非偏光分布を照明系の照明表面上に発生させる。非偏光は、偏光状態のほぼ統計的混合を有する光を意味すると理解される。この場合、主光源によって発生して照明系に入射する光がどのような偏光状態を有するかが問題になることなく、照明系の照明表面上に非偏光分布が達成されるはずである。これは、多数の光チャネルにわたって不規則的である偏光変化の分布を有するフライアイコンデンサによって達成されることができる。
本発明による照明系の発展では、主光源はレーザーである。レーザーはほぼ直線偏光であって、照明系に入射される。直線偏光は、本発明によるフライアイコンデンサによって任意の位置依存型または角依存型偏光分布に変換されることができる。フライアイコンデンサにより、たとえば、照明系に入射する光の直線偏光状態を、照明表面上で非偏光に変換することが可能である。そのような場合、フライアイコンデンサは、偏光解消器として構成されて、レーザーによって生じた直線偏光入射光に偏光解消効果を加える。
上記及びさらなる特徴は、特許請求の範囲とともに説明及び図面から明らかになり、本発明の実施形態及び他の分野において、それぞれの場合に個々の特徴を単独で、または複数を小組み合わせの形で実現すること、及び好都合であるとともに本質的に保護が可能である実施形態を表すことが可能である。
図1は、半導体部品及び他の微細構造部品の製造中に使用されることができ、かつコンマ何マイクロメータまでの解像度を達成するために、遠紫外線範囲の光で働くマイクロリソグラフィ投影露光系の照明系10の一実施形態を示す。使用される主光源11は、動作波長が約157nmのFエキシマーレーザーであり、それの光ビームは照明系の光軸20に対して同軸的に並べられる。他の紫外線光源、たとえば動作波長が193nmのArFエキシマーレーザー、動作波長が248nmのKrFエキシマーレーザー、及びより高い、またはより低い動作波長の主光源も同様に可能である。
小さい矩形断面のレーザーから到来する光ビームは、最初にビーム拡大光学部品12に衝突し、これは、より大きい矩形断面を有するほぼ平行な光の出射ビームを生じる。ビーム拡大光学部品はさらに、レーザー光の可干渉性を低下させるためにも使用される。
直線偏光のほぼ平行な光ビームは、正の同一屈折力を有する矩形断面の円柱レンズとして形成されている第1光学群21を有する第1ラスター配列13の入射面に衝突し、ここに示されている例のラスター配列13は、図面の平面に対して直角の円柱軸を有する円柱レンズの4×4アレイ構成によって形成される。円柱レンズ21の矩形は、照明野19の矩形に対応している。円柱レンズ21は、矩形格子状に互いにすぐ隣接させて、すなわち、照明系の視野面23上又はその付近の領域をほぼ満たすように配置される。この位置付けのため、円柱レンズ21は、「視野ハニカムレンズ」又は単に「視野ハニカム」と呼ばれる。
円柱レンズ21は、視野面23に入射する光を、照明される円柱レンズ21の数に対応する数の光ビームに分割する効果を有し、該光ビームは、円柱レンズ21の焦点面上に位置する照明系10の瞳面24上に合焦される。この平面24の上またはその付近に、正の同一屈折力を有する矩形断面の円柱レンズ22を有する第2ラスター配列14が位置付けられている。第1ラスター配列13の各円柱レンズ(視野ハニカム)21が、光源11を第2ラスター配列14のそれぞれ対応の第2円柱レンズ22上に投影し、それにより、多数の二次光源が瞳面24上に生じる。それらの位置づけのために、円柱レンズ22は本出願では「瞳ハニカムレンズ」または「瞳ハニカム」とも呼ばれることが多い。第1及び第2ラスター配列13、14の相互関連した1対の円柱レンズ21、22が、1つの光チャネルを形成する。第1ラスター配列13は第2ラスター配列14と合わせて、本明細書ではフライアイコンデンサ15と呼ばれる。本発明によれば、これは、偏光変化手段30を有し、これについては図2に関連してより詳細に説明する。
瞳ハニカムレンズ22は、それぞれの二次光源付近に配置され、かつ下流側に配置された視野レンズ16を経て、視野ハニカムレンズ21を照明系の視野面17上に投影する。視野ハニカムレンズ21の矩形像が、この視野面17上に重ね合わせられる。この重ね合わせには、この平面の領域内で光強度を均質化または均一化する効果がある。
視野面17は照明系の中間面であり、その上に、調節可能な視野絞りとして機能するレチクル/マスキング装置(REMA)25が配置されている。次に続く対物レンズ18は、マスキング装置25付きの中間面17を、照明表面19の領域内に位置するレチクル(マスクまたはリソグラフィオリジナル)の上に投影する。そのような投影対物レンズ18の構造自体は既知であり、したがって本明細書ではさらに詳細には説明しない。
この照明系10は投影対物レンズ(図示せず)と協働して、電子部品だけでなく、光学回折素子及び他の微細構造部品のマイクロリソグラフィ製造用の投影露光系を形成している。
図2は、図1のフライアイコンデンサ15を示す。第1円柱レンズ21の平坦面は、光の通過方向においてこれらのレンズの曲面の後方に位置しているのに対して、第2円柱レンズ22の平坦面は、光の通過方向において曲面の前方に位置している。ここに示された実施形態では、視野ハニカムレンズ21は、平坦な出口表面上に異なる厚さの複屈折材料製のプレート30を有する。この場合、これらはMgF製の圧縮プレートであるが、他の複屈折材料も使用することができるであろう。プレートの代わりに、MgF又は他の材料の薄い光学層を視野ハニカムレンズ21の平坦面に塗布することも、同様に可能である。もちろん、代替または追加で、瞳ハニカムレンズ22も複屈折材料の層又はプレートを有することができるであろう。
複屈折材料の層30を通過する光は、その偏光状態を変化させることができる。偏光状態に所望の変化を得るために、複屈折材料の層厚さ及び/又は結晶軸方向を適当に選択することができる。適当な複屈折プレートを用いた複屈折による偏光変化の詳細な説明については、本出願人のドイツ特許出願公開第10124803A1号明細書(米国特許出願第2002176166号に対応)を参照されたい。波長が157nmのレーザー光を使用する場合、λ/2遅延に必要なMgFのプレート厚さは5.23μmであり、それにより、この材料の有効偏光影響プレートを薄くすることができる。光チャネル内に異なったプレート厚さによって生じる異なった遅延効果を、偏光状態の個別、すなわち局部影響に使用することができる。さらに、個々の光チャネル内の光軸の向きが異なることにより、偏光状態を個別に変化させることができる。
