KR101491229B1 - 마이크로리소그래픽 투영 노광 장치의 광학 시스템 - Google Patents

마이크로리소그래픽 투영 노광 장치의 광학 시스템 Download PDF

Info

Publication number
KR101491229B1
KR101491229B1 KR1020127032275A KR20127032275A KR101491229B1 KR 101491229 B1 KR101491229 B1 KR 101491229B1 KR 1020127032275 A KR1020127032275 A KR 1020127032275A KR 20127032275 A KR20127032275 A KR 20127032275A KR 101491229 B1 KR101491229 B1 KR 101491229B1
Authority
KR
South Korea
Prior art keywords
lambda
plate
polarization
optical system
fast axis
Prior art date
Application number
KR1020127032275A
Other languages
English (en)
Other versions
KR20130027024A (ko
Inventor
잉고 생거
올라프 디트만
요르그 짐머만
Original Assignee
칼 짜이스 에스엠티 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 짜이스 에스엠티 게엠베하 filed Critical 칼 짜이스 에스엠티 게엠베하
Publication of KR20130027024A publication Critical patent/KR20130027024A/ko
Application granted granted Critical
Publication of KR101491229B1 publication Critical patent/KR101491229B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Abstract

본 발명은 미러 장치에 의해 반사된 광의 각도 분포를 변경하기 위해 서로 독립되게 변위가능한 복수의 미러 소자를 갖는 적어도 하나의 미러 장치(200); 및제 1 람다/2 플레이트(310, 810, 910) 및 적어도 하나의 제 2 람다/2 플레이트(320, 920, 930)를 포함하는 편광 영향 광학 장치(300, 800, 900)를 포함하는 마이크로리소그래픽 투영 노광 장치의 광학 시스템에 관한 것이다.

