JP2007335487A5 - - Google Patents

Download PDF

Info

Publication number
JP2007335487A5
JP2007335487A5 JP2006163137A JP2006163137A JP2007335487A5 JP 2007335487 A5 JP2007335487 A5 JP 2007335487A5 JP 2006163137 A JP2006163137 A JP 2006163137A JP 2006163137 A JP2006163137 A JP 2006163137A JP 2007335487 A5 JP2007335487 A5 JP 2007335487A5
Authority
JP
Japan
Prior art keywords
electrically insulating
semiconductor element
semiconductor device
insulating substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006163137A
Other languages
Japanese (ja)
Other versions
JP2007335487A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006163137A priority Critical patent/JP2007335487A/en
Priority claimed from JP2006163137A external-priority patent/JP2007335487A/en
Publication of JP2007335487A publication Critical patent/JP2007335487A/en
Publication of JP2007335487A5 publication Critical patent/JP2007335487A5/ja
Pending legal-status Critical Current

Links

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof

本発明は、半導体素子を配線基板に実装した半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device in which a semiconductor element is mounted on a wiring board, and a manufacturing method thereof.

近年、電子機器には高性能化および小型化の要求が高まっており、これらの電子機器に組み込まれる電子部品の高密度実装化と機能ごとにモジュール化する動きが急速に進んでいる。   In recent years, demands for high performance and miniaturization of electronic devices have been increasing, and the movement of high density mounting of electronic components incorporated in these electronic devices and modularization for each function is rapidly progressing.

高密度実装の手法として、半田ボールを有する半導体素子を回路基板にフェースダウン実装する方法がある。   As a high-density mounting method, there is a method in which a semiconductor element having solder balls is mounted face-down on a circuit board.

フェースダウン実装においては、マトリクス状に配置された複数の半田ボールを有する半導体素子を、マトリクス状に配置された複数の接続パッドを有する配線基板上に、それぞれ対応する接続パッドに接合させてフェースダウン実装し、配線基板とこれに搭載された半導体素子の隙間に対してアンダーフィル剤が充填される。これは、アンダーフィル剤が充填されない状態では、配線基板および半導体素子における面内方向の熱膨張率の差に起因した応力・歪が、電気接続部に集中し、信頼性が低くなるからである。   In face-down mounting, a semiconductor element having a plurality of solder balls arranged in a matrix is bonded to a corresponding connection pad on a wiring board having a plurality of connection pads arranged in a matrix. The underfill agent is filled in the gap between the wiring board and the semiconductor element mounted thereon. This is because in a state where the underfill agent is not filled, stress and strain due to the difference in the thermal expansion coefficient in the in-plane direction between the wiring board and the semiconductor element are concentrated on the electrical connection portion, and the reliability is lowered. .

また、近年では、更なる小型化・高機能化の手法として、半導体素子や電子部品を基板に内蔵した三次元実装形態の部品内蔵基板も実現されている。半導体素子を収納する凹部をセラミック基板内に設け、三次元的に配置した構造のものも出願されている。   In recent years, as a technique for further miniaturization and higher functionality, a component-embedded substrate having a three-dimensional mounting form in which a semiconductor element and an electronic component are embedded in the substrate has been realized. An application has also been filed in which a concave portion for housing a semiconductor element is provided in a ceramic substrate and arranged three-dimensionally.

なお、この出願の発明に関する先行技術文献として、例えば特許文献1〜3が知られている。
特開2000−294519号公報 特開2005−347362号公報 特開平5−82710号公報
As prior art documents relating to the invention of this application, for example, Patent Documents 1 to 3 are known.
JP 2000-294519 A JP 2005-347362 A JP-A-5-82710

しかしながら、アンダーフィルを採用した従来の技術においては、マザー基板上にモジュール化された半導体装置を実装する際、リフロー工程で半導体素子を実装している半田が再溶融し半田どうしがショートしたり、アンダーフィルと半田の接着力が低下する。そのため、再溶融した半田が再度固体化した後にアンダーフィルとの間に隙間が生じ、水分を吸収する要因となる。水分を吸収してしまうと、再度熱が加わる工程がある場合に水分に起因して、電気的接続がとれなくなるなど信頼性が低下するという課題がある。   However, in the conventional technology adopting underfill, when mounting a semiconductor device modularized on a mother board, the solder mounting the semiconductor element in the reflow process is remelted and the solders are short-circuited, The adhesive force between the underfill and solder is reduced. For this reason, after the remelted solder is solidified again, a gap is formed between the remelted solder and the underfill, which causes moisture absorption. If moisture is absorbed, there is a problem that reliability is lowered such that electrical connection is lost due to moisture when there is a process in which heat is applied again.

本発明は、このような課題のもとで考えだされたものであって、熱に対し安定な電気的接続を実現し、モジュール化に適した半導体装置を提供することを目的とする。   The present invention has been conceived under such a problem, and an object of the present invention is to provide a semiconductor device that realizes a stable electrical connection against heat and is suitable for modularization.

