JP2007331995A - 窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体 - Google Patents

窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体 Download PDF

Info

Publication number
JP2007331995A
JP2007331995A JP2006167473A JP2006167473A JP2007331995A JP 2007331995 A JP2007331995 A JP 2007331995A JP 2006167473 A JP2006167473 A JP 2006167473A JP 2006167473 A JP2006167473 A JP 2006167473A JP 2007331995 A JP2007331995 A JP 2007331995A
Authority
JP
Japan
Prior art keywords
aluminum
containing material
nitride
aluminum nitride
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006167473A
Other languages
English (en)
Inventor
Yoshihiro Kiyomiya
義博 清宮
Kanji Otsuka
寛治 大塚
Shinya Hashimoto
眞也 橋本
Yoshiyuki Nakada
芳幸 中田
Shigenari Shinoda
重成 信田
Toshihisa Yamaguchi
俊久 山口
Toshiaki Sakurai
俊明 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2006167473A priority Critical patent/JP2007331995A/ja
Publication of JP2007331995A publication Critical patent/JP2007331995A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】従来と比較して製造コストが低い窒化アルミニウム含有物の製造方法を提供する。
【解決手段】窒化ホウ素の粉末又は粒子20の上にアルミニウム片21を配置する工程と、窒化ホウ素20及びアルミニウム片21を5気圧以上30気圧以下の窒素雰囲気下で900℃以上1300℃以下に加熱して前記アルミニウム片を溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する第1熱処理工程と、前記窒化アルミニウム含有物を冷却する工程と、前記窒化アルミニウム含有物を、5気圧以上30気圧以下の窒素雰囲気下で900℃以上1300℃以下に再加熱することにより、前記窒化アルミニウム含有物の窒化アルミニウム含有率を高くする工程とを具備する。
【選択図】図1

