JP2007317666A - カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法 - Google Patents

カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法 Download PDF

Info

Publication number
JP2007317666A
JP2007317666A JP2007141010A JP2007141010A JP2007317666A JP 2007317666 A JP2007317666 A JP 2007317666A JP 2007141010 A JP2007141010 A JP 2007141010A JP 2007141010 A JP2007141010 A JP 2007141010A JP 2007317666 A JP2007317666 A JP 2007317666A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
substrate
electric field
generation
aligned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141010A
Other languages
English (en)
Other versions
JP5132993B2 (ja
Inventor
Hee-Tae Jung
ヒテ ジュン
Sang Cheon Youn
サンチョン ヨン
Young-Koan Ko
ヨンカン コ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060047655A external-priority patent/KR100785377B1/ko
Priority claimed from KR1020060074791A external-priority patent/KR100801131B1/ko
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2007317666A publication Critical patent/JP2007317666A/ja
Application granted granted Critical
Publication of JP5132993B2 publication Critical patent/JP5132993B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】製造工程が簡単で、カーボンナノチューブが高密度、大容量で電磁場の発生方向によって一定の方向に整列された電界放出エミッタ電極の製造方法の開発。
【解決手段】カーボンナノチューブが電磁場の発生方向によって整列される電界放出エミッタ電極の製造方法に係り、カーボンナノチューブ(carbon nanotube;CNT)を溶媒に希釈させた分散液を、電磁場発生装置の上端に固定された基板上に分散させ、電磁場の発生方向に整列されたカーボンナノチューブを固定させる段階を含む、カーボンナノチューブが電磁場の発生方向によって整列された電界放出エミッタ電極の製造方法に関するものである。簡単な工程で高密度、大容量の電磁場の発生方向に整列されたカーボンナノチューブを得ることができるため、電界放出ディスプレイ(field emission display;FED)、センサ、電極、バックライトなどの陽極素子として応用することができる。
【選択図】図1

Description

本発明は、カーボンナノチューブが電磁場の発生方向によって整列される電界放出エミッタ電極(field emitter electrode)の製造方法に係り、より具体的には、カーボンナノチューブ(carbon nanotube;CNT)を溶媒に希釈させた分散液を、電磁場発生装置の上端に固定された基板上に分散させ、電磁場の発生方向に整列されたカーボンナノチューブを固定させる段階を含む、カーボンナノチューブが電磁場の発生方向によって整列された電界放出エミッタ電極の製造方法に関する。
電界放出装置とは、真空中で電子の放出に基づいた光源であって、強い電場によって微細粒子からの放出電子を加速させて蛍光物質と衝突する原理で発光する素子をいう。前記電界放出装置は、白熱電球などの一般照明光源に比べて発光効率に優れるうえ、軽量小型化が可能であり、蛍光灯などのように重金属を使用しないので環境親和的であるという利点があって、各種の照明分野及びディスプレイ装置の次世代光源として脚光を浴びている。