上記目的を達成するために、本発明は、複数の外部端子を有した半導体素子と、第一の電気絶縁性基材と、前記第一の電気絶縁性基材に形成された接続パッドを有する配線パターンと、からなる配線基板と、前記半導体素子と前記配線基板を接着する第二の電気絶縁性基材で構成され、前記外部端子と前記接続パッド前記第二の電気絶縁性基材に前記外部端子の面方向の大きさよりも小さく形成された導電性ペーストからなるビアにより電気的に接続することを特徴とする半導体装置であり、半田を用いずに再溶融しないビアにより接続することにより信頼性の高い半導体装置を提供することができる。また、第二の電気絶縁性基材がアンダーフィルとして半導体素子と基板の間を接着することで信頼性が向上する。 In order to achieve the above object, the present invention includes a semiconductor element having a plurality of external terminals, a first electrically insulating substrate, and a connection pad formed on the first electrically insulating substrate. a wiring pattern, and the wiring board made of the is composed of a semiconductor element and a second electrically insulating substrate for bonding the said wiring board, said external terminal and the connection pad, the second electrical insulation A semiconductor device characterized in that it is electrically connected to a conductive substrate by a via made of a conductive paste formed smaller than the size of the external terminal in the surface direction , and vias that do not remelt without using solder By being connected, a highly reliable semiconductor device can be provided. Further, the reliability is improved by bonding the second electrically insulating base material between the semiconductor element and the substrate as an underfill.

以上のように、本発明の半導体装置は、電気絶縁性基材に形成されたビアを用いて半導体素子と配線基板の接続を行い、信頼性の高い半導体装置が得られるという効果を奏するものである。   As described above, the semiconductor device of the present invention has an effect of obtaining a highly reliable semiconductor device by connecting a semiconductor element and a wiring board using vias formed in an electrically insulating base material. is there.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1,3〜7に記載の発明について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the first and third aspects of the present invention will be described with reference to the drawings, using the first embodiment.

図1は、本実施の形態1における半導体装置の断面図である。図1において、半導体素子7は、外部端子8を有しており、配線基板4は、第一の電気絶縁性基材1と、第一の電気絶縁性基材1に形成された接続パッド2および配線パターン10と、両面の配線パターン間を電気的に接続するスルーホール3からなる。第二の電気絶縁性基材5は半導体素子7と配線基板4を接着し、外部端子8と接続パッド2を接続する第一のビア6を有している。   FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment. In FIG. 1, a semiconductor element 7 has an external terminal 8, and a wiring board 4 includes a first electrically insulating substrate 1 and connection pads 2 formed on the first electrically insulating substrate 1. And the wiring pattern 10 and the through hole 3 for electrically connecting the wiring patterns on both sides. The second electrically insulating substrate 5 has a first via 6 that bonds the semiconductor element 7 and the wiring substrate 4 and connects the external terminal 8 and the connection pad 2.

本発明において半導体素子7は外部端子8を再配線し、図7,8に示すようにマトリクス状に配置してもよい。マトリクス状に配置することで、ビアや配線パターンの形成が容易となる。また、外部端子を銅ポストとすることで、ビアとの接続信頼性を高めることができる。なお、図7の底面図に示すように複数の外部端子8は、例えば11行×11列すべて形成されているものでも、図8の底面図に示すような周辺部のみに形成されているものを用いてもよく、特に限定するものではない。また、外部端子に使用する金属は、金、銀、パラジウムなどの導電性の高い金属であってもよい。   In the present invention, the semiconductor elements 7 may be arranged in a matrix as shown in FIGS. By arranging in a matrix, vias and wiring patterns can be easily formed. Further, the reliability of connection with the via can be enhanced by using a copper post as the external terminal. As shown in the bottom view of FIG. 7, the plurality of external terminals 8 are formed only in the peripheral portion as shown in the bottom view of FIG. There is no particular limitation. The metal used for the external terminal may be a highly conductive metal such as gold, silver, or palladium.

さらに銅ポストからなる外部端子8が、エポキシ樹脂やポリイミド樹脂などからなる封止膜11の下面と平滑になるように設けられているものを用いることにより、第二の電気絶縁性基材5と隙間なく接着することができる。   Further, by using the external terminal 8 made of a copper post so as to be smooth with the lower surface of the sealing film 11 made of an epoxy resin, a polyimide resin or the like, the second electrically insulating substrate 5 and Can be bonded without gaps.

配線基板4は、ガラス織布にエポキシ樹脂を含浸させた基板(ガラス−エポキシ基板)、アラミド繊維不織布にエポキシ樹脂を含浸させた基板(アラミド−エポキシ基板)、紙にフェノール樹脂を含浸させた基板(紙−フェノール基板)、多孔質のフィルム基材に未硬化のエポキシ樹脂を空孔が残るように含浸させたフィルム基材を使ったフレキシブル基板、セラミックス基板、樹脂(例えば熱硬化性樹脂および/または熱可塑性樹脂)と無機フィラーとを含むコンポジット材料からなる基板など任意の基板から目的に応じて選択し使用できる。   The wiring board 4 includes a substrate in which a glass woven fabric is impregnated with an epoxy resin (glass-epoxy substrate), a substrate in which an aramid fiber nonwoven fabric is impregnated with an epoxy resin (aramid-epoxy substrate), and a substrate in which paper is impregnated with a phenol resin. (Paper-phenol substrate), a flexible substrate using a film substrate in which a porous film substrate is impregnated with an uncured epoxy resin so that pores remain, a ceramic substrate, a resin (for example, a thermosetting resin and / or Alternatively, any substrate such as a substrate made of a composite material containing a thermoplastic resin and an inorganic filler can be selected and used according to the purpose.