Description

마이크로리소그래픽 투영 노광 장치의 광학 시스템{OPTICAL SYSTEM OF A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS}
[관련 출원에 대한 교차 참조]
본 출원은 2010년 6월 10일자로 출원된 독일 특허 출원 DE 10 2010 029905.7 및 US 61/353,250의 우선권을 주장한다. 상기 출원들의 내용은 참조로서 본 명세서에 통합된다.
[발명의 분야]
본 발명은 마이크로리소그래픽 투영 노광 장치의 광학 시스템에 관한 것이다. 특히, 본 발명은 원하는 편광 분포의 향상된 유연성을 허용하는 마이크로리소그래픽 투영 노광 장치의 광학 시스템에 관한 것이다.
마이크로리소그래피는 예컨대 집적 회로 또는 LCD와 같은 마이크로구조의 부품(microstructured components)을 제조하는 것에 이용된다. 마이크로리소그래피 프로세스는 조명 장치 및 투영 대물 렌즈를 갖는 이른바 투영 노광 장치에서 수행된다. 조명 시스템에 의해 조명된 마스크(=레티클(reticle))의 이미지는, 투영 대물 렌즈에 의해, 감광층(포토레지스트)으로 코팅되고 투영 대물 렌즈의 이미지 평면에 배치된 기판(예컨대 실리콘 웨이퍼) 상에 투영되어 마스크 구조를 기판의 감광성 코팅으로 전사한다.
마이크로리소그래픽 투영 노광 장치의 동작에 있어서, 한정된 조명 세팅(illumination settings), 즉 조명 시스템의 동공 평면의 강도 분포를 특히 표적화된 방식으로 설정할 필요가 있다. 이러한 목적으로, 회절성 광학 소자(소위 DOE들)의 사용뿐만 아니라 미러 장치(mirror arrangement)의 사용도 예컨대 WO 2005/026843 A2에서 알려져 있다. 이러한 미러 장치는 서로에게 독립되게 조정가능한 복수의 마이크로미러를 포함한다.
이미징 콘트라스트를 최적화하기 위해 조명 시스템에서의 레티클 및/또는 동공 평면의 주어진 편광 분포를 특히 표적화된 방식으로 설정하기 위한 다양한 접근법 또한 알려져 있다. 최신 기술에 관련하여, 예컨대 WO 2005/069081 A2, WO 2005/031467 A2, US 6 191 880 B1, US 2007/0146676 A1, WO 2009/034109 A2, WO 2008/019936 A2, WO 2009/100862 A1, DE 10 2008 009 601 A1 및 DE 10 2004 011 733 A1이 시선을 끌고 있다.
특히, 높은 콘트라스트 이미징을 위해 설정되는 접선(tangential)의 편광 분포가 조명 장치 및 또한 투영 대물렌즈 양쪽에 있어서, 알려져 있다. 개별 직선 편광광빔의 전기장 강도 벡터의 진동 평면이 광학 시스템 축을 향하는 반경에 대략 수직으로 배향되는 편광 분포를 표시하기 위해 '접선의 편광'(또는 'TE 편광')이라는 표현이 사용된다. 대조적으로, 개별 직선 편광광빔의 전기장 강도 벡터의 진동 평면이 광학 시스템 축에 대해 대략 방사상으로 배향되는 편광 분포를 표시하기 위해 방사 편광(또는 'TM 편광)이라는 표현이 사용된다.
본 발명의 목적은, 원하는(desired) 편광 분포의 제공에 있어서 향상된 유연성을 허용하는, 마이크로리소그래픽 투영 노광 장치의 편광 영향 광학 장치 및 광학 시스템을 제공하는 것이다.
이 목적은 독립항 1의 특징에 따른 광학 시스템으로 이룬다.
마이크로리소그래픽 투영 노광 장치의 광학 시스템은:
- 미러 장치에 의해 반사되는 광의 각도 분포를 변경하기 위해 서로로부터 독립적으로 변위 가능한 복수의 미러 소자를 갖는 적어도 하나의 미러 장치; 및
- 제 1 람다/2 플레이트 및 적어도 하나의 제 2 람다/2 플레이트를 포함하는 편광 영향 광학 장치를 포함한다.
특히 본 발명은, 미러 장치와 함께 적어도 2개의 람다/2 플레이트를 사용하여, 미러 장치와 함께, 광이 람다/2 플레이트들 중 오직 하나만 통과(pass through)하는지, 람다/2 플레이트들 양쪽을 통과하는지, 또는 람다/2 플레이트들 중 어느 것도 통과하지 않는지의 여부에 따라 광의 통과 통로(through-passage)에 상이한 초기 편광 분포들을 생성하는 적어도 2개의 영역들을 제공하는 개념에 기초한다. 그러므로, 본 발명은 예컨대 2개의 람다/2 플레이트를 사용하는 경우, 자유롭게 선택가능한 광 또는 강도 비율을 갖는 4개의 상이한 편광 상태를 생성하는 것의 가능성을 제공한다.
2개의 람다/2 플레이트의 부분 중첩에 의해 설정될 수 있는 4개의 편광 상태를 갖는 이미징 특성에 관하여 매우 상당한 정도의 편광 특성의 영향을 이미 고려할 수 있었다는 것을 연구들이 나타내었다. 이러한 경우, 예컨대, 2개의 람다/2 플레이트의 상대 변위(relative displacement) - 예컨대 플레이트가 x- 방향 및 y-방향으로 변위 가능함 - 에 의해, 전체 강도에 관한 상대 비율(즉, 예컨대, 80%의 x-편광광 및 20%의 y-편광광 등등)을 변경하는 것 또한 동시에 가능하다.
투영 노광 장치에 있어서 본 발명에 따라 가능해지는, 상이한 편광 분포 또는 조명 세팅의 유연한 세팅은 특히 추가적인 광학 부품의 요구 없이 유효할 수 있으며, 이것은 예컨대 리소그래피 프로세스에 대한 비용뿐만 아니라 구조적인 복잡성과 지출을 줄인다. 게다가, 추가적인 광학 부품의 사용으로 인해 수반되는 전송 손실 또한 회피된다.
실시예에서, 람다/2 플레이트들은 광 전파 방향에 대해 광학 시스템내에서 연속으로 배열된다.
일 실시예에 있어서, 람다/2 플레이트들은 서로 그것들의 상대 위치에 있어서 변위가능하다. 특히, 람다/2 플레이트들은 광 전파 방향으로 가변의 중첩도(degree of overlap)를 가질 수 있다. 이로써, 적어도 2개의 람다/2 플레이트의 중첩도의 변화에 의해, 미러 장치와 함께, 본 발명은, 이러한 조명 세팅들 사이의 변화를 위해 교환되어야 하는 편광 영향 광학 장치 없이 서로 상이한 편광 조명 세팅을 유연하게 세팅하는 것을 가능하게 한다.
서로에 대한 그것들의 상대 위치에 있어서의 람다/2 플레이트의 변위가능성(displaceability)은 람다/2 플레이트들 중 적어도 하나의 병진 변위 및 람다/2 플레이트들 중 적어도 하나의 회전을 포함할 수 있다. 최종 언급된 경우에 있어서, 어쩌면 개별적인 고속 축(fast axes)의 상대 위치만이 변경되고, 본 발명에 따라 이것은 서로에 대한 람다/2 플레이트들의 상대 변위로도 해석된다.
일 실시예에서, 제 1 람다/2 플레이트 및/또는 제 2 람다/2 플레이트는, 개별 람다/2 플레이트가 미러 장치의 광학적으로 유효한 영역의 완전히 외부에 있는 제 1 위치와 개별 람다/2 플레이트가 미러 장치의 광학적으로 유효한 영역 내부에 완전히 배치되는 제 2 위치 사이에서 변위가능하다. 그러므로 이런 방식으로, 개별 람다/2 플레이트는 원하는 편광 분포에 따라 미러 장치의 광학적으로 유효한 영역 밖으로 완전히 옮겨질 수도 있으며, 이를 통해, 원하는 편광 분포를 제공하는데 있어서 전체 시스템의 유연성이 더욱 증가한다. 이 점에 있어서, 람다/2 플레이트가 미러 장치의 광학적으로 유효한 영역 내에 배치되는 기준은, 광학 시스템의 동작에 있어서 람다/2 플레이트를 통과하는 모든 광선들 또한 미러 장치에 의해 반사되는 장치를 표시하는데 사용된다. 따라서, 미러 장치의 광학적으로 유효한 영역 밖의 개별 람다/2 플레이트의 장치는, 미러 장치에 의해 반사되는 광선들이 개별 람다/2 플레이트를 통과하지 않음을 의미한다.