このような電界放出装置の性能は、電界を放出することが可能なエミッタ電極によって大きく左右される。最近、優れた電子放出特性を持つエミッタ電極のための電子放出材料としてカーボンナノチューブを主に使用している。
カーボンナノチューブとは、地球上に多量に存在する炭素からなる炭素同素体であり、一つの炭素が他の炭素原子と六角形の蜂の巣柄に結合されてチューブ形状になっている物質であって、チューブの直径がナノメートル(nm=10億分の1メートル)レベルで、長さは数百ナノメートル(nm)から、数マイクロメートル(μm)レベルであり、縦横比が外の物質に比べ非常に高い新素材である。カーボンナノチューブとは優秀な機械的強度、電気的選択性を持っていて、特に高い縦横比により優れた電界放出特性を持っている。
カーボンナノチューブの優れた電界放出特性によって、カーボンナノチューブは電界放出ディスプレイの陽極素子としての可能性を示している。先行論文(Kim, J.M. at al., Applied Physics Letters, 75(20):3129, 1999)では、カーボンナノチューブを高分子複合体とラビングの方法によって一定の方向に整列させ、それによる電界放出特性を測定した。しかし、製造工程で混合された高分子物質を燃やさなければならない製造工程上の致命的な欠点があるうえ、大面積にカーボンナノチューブを電磁場の発生方向によって整列させることが難しいという問題点がある。
また、カーボンナノチューブを一定の方向に整列させる方法として、高温で直接成長させる方法(Wong C.P., at al., Carbon, 44:253, 2006)も提案されているが、ディスプレイに陽極板として用いられるインジウムスズ酸化物ガラス(ITO glass)が高温に耐えられないという致命的な欠点があって、実質的に活用できないという問題点がある。
かかる問題点を解決するために、カーボンナノチューブを基板に付着させ、伝導性ポリマーを塗布してカーボンナノチューブを一定の方向に整列することを特徴とする、電界放出エミッタ電極を製造する方法(韓国特許出願公開第2006−0024725号明細書)が開発されたが、前記方法も、カーボンナノチューブを大面積、高密度で電磁場の発生方向によって整列することはできなかったし、高分子を燃やさなければならない工程上の欠点を克服していない。
したがって、製造工程が簡単でありながらも、カーボンナノチューブが高密度、大容量で電磁場の発生方向によって一定の方向に整列された電界放出エミッタ電極の製造方法の開発が切実に求められている。
そこで、本発明者らは、従来の方法でカーボンナノチューブを一定の方向に整列させる場合に発生する問題点を解決するために鋭意努力した結果、カーボンナノチューブを電磁場発生装置の上端に固定された基板上に整列させた後、金属を用いてカーボンナノチューブを固定させた結果、広い面積の高密度電界放出エミッタ電極を製造し得ることを確認し、本発明を完成することに至った。
結局、本発明の目的は、高密度及び大面積で整列されたカーボンナノチューブを基板上に金属で固定させた、電界放出特性の高い電界放出エミッタ電極及びその製造方法を提供することにある。
前記目的を達成するために、本発明のある観点によれば、(a)カーボンナノチューブまたは磁性粒子が結合したカーボンナノチューブを有機溶媒に希釈させた分散液を、磁場発生装置の上端に固定された基板上に分散させる段階と、(b)前記基板上に分散した分散液の有機溶媒を蒸発させ、カーボンナノチューブを磁場内で磁場の方向によって整列させる段階と、(c)前記磁場の発生方向によって整列されたカーボンナノチューブが磁場のない状態でも整列方向に固定されるようにするために、前記基板上に金属を蒸着させる段階とを含む、カーボンナノチューブが磁場の方向によって整列された電界放出エミッタ電極の製造方法を提供する。
本発明において、前記磁場発生方向は基板に垂直、水平または垂直と水平の間の任意の角度であることを特徴とすることができ、前記磁性粒子が結合したカーボンナノチューブは、磁性粒子とカーボンナノチューブが物理化学的方法で結合していることを特徴とすることができ、前記物理化学的方法は、カーボンナノチューブを酸処理する方法、磁性粒子を還元させる方法、及び磁性粒子をメッキさせる方法からなる群より選択されることを特徴とすることができる。
本発明において、前記(a)段階の磁場発生装置は磁石であることを特徴とすることができ、好ましくは前記磁場発生装置の磁場は0.005〜10テスラ(T)であることを特徴とすることができる。
本発明において、前記磁性粒子は鉄(Fe)含有粒子であることを特徴とすることができ、好ましくは前記鉄(Fe)含有粒子は塩化鉄(FeCl)、酸化第一鉄(FeO)、酸化第二鉄(FeCO)及び四酸化三鉄(Fe)よりなる群から選択されることを特徴とすることができる。