Description

本発明は、窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体に関する。
窒化アルミニウムは、熱伝導率が高く、熱膨張係数が低く、化学的にも安定である等、様々な優れた性質を有する材料である。このため、近年、半導体デバイス等やエンジン部材等等、様々な分野へ応用されることが期待されている。
従来、窒化アルミニウムを製造する方法としては、非常に高い気圧(例えば100気圧)の窒素雰囲気中でアルミニウムを高温(例えば1600°)に加熱する方法がある。この方法によれば、窒化アルミニウムの粉末を得ることができる。非特許文献1には、窒化アルミニウムの製造に関する研究が開示されている。
小橋眞、斎木健蔵ら、日本軽金属学会第104回講演概要集(2003)2.
上記した方法では、窒化アルミニウムの粉末しか得ることができない。このため、塊状の窒化アルミニウム含有物を得るためには、窒化アルミニウムの粉末にバインダーを添加して所定の形状にした後、焼成する必要があった。このため、製造コストが高かった。
本発明は上記のような事情を考慮してなされたものであり、その目的は、従来と比較して製造コストが低い窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及びこの窒化アルミニウム含有物を用いた半導体デバイスの放熱体を提供することにある。
上記課題を解決するため、本発明に係る窒化アルミニウム含有物の製造方法は、窒化ホウ素の粉末又は粒子の上にアルミニウム片を配置する工程と、
前記窒化ホウ素及びアルミニウム片を5気圧以上30気圧以下の窒素雰囲気下で900℃以上1300℃以下に加熱して前記アルミニウム片を溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する第1熱処理工程と、
前記窒化アルミニウム含有物を冷却する工程と、
前記窒化アルミニウム含有物を、5気圧以上30気圧以下の窒素雰囲気下で900℃以上1300℃以下に再加熱することにより、前記窒化アルミニウム含有物の窒化アルミニウム含有率を高くする工程とを具備する。
本発明に係る他の窒化アルミニウム含有物の製造方法は、アルミニウム片の一面に窒化ホウ素の粉末又は粒子を付着させる工程と、
窒化ホウ素の粉末又は粒子の上にアルミニウム片を、前記一面を下方に向けて配置する工程と、
前記窒化ホウ素及びアルミニウム片を加圧された窒素雰囲気下で加熱して前記アルミニウム片を溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する工程とを具備する。
本発明に係る他の窒化アルミニウム含有物の製造方法は、複数のアルミニウム片それぞれの一面に窒化ホウ素の粉末又は粒子を押圧することにより、前記複数のアルミニウム片の一面それぞれに窒化ホウ素の粉末又は粒子を付着させる工程と、
前記複数のアルミニウム片を、前記一面を下方に向けた状態で、それぞれの間に窒化ホウ素の粉末又は粒子を挟みつつ積層し、かつ最も下に位置する前記アルミニウム片を窒化ホウ素の粉末又は粒子の上に配置する工程と、
前記積層した複数のアルミニウム片を加圧された窒素雰囲気下で加熱して前記複数のアルミニウム片それぞれを溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する工程とを具備する。
上記した各窒化アルミニウム含有物の製造方法において、前記アルミニウム片及び前記窒化ホウ素は容器内に配置された状態で加熱される。この場合、窒化ホウ素の粉末又は粒子の上に前記アルミニウム片を配置する工程において、前記容器の周辺部における前記窒化ホウ素の粉末又は粒子の配置密度を、前記容器の中心部における前記窒化ホウ素の粉末又は粒子の配置密度より高くしてもよい。また、前記窒化アルミニウム含有物を生成する工程において、前記容器の周辺部の温度を、前記容器の中心部の温度より50℃以上300℃以下高くしてもよい。さらに、前記窒化アルミニウム含有物を生成する工程において、前記アルミニウム片及び前記窒化ホウ素を加熱する加熱手段の前記容器に対する相対位置を、前記容器の周囲で上下に往復移動させてもよい。
本発明に係る窒化アルミニウム含有物は、塊状の窒化アルミニウムの中にアルミニウムが島状に分散している。この窒化アルミニウム含有物において、前記アルミニウムの分散密度が傾斜していてもよい。前記アルミニウムは、少なくとも一部にホウ素が固溶し、又はホウ素と金属間化合物を形成している。この金属間化合物の含有率は、例えばX線回折では回折ピークが検出されないが透過型電子顕微鏡を用いた電子線回折では検出される程度であっても良い。また、前記窒化アルミニウムはネットワーク状に成長しており、該ネットワークの相互間に前記アルミニウムが島状に分散していてもよい。