본 발명은 서로에 대해 변위가능한 람다/2 플레이트들에 한정되지 않는다. 그러므로 이후에 더 상세히 기재되는 바와 같이, 상이하게 편광되는 조명 세팅들은 미러 장치의 미러 소자의 변위가능성을 활용하여 람다/2 플레이트들의 정적인 임플러먼테이션(static implementation)과 더불어 사전에 설정될 수 있다.
본 발명에 따른 장치는 제 1 람다/2 플레이트만이 제 1 비중첩 영역에 배치되고 제 2 람다/2 플레이트만이 제 2 비중첩 영역에 배치되도록 설정될 수 있다.
일 실시예에서, 제 1 람다/2 플레이트는 복굴절의 제 1 고속 축을 가지고 제 2 람다/2 플레이트는 복굴절의 제 2 고속 축을 가지며, 제 1 축 및 제 2 축의 배향들은 서로 상이하다.
일 실시예에서, 제 1 고속 축 및 제 2 고속 축은 서로에 대해 45°±5°의 각도에 배열된다.
일 실시예에서, 제 1 고속 축은 장치상에 입사되는 광 빔의 우선 편광 방향에 대해 22.5°±2°의 각도로 연장하고 제 2 고속 축은 장치상에 입사되는 광 빔의 우선 편광 방향에 대해 -22.5°±2°의 각도로 연장한다.
일 실시예에서, 제 1 람다/2 플레이트만을 통과하는 제 1 직선 편광광빔의 진동 평면은 제 1 회전 각도로 회전되고 제 2 람다/2 플레이트만을 통과하는 제 2 직선 편광광빔의 진동 평면은 제 2 회전 각도로 회전되며, 제 1 회전 각도는 제 2 회전 각도와 상이하다.
일 실시예에서, 제 1 회전 각도 및 제 2 회전 각도는 수량(quantity)의 측면에서 동일하고 반대의 부호들이다.
일 실시예에서, 제 1 람다/2 플레이트 및 제 2 람다/2 플레이트는 서로 간의 중첩 영역에서 90°회전자를 형성한다.
일 실시예에서, 편광 영향 광학 장치는 정확히 2개의 람다/2 플레이트를 갖는다. 특별히 단순한 구조의 구현으로, 이하에서 기재되는 바와 같이 그에 의해 조정가능한 4개의 편광 상태의 결과로서, 단 2개의 람다/2 플레이트로, 이미징 특성에 있어서 매우 상당한 정도의 편광 특성의 영향을 이미 고려할 수 있었다는 사실을 이용한다.
일 실시예에서, 편광 영향 광학 장치는 적어도 3개의 그리고 바람직하게 적어도 7개의 람다/2 플레이트를 갖는다. 적어도 3개의 람다/2 플레이트를 갖는 장치는, 서로 상이한 방향, 예컨대, x- 및 y- 방향의 람다/2 플레이트의 변위가능성 또는 조정가능성을 생략하는 것이 가능하고, 공통 방향(예컨대, x-방향)을 따르는 람다/2 플레이트의 변위가능성으로 상이한 편광 분포를 세팅하는 것에 있어서 높은 레벨의 유연성을 성취하는 것이 이미 가능하다는 장점을 갖는다.
일 실시예에서, 편광 영향 광학 장치는, 광학 시스템의 동작에 있어서 미러 장치와 결합하여, 장치에 입사되는 광 빔의, 광 빔 단면에 걸쳐 일정한 우선 편광 방향을 가진 직선 편광 분포를 대략 접선의 편광 분포로 변환시키도록, 조정될 수 있다.
추가적인 양상에 있어서, 본 발명은, 조명 시스템의 광원에 의해 생성되는 광이 투영 대물렌즈의 오브젝트 평면을 조명하기 위한 투영 노광 장치에 공급되며 오브젝트 평면이 투영 대물렌즈의 이미지 평면으로 투영 대물렌즈에 의해 이미징되는, 마이크로리소그래픽 노광 방법에 관한 것이며,
- 미러 장치에 의해 반사된 광의 각도 분포를 변경하기 위해 서로 독립되게 변위가능한 복수의 미러 소자를 갖는 적어도 하나의 미러 장치; 및
- 제 1 람다/2 플레이트 및 적어도 하나의 제 2 람다/2 플레이트를 포함하는 편광 영향 광학 장치가 조명 시스템에서 사용된다.
일 실시예에서, 적어도 2개의 서로 상이한 조명 세팅은 제 1 람다/2 플레이트 및 제 2 람다/2 플레이트의 상대 위치를 변경하여 조정된다.
일 실시예에서, 상기 조명장치들 중 적어도 하나를 조정할 때, 제 1 람다/2 플레이트 및 제 2 람다/2 플레이트는 광 전파 방향으로 서로 부분적으로 중첩하여, 적어도 하나의 중첩 영역과 적어도 하나의 비중첩 영역을 형성하도록, 배열된다.
일 실시예에서, 상기 조명 세팅들 중 적어도 하나를 조정하기 위해, 중첩 영역 및 또한 비중첩 영역 모두 적어도 부분적으로 조명된다.
일 실시예에서, 미러 장치의 상이한 미러 소자들에 의해 반사되고 편광 영향 장치의 작동의 결과로서 상이한 편광 방향을 갖는 적어도 2개의 빔 부분들이 서로 슈퍼포즈(superpose)된다.
본 발명은 또한 마이크로리소그래픽 투영 노광 장치 및 마이크로구조의 부품의 마이크로리소그래픽 제조를 위한 공정에 관한 것이다.
본 발명의 추가 구성은 상세한 설명과 첨부된 청구 범위에서 발견된다.
본 발명은, 원하는(desired) 편광 분포의 제공에 있어서 향상된 유연성을 허용하는, 마이크로리소그래픽 투영 노광 장치의 편광 영향 광학 장치 및 광학 시스템을 제공할 수 있다.
본 발명은 첨부 도면들에 도시된 예시에 의한 실시예로 이하에서 더욱 상세하게 기재된다.
도 1은 본 발명에 따른 편광 영향 광학 장치를 갖는 마이크로리소그래픽 투영 노광 장치의 구조를 도시하기 위한 개략도이다.
도 2는 도 1의 투영 노광 장치에 존재하는 미러 소자의 구조 및 기능을 도시하기 위한 개략도이다.
도 3a 내지 도 3f는 본 발명의 특정 실시예에 따른 편광 영향 광학 장치의 동작의 모드를 도시하기 위한 개략도이다.
도 4a 내지 4b는 도 2의 편광 영향 광학 장치의 사용의 추가 예를 도시하기 위한 개략도이다.
도 5a 내지 도 5c는 본 발명에 따라 설정될 수 있는 추가 편광 분포의 개략도이다.
도 6은 본 발명의 추가 실시예에 따른 편광 영향 광학 장치를 도시하기 위한 개략도이다.
도 7 내지 도 9는 본 발명의 추가 실시예에 따른 편광 영향 광학 장치의 사용의 추가 예를 도시하기 위한 개략도이다.
먼저 본 발명에 따른 광학 시스템을 갖는 마이크로리소그래픽 투영 노광 장치의 원리의 구조가 도 1을 참조하여 이후에서 기재된다. 투영 노광 장치는 조명 시스템(10) 및 투영 대물렌즈(20)를 갖는다. 조명 시스템(10)은 광원 유닛(1)으로 부터의 광으로 구조를 지닌 마스크(레티클)(30) - 예컨대, 193nm의 작업 파장을 위한 ArF-엑시머 레이저 및 평행한 광 빔을 생성하는 빔 정형(beam-shaping) 광학 장치를 포함 - 를 조명하는 역할을 한다. 일반적으로, 조명 시스템(10) 및 투영 대물렌즈(20)는 바람직하게 400nm 이하, 특히 250nm 이하의, 더욱 특히 200nm 이하의 작업 파장을 위해 설계된다.