配線基板4にコンポジット材料を用いた場合、熱膨張差に起因する接続部の接続信頼性を損なうことなく半導体素子を実装することができる。   When a composite material is used for the wiring substrate 4, a semiconductor element can be mounted without impairing the connection reliability of the connection portion due to the difference in thermal expansion.

スルーホール3は、両面の配線パターン間を接続する機能を有し、ビアホール形成後、めっきすることによって形成できる。めっきは金、銀、銅またはニッケルなどを用いることができる。また、本実施の形態においてはスルーホールを例に挙げているが、インナービアによって層間接続を行ってもよい。たとえば、導電性の粒子と熱硬化性の樹脂からなる導電性ペーストを用いたインナービアでもよい。   The through hole 3 has a function of connecting the wiring patterns on both sides, and can be formed by plating after forming the via hole. For the plating, gold, silver, copper, nickel, or the like can be used. In the present embodiment, a through hole is taken as an example, but interlayer connection may be performed by an inner via. For example, an inner via using a conductive paste made of conductive particles and a thermosetting resin may be used.

配線基板4のスルーホール3と、第二の電気絶縁性基材に形成されている第一、第二のビア6,9のビアホールの形成は、レーザ加工によって形成する。レーザ加工の光源には、炭酸ガスレーザやYAGレーザ、エキシマレーザが用いられる。レーザ加工では、小径の貫通穴を短時間で形成することができ、生産性に優れた加工を実現できる。また、スルーホール3は、パンチ加工、ドリル加工を用いてもよく、ドリル加工やパンチング加工を用いる場合、汎用性のある既存の設備でビアホールの形成が可能である。   The through holes 3 of the wiring board 4 and the via holes of the first and second vias 6 and 9 formed in the second electrically insulating base material are formed by laser processing. A carbon dioxide laser, YAG laser, or excimer laser is used as a light source for laser processing. In laser processing, a small-diameter through hole can be formed in a short time, and processing with excellent productivity can be realized. The through hole 3 may be punched or drilled. When drilling or punching is used, a via hole can be formed with existing versatile equipment.

接続パッド2および配線パターン10は、電気伝導性を有する物質からなり、例えば金属箔や導電性樹脂組成物、金属板を加工したリードフレームを用いることができる。金属箔やリードフレームを用いることにより、エッチング等により微細な配線パターンの作成が容易となる。また、金属箔においては、離型フィルムを用いた転写等による配線パターンの形成も可能となる。特に銅箔はコストも安く、電気伝導性も高いため好ましい。また、これらの接続パッド2および配線パターン10は表面にメッキ処理をすることにより、耐食性や電気伝導性を向上させることができる。また、接続パッド2および配線パターン10の第二の電気絶縁性基材5との接触面を粗化することで、第二の電気絶縁性基材5との接着性を向上させることができる。粗化の処理は、反応性ガスを用いたドライエッチング加工、サンドブラストによる機械加工、および電解エッチング加工が挙げられる。   The connection pad 2 and the wiring pattern 10 are made of a material having electrical conductivity. For example, a metal foil, a conductive resin composition, or a lead frame processed from a metal plate can be used. By using a metal foil or a lead frame, a fine wiring pattern can be easily created by etching or the like. In addition, in the metal foil, a wiring pattern can be formed by transfer using a release film. In particular, copper foil is preferable because it is inexpensive and has high electrical conductivity. Further, the connection pad 2 and the wiring pattern 10 can be improved in corrosion resistance and electrical conductivity by plating the surface. Moreover, the adhesiveness with the 2nd electrical insulation base material 5 can be improved by roughening the contact surface with the 2nd electrical insulation base material 5 of the connection pad 2 and the wiring pattern 10. FIG. Examples of the roughening treatment include dry etching using a reactive gas, machining by sandblasting, and electrolytic etching.

第二の電気絶縁性基材5は、樹脂(例えば熱硬化性樹脂および/または熱可塑性樹脂)と無機フィラーとを含むコンポジット材料から形成されており、樹脂として熱硬化性樹脂を用いるのが好ましい。尚、無機フィラーを実質的に用いずに、熱硬化性樹脂のみから第二の電気絶縁性基材5を構成することも可能である。熱硬化性樹脂は、例えばエポキシ樹脂等であり、無機フィラーを添加する場合、例えばAl23、SiO2、MgO、BN、AlN等のフィラーを使用できる。無機フィラーの添加により、第二の電気絶縁性基材5の種々の物性を制御することができるので、無機フィラーを含むコンポジット材料から第二の電気絶縁性基材を形成することが好適である。 The second electrically insulating substrate 5 is formed of a composite material containing a resin (for example, a thermosetting resin and / or a thermoplastic resin) and an inorganic filler, and it is preferable to use a thermosetting resin as the resin. . In addition, it is also possible to comprise the 2nd electrically insulating base material 5 only from a thermosetting resin, without using an inorganic filler substantially. The thermosetting resin is, for example, an epoxy resin. When an inorganic filler is added, for example, a filler such as Al 2 O 3 , SiO 2 , MgO, BN, and AlN can be used. Since various physical properties of the second electrically insulating substrate 5 can be controlled by adding the inorganic filler, it is preferable to form the second electrically insulating substrate from the composite material containing the inorganic filler. .