本発明に係る半導体デバイスの放熱体は、塊状の窒化アルミニウムの中にアルミニウムが島状に分散している窒化アルミニウム含有物からなる。
本発明によれば、窒化アルミニウム含有物、及びこの窒化アルミニウム含有物からなる半導体デバイスの製造コストを、従来と比較して低くすることができる。
以下、図面を参照して本発明の実施形態について説明する。図1は、第1の実施形態に係る窒化アルミニウム含有物の製造方法に用いられる反応装置の構成図である。この反応装置は、反応チャンバー10を有している。反応チャンバー10には排気口(図示せず)及びガス導入口11が設けられている。反応チャンバー10内には、内部の空洞部が円柱形状の容器12を加熱するためのヒータ13(例えばコイル状のグラファイトヒータ又は誘導加熱ヒータ)が設けられている。容器12には熱電対が取り付けられているため、モニター線14を通じて容器12の温度を反応チャンバー10の外部でモニターすることができる。
次に、上記の反応装置を用いた窒化アルミニウム含有物の製造方法について説明する。
まず、アルミニウム片21(例えば容器12の内径と略同一径の直径を有する円板状のアルミニウム片)と粉末状又は粒子状の窒化物20を容器12に投入する。アルミニウム片21は一つであっても良いし、複数であっても良い。窒化物20は、例えば六方晶の窒化ホウ素であるが、他の窒化物(例えば窒化マグネシウム(Mg)又は窒化カルシウム(Ca))であってもよい。また、窒化ホウ素、窒化マグネシウム及び窒化カルシウムからなる群から選ばれた2種以上の混合物であってもよい。このとき、窒化物20がアルミニウム片21の下に位置するようにする。窒化物20は前面に略均一に分散されるのが好ましい。アルミニウムに対する窒化物20の重量比は0.1以上1以下であるのが好ましい。
またアルミニウム片21と窒化物20を容器12に投入する前に、アルミニウム片21の一面に粉末状又は粒子状の窒化物20を押圧するなどにより、該一面の略全面に窒化物20を略均等に付着させ、この一面を下方に向けるのが好ましい。
また、容器12の内部で、複数のアルミニウム片21を、相互間に窒化ホウ素の粉末又は粒子を挟みつつ積層し、かつ最も下に位置するアルミニウム片21を窒化ホウ素の粉末又は粒子の上に配置してもよい。この場合においても、アルミニウム片21の一面に粉末状又は粒子状の窒化物20を略均等に付着させ、この一面を下方に向けるのが好ましい。
次に、上記した排気口から反応チャンバー10内部を排気し、その後ガス導入口11から窒素ガスを導入する。これにより、反応チャンバー10の内部は窒素雰囲気になる。反応チャンバー10内部における窒素ガスの圧力は、加圧雰囲気が好ましく、例えば5気圧以上30気圧以下(特に好ましくは9気圧以上11気圧以下)である。
次に、ヒータ13で容器12を加熱し、容器12の内部をアルミニウムの融点(660℃)以上、好ましくは900℃以上1300℃以下(特に好ましくは1010℃以上1015℃以下)まで加熱する。これにより、容器12内のアルミニウム片21は溶融し、溶融したアルミニウム片21と固相の窒化物20との間で固液二相反応が生じる、窒化アルミニウム含有物及びスラグが形成される(以下、第1熱処理と記載)。
詳細には、窒化物のうち窒素以外の元素(例えばホウ素、マグネシウム、又はカルシウム)は、アルミニウムに固溶し、又はアルミニウムと金属間化合物(例えばAlB12)を形成する。そして、窒化物中の窒素がアルミニウムと反応して窒化アルミニウムの核が生成する。さらに、雰囲気中の窒素とアルミニウムが反応することにより窒化アルミニウムの核が成長する。なお、一般的に窒化アルミニウムとアルミニウムの濡れ性は悪いが、本実施形態においては、生成メカニズムが上記した通りであるため、生成過程及び生成した窒化アルミニウム含有物において窒化アルミニウムとアルミニウムの濡れ性は良い。
また、容器12の内部で窒化物20をアルミニウム片21の下に位置させた場合、溶融したアルミニウム片21が粉末状の窒化物20間に浸透し、また浮力により窒化物20が溶融アルミニウム中を浮遊する。このため、窒化アルミニウムの生成反応が効率よく進行する。また、窒化アルミニウムはアルミニウムより比重が大きいため、生成した窒化アルミニウムが沈殿し、その上方でアルミニウムの窒化反応が進行する状態になる。アルミニウム片21の一面に窒化物20を略均等に付着させた場合、上記した固液二相反応の成長核が非常に多くかつ均等に生成するため、窒化アルミニウムが略均等に生成する。