本発明はまた、前記方法で製造され、金属が蒸着された基板上に磁性粒子の結合したカーボンナノチューブが磁場の方向によって整列された電界放出エミッタ電極を提供する。
本発明の他の観点によれば、(a)カーボンナノチューブを有機溶媒に希釈させた分散液を、電場発生装置の上端に固定された基板上に分散させる段階と、(b)前記基板上に分散した分散液の有機溶媒を蒸発させ、カーボンナノチューブを電場内で基板上に電場の発生方向によって整列させる段階と、(c)前記電場の発生方向によって整列されたカーボンナノチューブが電場のない状態でも整列方向に固定されるようにするために、前記基板上に金属を蒸着させる段階とを含む、カーボンナノチューブが電場の発生方向によって整列された電界放出エミッタ電極の製造方法を提供する。
本発明において、前記電場の発生方向は基板に垂直、水平または垂直と水平の間の任意の角度であることを特徴とすることができ、前記(a)段階の電場発生装置は電界(electric field)であることを特徴とすることができ、前記電界の電場は0.1〜500V/μmであることを特徴とすることができる。
本発明において、前記(a)段階は、溶媒分散補助剤をさらに添加することを特徴とすることができ、前記分散補助剤は、有機溶媒であるTOAB(tetra octylammoniumbromide)、界面活性剤であるTriton X−100、SDS(sodium dodecylsurfate)、NADDBS(sodium dodecyl benzenesulfonate)及びPAPPV(poly[2-(2‘-ethylhexyloxy)-5-(phenylethynyl)-1,4-phenylenevinylene])よりなる群から選択されることを特徴とすることができる。
本発明において、前記(a)段階でカーボンナノチューブを有機溶媒に希釈させた分散液を基板上に分散させる方法は、スピンコーティング方法、スプレー方法、ディップコーティング方法およびインクジェット方法よりなる群から選択されることを特徴とすることができ、前記(a)段階および前記(b)段階を1〜1000回繰り返し行い、カーボンナノチューブの密度を増加させることを特徴とすることができ、前記カーボンナノチューブは単一壁、二重壁及び多重壁であることを特徴とすることができる。
本発明において、前記(a)段階の溶媒は、水(HO)、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド(DMAc)、シクロヘキサノン、エチルアルコール、クロロホルム、ジクロロメタン、エチルエーテル及び1、2−ジクロロベンゼンよりなる群から選択されることを特徴とすることができ、前記(a)段階の基板は、インジウムスズ酸化物ガラス、ガラス、水晶(quartz)、ガラス基板、シリコン基板、応用シリカ、プラスチックおよび透明高分子よりなる群から選択されることを特徴とすることができ、前記(b)段階で溶媒を20〜300℃に昇温して除去することを特徴とすることができ、前記有機溶媒のうちクロロホルム、ジクロロメタン、ジエチルエーテルなどの場合は揮発性が良いため、常温でも除去することができる。
本発明において、前記(a)段階のカーボンナノチューブの分散液の濃度は0.001〜1.0重量%であることを特徴とすることができ、前記(a)段階で基板上に分散させるカーボンナノチューブの量は1pg/cm〜1g/cm(単位面積当たりのカーボンナノチューブの量)であることを特徴とすることができる。
本発明において、前記(c)段階の金属は1〜5000nmで蒸着することを特徴とすることができ、前記(c)段階の金属はチタニウム(Ti)、モリブデン(Mo)、金(Au)、銀(Ag)、アルミニウム(Al)、カルシウム(Ca)、カドミウム(Cd)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、亜鉛(Zn)及び銅(Cu)よりなる群から選択されることを特徴とすることができる。
本発明はまた、前記方法によって製造され、金属が蒸着された基板上にカーボンナノチューブが電場の発生方向によって整列された電界放出エミッタ電極を提供する。
本発明の他の特徴及び実施態様は次の詳細な説明及び添付された特許請求範囲からさらに明白になる。