第一のビア6は導電性の粒子と非導電性の樹脂とを含有した導電性ペーストを用いることができる。導電性の粒子としては、金、銀、銅又はニッケルなどを用いることができる。金、銀、銅又はニッケルは導電性が高いため好ましく、銅は導電性が高くマイグレーションも少ないため特に好ましい。銅を銀で被覆した導電性の粒子を用いても、マイグレーションの少なさと導電性の高さ、両方の特性を満たすことができる。非導電性の樹脂としては、熱硬化性樹脂を用いることが好ましく、たとえば、エポキシ樹脂、フェノール樹脂又はイソシアネート樹脂を用いることができる。エポキシ樹脂は、耐熱性が高いため特に好ましい。   For the first via 6, a conductive paste containing conductive particles and a non-conductive resin can be used. Gold, silver, copper, nickel, or the like can be used as the conductive particles. Gold, silver, copper, or nickel is preferable because of its high conductivity, and copper is particularly preferable because of its high conductivity and low migration. Even when conductive particles in which copper is coated with silver are used, the characteristics of both low migration and high conductivity can be satisfied. As the non-conductive resin, a thermosetting resin is preferably used, and for example, an epoxy resin, a phenol resin, or an isocyanate resin can be used. Epoxy resins are particularly preferred because of their high heat resistance.

また、第二の電気絶縁性基材に形成されている第一のビア6は、半導体素子7の外部端子8と接続するようにマトリクス状に形成されており、図3に示すように外部端子8よりも小さいことが好ましい。これにより、半導体素子7が押圧された時に導電性ペーストのはみ出しや広がりを抑えることができ、より信頼性を高めることができる。また、半導体素子7を実装する時、第一のビア6と外部端子8の位置ズレを防止し、半導体素子の外部端子8と電気絶縁性基材が接触することで、より強固に接着することができる。   Further, the first vias 6 formed in the second electrically insulating substrate are formed in a matrix so as to be connected to the external terminals 8 of the semiconductor element 7, and as shown in FIG. Preferably it is less than 8. Thereby, when the semiconductor element 7 is pressed, the protrusion and spread of the conductive paste can be suppressed, and the reliability can be further improved. In addition, when mounting the semiconductor element 7, the first via 6 and the external terminal 8 are prevented from being misaligned, and the external terminal 8 of the semiconductor element and the electrically insulating base material are in contact with each other to be more firmly bonded. Can do.

以上のように、本実施の形態によれば、半田を用いずに再溶融しないビアにより接続することができ、熱に対して安定した電気的接続を実現し、ショートや吸湿がしにくい信頼性の高い半導体装置を提供することができる。   As described above, according to the present embodiment, it is possible to connect via vias that do not remelt without using solder, realize stable electrical connection against heat, and are less likely to cause short circuit or moisture absorption. A semiconductor device with a high level can be provided.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項2に記載の発明について図面を参照ながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 2)
Hereinafter, the second aspect of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図2は、本実施の形態2における半導体装置の断面図である。図2において、半導体素子7は、外部端子8を有しており、配線基板4は、第一の電気絶縁性基材1と、第一の電気絶縁性基材1に形成された接続パッド2および配線パターン10と、両面の配線パターン間を電気的に接続するスルーホール3からなる。第二の電気絶縁性基材5は半導体素子7を内蔵し、複数の配線基板4を厚さ方向に積層している。第二の電気絶縁性基材5には、外部端子8と接続パッド2を接続する第一のビア6と、厚さ方向に積層された配線基板4の対向するパターンを電気的に接続する第二のビア9を有している。   FIG. 2 is a cross-sectional view of the semiconductor device according to the second embodiment. In FIG. 2, the semiconductor element 7 has an external terminal 8, and the wiring board 4 includes a first electrically insulating substrate 1 and connection pads 2 formed on the first electrically insulating substrate 1. And the wiring pattern 10 and the through hole 3 for electrically connecting the wiring patterns on both sides. The second electrically insulating substrate 5 contains a semiconductor element 7, and a plurality of wiring boards 4 are laminated in the thickness direction. The second electrically insulating base 5 is electrically connected to the first via 6 for connecting the external terminal 8 and the connection pad 2 and the opposing pattern of the wiring board 4 laminated in the thickness direction. It has two vias 9.

本発明において、第一の電気絶縁性基材1は、第二の電気絶縁性基材5と同様の樹脂と無機フィラーとを含むコンポジット材料を用いることもできる。これにより、熱膨張差に起因する接続部の接続信頼性を損なうことなく半導体素子を内蔵することができる。また、製造コストも抑えることができる。   In the present invention, the first electrically insulating substrate 1 may be a composite material containing the same resin and inorganic filler as the second electrically insulating substrate 5. Thereby, a semiconductor element can be built in without impairing the connection reliability of the connection part resulting from a thermal expansion difference. Further, the manufacturing cost can be suppressed.

図2において、第二のビア9は、第一のビア6と同様のものを用いることもできる。また、図2において、インナービアの例を示しているが、第二のビア9においては、スルーホールにより層間接続を行ってもよい。   In FIG. 2, the second via 9 can be the same as the first via 6. Further, in FIG. 2, an example of the inner via is shown, but in the second via 9, interlayer connection may be performed by a through hole.