본 발명에 따르면, 조명 시스템(10)의 부품 부분은 도 2를 참조하여 이하에서 더욱 상세히 기재되는 바와 같이 특히 미러 장치(200)에 있다. 광 전파 방향으로 배열된 미러 장치(200)의 업스트림(upstream)은 도 3 이후를 참조하여 이하에서 더욱 상세히 기재되는 편광 영향 광학 장치(300)이다. 도 1에서 도시된 바와 같이, 적절한 액추에이터로 장치(300)의 변위를 작동시키기 위한 작동 유닛(305) 또한 제공된다. 장치(300)의 변위를 위한 액추에이터는 임의의 방식, 예컨대, 벨트 드라이브, 고체 상태 힌지 소자, 압전 액추에이터, 리니어 드라이브, 트랜스미션 장치를 갖거나 가지지 않는 dc 모터, 스핀들 드라이브, 톱니 벨트 드라이브, 기어 드라이브 또는 이러한 알려진 부품들의 결합의 형태로 설계될 수 있다.
조명 시스템(10)은 도시된 예시 중에서도 편향 미러(12)를 포함하는 광학 유닛(11)을 갖는다. 광 전파 방향에 있어서 광학 유닛(11)의 다운스트림에는, 빔 경로내에, 렌즈 그룹(14)과 함께, 예컨대 그 자체가 잘 알려진 방식으로 광 혼합을 성취하기에 적합한 마이크로 광학 소자의 장치를 가질 수 있는 광 혼합 장치(미도시)가 배치되어 있으며, 그 다운스트림에는, 광 전파 방향의 다운스트림에 배치된 REMA 대물렌즈(15)를 통해, 추가적인 필드 평면에 배열된 구조를 지닌 마스크(레티클)(30)상에 이미징되는, 레티클 마스킹 시스템(REMA)을 갖는 필드 평면이 배치되어 있고, 그에 의해 레티클 상의 조명되는 영역을 정한다(delimit). 구조를 지닌 마스크(30)는, 투영 대물렌즈(20)로, 감광층이 구비되어 있는 웨이퍼 또는 기판(40) 상으로 이미징된다. 투영 대물렌즈(20)는 동작의 이머전 모드(immersion mode)를 위해 특히 설계될 수 있다. 게다가, 이것은 0.85보다 큰, 특히 1.1 보다 큰 개구수(NA)를 가질 수 있다.
바람직하게, 람다/2 플레이트(310, 320)의 치수(dimension)들은 이러한 람다/2 플레이트(310, 320)의 각각이 개별적으로 미러 장치(200)를 '덮을(conceal)' 수 있게, 즉, 미러 장치(200)에 의해 반사된 모든 광선들 또한 람다/2 플레이트(310, 320)를 통과할 수 있게 선택된다. 더욱이, 람다/2 플레이트(310, 320) 및 미러 장치(200)는 바람직하게, 장치(300)에 의한 미러 장치(200)의 쉐도잉이 없으므로 최적 전송이 성취되도록 공동으로 설계된다.
도 2에서 개략적으로 도시된 구조에서, 미러 장치(200)는 복수의 미러 소자(200a, 200b, 200c, ...)를 갖는다. 미러 소자(200a, 200b, 200c)는 미러 장치(200)에 의해 반사된 광의 각도 분포를 변경하기 위해 서로 독립적으로 변위가능하며, 여기서, 도 1에 도시된 바와 같이, (예컨대, 적절한 액추에이터에 의해서) 이러한 변위를 구현하기 위한 작동 유닛(205)이 존재할 수 있다.
조명 장치(10)에서 본 발명에 따라 사용된 미러 장치(200)의 구조 및 기능을 도시하기 위해, 도 2는, 레이저 빔(210)의 빔 경로에서 편광 미러(211), 굴절 광학 소자(ROE; 212), 렌즈(213; 예시로만 도시됨), 마이크로렌즈 장치(214), 본 발명에 따른 미러 장치(200), 디퓨저(215), 렌즈(216) 및 동공 평면(PP)을 연속하여 포함하는 조명 시스템(10)의 서브영역(subregion)의 예시로 구조를 도시한다. 미러 장치(200)는 복수의 마이크로미러(200a, 200b, 200c,...)를 포함하고, 마이크로렌즈 장치(214)는 이러한 마이크로 미러에 대한 타겟화된 포커싱(targeted focusing) 및 '데드 영역(dead area)'의 조명을 줄이거나 피하기 위한 복수의 마이크로렌즈를 갖는다. 마이크로미러(200a, 200b, 200c)는 예컨대 -2°와 +2°사이, 특히, -5°와 +5°사이, 더욱 특히 -10°와 +10°사이의 각도 범위에서 개별적으로 각각 경사질 수 있다. 마이크로미러(200a, 200b, 200c)에 의해 원하는 조명 설정에 따라 먼저 균일화되고 시준된(homogenised and collimated) 레이저 광이 원하는 방향으로 각각 시준되는한, 원하는 광 분포, 예컨대 환형 조명 셋팅이나 또한 쌍극자(dipole) 세팅 또는 4극(quadrupole) 세팅이 미러 장치(200) 내 마이크로미러(200a, 200b, 200c)의 적절하게 경사진 장치에 의해 동공 평면에서 생성될 수 있다.
도 3a는 본 발명의 일 실시예에 따른 편광 영향 광학 장치(300)를 도시하는 개략도이다. 실시예에서, 편광 영향 광학 장치(300)는, 원하는 작업 파장에서 적절한 투명성의 알맞은 복굴절 물질 - 예컨대, 마그네슘플루오라이드(magnesium fluoride; MgF2), 사파이어(Al2O3) 또는 결정형 석영(crystalline quartz; SiO2) - 로부터 각각 만들어지는, 상호 부분적으로 중첩하는 람다/2 플레이트(310, 320)를 포함한다. 게다가, 람다/2 플레이트(310, 320)는 미러 장치(200)의 기하학적 형상(geometry)에 대한 적응을 위한 직사각형의 기하학적 형상의 각각이다(본 발명에 그에 한정되지 않음).
도 3a는 또한 y-방향으로 연장하는 일정한 우선 편광 방향 P를 갖는 직선 편광광의 인커밍(incoming) 방사를 포함하는 상황에 있어서, 광이 편광 영향 광학 장치(300)를 통과한 후 개별적으로 발생하는 우선 편광 방향 도시한다.
이러한 측면에서, 제 1 비중첩 영역 'B-1'(즉, 제 1 람다/2 플레이트(310)에 의해서만 덮이는 영역)에 대한 개별적으로 초래되는 우선 편광 방향은 P`로 표시되고, 제 2 비중첩 영역 'B-2'(즉, 제 2 람다/2 플레이트(320)에 의해서만 덮히는 영역)에 대한 개별적으로 초래되는 우선 편광 방향은 P``로 표시되며, 중첩 영역 'A'(즉, 제 1 람다/2 플레이트(310) 및 또는 제 2 람다/2 플레이트(320) 모두에 의해 덮이는 영역)에 대한 개별적으로 초래되는 우선 편광 방향은 P```로 표시된다.
상기 표시된 영역의 개별 우선 편광 방향의 발생은 도 3b 내지 도 3e에 개별적으로 도시되고, 제 1 람다/2 플레이트(310)에 대한 빠른 복굴절 축(고굴절률의 방향으로 연장함)의 개별 위치는 파선 'fa-1'으로 표시되며 제 2 람다/2 플레이트(320)에 대한 빠른 복굴절 축의 개별 위치는 파선 'fa-2'로 표시된다. 도시된 실시예에서, 제 1 람다/2 플레이트(310)의 복굴절의 고속 축'fa-1'은 장치(300)에 입사되는 광빔의 우선 편광 방향(P)에 대해(즉, y-방향에 대해) 22.5°±2°의 각도로 연장하고 제 2 람다/2 플레이트(320)의 복굴절의 고속 축'fa-2'는 장치(300)에 입사되는 광빔의 우선 편광 방향(P)에 대해 -22.5°±2°의 각도로 연장한다.
광이 제 1 람다/2 플레이트(310)를 통과한 후 발생하는 우선 편광 방향(P`)은 고속 축(fa-1)에서 원래의(입사) 우선 편광 방향 (P)의 미러링에 해당하며(도 3b 참조) 광이 제 2 람다/2 플레이트(320)를 통과한 후 발생하는 우선 편광 방향(P``)은 고속 축(fa-2)에서 원래의(입사) 우선 편광 방향 (P)의 미러링에 해당한다(도 3c 참조). 광이 비중첩 영역(B-1 및 B-2)을 통과한 후 각각 발생하는 개별 편광 방향(P` 및 P``)은 결과적으로 장치(300)에 입사되는 광 빔의 우선 편광 방향(P)에 대해 ±45°의 각도에서 연장한다.