図3は、本発明によるフライアイコンデンサ115の一実施形態の一例を示し、これは、第1及び第2ラスター配列113、114を有し、これらは複屈折材料製の平凸円柱レンズ121、122の4×4アレイ構成からなる。この場合、入射光分布の偏光状態を個別に制御できるようにするために、円柱レンズ121、122は光の通過方向において厚さが異なっている。フライアイコンデンサ115を通過する光の波長を157nmに選択すると、<110>結晶軸が、図示のように、照明透過方向(z方向)の向きにある場合、λ/2の遅延に必要な厚さは、CaFの場合に71.4mm、BaFの場合に31.4mmである。レンズ厚さが数センチメートル台であり、これは製造面でうまく管理することができるので、照明光の波長の大きさの程度の任意の所望の遅延を設定することが可能である。
個々の光チャネルの結晶軸の異なった向きによって所望の偏光変化が達成される場合、光の通過方向における円柱レンズ121、122の厚さを等しく大きくすることができる。もちろん、偏光変化効果を達成するために、レンズの厚さと複屈折レンズ材料の結晶軸方向とを合わせて使用することができる。
図4は、本発明に従ったフライアイコンデンサ215の反射型の実施形態の一例を示す。それは、第1及び第2ラスター配列213、214を有し、それらは凹面鏡221、222から構成されている。図面の平面に対して直角の軸を有する円筒鏡221及び222は、この場合、それぞれビーム路に斜めに導入され、各光チャネルの第1鏡221及び第2鏡222は、光軸に対して直角の平面上に配置されている。第1鏡221が光を投射し、その光は光軸に平行に第2鏡222上に入射し、それから光軸にほぼ平行に反射される。ラスター配列は、図面の平面上に位置する2対の鏡と、図面の平面に対して直角に平行変位させた、図示しない同一構造の少なくともさらに2対の鏡とによって形成されている。
鏡221はすべて、フライアイコンデンサ215の光入射面が完全に覆われるようにはめ込まれる。この場合、対になった鏡221、222は、第1鏡221から第2鏡222までの光路が自由のままであるように、光軸に沿ってずらして配置される。
複屈折MgFの薄い層230が、各瞳ハニカム鏡222に塗布され、そのため、これらの鏡は後面鏡である。フライアイコンデンサ15に入射した光31は最初に、視野ハニカム鏡221で反射して、複屈折層230を通過した後、複屈折層230の後側に位置する瞳フライアイ鏡222で反射する。光は複屈折層230を2度にわたって通過した後、フライアイコンデンサ215から光軸の方向に出る。
複屈折層230を構成している材料は、この場合はMgFであり、そのため、偏光に有効な影響を与えるのに必要な厚さはマイクロメートル台であり、したがって、光が層230を2度にわたって通過する間の光強度の過大な低下が防止される。
図5に示されているような本発明によるフライアイコンデンサ315の一実施形態では、それがレンズとして作用する湾曲終端面45を有する複屈折材料製の小ロッド40で構成されている。湾曲終端面45は円筒形であり、小ロッド40の長い側部が光の通過方向に平行に、すなわちz方向に並べられている。そのような実施形態では、偏光に有効な影響を与えるのに役立つ複屈折材料の厚さが、2つの分離したハニカムプレートを有する実施形態(図1〜図3を参照)と比べて増大する。そのようなフライアイコンデンサ315の製造には、複屈折が低く、そのため、顕著な遅延効果を達成するためには相当な材料厚さが必要である材料から作製されることができる。この場合、複屈折材料の、図面に矢印で示されている結晶主軸を異なった並びにすることにより、特定の偏光変化効果を達成することができる。図示されていない実施形態では、小ロッドのz方向の長さを、したがってそれらの遅延効果を変化させることができる。
光ビームが小ロッド40を通過する間、個々の光線の光路に数μmの差が生じ、そのため、これらが異なった厚さの複屈折材料を通過する可能性がある。結晶軸が光の通過方向に直交すなわち垂直な向きであるMgFを使用する場合、光路のそのようなわずかなばらつきでも、小ロッド40を通過する光の波長の大きさの程度の遅延効果につながる。したがって、小ロッド40を通過する光ビームの個々の光線は、小ロッドの出射側で異なった偏光状態を有し、そのため、光ビーム全体の偏光状態は、偏光状態の不規則的かつ統計的な重なり合いを有する。したがって、MgFのフライアイコンデンサ315は個々の光チャネルに偏光解消効果を有するので、これは偏光解消出力光分布の形成に特に適している。
この形式のフライアイコンデンサ315を図1によるマイクロリソグラフィ投影露光システムの照明系に導入した場合、平面17上でフライアイコンデンサ315によって偏光解消された光分布が照明表面19上に投影され、それにより、照明系10に入射する光の偏光状態に関係なく、非偏光状態の光分布がこの平面上に達成される。
図6に示されている実施形態では、フライアイコンデンサ415は、レンズとして作用する円筒形湾曲終端面145を有し、かつその円筒軸がx方向に向いている応力/複屈折材料製の小ロッド140で形成されている。小ロッドの、この場合はy方向の高さは、z方向に沿って直線的に減少し、そのため、光入射面は、レンズとして作用する小ロッド140の終端面によって完全に覆われているが、フライアイコンデンサ415の光出射面にはくさび状リセスが形成されている。応力装置のくさび42がこれらのリセスに導入される。くさび42及び小ロッド140の構造体は、キャリヤグリッド41に取り付けられる。力をくさび142にz方向に加えると、これは小ロッド140上にy方向に伝達され、これにより、応力/複屈折材料に応力がかかる。したがって、フライアイコンデンサ415の動作中でも、異なった力をくさび42に加えることにより、偏光変化効果を個々のチャネル内で個別に制御することができる。さらに、小ロッド140がz方向に異なった長さを有することにより、または小ロッド140の結晶軸を異なった向きにすることにより、個々のチャネル内の遅延効果に影響を及ぼすことも可能である。
偏光状態の分布の3つの概略説明図が図7に示されている。図面の左側部分は、たとえば図1及び図2に示されている装置21の下流側の平面23上に、異なった厚さのプレート30によって設定されることができるような位置依存型偏光分布123を示す。この場合、偏光状態は、直線偏光か、円偏光か、または楕円偏光かに応じて、矢印、円及び楕円によって表されている。
図面の中央部分は、フライアイコンデンサ15の下流側に位置する視野面17上の偏光分布117を示す。個々の視野ハニカムレンズ21はそれぞれ対応の瞳ハニカムレンズ22によって全視野面17上に投影されるので、視野ハニカムレンズの像の重なり合いがこの視野面17で生じる。各視野ハニカムレンズに異なった偏光状態があるので、視野面17上のすべての位置での偏光状態も重ね合わされる、すなわち混合される。
視野ハニカムレンズ21で不規則的かつ統計的な偏光分布が設定されると、視野面17上のすべての視野点が、これらの統計的に分布した偏光状態の重なり合いを示す。この場合、フライアイコンデンサ15は入射光に対して偏光解消効果を有する。