以上のように、本実施の形態によれば、半導体素子の周囲を同じ熱膨張係数の電気絶縁性基材で囲むことで、熱膨張係数に起因する接続部の接続信頼性を損なうことなく半導体素子を内蔵することができ、高密度な半導体装置をモジュールとして提供できる。   As described above, according to the present embodiment, the semiconductor element is surrounded by the electrically insulating base material having the same thermal expansion coefficient, so that the connection reliability of the connection portion due to the thermal expansion coefficient is not impaired. An element can be incorporated and a high-density semiconductor device can be provided as a module.

(実施の形態3)
以下、実施の形態3を用いて、本発明の特に請求項8に記載の発明について図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 3)
The third embodiment of the present invention will be described below with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図4(a)〜(c)は、本実施の形態3における半導体装置の製造工程を示す断面図である。   4A to 4C are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the third embodiment.

図4(a)は、第一のビア6が形成された第二の電気絶縁性基材5を示している。次に、図4(b)に示すように、第一のビア6と接続パッド2が接触するように第二の電気絶縁性基材5を配線基板4に積層する。   FIG. 4A shows the second electrically insulating substrate 5 on which the first via 6 is formed. Next, as shown in FIG. 4B, the second electrically insulating base material 5 is laminated on the wiring board 4 so that the first via 6 and the connection pad 2 are in contact with each other.

次に図4(c)に示すように、外部端子8とビア6が接触するように半導体素子7を第二の電気絶縁性基材5に実装する。この時、ビアをアライメントマークとして使用することもできる。その後、外部から熱を加えて第二の電気絶縁性基材5と第一のビア6を硬化する。この時、半導体素子7の上面からヒートツールにより加熱・加圧により硬化を行っても良い。また、オーブン、真空ラミネータ、真空熱プレスを用いて硬化を行ってもよい。   Next, as shown in FIG. 4C, the semiconductor element 7 is mounted on the second electrically insulating substrate 5 so that the external terminals 8 and the vias 6 are in contact with each other. At this time, a via can also be used as an alignment mark. Thereafter, heat is applied from the outside to cure the second electrically insulating substrate 5 and the first via 6. At this time, curing may be performed from the upper surface of the semiconductor element 7 by heating and pressing with a heat tool. Further, curing may be performed using an oven, a vacuum laminator, or a vacuum hot press.

硬化する前には電気的導通検査を行ってもよい。これにより、半導体素子7や第一のビア6が不良であった場合に、容易にリペアすることができる。   An electrical continuity test may be performed before curing. Thereby, when the semiconductor element 7 or the first via 6 is defective, it can be easily repaired.

以上のように、本実施の形態によれば、半田を用いずに再溶融しないビアにより接続することができ、熱に対して安定した電気的接続を実現し、ショートや吸湿がしにくい信頼性の高い半導体装置を提供することができる。   As described above, according to the present embodiment, it is possible to connect via vias that do not remelt without using solder, realize stable electrical connection against heat, and are less likely to cause short circuit or moisture absorption. A semiconductor device with a high level can be provided.

(実施の形態4)
以下、実施の形態4を用いて、本発明の特に請求項9に記載の発明について図面を参照しながら説明する。なお、実施の形態1と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 4)
Hereinafter, the fourth aspect of the present invention will be described with reference to the drawings. In addition, about the structure same as Embodiment 1, the same number is provided and the description is abbreviate | omitted.

図5(a)〜(g)は、本実施の形態4における半導体装置の製造工程を示す断面図である。   5A to 5G are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the fourth embodiment.

図5(a)は、第一のビア6が形成された第二の電気絶縁性基材5を示している。次に、図5(b)に示すように、第一のビア6と接続パッド2が接触するように第二の電気絶縁性基材5を配線基板4に積層する。   FIG. 5A shows the second electrically insulating substrate 5 on which the first via 6 is formed. Next, as shown in FIG. 5B, the second electrically insulating base material 5 is laminated on the wiring board 4 so that the first via 6 and the connection pad 2 are in contact with each other.

次に、図5(c)に示すように、外部端子8と第一のビア6が接触するように半導体素子7を第二の電気絶縁性基材5に実装する。   Next, as shown in FIG. 5C, the semiconductor element 7 is mounted on the second electrically insulating substrate 5 so that the external terminal 8 and the first via 6 are in contact with each other.

次に、図5(d)に示すように、別の第二の電気絶縁性基材13にキャビティ12を形成する。   Next, as shown in FIG. 5D, the cavity 12 is formed in another second electrically insulating base material 13.

次に、図5(e)に示すように、キャビティ12に半導体素子7を収納するように第二の電気絶縁性基材13を積層する。   Next, as shown in FIG. 5E, a second electrically insulating base material 13 is laminated so that the semiconductor element 7 is accommodated in the cavity 12.

次に、図5(f)に示すように、キャビティ12が形成された第二の電気絶縁性基材13上にさらに別の第二の電気絶縁性基材14及び配線基板15を積層する。   Next, as shown in FIG. 5F, another second electrically insulating base material 14 and a wiring board 15 are laminated on the second electrically insulating base material 13 in which the cavity 12 is formed.