この窒化反応が進行する速度は、処理温度及び雰囲気窒素の圧力によって制御することができる。成長が十分に進むと、成長した核同士が接合することにより、ネットワーク状(パーコレーション構造)の窒化アルミニウムが形成されるが、第1熱処理ではそこまで成長させないのが好ましい。例えば窒化アルミニウム含有物中のアルミニウム含有率が40%以上70以下となるように、反応時間を制御する。このようにすると、得られた窒化アルミニウム含有物の加工性が高くなる。
X線回折によれば、窒化物20のうち窒素以外のもの(例えばホウ素、マグネシウム、又はカルシウム)は、窒化アルミニウム含有物の中にはほとんど存在しない。窒化物20のうち窒素以外のもの(例えばホウ素、マグネシウム、又はカルシウム)は、アルミニウムに固溶しているもの又はアルミニウムと金属間化合物を形成しているものを除いて、上記したスラグに含まれると考えられる。
次に、必要に応じて、得られた窒化アルミニウム含有物を冷却した後、更に窒化アルミニウム含有物を、窒素ガス雰囲気下で再熱処理(以下、第2熱処理と記載)する。窒化アルミニウム含有物の冷却は、例えば炉冷で行う。第2熱処理は、例えば5気圧以上30気圧以下の窒素ガス雰囲気下(好ましくは15気圧以上25気圧以下)で、900℃以上1300℃以下の温度(好ましくは1150℃以上1250℃以下)で行う。この熱処理は、例えば第1熱処理で用いた反応装置を用いて行うことができる。第2熱処理を行うことにより、アルミニウム中に固溶又はアルミニウムと金属間化合物を形成しているホウ素が触媒として機能することによりアルミニウムの窒化反応が進行し、窒化アルミニウム含有物におけるアルミニウムの含有率が低下し、かつ窒化アルミニウムの含有率が上昇する。これにより、窒化アルミニウム含有物の中で窒化アルミニウムの核が十分に成長して互いに接合し、ネットワーク状(パーコレーション構造)になり、このネットワークの相互間にアルミニウムが島状に独立して分散した状態になる。このため、窒化アルミニウム含有物の絶縁性が高くなる。
アルミニウム片21の一面に窒化物20を略均等に付着させていた場合、上記したように第1熱処理において、固液二相反応の成長核が非常に多くかつ均等に生成している。この場合、これらの成長核が反応起点となるため、第2熱処理によってアルミニウムの窒化反応も窒化アルミニウム含有物の全体で略均等に進行し、特にアルミニウムが島状に分散しやすくなる。
尚、第1熱処理後の塊状の窒化アルミニウム含有物を所望の形状(例えば半導体デバイスの放熱体、ピストン、又はシリンダなど)に加工した後、第2熱処理を行っても良い。特に、上記したように、第1熱処理後の窒化アルミニウム含有物におけるAl含有率を40〜70%となるようにした場合、窒化アルミニウム含有物の加工性は高い。この場合においても、第2熱処理によって形状加工後の窒化アルミニウム含有物の窒化アルミニウム含有率を高くする(例えば98%以上)ことができる。この場合、X線回折ではアルミニウムによる回折ピークが見られなくなる。
また、第2熱処理すなわち窒化アルミニウム含有物の冷却及び加熱サイクルを複数回行っても良い。これにより、低温(例えば1200℃)かつ低圧の条件(例えば15気圧)においてもアルミニウムの含有率が更に低下し、かつ窒化アルミニウムの含有率が更に上昇する。また、単純に熱処理時間を長くする場合と比較して、窒化アルミニウム含有率を高くすることができる。
また、上記した第1熱処理及び第2熱処理それぞれにおいて、熱処理温度を、窒化物の粒径によって変えるのが好ましい。例えば窒化物の平均粒径が5μm、50μm、500μmそれぞれの場合において、好ましい熱処理温度は、それぞれ1009℃、1012℃、1015℃である。
その後、窒化アルミニウム含有物が半導体デバイスの放熱体である場合、この窒化アルミニウム含有物に半導体デバイスの基板を取り付ける。
なお、第2熱処理後の窒化アルミニウム含有物において、アルミニウム中に含まれるアルミニウムとホウ素等の金属間化合物は、例えばX線回折では回折ピークが検出されないが透過型電子顕微鏡を用いた電子線回折では検出される程度の含有率であっても良い。
以上、本発明に係る窒化アルミニウム含有物の製造方法によれば、従来方法と比較して製造条件は低温かつ低圧である。従って、製造コストは従来と比較して大幅に低くなる。また、従来の焼結法によって製造される窒化アルミニウム含有物の構造体と比較して、空隙率を低くすることができる(例えば0.5%以下)。
また、得られた窒化アルミニウム含有物は、窒化アルミニウムの中にアルミニウムが島状に分散した構造を有するため、高い絶縁性及び熱伝導率を有する。また、第1熱処理及び第2熱処理の条件を調節することにより、窒化アルミニウム含有物中の窒化アルミニウム及びアルミニウムそれぞれの含有率を調節して熱膨張係数を調節することができる。このため、窒化アルミニウム含有物を半導体デバイスの放熱体として使用する場合、窒化アルミニウム含有物の熱膨張係数を半導体デバイスの基板(例えばSi基板及び化合物半導体基板の双方)の熱膨張係数に容易に整合させることができる。