図面の右側部分には、視野面17のすべての点で観察されるべき角分布217を示し、視野面23での位置分布について図面の左側部分にすでに示されている偏光分布とほぼ同じである。視野ハニカムレンズ21がこの分布を瞳面24に伝達し、瞳面と視野面17とがフーリエ変換関係にあり、それにより、これらの2平面上の角座標及び位置座標が互いに共役関係にあるので、視野面23上の位置分布の偏光性質が視野面17上の角分布に伝達される。
図8は、円柱レンズ521、522からなる第1ラスター配列513及び第2ラスター配列514を有する偏光変化フライアイコンデンサ515を示す。この構造は、前述した実施形態の1つに対応することができる。フライアイコンデンサ515の下流側にはめ込まれた第1光学装置16が、下流側にはめ込まれた平面17上に視野ハニカムレンズの像を重ね合わせ、平面17上に拡散プレート50が配置されている。拡散プレート50で散乱した光は、第2光学装置51によって下流側に位置する第2平面52に伝達され、それにより、第1平面17と第2平面52との間にフーリエ変換関係がある。
ここに示された装置は、拡散プレート50を平面17上またはその付近に導入し、かつ光学装置51をその下流側でビーム路に導入することにより、図1による照明系に使用されることができる。それにより、第2平面52が対物レンズ18によって照明表面19上に投影され、かつ中間視野面を表す。この場合、第1平面17は瞳面であり、拡散プレートは、この平面上の角分布におそらく存在するすべての隙間をふさぐために使用される。光学装置51は、平面17及び52上の位置及び角座標間の入れ替えを行う。したがって、この装置により、位置依存型変形分布を照明系10の照明表面19上に予め定めることが可能であり、同位置依存型偏光分布は、フライアイコンデンサ15の光チャネル内に設定された偏光状態の分布にほぼ対応する。それにより、照明表面19上のすべての位置で観察されることができる角分布内に、光チャネル内に設定された偏光状態の重なり合いがある。
他の構成の照明系も同様に可能である。たとえば、ドイツ特許出願第10040898.2号(欧州特許出願第1180726A2号)の図1に示されているように照明系を構成することができる。それは、3つ以上の、たとえば4つのフライアイプレート(ハニカムレンズのラスター配列)を有することができ、フライアイプレートの1つまたは複数が、上記の可能性の1つまたは複数に従った偏光変化手段を備える。照明系内でのフライアイコンデンサの位置しだいで、「視野ハニカムレンズ」を有するラスター配列を照明系の瞳面上、またはその付近に配置することができ、また、「瞳ハニカムレンズ」を有するラスター配列を照明系の視野面上、またはその付近に配置することができる。
本発明及びその実施形態の実質的な特徴及び利点は以下の通りである。本発明による偏光変化フライアイコンデンサは、出力光分布の偏光状態の個別の位置依存型制御を行うことができる。フライアイコンデンサを照明系に使用した場合、それは照明系の照明面上の光分布を均質化するために使用できるだけでなく、同時に、位置依存型又は角依存型偏光分布をその平面上に設定することもできる。たとえば、本発明によるフライアイコンデンサを使用することにより、照明系に入射する光の偏光状態に関係なく、照明表面上に非偏光分布を生じる照明系を構成することが可能である。
本発明によるフライアイコンデンサの一実施形態を有する照明系の長手方向概略図である。 偏光変化手段が複屈折材料の層として形成されている、本発明によるフライアイコンデンサの一実施形態の概略図である。 偏光変化手段が複屈折材料製のレンズして形成されている、本発明によるフライアイコンデンサの一実施形態の概略図である。 偏光変化手段が後面鏡上の層として形成されている、本発明によるフライアイコンデンサの一実施形態の概略図である。 偏光変化手段が複屈折小ロッドとして構成されている、本発明によるフライアイコンデンサの一実施形態の概略図である。 応力/複屈折小ロッドの光学的性質に影響を与えるための応力素子としてくさびが使用されている、本発明によるフライアイコンデンサの一実施形態の概略図である。 偏光状態の分布の3つの概略図である。 拡散プレートを下流側に配置しているフライアイコンデンサの一実施形態の概略図である。
符号の説明
10 照明系
11 主光源
12 ビーム拡大光学部品
13、14、113、114、213、214、513、514 ラスター配列
15、115、215、315、415、515 フライアイコンデンサ
16 視野レンズ
18 対物レンズ
19 照明表面
20 光軸
21、22、121、122、521、522 円柱レンズ
25 マスキング装置
30、230 層
40、140 小ロッド
41 キャリヤグリッド
42、142 くさび
45、145 湾曲終端面
50 拡散プレート
51 光学装置
221、222 鏡

Claims (37)

  1. 入力光分布を出力光分布に変換するためのフライアイコンデンサ(115;215;315;415)において、複数の光チャネルを生じるために光学群(21、22;121、122;221、222;40;140)の少なくとも1つのラスター配列を有するフライアイコンデンサ(115;215;315;415)であって、光学群(21、22;121、122;221、222;40;140)の少なくとも一部は、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段(30;121、122;230;40;140)を有する、フライアイコンデンサ。
  2. 少なくとも1つの光学群は、瞳ハニカムレンズ(22)及び視野ハニカムレンズ(21)を有し、偏光変化手段は、少なくとも1つの瞳ハニカムレンズ(22)及び/又は少なくとも1つの視野ハニカムレンズ(21)に塗布された複屈折材料の少なくとも1層(30)である、請求項1に記載のフライアイコンデンサ。
  3. 少なくとも1つの光学群は、瞳ハニカムレンズ(122)及び視野ハニカムレンズ(121)を有し、少なくとも1つの瞳ハニカムレンズ(122)及び/又は少なくとも1つの視野ハニカムレンズ(121)は、複屈折材料からなる、請求項1又は2に記載のフライアイコンデンサ。
  4. 少なくとも1つの光学群は、瞳ハニカム鏡(222)及び/又は視野ハニカム鏡(221)を有し、それは後面鏡として構成され、その上に複屈折材料の少なくとも1層(230)が、偏光変化手段として塗布されている、先行する請求項のいずれか1項に記載のフライアイコンデンサ。
  5. 少なくとも1つの光学群は、レンズとして作用する湾曲終端面を有する複屈折材料製の小ロッド(40;140)を有する、先行する請求項のいずれか1項に記載のフライアイコンデンサ。
  6. 少なくとも2つの光学群の偏光変化手段として使用される複屈折材料の光軸は、異なった向きを有する、請求項2〜5のいずれか1項に記載のフライアイコンデンサ。