本発明に係るカーボンナノチューブが磁場の発生によって整列される概略図である。 カーボンナノチューブの精製前と後の姿を透過電子顕微鏡(TEM:Transmission Electron Microscopy)で撮影した写真(左:倍率50,000X、右:倍率100,000X)であって、図2(a)はカーボンナノチューブの精製前に不純物を含んだことを示し、図2(b)は精製の後に純粋なカーボンナノチューブのみがあることを示す。 カーボンナノチューブに磁性粒子が結合する姿を透過電子顕微鏡で撮影した写真(左:倍率50,000X、右:倍率100,000X)である。 カーボンナノチューブが磁場の発生方向に整列される姿を示す走査電子顕微鏡(SEM:Scanning Electron Microscopy)で撮影した写真(上:倍率50,000X、下:倍率25,000X)である。(a)は基板を80°傾かせた姿であり、(b)は基板を45°傾かせた姿である。 本発明によって磁場の発生方向に配列されたカーボンナノチューブを撮影した写真である。 本発明によって電場の発生方向に配列されるカーボンナノチューブの電界放出特性を示すグラフである。
発明の詳細な説明
カーボンナノチューブは、磁性及び電性を固有な特性として持っている物質であって、磁性粒子と結合したカーボンナノチューブを電場または磁場の流れる基板上に固定させると、さらに優れた電界放出エミッタ電極を製造することが可能である。
本発明のある観点によれば、カーボンナノチューブが磁場または電場の発生方向により整列された電界放出エミッタ電極の製造方法に関する。
本発明で、カーボンナノチューブに磁性粒子を結合させたカーボンナノチューブが磁場または電場の発生方向によって整列される電界放出エミッタ電極は、図1に示した方法のとおりに製造した。すなわち、まず、本発明に使用する1000ガウス(G)強度の円形磁石(図1a)を準備した後、カーボンナノチューブが整列されるインジウムスズ酸化物ガラスを炭素接着剤で磁石と接着させ(図1b)、インジウムスズ酸化物ガラスの基板上に磁性粒子が結合したカーボンナノチューブの分散液を滴下させた後(図1c)、金属を蒸着して前記磁場または電場の発生方向によって整列されたカーボンナノチューブを固定させる(図1d)。
次に、前記電界放出エミッタ電極の製造方法を5段階に区分してさらに詳細に説明する。
第1段階:カーボンナノチューブの製造
本発明で使用されるカーボンナノチューブは、特に限定されず、市販される製品を購入して使用し、或いは通常の方法によって製造して使用することができる。本発明にカーボンナノチューブを適用するためには、カーボンナノチューブの表面が綺麗でなければならず、金属触媒を含まなければならない。また、本発明のカーボンナノチューブは、単一壁、二重壁または多重壁であることを特徴とすることができ、Hipco(High Pressure CO disproportionation)工程によって製造できる。
第2段階:カーボンナノチューブと磁性粒子の結合
前記第1段階で製造されたカーボンナノチューブの磁性粒子を結合させるために、塩化鉄(FeCl)、酸化第一鉄(FeO)、酸化第二鉄(Fe)及び四酸化三鉄(Fe)をエタノール、蒸留水及びヘキサンの混合液に仕込み、加熱して鉄−オリエート複合体(iron-oleate complex)を製造する。前記方法によって製造された鉄−オリエート複合体をオレイン酸とジメチルホルムアミド(DMF)に混合した後、前記混合液に、第1段階から製造されたカーボンナノチューブを添加する。カーボンナノチューブが添加された混合溶液を1−オクタデセン(1-octadecene)に完全に溶かした後、加熱して前記混合物の溶媒を蒸発させ、蒸発後に残った混合物をエタノールで3〜4回洗浄し、磁性粒子が結合されたカーボンナノチューブを製造する。
第3段階:基板上に磁性粒子と結合したカーボンナノチューブの分散
前記第2段階で製造された磁性粒子が結合したカーボンナノチューブをジメチルホルムアミド(DMF)、N−メチル−ピロリドン(NMP)、ジメチルアセトアミド(DMAc)、シクロヘキサノン、エチルアルコール、クロロベンゼン、クロロホルム及び1、2−ジクロロベンゼンなどの溶媒に希釈させた後、磁場をかけた磁石上に固定されたインジウムスズ酸化物ガラスの基板に対して0.001〜1.0重量%を滴下させ、溶媒を蒸発させる。
第4段階:基板上に磁性粒子と結合したカーボンナノチューブの密度の増加
前記第3段階で製造された溶媒が全て蒸発したインジウムスズ酸化物ガラス基板上に、さらに磁性粒子と結合したカーボンナノチューブを溶媒に希釈させた分散液を1〜2滴、滴下させた後、高温状態で溶媒を蒸発させる。磁性粒子と結合したカーボンナノチューブの密度を増加させるために、前記過程を5〜20回繰り返し行うことができる。前記方法によって製造された磁性粒子と結合したカーボンナノチューブは、磁場の発生方向に整列されている。
第5段階:基板上に磁性粒子と結合したカーボンナノチューブの固定