次に第2の実施形態に係る窒化アルミニウム含有物の製造方法について説明する。本実施形態は、容器12の内部において、容器12の内部における窒化物20の配置密度を、例えば容器12の横断面方向に変化させる点を除いて、第1の実施形態と同様である。具体的には、例えば容器12の周辺部における粉末又は粒子の窒化物20の配置密度を、容器12の中心部における窒化物20の配置密度より高くする。
本実施形態においても、第1の実施形態と同様の効果も得ることができる。
また、溶融したアルミニウム片21と固相の窒化物20との間で生じる固液二相反応の成長核が、容器12の周辺部の方が中心部より高密度になる。このため、生成した窒化アルミニウム含有物において、アルミニウム含有率を、例えば横断面方向に傾斜させることができる。具体的には、窒化アルミニウム含有物の周辺部における島状のアルミニウムの含有率を、中心部における島状のアルミニウムの含有率より低くすることができる。この場合、例えば窒化アルミニウム含有物のうちアルミニウムの含有率が高い部分を半導体デバイス等と接合させるための接合領域として用いることができる。また、窒化アルミニウム含有物に含まれるアルミニウムを薬品で溶出させることにより、容易にキャビティ構造とすることができる。
次に、第3の実施形態に係る窒化アルミニウム含有物の製造方法について説明する。本実施形態は、第1加熱処理及び第2加熱処理の少なくとも一方において、容器12の内部に温度勾配を生じさせる点、例えば容器12の周辺部の温度を容器12の中心部の温度より50℃以上300℃以下高くする点を除いて、第1の実施形態と同様である。
本発明においても、溶融したアルミニウム片21と固相の窒化物20との間で生じる固液二相反応の反応速度に勾配が生じ、例えば容器12の周辺部の方が中心部より速くなる。このため、生成した窒化アルミニウム含有物のアルミニウム含有率を傾斜させることができる。例えば、窒化アルミニウム含有物の周辺部における島状のアルミニウムの含有率を、中心部における島状のアルミニウムの含有率より低くすることができる。すなわち第2の実施形態と同様の効果を得ることができる。
次に、第4の実施形態に係る窒化アルミニウム含有物の製造方法について説明する。本実施形態は、第1加熱処理及び第2加熱処理の少なくとも一方において、容器12を加熱するヒータ13を容器12の周囲で上下に往復移動させ、アルミニウム片21又は窒化アルミニウム含有物中のアルミニウムを部分的に溶解させ、該溶解している部分を上下に移動させる点を除いて、第1の実施形態と同様である。
本実施形態においては、複数のヒータ13を上下に間隔を空けて配置してもよい。また、複数のアルミニウム片21を、相互間に窒化ホウ素の粉末又は粒子を挟みつつ積層し、かつ最も下に位置するアルミニウム片21を窒化ホウ素の粉末又は粒子の上に配置するのが好ましい。
本実施形態によれば、アルミニウムの窒化反応は発熱反応であるが、本実施形態によれば、窒化アルミニウム含有物が周期的に加熱されることになるため、窒化アルミニウム含有物の温度を均一に保ちやすくなる。このため、縦長(例えば円柱形)の窒化アルミニウム含有物のインゴットを製造する場合、インゴットの材質の均一性を向上させることができる。また、窒化アルミニウム含有物に同一方向の熱履歴を複数回与えることができる。従って、窒化アルミニウム含有物の結晶成長の方向を略同一方向にそろえ、窒化アルミニウム含有物の結晶性を向上させることができる。
尚、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば、ヒータ13に冷却手段を設け、ヒータ13及び窒化アルミニウム含有物の冷却速度を速くしても良い。
例えば第1及び第2の実施形態それぞれにおいて、反応装置のヒータ13を板形状(例えば円板形状)にして、容器12の上方、下方、若しくは上方及び下方の双方に配置してもよい。このようにすると、容器12内の窒化アルミニウム含有物が薄くて板形状の場合、窒化アルミニウム含有物の材質の均一性を向上させることができる。また、容器12内の窒化アルミニウム含有物が縦長の場合、上下方向の温度勾配を与えることができ、生成した窒化アルミニウム含有物のアルミニウム含有率を上下方向に傾斜させることができる。この場合においても、ヒータ13に冷却手段が設けられていても良い。
窒化アルミニウム含有物の製造方法に用いられる反応装置の構成図。
符号の説明
10…反応チャンバー、11…ガス導入口、12…容器、13…ヒータ、14…モニター線、20…窒化物、21…アルミニウム片