  7. 偏光変化手段として使用される少なくとも2つの光学群の複屈折材料は、光の通過方向において異なった厚さを有する、請求項2〜6のいずれか1項に記載のフライアイコンデンサ。
  8. 少なくとも1つの光学群は、応力/複屈折材料製の少なくとも1つの光学素子(140)を有しており、また、該応力/複屈折材料の光学的性質を設定し、かつ/又は変化させるために、少なくとも1つの応力装置(41、42)を備える、先行する請求項のいずれか1項に記載のフライアイコンデンサ。
  9. 光学群をラスター配置するために、少なくとも1つのキャリヤグリッド(41)を備えており、該キャリヤグリッドは、応力/複屈折材料製の少なくとも1つの光学素子(140)に機械力を加えるために、応力装置の応力素子として作用する少なくとも1つのくさび(42)を有する、請求項8に記載のフライアイコンデンサ。
  10. 偏光変化手段として使用される少なくとも1つの光学群の複屈折材料は、CaF又はBaFの結晶であり、結晶<110>方向が光学群の照明透過方向にほぼ平行に並んでいる、請求項2〜9のいずれか1項に記載のフライアイコンデンサ。
  11. 偏光変化手段として使用される少なくとも1つの光学群の複屈折材料は、MgFである、請求項2〜10のいずれか1項に記載のフライアイコンデンサ。
  12. 偏光変化手段は、偏光変化が複数の光チャネルにわたって不規則的に(統計的に)分布するように、光チャネルの少なくとも一部の偏光状態を変化させるように形成されている、先行する請求項のいずれか1項に記載のフライアイコンデンサ。
  13. 偏光変化手段(30;121、122;230;40;140)を設けた光学群(21、22;121、122;221、222;40;140)の一部では、不規則的な(統計的な)偏光変化を生じるための複屈折材料としてMgFが使用される、請求項12に記載のフライアイコンデンサ。
  14. 主光源からの光で照明表面を照明するための照明系(10)、特にマイクロリソグラフィ投影露光システム用の照明系において、入力光分布を出力光分布に変換するためのフライアイコンデンサ(15;115;215;315;415)であって、複数の光チャネルを生じるために光学群(21、22;121、122;221、222;40;140)のラスター配列を有するフライアイコンデンサ(15;115;215;315;415)を備える照明系(10)であって、光学群(21、22;121、122;221、222;40;140)の少なくとも一部は、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段(30;121、122;230;40;140)を有する、照明系。
  15. 光路においてフライアイコンデンサの下流側に第1光学装置(16)を配置し、これにより、個々の光チャネルで出射する光を、光学装置の下流側に位置する照明系の第1平面(17)上で重ね合わせるようにした、請求項14に記載の照明系。
  16. 光路において第1平面の下流側に第2光学装置(51)を配置し、該第2光学装置は、第1平面(17)上の光分布を第2光学装置(51)の下流側に位置する第2平面(52)の光分布に伝達し、それにより、フーリエ変換によって第1平面上の光分布及び第2表面上の光分布を互いに対応付けることができるようにした、請求項15に記載の照明系。
  17. 拡散素子(50)が、第1平面(17)上、または第1平面(17)の付近にはめ込まれている、請求項15又は16に記載の照明系。
  18. フライアイコンデンサは、請求項12及び/又は13に従って形成され、それにより、偏光変化は、ハニカムコンデンサによって多数の光チャネルにわたって不規則的に(統計的に)分布する、請求項14〜17のいずれか1項に記載の照明系。
  19. 主光源は、レーザーである、請求項14〜18のいずれか1項に記載の照明系。
  20. 請求項2〜13の少なくとも1項の特徴付け部分の特徴を備える、請求項14〜19のいずれか1項に記載の照明系。
  21. 入力光分布を出力光分布に変換するためのフライアイコンデンサにおいて、複数の光チャネルを生じるために光学群(121、122)の少なくとも1つのラスター配列を有するフライアイコンデンサであって、
    光学群において、視野ハニカムレンズ(121)及び瞳ハニカムレンズ(122)が光路上に前後して配置され、それにより、視野ハニカムレンズを光路において最初に通過し、瞳ハニカムレンズを2番目に通過するようにしており、また、
    光学群の視野ハニカムレンズ(121)及び瞳ハニカムレンズ(122)の少なくとも一方が複屈折材料からなり、それにより、複屈折材料からなるレンズは、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段として有効である、フライアイコンデンサ。
  22. 少なくとも2つの光学群の偏光変化手段として使用される複屈折材料の光軸は、異なった向きを有する、請求項21に記載のフライアイコンデンサ。
  23. 偏光変化手段として使用される少なくとも2つの光学群の複屈折材料は、光の通過方向において異なった厚さを有する、請求項21又は22に記載のフライアイコンデンサ。
  24. 偏光変化手段として使用される少なくとも1つの光学群の複屈折材料は、MgFである、請求項21〜23のいずれか1項に記載のフライアイコンデンサ。
  25. 偏光変化手段は、偏光変化が複数の光チャネルにわたって不規則的に(統計的に)分布するように、光チャネルの少なくとも一部の偏光状態を変化させるように形成されている、請求項21〜24のいずれか1項に記載のフライアイコンデンサ。
  26. 入力光分布を出力光分布に変換するためのフライアイコンデンサにおいて、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有するフライアイコンデンサであって、
    光学群において、視野ハニカムレンズ及び瞳ハニカムレンズが光路上に前後して配置され、それにより、視野ハニカムレンズを光路において最初に通過し、瞳ハニカムレンズを2番目に通過するようにしており、
    複屈折材料製の少なくとも1層(30)が、少なくとも1つの瞳ハニカムレンズ及び少なくとも1つの視野ハニカムレンズの少なくとも一方に塗布されており、
    複屈折材料からなる層は、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段として有効であり、
    層厚さ及び層の複屈折材料は、円、直線又は楕円偏光を有する出力光分布が得られるように選択される、フライアイコンデンサ。
  27. 入力光分布を出力光分布に変換するためのフライアイコンデンサにおいて、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有するフライアイコンデンサであって、