중첩 영역 'A'의 장치(300)에 입사되는 광 빔에 있어서, 제 1 람다/2 플레이트(310)에서 나오는 광 빔의 우선 편광 방향(P`)은 제 2 람다/2 플레이트(320)에 입사되는 광 빔의 입사 편광 분포에 해당하여, 중첩 영역 'A'에서 나오는 광 빔의 우선 편광 방향(도 3a에서 P```로 식별됨)은 장치(300)에 입사되는 광 빔의 우선 편광 방향(P)에 대해 90°의 각도에서 연장한다.
본 발명은 서로에 대해 변위가능한 람다/2 플레이트들에 한정되지 않는다. 이로써, 상이하게 편광된 조명 세팅은 미러 장치의 미러 소자의 변위가능성을 활용하여 람다/2 플레이트들의 정적 임플러먼테이션과 더불어 사전에 설정될 수 있다. 예컨대, '12:00'시 및 '6:00'시 또는 '3:00'시 및 '9:00'에서 동공 평면으로 가이드되는 장치(300)에 의해 90°를 통해 그들의 편광 방향으로 회전되는 광 부품을 편향하여, 예컨대, 준-접선의 편광 분포와 준-방사 편광 분포 사이에서 전환(switch over)하는 것이 가능하다.
비록 도시된 실시예에서 람다/2 플레이트들(310, 320) 양쪽은 광 전파 방향에 대해 미러 장치(200)의 업스트림에 배열되지만, 본 발명은 거기에 한정되지 않는다. 따라서, 추가적인 실시예들에 있어서, 람다/2 플레이트(310, 320)들 중 하나는 광 전파 방향에 대해 미러 장치의 업스트림에 배열되고, 람다/2 플레이트들 중 다른 하나는 미러 장치(200)의 다운스트림에 배열되는 것 또한 가능하고, 또는 람다/2 플레이트들(310, 320) 양쪽이 미러 장치(200)의 다운스트림에 배열되는 것 또한 가능하다. 마지막으로 언급된 구성은 장치(300)에 의해 설정된 (출사) 편광 분포가 미러 장치(200)에서의 반사로 인해 더는 변경되지 않는다는 점에 있어서 장점을 갖는다.
또한, 람다/2 플레이트들(310, 320)의 배치 및 미러 장치(200)에 대한 그것의 간격은, 미러 장치(200)의 개별 미러들에 입사하는 광 부품이 편광 상태에 관하여 규정되어, 미러 장치(200)의 미러들 중 개별 미러에 반사된 광이 하나의 한정된 편광 상태에 의해 반응하고 예컨대 2개 이상의 서로 상이한 편광 상태에 의해서는 반응하지 않도록 개별적으로 선택되어야 한다.
도 3a의 장치와 더불어 설정될 수 있는 편광 분포의 예시가 도 3f에 도시된다. 도 3f에 따라 생성되는 편광 분포는 원형 세그먼트의 형태의 8개의 영역을 갖는 준-접선의 편광 분포(350)이며, 각 경우 편광 방향은 일정하고 적어도 대략 접선방향인, 즉, 광학축을 향하는 반경에 수직이다. 원형의 세그먼트의 형태인 개별 영역의 편광 분포는, 상기 기재된 바와 같이 편광 방향이 장치(300)에 입사된 광의 편광 방향에 대해 각각 0°,45°, -45°및 90°를 통해 회전된 사실로 인해 가능하다. 편광 분포(350)는 예컨대 OPC 프로세스에 의해 준-접선의 조명 세팅으로 최적화되는 제조 프로세스들을 추가로 동작하는 것을 가능하게 하며, 그러나, 이러한 경우에, 예컨대 45˚를 통해 회전된 조명 폴(pole)에서 준-접선의 편광 분포를 갖는 조명 세팅을 사용하는 것 또한 추가로 가능하다.
장치(300)의 사용의 가능한 추가 예시가 도 4a 내지 도 4b를 참조하여 기재된다. 이러한 경우에, 도 1의 구조에서, 장치(300)에 더하여 추가 편광 조작기(400)가 동공 평면에 배치된다(편광 조작기(400)가 광 전파 방향의 다운스트림에 배치되므로 4a의 도면은 오직 개략적인 스케치를 표현한다). 이러한 추가 편광 조작기(400)는 WO 2005/069081 A2에 나오며 도 4b에 개략적으로 도시된다. 편광 조작기(400)는 광학적으로 활성인 물질(특히, 광 전파 방향을 따라 연장하는 결정축을 갖는 결정형 석영)로 만들어지며 광 전파 방향으로 변화하는 두께 프로파일을 갖는다. 편광 조작기(400)는 중앙 영역에 홀(405)을 가지며, WO 2005/069081 A2에 기재된 바와 같이 두께 프로파일 및 원형 복굴절에 의해 홀(405)의 외부의 영역에서 접선의 편광 분포를 생성한다.
도 4a의 예시에서, 상호 슈퍼포즈된 관계의 장치(300)의 2개의 람다/2 플레이트들(310, 320)은 상호 슈퍼포즈된 관계로 미러 장치(200)의 비교적 작은 부분만을 덮는다(즉, 또한, 미러 장치(200)에서 반사된 전체 광의 아주 작은 부분만이 람다/2 플레이트들(310, 320)을 통과함). 도 3a를 참조하여 상기 기재된 원리에 따르면, 준-접선의 편광은 편광 조작기(400)의 홀(405) 또한 동시에 통과하는 그 광 부품에 대해서 수반한다. 광이 장치(400)를 통과한 후 발생하는 편광 분포의 영역(421 및 422)에 람다/2 플레이트들(310, 320) 중 어느 것도 배열되지 않으므로 이 편광은 한편으로 람다/2 플레이트들에 의해 덮이지 않는 영역과 편광 조작기(400)의 홀(405)을 통과하는 광에 대한 y-편광을 갖는 영역으로부터 형성되고, 그러므로, 우선 편광 방향은 원래의 우선 편광 방향(즉, y-방향)에 해당한다. 게다가, x-편광을 갖는 영역은 2개의 람다/2 플레이트들(310, 320)의 동작으로 인해, 즉, 편광 조작기(400)뿐만 아니라 2개의 람다/2 플레이트(310, 320)에 의해 덮이는 영역을 통과하는 광으로 인해 생성된다.
접선방향 편광 분포는 (미러 장치(200)가 장치(300)에 의해 덮이지 않는, 그리고 광이 홀(405)의 외부의 편광 조작기(400)의 영역을 통과하는)동공 평면의 외부 영역에 설정된다.
도 5a 내지 도 5c는 본 발명에 따라 설정될 수 있는 편공 분포의 추가 예를 도시한다. 람다/2 플레이트들(310, 320)의 개별 세팅에 따라, 이것들 및 다른 편광 분포 또한 편광 영향 광학 장치(300)가 이러한 조명 세팅들 간의 변화로 인해 교환될 필요 없이 유연하게 설정될 수 있다.
이러한 관점에서, 도 5a 및 도 5b에 도시된 바와 같이, 편광 분포는 각각 동공 평면의 중앙 영역에서 또는 홀(405) 내의 편광 조작기(400)의 영역을 통과하는 광에 대해 지속적으로 직선인 편광 방향을 가지며, 도 5a 및 도 5b의 편광 방향은 미러 장치(200) 및 편광 영향 장치(300)의 결합으로 상이하게 설정된다. 도 5c에 도시된 예시에서, 상호 수직으로 편광된 광의 구성 요소들(x-편광 및 y-편광을 가짐)은 그 슈퍼 포지셔닝에 의해 차례로 상호 슈퍼포즈된 관계로 있을 수 있어서, 중앙 영역 또는 홀(405) 내의 편광 조작기(400)의 영역을 통과하는 광에 대한 비편광 광을 생성한다.
도 6은 2개의 회전가능한 람다/2 플레이트(610, 620)의 장치의 추가 실시예를 도시한다. 람다/2 플레이트(610, 620)의 회전을 위한 액추에이터는 예컨대 벨트 드라이브, 고체 상태 힌지 소자, 압전 액추에이터 또는 이러한 알려진 부품들의 결합의 형태의 임의의 원하는 구성이 될 수 있다.