次に、図5(g)に示すように、第二の電気絶縁性基材5,13,14と第一、第二のビア6,9を硬化し、半導体素子7を埋設する。その後、外部から熱を加えて第二の電気絶縁性基材5,13,14と第一、第二のビア6,9を硬化する。この時、半導体素子の上面からヒートツールにより加熱・加圧により硬化を行っても良い。また、オーブン、真空ラミネータ、真空熱プレスを用いて硬化を行ってもよい。   Next, as shown in FIG. 5G, the second electrically insulating base materials 5, 13, 14 and the first and second vias 6, 9 are cured, and the semiconductor element 7 is embedded. Thereafter, heat is applied from the outside to cure the second electrically insulating base materials 5, 13, 14 and the first and second vias 6, 9. At this time, curing may be performed by heating and pressing with a heat tool from the upper surface of the semiconductor element. Further, curing may be performed using an oven, a vacuum laminator, or a vacuum hot press.

キャビティ12の形成は、たとえば打ち抜き加工やパンチ加工、レーザ加工によって行う。打ち抜き加工やパンチング加工の場合、汎用性のある既存の設備でキャビティの形成が可能である。   The cavity 12 is formed by, for example, punching, punching, or laser processing. In the case of punching or punching, a cavity can be formed with existing versatile equipment.

以上のように、本実施の形態によれば、半導体素子の周囲を同じ熱膨張係数の電気絶縁性基材で囲むことで、熱膨張係数に起因する接続部の接続信頼性を損なうことなく半導体素子を内蔵することができ、高密度な半導体装置をモジュールとして提供できる。   As described above, according to the present embodiment, the semiconductor element is surrounded by the electrically insulating base material having the same thermal expansion coefficient, so that the connection reliability of the connection portion due to the thermal expansion coefficient is not impaired. An element can be incorporated and a high-density semiconductor device can be provided as a module.

(実施の形態5)
以下、実施の形態5を用いて、本発明の特に請求項10に記載の発明について図面を参照しながら説明する。なお、実施の形態1および4と同一の構造については、同一番号を付与してその説明を省略する。
(Embodiment 5)
The fifth embodiment of the present invention will be described below with reference to the drawings. In addition, about the same structure as Embodiment 1 and 4, the same number is provided and the description is abbreviate | omitted.

図6(a)〜(g)は、本実施の形態5における半導体装置の製造工程を示す断面図である。   6A to 6G are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the fifth embodiment.

図6(a)は、第一のビア6が形成された第二の電気絶縁性基材5を示している。次に、図6(b)に示すように、第一のビア6と接続パッド2が接触するように第二の電気絶縁性基材5を配線基板4に積層する。   FIG. 6A shows the second electrically insulating substrate 5 on which the first via 6 is formed. Next, as shown in FIG. 6B, the second electrically insulating base material 5 is laminated on the wiring board 4 so that the first via 6 and the connection pad 2 are in contact with each other.

次に、図6(c)に示すように、別の第二の電気絶縁性基材13にキャビティ12を形成する。   Next, as shown in FIG. 6C, the cavity 12 is formed in another second electrically insulating substrate 13.

次に、図6(d)に示すように、配線基板4に積層された第二の電気絶縁性基材5とキャビティ12が形成された第二の電気絶縁性基材13を積層する。   Next, as shown in FIG. 6D, the second electrically insulating substrate 5 laminated on the wiring board 4 and the second electrically insulating substrate 13 formed with the cavity 12 are laminated.

次に、図6(e)に示すように、キャビティ12に半導体素子7を収納し、外部端子8と第一のビア6が接触するように半導体素子7を第二の電気絶縁性基材5に実装する。   Next, as shown in FIG. 6 (e), the semiconductor element 7 is accommodated in the cavity 12, and the semiconductor element 7 is placed in the second electrically insulating base 5 so that the external terminal 8 and the first via 6 are in contact with each other. To implement.

次に、図6(f)に示すように、キャビティ12が形成された第二の電気絶縁性基材13上にさらに別の第二の電気絶縁性基材14及び配線基板15を積層する。   Next, as shown in FIG. 6F, another second electrically insulating base material 14 and wiring board 15 are laminated on the second electrically insulating base material 13 in which the cavity 12 is formed.

次に、図6(g)に示すように、第二の電気絶縁性基材5,13,14と第一、第二のビア6,9を硬化し、半導体素子7を埋設する。その後、外部から熱を加えて第二の電気絶縁性基材5,13,14と第一、第二のビア6,9を硬化する。この時、半導体素子の上面からヒートツールにより加熱・加圧により硬化を行っても良い。また、オーブン、真空ラミネータ、真空熱プレスを用いて硬化を行ってもよい。   Next, as shown in FIG. 6G, the second electrically insulating base materials 5, 13, 14 and the first and second vias 6, 9 are cured, and the semiconductor element 7 is embedded. Thereafter, heat is applied from the outside to cure the second electrically insulating base materials 5, 13, 14 and the first and second vias 6, 9. At this time, curing may be performed by heating and pressing with a heat tool from the upper surface of the semiconductor element. Further, curing may be performed using an oven, a vacuum laminator, or a vacuum hot press.