前記第4段階で製造された磁場によって整列されているカーボンナノチューブが磁場のない状況でも磁場の発生方向に整列されているようにするために、前記基板上にチタニウム(Ti)、モリブデン(Mo)、金(Au)、アルミニウム(Al)、カルシウム(Ca)、カドミウム(Cd)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、亜鉛(Zn)および銅(Cu)よりなる群から選択される金属を蒸着させ、純粋な電界放出エミッタ電極を製造する。
本発明は、他の観点によれば、カーボンナノチューブが電場の発生方向により整列された電界放出エミッタ電極の製造方法に関する。
前記では電磁場発生装置が磁石であり、カーボンナノチューブに磁性粒子を結合させて整列させる方法についてのみ詳細に説明したが、前記詳細な説明によって、磁場発生装置が電界であり、カーボンナノチューブの分散液に界面活性剤を添加することによって基板上にカーボンナノチューブを整列させるか、純水なカーボンナノチューブを電磁場発生装置上の基板に整列させて電界放出エミッタ電極を製造することは、当業者には自明である。すなわち、次の段階を経てカーボンナノチューブが電場の発生方向によって整列された電界放出エミッタ電極を製造することができる。(a)カーボンナノチューブを有機溶媒に希釈させた分散液を、電場発生装置の上端に固定された基板上に分散させる段階と、(b)前記基板上に分散した分散液の有機溶媒を蒸発させ、カーボンナノチューブを電場内で基板上に電場の発生方向によって整列させる段階と、(c)前記電場の発生方向によって整列されたカーボンナノチューブが電場のない状態でも整列方向に固定されるようにするために、前記基板上に金属を蒸着させる段階。
本発明によれば、ガーボンナノチューブが電磁場の発生方向に垂直、水平または垂直と水平の間の任意の角度で整列された電界放出エミッタ電極を製造することができる。また、高密度及び大容量で電磁場の発生方向によって整列されたカーボンナノチューブの固有性質である高い電界放出効果を用いて電界放出効果を大きく向上させることができる。本発明の方法で製造された電界放出エミッタ電極は、ディスプレイ用電界放出エミッタ電極として使用することができるうえ、電界放出現象を利用する走査電子顕微鏡(SEM)及び透過電子顕微鏡(TEM)に応用することができる。
以下、実施例を挙げて本発明を一層詳細に説明する。但し、これらの実施例は単に本発明を例示するためのものであり、本発明の範囲がこれらの実施例に制限されると解釈されないことは、当業界における通常の知識を有する者には自明であろう。
実施例1:カーボンナノチューブの製造
カーボンナノチューブ500mgを365℃の炉(furnace)に入れ、0.1SLM(Standard Liters per Minute)の空気を注入しながら90分間熱処理した。前記熱処理されたカーボンナノチューブを塩酸500mLに仕込み、1時間ソニケーションを行った後、1μmのフィルターで濾過し、再び塩酸500mLに濾過された前記のカーボンナノチューブを入れて1時間ソニケーションを行った後、1μmのフィルターで濾過した。前記塩酸処理過程を3〜5回繰り返し行ってカーボンナノチューブを綺麗に精製して透過電子顕微鏡(TEM)写真から精製の前後を観察した(図2)。その結果、図2に示すように、カーボンナノチューブが精製される前には不純物を含んでいたが(図2a)、精製後には純粋なカーボンナノチューブのみがあることが分かった(図2b)。前記綺麗に精製された、カーボンナノチューブを硫酸と過酸化水素混合溶液(体積比4:1)に浸漬して9時間常温で攪拌して切断した後、蒸留水で希釈して500nmのフィルターで濾過し、120℃のオーブンで12時間以上乾燥させた。
実施例2:カーボンナノチューブと磁性粒子の結合
塩化鉄(FeCl・6HO)10.8gとオレイン酸ナトリウム(C1833NaO)36.5gをエタノール80mL、蒸留水60mL及びヘキサン140mLの混合液に仕込み、70℃で4時間加熱して鉄−オリエート複合体を製造した。前記方法によって製造された鉄−オリエート複合体12g、オレイン酸2.83g及び3mLジメチルホルムアミド(DMF)溶媒を互いに混合し、実施例1で製造されたカーボンナノチューブ150mgを前記混合物に分散させた。
前記混合物を常温で1−オクタデセン(1-octadecene)130mLに完全に溶かした後、混合物の温度を320℃まで上昇させた後、30分間反応させ、その後前記混合物の温度を常温まで降温した。前記反応物をエタノールで3〜4回洗浄し、遠心分離機によって上澄み液を除去した後、1μmのフィルターで濾過して酸化第二鉄(Fe)の結合したカーボンナノチューブを製造し、透過電子顕微鏡(TEM)写真で観察した(図3)。その結果、図3に示すように、カーボンナノチューブに磁性粒子が結合したことが分かった。