여기서, 원하는 우선 편광 방향을 갖는 2개의 편광 상태는 2개의 회전가능한 람다/2 플레이트(610, 620)로 설정될 수 있다. 람다/2 플레이트(610, 620)의 중첩 영역에는, 도 3과 유사하게 2개의 람다/2 플레이트(610, 620)의 결합된 동작 중에서 일어나는 추가적인 제3의 편광 상태가 있다.
추가 실시예에 따라, 미러에 의해 반사되고 편광 영향 장치(300)의 동작의 결과로서 상이한 편광 방향들을 포함하는 광 구성 요소들이 또한 상호 슈퍼포즈된 관계에 있을 수 있다. 도 7에 개략적으로 도시된 이러한 실시예는, 예컨대, 벡터 가법(vector addition)에 따라, (각각의 경우에 있어서, 예시된 좌표계의 x-축에 관하여) 편광 방향 0°및 45°의 슈퍼포지셔닝(도 7의 하측 오른쪽 부분에 표시됨)에 의해 22.5°의 결과적인 편광 방향이 제공된다는 것이 고려된다. 해당 슈퍼포지셔닝은 연속적으로, 또는 상이한 편광 방향들을 포함하는 광의 구성 요소들의 연속적으로 변화하는 강도에 의해 영향받을 수도 있어서, 궁극적으로 생성되는 조명 세팅은 인접 편광 방향들 사이의 연속적인 천이(continuous transition)을 갖는다. 다시 말해서, 미러 장치는 개별 편광 상태의 수퍼포지셔닝에 의한 (준)연속 편광 세팅을 성취하기 위해 사용된다.
상기 기재된 수퍼포지셔닝에 관하여, 서로 추가하는 직교 편광 광 구성 요소들을 기반으로 한 비편광 기여(unpolarized contribution)가 존재하여 성취될 수 있는 IPS 값의 감소를 야기한다는 점이 주목된다. 이점에 있어서, IPS 값이라는 용어는 주어진 위치에서의 원하는 편광 상태의 구현의 정도를 표시하는데 사용된다. 이점에 있어서, IPS는 '선호 상태에서의 강도(intensity in preferred state)'의 약어이며 IPS 값은 전체 강도에 대해, (예컨대 이것은 이상적인 편광자(polariser)로 측정될 수 있으며 이것의 전송 방향이 기준 방향으로 설정되는) 기준 방향에서 광 강도의 에너지 관계를 부여한다. 양적인 면에서, 도 7에서 시작할 경우, 즉, 총 8개의 편광 상태의 생성에 있어서, 편광 영향 광학 장치 및 미러 장치의 결합에 의해, 편광 방향 0°및 22.5°의 수퍼포지셔닝의 경우에 대해 약 96%의 IPS 값이 존재한다. 비교의 목적으로, 도 3에서 시작할 경우, 즉, 편광 영향 광학 장치 및 미러 장치의 결합에 의해, 총 4개의 편광 상태가 생성되면, 편광 방향 0°및 45°의 수퍼포지셔닝의 경우에 대해 약 85%의 IPS 값이 존재한다.
도 8 및 도 9를 참조하여 이하에서 기재되는 추가 실시예에 따라, 광학 시스템은 또한 2개 이상의 람다/2 플레이트들을 가질 수 있다. 일반적으로, 본 발명은 복굴절의 고속 축의 임의의 배향을 갖는 임의의 수(≥2)의 람다/2 플레이트들을 갖는 장치를 포괄한다.
도 8에 있어서, 3개의 람다/2 플레이트(810, 820, 830)의 사용으로 개별적으로 생성된 출사 편광 방향에 대해 각각 단계적으로 45°까지 상이한 4개의 편광 상태를 설정하는 것이 가능하다. 도 8의 우측 부분에서 볼 수 있듯이, 연속 편광 분포는, 각각 상이한 '관련' 편광 상태를 갖는 2개의 미러에 의해 각각 반사되는 광 부품들 사이의 강도비는 방위각(azimuth angle)에 의해 연속해서 변경되어서 편광 방향이 회전되므로 상기 기재된 수퍼포지셔닝이 다시 성취될 수 있다.
도 8의 실시예에 대해 설정된 람다/2 플레이트의 배향 및 개별 생성된 편광 방향이 표 1에 도시된다.
플레이트 m 회전 각도(°) 고속 축(°) 플레이트의 편광 다운스트림(°)
0 0
1 45 22.5 45
2 45 67.5 90
3 45 112.5 135
도 9에 따르면, 7개의 람다/2 플레이트(910, 920, 930, ...)를 사용하는 것은 개별 생성된 출사 편광 방향에 대해 22.5°까지 각각 단계적으로 상이하거나, 개별 람다/2 플레이트에서 나오는 광 빔의 편광 방향이 22.5°의 정수배(integral multiple)인 각도에서 연장하는 8개의 편광 상태를 설정하는 것을 가능하게 한다. 구체적으로, 제 1 람다/2 플레이트(910)에서, 고속 축은 11.25°의 각도로 장치(900)에 입사하는 광 빔의 우선 편광 방향(P)에 대해 연장하고, 제 2 람다/2 플레이트(920)에서, 고속 축은 11.25°+22.5°의 각도로 장치(900)에 입사하는 광 빔의 우선 편광 방향(P)으로 연장하며, 제 n 람다/2 플레이트에서, 고속 축은 장치(900)에 입사하는 광 빔의 우선 편광 방향(P)에 대해 11.25°+(n-1)*22.5°의 각도로 연장한다.
다시 말해서, 람다/2 플레이트(910, 920, 930)의 각각에 있어서, 복굴절의 고속 축은 각각 현안의 람다/2 플레이트에 각각 입사하는 광 빔의 우선 편광 방향 P에 대해 11.25°의 각도로 연장하여 추가적인 22.5°를 통한 회전 각도의 각각이 개별 고속 축에서 미러링의 결과로서 가능하다.
도 9의 실시예에 대해 설정된 람다/2 플레이트의 배향뿐만 아니라 개별 성취된 편광 방향이 표 2에 도시된다.
플레이트 m 회전 각도(°) 고속 축(°) 플레이트의 편광 다운스트림(°)
0 0
1 22.5 11.25 22.5
2 22.5 33.75 45
3 22.5 56.25 67.5
4 22.5 78.75 90
5 22.5 101.25 112.5
6 22.5 123.75 135
7 22.5 146.25 157.5
이런 경우에, 또한, 결과적으로, 연속 편광 분포는 상기 기재된 수퍼포지셔닝에 의해 다시 성취될 수 있으며, 비교적 높은 IPS 값(예컨대, 약 96%의 IPS 값)은 예컨대 도 7의 장치에 비해서 성취될 수 있으며, 직교 편광 상태의 수퍼포지셔닝의 결과로서 편광해소 비율을 줄이는 것이 가능하다.
n개의 람다/2 플레이트를 갖는 일반적인 조건에 있어서, 각각의 람다/2 플레이트의 회전 각도는 360°/(n+1)/2로 선택되고, 고속 축은 각각 상이하게 배향되며, m번째 람다/2 플레이트의 고속 축의 배향은 (m-1)*360°/(n+1)/2 + 360°/(n+1)/4로 주어진다. 이로써, m번째 람다/2 플레이트 편광 회전 다운스트림은 (m)*360°/(n+1)/2이다.
도 9 및 도 8을 참조하여 기재된 람다/2 플레이트들은 먼저 도시된 실시예들과 유사하게, 서로에 대한 상대 위치에서 변위가능하게 배열될 수 있다. 이점에 있어서, 참조 번호는 도 3과 관련한 상기 기재를 나타낸다.
본 발명이 특정 실시예를 기반으로 기재되었으나, 수많은 변형 및 대안적 실시예가 예컨대 개별 실시예의 특징의 결합 및/또는 교환에 의해 당업자에게 자명할 것이다. 따라서, 당업자에게 이와 같은 변형 및 대안적 실시예가 또한 본 발명에 의해 포함되고, 본 발명의 권리 범위는 첨부하는 특허 청구범위 및 그것의 등가의 의미내로만 제한된다는 것은 자명하다.