    光学群において、視野ハニカムレンズ及び瞳ハニカムレンズが光路上に前後して配置され、それにより、視野ハニカムレンズを光路において最初に通過し、瞳ハニカムレンズを2番目に通過するようにしており、
    少なくとも1の複屈折材料層が、少なくとも1つの瞳ハニカムレンズ及び少なくとも1つの視野ハニカムレンズの少なくとも一方に塗布されており、
    複屈折材料層は、偏光変化層スタックまたは複屈折構造からなる、フライアイコンデンサ。
  28. 入力光分布を出力光分布に変換するためのフライアイコンデンサ(215)において、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有するフライアイコンデンサ(215)であって、
    少なくとも1つの光学群は、瞳ハニカム鏡(222)及び視野ハニカム鏡(221)の少なくとも一方を有し、それは後面鏡として構成され、その上に複屈折材料の少なくとも1層(230)が、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段として塗布されている、フライアイコンデンサ。
  29. 層の複屈折材料は、MgFである、請求項28に記載のフライアイコンデンサ。
  30. 入力光分布を出力光分布に変換するためのフライアイコンデンサにおいて、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有するフライアイコンデンサであって、
    少なくとも1つの光学群は、レンズとして作用する湾曲終端面を有する小ロッド(40;140)を有し、
    ロッドは、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段として有効である複屈折材料からなる、フライアイコンデンサ。
  31. ロッドの複屈折材料は、MgFである、請求項30に記載のフライアイコンデンサ。
  32. 少なくとも1つのロッドの複屈折材料は、CaF又はBaFの結晶であり、結晶<110>方向は、ロッドの照明透過方向にほぼ平行に並んでいる、請求項30に記載のフライアイコンデンサ。
  33. 入力光分布を出力光分布に変換するためのフライアイコンデンサにおいて、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有するフライアイコンデンサであって、
    光学群の少なくとも一部は、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段を有しており、
    偏光変化手段は、偏光変化が複数の光チャネルにわたって不規則的に(統計的に)分布するように、光チャネルの少なくとも一部の偏光状態を変化させるように形成されており、
    それにより、偏光入力光分布からほぼ偏光解消出力光分布が得られるようにした、フライアイコンデンサ。
  34. 偏光変化手段を設けた光学群の一部において、不規則的な(統計的な)偏光変化を生じるための複屈折材料としてMgFが使用されている、請求項33に記載のフライアイコンデンサ。
  35. 入力光分布を出力光分布に変換するためのフライアイコンデンサにおいて、複数の光チャネルを生じるために光学群の少なくとも1つのラスター配列を有するフライアイコンデンサであって、
    少なくとも1つの光学群は、応力/複屈折材料製の少なくとも1つの光学素子(140)を有し、
    応力/複屈折材料に機械力を加えることにより、該応力/複屈折材料の光学的性質の設定及び変化の少なくとも一方を行うために、応力装置(41、42)が設けられており、
    応力装置は、該応力装置の応力素子として作用する少なくとも1つのくさび(42)を有し、それにより、くさびを移動させるための駆動システムの動作に応じてくさびを移動させることにより、応力/複屈折材料製の少なくとも1つの光学素子(140)に機械力を加えるようにしており、
    それにより、応力装置を制御して少なくとも1つのくさびを移動させることにより、くさびの移動の影響を受ける応力複屈折材料を含む光チャネルを通過する光の偏光状態を設定する、又は変化させるようにした、フライアイコンデンサ。
  36. 光学群をラスター内に配置するために、応力装置の応力素子として作用する少なくとも1つのくさび(42)を有する少なくとも1つのキャリヤグリッド(41)を備えている、請求項35に記載のフライアイコンデンサ。
  37. 偏光を発する主レーザー光源からの光で照明表面を照明するための照明系(10)、特にマイクロリソグラフィ投影露光システム用の照明系であって、偏光の入力光分布を出力光分布に変換するためのフライアイコンデンサを有し、
    フライアイコンデンサは、複数の光チャネルを生じるために光学群のラスター配列を有し、
    光学群の少なくとも一部は、光チャネルを通過する光の偏光状態を変化させるための偏光変化手段を有し、
    偏光変化手段は、偏光変化が複数の光チャネルにわたって不規則的に(統計的に)分布するように、光チャネルの少なくとも一部の偏光状態を変化させるように形成されており、
    それにより、少なくとも部分的に偏光解消されている出力光分布が得られるようにした照明系。

JP2006525788A 2003-09-15 2004-09-14 フライアイコンデンサ及びそれを用いた照明系 Pending JP2007506262A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10344010A DE10344010A1 (de) 2003-09-15 2003-09-15 Wabenkondensor und Beleuchtungssystem damit
PCT/EP2004/010259 WO2005026822A2 (en) 2003-09-15 2004-09-14 Fly's eye condenser and illumination system therewith

Publications (1)

Publication Number Publication Date
JP2007506262A true JP2007506262A (ja) 2007-03-15

Family

ID=34258750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006525788A Pending JP2007506262A (ja) 2003-09-15 2004-09-14 フライアイコンデンサ及びそれを用いた照明系

Country Status (4)

Country Link
US (1) US20060221453A1 (ja)
JP (1) JP2007506262A (ja)
DE (1) DE10344010A1 (ja)