実施例3:基板上に磁性粒子と結合したカーボンナノチューブの分散
実施例2で製造された磁性粒子と結合したカーボンナノチューブ5mgをジメチルホルムアミド(DMF)50mLに分散させた後、前記分散液10mLを純粋なジメチルホルムアミド(DMF)40mLに希釈させた。
一方、1000ガウスの磁場を持つ磁石上にインジウムスズ酸化物ガラスを固定させた後、120℃のオーブンに入れた。前記インジウムスズ酸化物ガラスの温度が120℃まで上昇すると、前記磁性粒子と結合したカーボンナノチューブをジメチルホルムアミドに希釈させた分散液を、オーブンの中にあるインジウムスズ酸化物ガラス上に1μLずつ滴下させ、10分間120℃の温度を維持し、ジメチルホルムアミド(DMF)を蒸発させた。
実施例4:基板上に磁性粒子と結合したカーボンナノチューブの密度増加
実施例3で製造されたジメチルホルムアミド(DMF)がすべて蒸発したインジウムスズ酸化物ガラス基板上に、磁性粒子と結合したカーボンナノチューブをジメチルホルムアミドに希釈させた分散液を1μLずつさらに滴下させた。その後、オーブンの温度を10分間120℃に維持し、ジメチルホルムアミド(DMF)を蒸発させた。磁性粒子と結合したカーボンナノチューブの密度を増加させるために、前記過程を数十回繰り返し行った。
前記方法で製造された基板を走査電子顕微鏡(SEM)写真で観察したところ、磁性粒子と結合したカーボンナノチューブが磁場の発生方向によって整列されていることが分かった(図4)。
実施例5:基板上に磁性粒子と結合したカーボンナノチューブの固定
前記磁性粒子と結合したカーボンナノチューブが磁場のない状況でも磁場の発生方向によって整列されるようにするために、e−ビーム蒸着器(MooHan Co.Ltd.,韓国)でチタニウム(Ti)を常温で0.5nm/secの速度で総高さが30nm、70nmとなるように蒸着した。蒸着が終わった後、磁石を除去して純粋な電界放出エミッタ電極を製造した。その結果、図5に示すように、磁場によるカーボンナノチューブが磁場の発生方向によって整列されることが分かった。
また、前記製造された電界放出エミッタ電極のカーボンナノチューブの電界放出特性を調べるために、電界による電流密度を測定した結果、図6に示すように、本発明の電界放出エミッタ電極は電界放出に優れることが分かった。
以上、詳細に説明したように、本発明によると、高密度、大容量のカーボンナノチューブが電磁場の発生方向により整列された電界放出エミッタ電極を簡単な工程で製造することができる。本発明による電界放出エミッタ電極はディスプレイ用電界放出エミッタ電極として使用できるだけではなく、電界放出現象を利用する走査電子顕微鏡(SEM)及び透過電子顕微鏡(TEM)に応用できる。
以上、本発明の特定の内容部分を詳細に記述したところ、当業界における通常の知識を有する者にとっては、このような具体的な技術は単に望ましい実施様態であり、本発明の範囲がこれに制限されないという点は明らかであろう。したがって、本発明の実質的な範囲は、特許請求の範囲及びそれらの等価物によって定義されるべきである。

Claims (21)

  1. 下記の段階を含むカーボンナノチューブが磁場の発生方向によって整列された電界放出エミッタ電極の製造方法:
    (a)カーボンナノチューブまたは磁性粒子が結合したカーボンナノチューブを有機溶媒に希釈させた分散液を、磁場発生装置の上端に固定された基板上に分散させる段階;
    (b)前記基板上に分散した分散液の有機溶媒を蒸発させ、カーボンナノチューブを磁場内で磁場の方向によって整列させる段階;及び
    (c)前記磁場の発生方向によって整列されたカーボンナノチューブが磁場のない状態でも整列方向に固定されるようにするために、前記基板上に金属を蒸着させる段階。
  2. 前記磁場発生方向は基板に垂直、水平または垂直と水平の間の任意の角度であることを特徴とする請求項1に記載の方法。
  3. 前記磁性粒子が結合したカーボンナノチューブは、磁性粒子とカーボンナノチューブが物理化学的方法で結合していることを特徴とする請求項1又は2に記載の方法。
  4. 前記物理化学的方法は、カーボンナノチューブを酸処理する方法、磁性粒子を還元させる方法、及び磁性粒子をメッキさせる方法からなる群より選択されることを特徴とする請求項3に記載の方法。
  5. 前記磁性粒子は鉄(Fe)含有粒子であることを特徴とする請求項1〜4のいずれか一項に記載の方法。
  6. 前記磁場発生装置の磁場は0.005〜10テスラ(T)であることを特徴とする請求項1〜5のいずれか一項に記載の方法。