Claims (24)

  1. 마이크로리소그래픽 투영 노광 장치의 광학 시스템으로서,
    - 미러 장치(mirror arrangement)에 의해 반사된 광의 각도 분포를 변경하기 위해 서로 독립되게 변위가능한 복수의 미러 소자를 갖는 적어도 하나의 상기 미러 장치(200); 및
    - 제 1 람다(lambda)/2 플레이트(310, 810, 910) 및 적어도 하나의 제 2 람다/2 플레이트(320, 920, 930)를 포함하는 편광 영향 광학 장치(polarisation-influencing optical arrangement)(300, 800, 900)를 포함하며,
    - 상기 제 1 람다/2 플레이트(310) 및 상기 제 2 람다/2 플레이트(320)는 광 전파 방향에 대해 광학 시스템내에서 연속으로 배열되고,
    - 상기 제 1 람다/2 플레이트 (310) 및 상기 제 2 람다/2 플레이트(320)는 그것들의 상대 위치에 있어서 광 전파 방향으로 가변의 중첩도(degree of overlap)로 서로에 관해 변위가능한 것을 특징으로 하는, 광학 시스템.
  2. 삭제
  3. 청구항 1에 있어서, 서로에 대한 그것들의 상대 위치에 있어서의 상기 제 1 람다/2 플레이트(310)와 상기 제 2 람다/2 플레이트(320)의 변위가능성(displaceability)은, 상기 람다/2 플레이트들 중 적어도 하나의 병진 변위 및/또는 상기 람다/2 플레이트들 중 적어도 하나의 회전을 포함하는 것을 특징으로 하는, 광학 시스템.
  4. 청구항 3에 있어서, 서로에 대한 그것들의 상대 위치에 있어서의 상기 제 1 람다/2 플레이트(310)와 상기 제 2 람다/2 플레이트(320)의 변위가능성은 서로 상이한 공간 방향들로 수행될 수 있는 것을 특징으로 하는 광학 시스템.
  5. 삭제
  6. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 제 1 람다/2 플레이트(310) 및/또는 상기 제 2 람다/2 플레이트(320)는, 개별적인 람다/2 플레이트가 상기 미러 장치(200)의 광학적으로 유효한 영역의 완전히 외부에 있는 제 1 위치와 개별적인 람다/2 플레이트가 상기 미러 장치(200)의 광학적으로 유효한 영역의 완전히 내부에 배치되는 제 2 위치 사이에서 변위가능한 것을 특징으로 하는, 광학 시스템.
  7. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 제 1 람다/2 플레이트(310)는 복굴절의 제 1 고속 축(fast axis)(fa-1)을 갖고 상기 제 2 람다/2 플레이트(320)는 복굴절의 제 2 고속 축(fa-2)을 가지며, 상기 제 1 고속 축(fa-1) 및 상기 제 2 고속 축(fa-2)의 배향들은 서로 상이한 것을 특징으로 하는, 광학 시스템.
  8. 청구항 7에 있어서, 상기 제 1 고속 축(fa-1) 및 상기 제 2 고속 축(fa-2)은 서로에 대해 45°±5°의 각도로 배열되는 것을 특징으로 하는, 광학 시스템.
  9. 청구항 7에 있어서, 상기 제 1 고속 축(fa-1)은 상기 장치(300)상에 입사되는 광 빔의 우선 편광 방향에 대해 22.5°±2°의 각도로 연장하고, 상기 제 2 고속 축(fa-2)은 상기 장치(300)상에 입사되는 광 빔의 우선 편광 방향에 대해 -22.5°±2°의 각도로 연장하는 것을 특징으로 하는, 광학 시스템.
  10. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 제 1 람다/2 플레이트(310)만을 통과하는 제 1 직선 편광 광빔의 진동면은 제 1 회전 각도로 회전되고, 상기 제 2 람다/2 플레이트(320)만을 통과하는 제 2 직선 편광 광빔의 진동면은 제 2 회전 각도로 회전되며, 상기 제 1 회전 각도는 상기 제 2 회전 각도와는 상이한 것을 특징으로 하는, 광학 시스템.
  11. 청구항 10에 있어서, 상기 제 1 회전 각도 및 상기 제 2 회전 각도는 수량(quantity)의 측면에서 동일하고 반대의 부호들인 것을 특징으로 하는, 광학 시스템.
  12. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 제 1 람다/2 플레이트(310) 및 상기 제 2 람다/2 플레이트(320)는 서로 중첩 영역에서 90° 회전자(rotator)를 형성하는 것을 특징으로 하는, 광학 시스템.
  13. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 편광 영향 광학 장치(300)는 정확히 2개의 람다/2 플레이트(310, 320)를 갖는 것을 특징으로 하는, 광학 시스템.
  14. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 편광 영향 광학 장치(800, 900)는 적어도 3개의 람다/2 플레이트를 갖는 것을 특징으로 하는, 광학 시스템.
  15. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 편광 영향 광학 장치(300, 800, 900)는, 상기 광학 시스템의 동작에 있어서 상기 미러 장치(200)와 결합하여, 상기 장치에 입사되는 광 빔의, 광 빔 단면에 걸쳐 일정한 우선 편광 방향을 가진 직선 편광 분포를 접선의 편광 분포로 변환시키도록, 조정될 수 있는 것을 특징으로 하는, 광학 시스템.
  16. 청구항 1 및 청구항 3 중 어느 한 항에 있어서, 상기 광학 시스템은 광학적으로 활성인 물질로부터 생성되고 다양한 두께의 프로파일을 갖는 편광 영향 광학 소자(400)를 더 갖는 것을 특징으로 하는, 광학 시스템.
  17. 조명 시스템 및 투영 대물렌즈를 포함하는 마이크로리소그래픽 투영 노광 장치로서, 상기 조명 시스템 및/또는 상기 투영 대물렌즈가 청구항 1 및 청구항 3 중 어느 한 항에 기재된 광학 시스템을 갖는, 투영 노광 장치.
  18. 조명 시스템(10)의 광원에 의해 생성되는 광이 투영 대물렌즈(20)의 오브젝트 평면을 조명하기 위한 투영 노광 장치에 공급되며, 상기 오브젝트 평면이 상기 투영 대물렌즈(20)에 의해 상기 투영 대물렌즈(20)의 이미지 평면으로 이미징되는, 마이크로리소그래픽 노광 방법으로서,
    - 미러 장치에 의해 반사된 광의 각도 분포를 변경하기 위해 서로 독립되게 변위가능한 복수의 미러 소자를 갖는 적어도 하나의 상기 미러 장치(200); 및
    - 제 1 람다/2 플레이트(310, 810, 910) 및 적어도 하나의 제 2 람다/2 플레이트(320, 920, 930)를 포함하는 편광 영향 광학 장치(300, 800, 900)가 상기 조명 시스템에서 사용되고,
    적어도 2개의 서로 상이한 조명 세팅은 상기 제 1 람다/2 플레이트(310, 810, 910) 및 상기 제 2 람다/2 플레이트(320, 920, 930)를 그것들의 상대 위치에 있어서 광 전파 방향으로 가변의 중첩도(degree of overlap)로 서로에 관해 변위시킴으로써 상대 위치를 변경하여 조정되는, 마이크로리소그래픽 노광 방법.
  19. 청구항 18에 있어서, 상기 조명 세팅들 중 적어도 하나를 조정할 때, 상기 제 1 람다/2 플레이트(310, 810, 910) 및 상기 제 2 람다/2 플레이트(320, 920, 930)는, 광 전파 방향으로 서로 부분적으로 중첩하여 적어도 하나의 중첩 영역과 적어도 하나의 비중첩 영역을 형성하도록, 배열되는 것을 특징으로 하는, 마이크로리소그래픽 노광 방법.
  20. 청구항 19에 있어서, 상기 조명 세팅들 중 적어도 하나를 조정하기 위해, 상기 중첩 영역 및 또한 상기 비중첩 영역 모두가 적어도 부분적으로 조명되는 것을 특징으로 하는, 마이크로리소그래픽 노광 방법.
  21. 청구항 18 내지 청구항 20 중 어느 한 항에 있어서, 상기 미러 장치(200)의 상이한 미러 소자들에 의해 반사되고 상기 편광 영향 장치(300)의 작동의 결과로서 상이한 편광 방향들을 갖는 적어도 2개의 빔 부분들이 서로 수퍼포즈(superpose)되는 것을 특징으로 하는, 마이크로리소그래픽 노광 방법.
  22. 마이크로구조의 부품들의 마이크로리소그래픽 제조를 위한 방법으로서,
    - 감광성 물질의 층이 적어도 부분적으로 적용되는 기판(40)을 제공하는 단계;
    - 이미징 될 구조들을 갖는 마스크(30)를 제공하는 단계;
    - 청구항 17에 기재된 바와 같이 마이크로리소그래픽 투영 노광 장치를 제공하는 단계; 및
    - 상기 투영 노광 장치에 의해 상기 층의 영역상으로 상기 마스크(30)의 적어도 일부를 투영하는 단계를 포함하는, 마이크로구조의 부품들의 마이크로리소그래픽 제조를 위한 방법.
  23. 삭제
  24. 삭제
KR1020127032275A 2010-06-10 2011-05-18 마이크로리소그래픽 투영 노광 장치의 광학 시스템 KR101491229B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US35325010P 2010-06-10 2010-06-10
US61/353,250 2010-06-10
DE102010029905A DE102010029905A1 (de) 2010-06-10 2010-06-10 Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102010029905.7 2010-06-10
PCT/EP2011/058040 WO2011154227A1 (en) 2010-06-10 2011-05-18 Optical system of a microlithographic projection exposure apparatus