Claims (10)

  1. 窒化ホウ素の粉末又は粒子の上にアルミニウム片を配置する工程と、
    前記窒化ホウ素及びアルミニウム片を5気圧以上30気圧以下の窒素雰囲気下で900℃以上1300℃以下に加熱して前記アルミニウム片を溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する第1熱処理工程と、
    前記窒化アルミニウム含有物を冷却する工程と、
    前記窒化アルミニウム含有物を、5気圧以上30気圧以下の窒素雰囲気下で900℃以上1300℃以下に再加熱することにより、前記窒化アルミニウム含有物の窒化アルミニウム含有率を高くする工程と、
    を具備する窒化アルミニウム含有物の製造方法。
  2. アルミニウム片の一面に窒化ホウ素の粉末又は粒子を付着させる工程と、
    窒化ホウ素の粉末又は粒子の上にアルミニウム片を、前記一面を下方に向けて配置する工程と、
    前記窒化ホウ素及びアルミニウム片を加圧された窒素雰囲気下で加熱して前記アルミニウム片を溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する工程と、
    を具備する窒化アルミニウム含有物の製造方法。
  3. 複数のアルミニウム片それぞれの一面に窒化ホウ素の粉末又は粒子を押圧することにより、前記複数のアルミニウム片の一面それぞれに窒化ホウ素の粉末又は粒子を付着させる工程と、
    前記複数のアルミニウム片を、前記一面を下方に向けた状態で、それぞれの間に窒化ホウ素の粉末又は粒子を挟みつつ積層し、かつ最も下に位置する前記アルミニウム片を窒化ホウ素の粉末又は粒子の上に配置する工程と、
    前記積層した複数のアルミニウム片を加圧された窒素雰囲気下で加熱して前記複数のアルミニウム片それぞれを溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成する工程と、
    を具備する窒化アルミニウム含有物の製造方法。
  4. 前記アルミニウム片及び前記窒化ホウ素は容器内に配置された状態で加熱され、
    窒化ホウ素の粉末又は粒子の上に前記アルミニウム片を配置する工程において、前記容器の周辺部における前記窒化ホウ素の粉末又は粒子の配置密度を、前記容器の中心部における前記窒化ホウ素の粉末又は粒子の配置密度より高くする請求項1〜3のいずれか一項に記載の窒化アルミニウム含有物の製造方法。
  5. 前記アルミニウム片及び前記窒化ホウ素は容器内に配置された状態で加熱され、
    前記窒化アルミニウム含有物を生成する工程において、前記容器の周辺部の温度を、前記容器の中心部の温度より50℃以上300℃以下高くする請求項1〜4のいずれか一項に記載の窒化アルミニウム含有物の製造方法。
  6. 前記アルミニウム片及び前記窒化ホウ素は容器内に配置された状態で加熱され、
    前記窒化アルミニウム含有物を生成する工程において、前記アルミニウム片及び前記窒化ホウ素を加熱する加熱手段の前記容器に対する相対位置を、前記容器の周囲で上下に往復移動させる請求項1〜5のいずれか一項に記載の窒化アルミニウム含有物の製造方法。
  7. 塊状の窒化アルミニウムの中にアルミニウムが島状に分散している、窒化アルミニウム含有物。
  8. 前記アルミニウムの分散密度が傾斜している請求項7に記載の窒化アルミニウム含有物。
  9. 前記アルミニウムは、少なくとも一部にホウ素が固溶し、又はホウ素と金属間化合物を形成している請求項7又は8に記載の窒化アルミニウム含有物。
  10. 塊状の窒化アルミニウムの中にアルミニウムが島状に分散している窒化アルミニウム含有物からなる半導体デバイスの放熱体。
JP2006167473A 2006-06-16 2006-06-16 窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体 Withdrawn JP2007331995A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167473A JP2007331995A (ja) 2006-06-16 2006-06-16 窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167473A JP2007331995A (ja) 2006-06-16 2006-06-16 窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体