  7. 下記段階を含むカーボンナノチューブが電場の発生方向によって整列された電界放出エミッタ電極の製造方法:
    (a)カーボンナノチューブを有機溶媒に希釈させた分散液を、電場発生装置の上端に固定された基板上に分散させる段階;
    (b)前記基板上に分散した分散液の有機溶媒を蒸発させ、カーボンナノチューブを電場内で基板上に電場の発生方向によって整列させる段階;及び
    (c)前記電場の発生方向によって整列されたカーボンナノチューブが電場のない状態でも整列方向に固定されるようにするために、前記基板上に金属を蒸着させる段階。
  8. 前記電場発生方向は基板に垂直、水平または垂直と水平の間の任意の角度であることを特徴とする請求項7に記載の方法。
  9. 前記(a)段階の電場発生装置は電界(electric field)であることを特徴とする請求項7又は8に記載の方法。
  10. 前記電界の電場は0.1〜500V/μmであることを特徴とする請求項9に記載の方法。
  11. 前記(a)段階は、分散補助剤をさらに添加することを特徴とする請求項7〜10のいずれか一項に記載の方法。
  12. 前記分散補助剤は、有機溶媒であるTOAB(tetra octylammonium bromide)、界面活性剤であるTriton X−100、SDS(sodium dodecylsurfate)、NADDBS(sodium dodecyl benzenesulfonate)及びPAPPV(poly[2-(2‘-ethylhexyloxy)-5-(phenylethynyl)-1,4-phenylenevinylene])よりなる群から選択されることを特徴とする請求項11に記載の方法。
  13. 前記(a)段階でカーボンナノチューブを有機溶媒に希釈させた分散液を基板上に分散させる方法は、スピンコーティング方法、スプレー方法、ディップコーティング方法およびインクジェット方法よりなる群から選択されることを特徴とする請求項1〜12のいずれか一項に記載の方法。
  14. 前記(a)段階および前記(b)段階を1〜1000回繰り返し行い、カーボンナノチューブの密度を増加させることを特徴とする請求項1〜13のいずれか一項に記載の方法。
  15. 前記(a)段階の溶媒は、水(HO)、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド(DMAc)、シクロヘキサノン、0エチルアルコール、クロロホルム、ジクロロメタン、エチルエーテル及び1、2−ジクロロベンゼンよりなる群から選択されることを特徴とする請求項1〜14のいずれか一項に記載の方法。
  16. 前記(a)段階の基板は、インジウムスズ酸化物ガラス、ガラス、水晶(quartz)、ガラス基板、シリコン基板、応用シリカ、プラスチックおよび透明高分子よりなる群から選択されることを特徴とする請求項1〜15のいずれか一項に記載の方法。
  17. 前記(a)段階のカーボンナノチューブの分散液の濃度は0.001〜1.0重量%であることを特徴とする請求項1〜16のいずれか一項に記載の方法。
  18. 前記(b)段階で溶媒を20〜300℃に昇温して除去することを特徴とする請求項1〜17のいずれか一項に記載の方法。
  19. 前記(a)段階で基板上に分散させるカーボンナノチューブの量は1pg/cm〜1g/cmであることを特徴とする請求項1〜18のいずれか一項に記載の方法。
  20. 前記(c)段階の金属は1〜5000nmで蒸着することを特徴とする請求項1〜19のいずれか一項に記載の方法。
  21. 前記(c)段階の金属はチタニウム(Ti)、モリブデン(Mo)、金(Au)、銀 (Ag)、アルミニウム(Al)、カルシウム(Ca)、カドミウム(Cd)、鉄(Fe)、ニッケル(Ni)、白金(Pt)、亜鉛(Zn)及び銅(Cu)よりなる群から選択されることを特徴とする請求項1〜20のいずれか一項に記載の方法。
JP2007141010A 2006-05-26 2007-05-28 カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法 Active JP5132993B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2006-0047655 2006-05-26
KR1020060047655A KR100785377B1 (ko) 2006-05-26 2006-05-26 탄소나노튜브가 수직으로 정렬된 전계방출 에미터 전극의제조방법
KR1020060074791A KR100801131B1 (ko) 2006-08-08 2006-08-08 탄소나노튜브의 정렬을 통한 전계방출 에미터 전극의제조방법