WO (1) WO2005026822A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258709A (ja) * 2006-03-14 2007-10-04 Carl Zeiss Smt Ag 投影露光装置の照明デバイスの光学システム
JP2010525589A (ja) * 2007-04-25 2010-07-22 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ露光装置においてマスクを照明するための照明系
JP2010192868A (ja) * 2009-02-17 2010-09-02 Nikon Corp 均一化ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2012516554A (ja) * 2009-01-29 2012-07-19 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィのための照明系
JP5105316B2 (ja) * 2006-07-07 2012-12-26 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
US9316920B2 (en) 2007-09-14 2016-04-19 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus with a birefringent element
US9588433B2 (en) 2012-04-17 2017-03-07 Carl Zeiss Smt Gmbh Optical system, in particular of a microlithographic projection exposure apparatus

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE539383T1 (de) 2004-01-16 2012-01-15 Zeiss Carl Smt Gmbh Projektionssystem mit einem polarisationsmodulierenden optischen element mit variabler dicke
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
US7324280B2 (en) 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
DE102005036911A1 (de) * 2005-08-05 2007-02-08 Carl Zeiss Jena Gmbh Wabenkondensor zur homogenen Ausleuchtung einer Zielfläche
US7420749B2 (en) * 2006-03-24 2008-09-02 Barra Grant Optical element device for simulating the optical perspective of animals, reptiles, fish, insects, birds, and other creatures
JP5158439B2 (ja) 2006-04-17 2013-03-06 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
DE102006034452B4 (de) * 2006-07-21 2012-05-10 Jenoptik Optical Systems Gmbh Monolithisches optisches Element zur Umwandlung einer linear polarisierten Strahlungsintensitätsverteilung mit beliebigem Intensitätsprofil in eine vorgegebene, raumwinkelabhängig polarisierte, homogene Intensitätsverteilung
US8023104B2 (en) * 2007-01-22 2011-09-20 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus
DE102007027083A1 (de) * 2007-06-12 2008-12-18 Carl Zeiss Sms Gmbh Mikroskopbeleuchtung
DE102008002749A1 (de) 2008-06-27 2009-12-31 Carl Zeiss Smt Ag Beleuchtungsoptik für die Mikrolithografie
DE102008036569A1 (de) 2008-07-31 2009-10-22 Carl Zeiss Laser Optics Gmbh Wabenkondensor und Vorrichtung zum Aufschmelzen von Schichten auf ein Substrat
DE102009045135A1 (de) 2009-09-30 2011-03-31 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Mikrolithographie
WO2011045065A1 (en) * 2009-10-15 2011-04-21 Sony Corporation Birefringent device with application specific pupil function and optical device
US8982324B2 (en) * 2009-12-15 2015-03-17 Asml Holding N.V. Polarization designs for lithographic apparatus
WO2011146267A2 (en) * 2010-05-19 2011-11-24 3M Innovative Properties Company Polarized projection illuminator
WO2012041697A1 (en) 2010-09-27 2012-04-05 Carl Zeiss Smt Gmbh Mirror, projection objective comprising such a mirror, and projection exposure apparatus for microlithography comprising such a projection objective