Publications (1)

Publication Number Publication Date
JP2007331995A true JP2007331995A (ja) 2007-12-27

Family

ID=38931819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167473A Withdrawn JP2007331995A (ja) 2006-06-16 2006-06-16 窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体

Country Status (1)

Country Link
JP (1) JP2007331995A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066975A (ja) * 2010-09-24 2012-04-05 Denso Corp 窒化アルミニウム材料の製造方法、窒化アルミニウム材料及び熱交換器
WO2018159218A1 (ja) * 2017-02-28 2018-09-07 株式会社デンソー AlNの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066975A (ja) * 2010-09-24 2012-04-05 Denso Corp 窒化アルミニウム材料の製造方法、窒化アルミニウム材料及び熱交換器
WO2018159218A1 (ja) * 2017-02-28 2018-09-07 株式会社デンソー AlNの製造方法
JP2018140904A (ja) * 2017-02-28 2018-09-13 株式会社デンソー AlNの製造方法

Similar Documents

Publication Publication Date Title
JP4862169B2 (ja) 熱伝導性材料
CN106116593B (zh) 一种四硼化钨陶瓷粉体的制备方法
Li et al. Oxidation behavior of β-SiAlON powders fabricated by combustion synthesis
JP2008115068A (ja) 窒化アルミニウム含有物の製造方法
JP2007331995A (ja) 窒化アルミニウム含有物の製造方法、窒化アルミニウム含有物、及び半導体デバイスの放熱体
JP5181329B2 (ja) 窒化アルミニウム含有物の製造方法
JP2004043241A (ja) 高純度炭化けい素焼結体およびその製造方法
Huang et al. Recrystallization sintering and characterization of composite powders composed of two types of SiC with dissimilar particle sizes
CN103757603B (zh) 一种二硼化锆涂层的制备方法
Matsunaga et al. Nitridation behavior of silicon powder compacts of various thicknesses with Y2O3 and MgO as sintering additives
JP2002285258A (ja) 金属−セラミックス複合材料及びその製造方法
Nakamura et al. Porosity-controlled multilayer TaC coatings prepared via wet powder process for multi-functional reactor components in GaN crystal growth system
Wu et al. In‐situ synthesis of 15R‐Sialon from Al‐Si3N4‐Al2O3 composite at 1500° C via liquid‐phase sintering
Wang et al. Effect of Y2O3 additive on nitridation of diamond wire silicon cutting waste
Li et al. Quartz and carbon black pellets for silicon production
CN103395752A (zh) 一种氮化硼微米实心球制备方法
JP4836120B2 (ja) 窒化アルミニウム含有物の製造方法
Khajelakzay et al. Synthesis and spark plasma sintering of Mg2Si nanopowder by mechanical alloying and heat treatment
Radwan et al. Growth of Quasi‐Aligned AlN Nanofibers by Nitriding Combustion Synthesis
Cho et al. R&D status of key technologies for the development of KO TBM
JP2010138011A (ja) 窒化アルミニウム粉末の製造方法
JP5323436B2 (ja) 窒化アルミニウム含有物の製造方法
JP2008266680A (ja) 窒化アルミニウム含有物の製造方法
WO2006103931A1 (ja) 窒化アルミニウム含有物
JP5351426B2 (ja) 窒化アルミニウム粉末の処理方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901