以上のように、本実施の形態によれば、半導体素子の周囲を同じ熱膨張係数の電気絶縁性基材で囲むことで、熱膨張係数に起因する接続部の接続信頼性を損なうことなく半導体素子を内蔵することができ、高密度な半導体装置をモジュールとして提供できる。   As described above, according to the present embodiment, the semiconductor element is surrounded by the electrically insulating base material having the same thermal expansion coefficient, so that the connection reliability of the connection portion due to the thermal expansion coefficient is not impaired. An element can be incorporated and a high-density semiconductor device can be provided as a module.

本発明の半導体装置は、電気絶縁性基材に形成されたビアを用いて半導体素子と配線基板の接続を行うことで、半田を用いない半導体装置を提供することができ、熱に対して安定な電気的接続を実現する信頼性の高い半導体装置として有用である。   The semiconductor device of the present invention can provide a semiconductor device that does not use solder by connecting a semiconductor element and a wiring board using a via formed in an electrically insulating base material, and is stable against heat. It is useful as a highly reliable semiconductor device that realizes an electrical connection.

本発明の実施の形態1における半導体装置を示す断面図Sectional drawing which shows the semiconductor device in Embodiment 1 of this invention 本発明の実施の形態2における半導体装置を示す断面図Sectional drawing which shows the semiconductor device in Embodiment 2 of this invention 本発明の外部端子とビアの接続部の一例を示す拡大断面図The expanded sectional view which shows an example of the connection part of the external terminal and via | veer of this invention 本発明の実施の形態3における半導体装置の製造方法を示す工程断面図Sectional drawing which shows the manufacturing method of the semiconductor device in Embodiment 3 of this invention 本発明の実施の形態4における半導体装置の製造方法を示す工程断面図Sectional drawing which shows the manufacturing method of the semiconductor device in Embodiment 4 of this invention 本発明の実施の形態5における半導体装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the semiconductor device in Embodiment 5 of this invention 本発明の外部端子の配置の一例を示す平面図The top view which shows an example of arrangement | positioning of the external terminal of this invention 本発明の外部端子の配置の一例を示す平面図The top view which shows an example of arrangement | positioning of the external terminal of this invention

1 第一の電気絶縁性基材
2 接続パッド
3 スルーホール
4,15 配線基板
5,13,14 第二の電気絶縁性基材
6 第一のビア
7 半導体素子
8 外部端子
9 第二のビア
10 配線パターン
11 封止膜
12 キャビティ
DESCRIPTION OF SYMBOLS 1 1st electric insulation base material 2 Connection pad 3 Through hole 4,15 Wiring board 5,13,14 2nd electric insulation base material 6 1st via 7 Semiconductor element 8 External terminal 9 2nd via 10 Wiring pattern 11 Sealing film 12 Cavity

Claims (8)