DE102012100746B4 (de) 2012-01-31 2022-10-06 Leuze Electronic Gmbh & Co. Kg Sendeeinheit für einen optischen Sensor
CN103412465B (zh) * 2013-07-01 2015-04-15 中国科学院上海光学精密机械研究所 步进扫描投影光刻机的照明系统
US10257480B2 (en) * 2014-03-20 2019-04-09 Nec Display Solutions, Ltd. Projection display apparatus and projection method for projection display apparatus
KR20170041844A (ko) * 2014-08-13 2017-04-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 머리-장착형 디스플레이 시스템 및 구성요소
DE102018205315A1 (de) * 2018-04-09 2019-10-10 Osram Gmbh Optisches System mit Diffusoren und Wabenkondensoren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184918A (ja) * 1995-09-23 1997-07-15 Carl Zeiss:Fa 放射偏光光学構造及びそれを有するマイクロリソグラフィ投影露光装置
JP2001281615A (ja) * 2000-01-28 2001-10-10 Seiko Epson Corp 投射型表示装置
JP2002228840A (ja) * 2000-10-13 2002-08-14 Sharp Corp 偏光分離素子、偏光変換システム、光学素子および投射型ディスプレイシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3213753A (en) * 1962-01-24 1965-10-26 Polaroid Corp Multilayer lenticular light polarizing device
DD239052A1 (de) * 1985-07-01 1986-09-10 Zeiss Jena Veb Carl Wabenkondensor fuer beleuchtungseinrichtungen in projektionssystemen
US5253110A (en) * 1988-12-22 1993-10-12 Nikon Corporation Illumination optical arrangement
US5751388A (en) * 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
US5888603A (en) * 1996-04-24 1999-03-30 Fergason; James L. Stacked films birefringent device and method of making same
US6257726B1 (en) * 1997-02-13 2001-07-10 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
DE10040898A1 (de) * 2000-08-18 2002-02-28 Zeiss Carl Beleuchtungssystem für die Mikrolithographie
US6457828B1 (en) * 1999-04-21 2002-10-01 Minolta Co., Ltd. Display optical apparatus
US6278552B1 (en) * 1999-05-12 2001-08-21 Minolta Co., Ltd. Polarization separation device and projection-type display apparatus
DE19935568A1 (de) * 1999-07-30 2001-02-15 Zeiss Carl Fa Steuerung der Beleuchtungsverteilung in der Austrittspupille eines EUV-Beleuchtungssystems
EP1180711A4 (en) * 2000-01-28 2005-10-12 Seiko Epson Corp OPTICAL REFLECTION POLARIZER AND PROJECTOR COMPRISING THIS POLARIZER
DE10123725A1 (de) * 2001-05-15 2002-11-21 Zeiss Carl Projektionsbelichtungsanlage der Mikrolithographie, Optisches System und Herstellverfahren
DE10124803A1 (de) * 2001-05-22 2002-11-28 Zeiss Carl Polarisator und Mikrolithographie-Projektionsanlage mit Polarisator
DE10133842A1 (de) * 2001-07-18 2003-02-06 Zeiss Carl Verzögerungsplatte aus kubischem Kristall
US6950239B2 (en) * 2004-01-08 2005-09-27 Tang Yin S Method for making micro-lens array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184918A (ja) * 1995-09-23 1997-07-15 Carl Zeiss:Fa 放射偏光光学構造及びそれを有するマイクロリソグラフィ投影露光装置
JP2001281615A (ja) * 2000-01-28 2001-10-10 Seiko Epson Corp 投射型表示装置
JP2002228840A (ja) * 2000-10-13 2002-08-14 Sharp Corp 偏光分離素子、偏光変換システム、光学素子および投射型ディスプレイシステム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258709A (ja) * 2006-03-14 2007-10-04 Carl Zeiss Smt Ag 投影露光装置の照明デバイスの光学システム
JP5105316B2 (ja) * 2006-07-07 2012-12-26 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