Publications (2)

Publication Number Publication Date
KR20130027024A KR20130027024A (ko) 2013-03-14
KR101491229B1 true KR101491229B1 (ko) 2015-02-06

Family

ID=45020058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127032275A KR101491229B1 (ko) 2010-06-10 2011-05-18 마이크로리소그래픽 투영 노광 장치의 광학 시스템

Country Status (8)

Country Link
US (1) US9323156B2 (ko)
EP (1) EP2580625B1 (ko)
JP (1) JP5706519B2 (ko)
KR (1) KR101491229B1 (ko)
CN (1) CN102939566B (ko)
DE (1) DE102010029905A1 (ko)
TW (1) TWI483085B (ko)
WO (1) WO2011154227A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045223A1 (de) * 2009-09-30 2011-03-31 Carl Zeiss Smt Gmbh Optische Anordnung in einer Projektionsbelichtungsanlage für die EUV-Lithographie
CN104025257B (zh) * 2011-10-24 2017-09-19 株式会社尼康 照明光学系统、曝光装置及组件制造方法
US9732934B2 (en) * 2011-10-28 2017-08-15 Nikon Corporation Illumination device for optimizing polarization in an illumination pupil
DE102012200368A1 (de) 2012-01-12 2013-07-18 Carl Zeiss Smt Gmbh Polarisationsbeeinflussende optische Anordnung, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage
DE102012200371A1 (de) * 2012-01-12 2013-07-18 Carl Zeiss Smt Gmbh Optisches System für eine mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
DE102012203944A1 (de) * 2012-03-14 2013-10-02 Carl Zeiss Smt Gmbh Verfahren zur Justage eines optischen Systems einer mikrolithographischen Projektionsbelichtungsanlage
DE102012205045A1 (de) * 2012-03-29 2013-10-02 Carl Zeiss Smt Gmbh Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102012206150B9 (de) 2012-04-16 2014-06-12 Carl Zeiss Smt Gmbh Optisches System, insbesondere einer mikrolithographischen Projektionsbelichtungsanlage
US9480529B2 (en) 2012-06-22 2016-11-01 S & Y Enterprises Llc Aesthetic treatment device and method
DE102012217769A1 (de) 2012-09-28 2014-04-03 Carl Zeiss Smt Gmbh Optisches System für eine mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
DE102012223217B9 (de) * 2012-12-14 2014-07-10 Carl Zeiss Smt Gmbh Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102013201133A1 (de) 2013-01-24 2014-07-24 Carl Zeiss Smt Gmbh Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102013202656A1 (de) 2013-02-19 2014-02-13 Carl Zeiss Smt Gmbh Mikrolithographisches Belichtungsverfahren
DE102014217612A1 (de) * 2014-09-03 2016-03-03 Carl Zeiss Smt Gmbh Beleuchtungoptik für die Projektonslithograpfie
DE102015209176A1 (de) * 2015-05-20 2016-11-24 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die EUV-Projektionslithographie
DE102017115262B9 (de) * 2017-07-07 2021-05-27 Carl Zeiss Smt Gmbh Verfahren zur Charakterisierung einer Maske für die Mikrolithographie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826616A2 (en) * 2006-02-23 2007-08-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2009034109A2 (en) 2007-09-14 2009-03-19 Carl Zeiss Smt Ag Illumination system of a microlithographic projection exposure apparatus

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1340347A (en) * 1969-12-29 1973-12-12 Nippon Kogaku Kk Optical system
DE19535392A1 (de) 1995-09-23 1997-03-27 Zeiss Carl Fa Radial polarisationsdrehende optische Anordnung und Mikrolithographie-Projektionsbelichtungsanlage damit
TWI304157B (en) * 2002-11-27 2008-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US6975397B2 (en) * 2003-02-27 2005-12-13 Biotools, Inc. Polarization state conversion in optically active spectroscopy
JP4717813B2 (ja) 2003-09-12 2011-07-06 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光設備のための照明系
JP2005091539A (ja) * 2003-09-16 2005-04-07 Fuji Photo Film Co Ltd 画像記録方法および装置
EP1668420B1 (en) 2003-09-26 2008-05-21 Carl Zeiss SMT AG Exposure method as well as projection exposure system for carrying out the method
TWI474132B (zh) * 2003-10-28 2015-02-21 尼康股份有限公司 照明光學裝置、投影曝光裝置、曝光方法以及元件製造方法
US20070019179A1 (en) * 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
KR101295438B1 (ko) 2004-01-16 2013-08-09 칼 짜이스 에스엠티 게엠베하 편광변조 광학소자
DE102004011733A1 (de) 2004-03-04 2005-09-22 Carl Zeiss Smt Ag Transmissionsfiltervorrichtung
TWI423301B (zh) 2005-01-21 2014-01-11 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
WO2007039519A1 (de) * 2005-10-04 2007-04-12 Carl Zeiss Smt Ag Vorrichtung und verfahren zur beeinflussung der polarisationsverteilung in einem optischen system, insbesondere in einer mikrolithographischen projektionsbelichtungsanlage
JP2007220767A (ja) 2006-02-15 2007-08-30 Canon Inc 露光装置及びデバイス製造方法
DE102006038643B4 (de) 2006-08-17 2009-06-10 Carl Zeiss Smt Ag Mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
DE102007027985A1 (de) * 2006-12-21 2008-06-26 Carl Zeiss Smt Ag Optisches System, insbesondere Beleuchtungseinrichtung oder Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage
US7872731B2 (en) * 2007-04-20 2011-01-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
DE102008009601A1 (de) 2008-02-15 2009-08-20 Carl Zeiss Smt Ag Optisches System für eine mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
NL1036786A1 (nl) 2008-05-08 2009-11-11 Asml Netherlands Bv Lithographic apparatus and method.
DE102008040611A1 (de) * 2008-07-22 2010-01-28 Carl Zeiss Smt Ag Verfahren zum Modifizieren einer Polarisationsverteilung in einer mikrolithographischen Projektionsbelichtungsanlage, sowie mikrolithographische Projektionsbelichtungsanlage
TWI434143B (zh) * 2008-09-22 2014-04-11 Nanya Technology Corp 微影設備
JP5155972B2 (ja) 2009-09-10 2013-03-06 日立アプライアンス株式会社 ドラム式洗濯乾燥機
DE102011003035A1 (de) * 2010-02-08 2011-08-11 Carl Zeiss SMT GmbH, 73447 Polarisationsbeeinflussende optische Anordnung, sowie optisches System einer mikrolithographischen Projektionsbelichtungsanlage
EP2369413B1 (en) * 2010-03-22 2021-04-07 ASML Netherlands BV Illumination system and lithographic apparatus
NL2007306A (en) * 2010-09-23 2012-03-26 Asml Netherlands Bv Source polarization optimization.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826616A2 (en) * 2006-02-23 2007-08-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2009034109A2 (en) 2007-09-14 2009-03-19 Carl Zeiss Smt Ag Illumination system of a microlithographic projection exposure apparatus

Also Published As

Publication number Publication date
JP5706519B2 (ja) 2015-04-22
US20130050673A1 (en) 2013-02-28
CN102939566B (zh) 2015-01-21
CN102939566A (zh) 2013-02-20
TW201214063A (en) 2012-04-01
TWI483085B (zh) 2015-05-01
DE102010029905A1 (de) 2011-12-15
WO2011154227A1 (en) 2011-12-15
EP2580625B1 (en) 2016-08-03
KR20130027024A (ko) 2013-03-14
JP2013533615A (ja) 2013-08-22
EP2580625A1 (en) 2013-04-17
US9323156B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
KR101491229B1 (ko) 마이크로리소그래픽 투영 노광 장치의 광학 시스템
KR101425700B1 (ko) 마이크로리소그래피 투영 노광 장치의 조명 시스템
US9274435B2 (en) Illumination system or projection objective of a microlithographic projection exposure apparatus
KR101074995B1 (ko) 마이크로리소그래피 투영 노광 장치의 광학계
US20110194093A1 (en) Polarization-influencing optical arrangement and an optical system of a microlithographic projection exposure apparatus
US8891060B2 (en) Optical system, in particular of a microlithographic projection exposure apparatus
US9182677B2 (en) Optical system of a microlithographic projection exposure apparatus
KR101980939B1 (ko) 마이크로리소그래픽 투영 노광 장치의 광학 시스템
US9588433B2 (en) Optical system, in particular of a microlithographic projection exposure apparatus
KR101597416B1 (ko) 마이크로리소그래피 투영 노광 장치용 광학 시스템
WO2014077404A1 (ja) 照明光学系及び照明方法、並びに露光方法及び装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 6