複数の外部端子を有した半導体素子と、
第一の電気絶縁性基材と、前記第一の電気絶縁性基材に形成された接続パッドを有する配線パターンと、からなる配線基板と、
前記半導体素子と前記配線基板を接着する第二の電気絶縁性基材で構成され、
前記外部端子と前記接続パッド前記第二の電気絶縁性基材に前記外部端子の面方向の大きさよりも小さく形成された導電性ペーストからなるビアにより電気的に接続することを特徴とする半導体装置。
A semiconductor element having a plurality of external terminals;
A wiring pattern having a first electrically insulating substrate, the connection pads formed on the first electrically insulating substrate, a wiring substrate made of,
Is composed of a second electrically insulating substrate for bonding the said wiring board and said semiconductor element,
And wherein the external terminal and the connection pads, for connecting the second by the electrical insulating substrate external terminals of the plane direction consisting reduced form conductive paste than the size vias electrically Semiconductor device.
複数の外部端子を有した半導体素子と、
第一の電気絶縁性基材と、前記第一の電気絶縁性基材に形成された接続パッドを有する配線パターンと、からなる複数の配線基板と、
前記半導体素子を内蔵する第二の電気絶縁性基材とで構成され
記外部端子と前記接続パッド、前記第二の電気絶縁性基材に前記外部端子の面方向の大きさよりも小さく形成された導電性ペーストからなるビアにより電気的に接続することを特徴とする半導体装置。
A semiconductor element having a plurality of external terminals;
A wiring pattern having a first electrically insulating substrate, the connection pads formed on the first electrically insulating substrate, a plurality of wiring substrate made of,
And a second electrically insulating substrate you a built-in semiconductor element, in the configuration,
Before and said connecting pads and Kigaibu terminal, said second electrically insulating connection by the the substrate external terminal face direction consisting reduced form conductive paste than the size vias electrically to Turkey A semiconductor device characterized by the above.
前記外部端子がマトリクス状である請求項1,2のいずれか一つに記載の半導体装置。 The semiconductor device according to any one of claims 1, 2 wherein the external terminal is a matrix. 前記外部端子が銅ポストであることを特徴とする請求項1,2のいずれか一つに記載の半導体装置。 The semiconductor device according to claim 1 , wherein the external terminal is a copper post. 第二の電気絶縁性基材は、無機フィラーと熱硬化性樹脂を含む混合物である請求項1,2のいずれか一つに記載の半導体装置。 The second electrically insulating substrate, a semiconductor device according to claim 1 which is a mixture containing an inorganic filler and a thermosetting resin. 導電性ペーストは、金、銀、銅またはニッケルからなる導電性の粒子と、エポキシ樹脂、フェノール樹脂又はイソシアネート樹脂からなる樹脂と、からなる請求項1、2のいずれか一つに記載の半導体装置。The semiconductor device according to claim 1, wherein the conductive paste includes conductive particles made of gold, silver, copper, or nickel and a resin made of an epoxy resin, a phenol resin, or an isocyanate resin. . 第二の電気絶縁性基材に貫通孔を半導体素子の外部端子より小さい寸法で加工し、前記貫通孔内に導電性ペーストからなるビアを形成する工程と
接続パッドを有する配線パターンのある配線基板の上に、前記第二の電気絶縁性素材を、前記ビアと前記接続パッドが接触するように積層する工程と、
前記外部端子と前記ビアが接触するように、前記半導体素子を前記第二の電気絶縁性素材の上に実装する工程と、
前記第二の電気絶縁性素材と前記ビアを硬化する工程と、
を備えた半導体装置の製造方法。
A step of through-holes in the second electrically insulating substrate is processed in smaller dimensions than the external terminals of the semiconductor element, forming a via made of a conductive paste in the through-hole,
On the wiring board with a wiring pattern having a connection pad, said second electrically insulating material, a step of the product layer to said via and said connection pads are in contact,
Wherein as the external terminal and the via is in contact, a step of mounting said semiconductor element on said second electrically insulating material,
And curing the said and said second electrically insulating material via,
A method for manufacturing a semiconductor device comprising:
第二の電気絶縁性基材に貫通孔を半導体素子の外部端子より小さい寸法で加工し、前記貫通孔内に導電性ペーストからなるビアを形成する工程と、
接続パッドを有する配線パターンのある配線基板の上に、前記第二の電気絶縁性素材を、前記ビアと前記接続パッドが接触するように積層する工程と、
前記外部端子と前記ビアが接触するように、前記半導体素子を前記第二の電気絶縁性素材の上に実装する工程と、
前記半導体素子を、キャビティが形成された別の第二の電気絶縁性素材の前記キャビティに収納する工程と、
前記第二の電気絶縁性素材と前記ビアを硬化する工程と、
を備えた半導体装置の製造方法。
Processing through holes in the second electrically insulating substrate with dimensions smaller than external terminals of the semiconductor element, and forming vias made of conductive paste in the through holes ; and
On the wiring board with a wiring pattern having a connection pad, said second electrically insulating material, a step of the product layer to said via and said connection pads are in contact,
Wherein as the external terminal and the via is in contact, a step of mounting said semiconductor element on said second electrically insulating material,
Storing the semiconductor element in the cavity of another second electrically insulating material having a cavity formed therein;
And as factories to cure and said and said second electrically insulating material via,
A method for manufacturing a semiconductor device comprising:
JP2006163137A 2006-06-13 2006-06-13 Semiconductor device and its manufacturing method Pending JP2007335487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163137A JP2007335487A (en) 2006-06-13 2006-06-13 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163137A JP2007335487A (en) 2006-06-13 2006-06-13 Semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007335487A JP2007335487A (en) 2007-12-27
JP2007335487A5 true JP2007335487A5 (en) 2009-07-09

Family

ID=38934700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163137A Pending JP2007335487A (en) 2006-06-13 2006-06-13 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007335487A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649771B2 (en) * 2008-04-17 2015-01-07 大日本印刷株式会社 Component built-in wiring board
KR101551177B1 (en) 2009-04-21 2015-09-09 엘지이노텍 주식회사 Imbedded printed circuit board within wire redistribution layer and Method of fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563637B2 (en) * 1998-06-04 2004-09-08 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
JP4004196B2 (en) * 1999-11-16 2007-11-07 イビデン株式会社 Semiconductor chip

Similar Documents

Publication Publication Date Title
JP5093353B2 (en) Manufacturing method of component built-in module and component built-in module
WO2010007704A1 (en) Flex-rigid wiring board and electronic device
US20110279996A1 (en) Semiconductor assembly and multilayer wiring board
JP2008277750A (en) Method of manufacturing printed circuit board having embedded electronic component
JPWO2010013366A1 (en) Flex-rigid wiring board and manufacturing method thereof
JP2010141098A (en) Substrate with built-in electronic components and method of manufacturing the same
JP2007149870A (en) Circuit board and manufacturing method therefor
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
JP5462450B2 (en) Component built-in printed wiring board and method for manufacturing component built-in printed wiring board
JP2010157664A (en) Circuit substrate with electric and electronic component incorporated therein, and method of manufacturing the same
JP4694007B2 (en) Manufacturing method of three-dimensional mounting package
JP2007194516A (en) Compound wiring board and its manufacturing method, mounted shape of electronic component, and manufacturing method
JP2007335487A5 (en)
JP2007335487A (en) Semiconductor device and its manufacturing method
KR100895241B1 (en) Method for manufacturing substrate for package
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP5176500B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2002246745A (en) Three-dimensional mounting package and its manufacturing method, and adhesive therefor
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
KR20070025496A (en) Manufacturing method of printed circuit board
JP2007115952A (en) Interposer substrate and manufacturing method thereof
JP2008135483A (en) Substrate incorporating electronic component and its manufacturing method
JP2000277917A (en) Multilayer printed wiring board and manufacture of the same
KR100797693B1 (en) Fabricating Method of Embedded Chip Printed Circuit Board