JP2010525589A (ja) * 2007-04-25 2010-07-22 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ露光装置においてマスクを照明するための照明系
US10151982B2 (en) 2007-09-14 2018-12-11 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus with a birefringent element
US9316920B2 (en) 2007-09-14 2016-04-19 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus with a birefringent element
JP2014212327A (ja) * 2009-01-29 2014-11-13 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィのための照明系
US8873023B2 (en) 2009-01-29 2014-10-28 Carl Zeiss Smt Gmbh Illumination system for microlithography
US9280060B2 (en) 2009-01-29 2016-03-08 Carl Zeiss Smt Gmbh Illumination system for microlithography
JP2012516554A (ja) * 2009-01-29 2012-07-19 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィのための照明系
US9606441B2 (en) 2009-01-29 2017-03-28 Carl Zeiss Smt Gmbh Illumination system for microlithography
US10088754B2 (en) 2009-01-29 2018-10-02 Carl Zeiss Smt Gmbh Illumination system for microlithography
JP2010192868A (ja) * 2009-02-17 2010-09-02 Nikon Corp 均一化ユニット、照明光学系、露光装置、およびデバイス製造方法
US9588433B2 (en) 2012-04-17 2017-03-07 Carl Zeiss Smt Gmbh Optical system, in particular of a microlithographic projection exposure apparatus

Also Published As

Publication number Publication date
WO2005026822A3 (en) 2005-05-26
US20060221453A1 (en) 2006-10-05
DE10344010A1 (de) 2005-04-07
WO2005026822A2 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP2007506262A (ja) フライアイコンデンサ及びそれを用いた照明系
US7511886B2 (en) Optical beam transformation system and illumination system comprising an optical beam transformation system
US10146135B2 (en) Microlithographic projection exposure apparatus having a multi-mirror array with temporal stabilisation
KR101425700B1 (ko) 마이크로리소그래피 투영 노광 장치의 조명 시스템
US20060203341A1 (en) Polarization-optimized illumination system
KR101491229B1 (ko) 마이크로리소그래픽 투영 노광 장치의 광학 시스템
US9013680B2 (en) Illumination system of a microlithographic projection exposure apparatus
EP2117034A1 (en) Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP2002520810A (ja) 減偏光子を有するマイクロリソグラフィの照明システム
US9500956B2 (en) Optical system of a microlithographic projection exposure apparatus, and microlithographic exposure
US20050140958A1 (en) Illumination system and polarizer for a microlithographic projection exposure apparatus
WO2005010963A1 (ja) 照明光学装置、露光装置および露光方法
JP2007501528A (ja) アキシコンシステムおよびアキシコンシステムを備える照明システム
US9720327B2 (en) Optical system of a microlithographic projection exposure apparatus
WO2011158912A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
WO2004102230A1 (en) Polarization-optimized axicon system, and an illuminating system for microlithographic projection system having such an axicon system
JP5369319B2 (ja) マイクロリソグラフィ投影露光装置の照明システム
US7787104B2 (en) Illumination optics for a microlithographic projection exposure apparatus
WO2005050325A1 (en) Polarization-optimizing illumination system
JP5534276B2 (ja) 照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921