KR10-2006-0074791 2006-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010215167A Division JP2011040402A (ja) 2006-05-26 2010-09-27 カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法

Publications (2)

Publication Number Publication Date
JP2007317666A true JP2007317666A (ja) 2007-12-06
JP5132993B2 JP5132993B2 (ja) 2013-01-30

Family

ID=38750095

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007141010A Active JP5132993B2 (ja) 2006-05-26 2007-05-28 カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法
JP2010215167A Pending JP2011040402A (ja) 2006-05-26 2010-09-27 カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010215167A Pending JP2011040402A (ja) 2006-05-26 2010-09-27 カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法

Country Status (3)

Country Link
US (2) US20070275627A1 (ja)
JP (2) JP5132993B2 (ja)
WO (1) WO2007139271A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530647A (ja) * 2008-08-12 2011-12-22 エア プロダクツ アンド ケミカルズ インコーポレイテッド パー(フェニルエチニル)アレーン誘導体を含有するポリマー組成物
US9006353B2 (en) 2011-11-18 2015-04-14 Delsper LP Crosslinking compounds for high glass transition temperature polymers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785028B1 (ko) * 2006-11-06 2007-12-12 삼성전자주식회사 전계방출소자의 제조방법
US7892610B2 (en) * 2007-05-07 2011-02-22 Nanosys, Inc. Method and system for printing aligned nanowires and other electrical devices
SG148066A1 (en) * 2007-05-25 2008-12-31 Sony Corp An electron emitter apparatus, a fabrication process for the same and a device utilizing the same
JP5327936B2 (ja) * 2007-12-14 2013-10-30 株式会社名城ナノカーボン 細胞培養容器およびその製造方法
US20110175603A1 (en) * 2008-06-13 2011-07-21 Vladimir Burtman Method and Apparatus for Measuring Magnetic Fields
KR101054354B1 (ko) 2008-12-22 2011-08-05 한국과학기술원 용액 증발법을 이용한 나노물질의 배열방법
CN101704503B (zh) * 2009-04-30 2015-11-25 中国计量学院 一种一维纳米材料接枝可控合成的方法
FR2945802B1 (fr) * 2009-05-25 2015-01-16 Hutchinson Tapis de nanotubes de carbone
KR101098333B1 (ko) * 2009-08-04 2011-12-26 성균관대학교산학협력단 탄소나노튜브의 분산방법, 탄소나노튜브 분산장치 및 이에 의하여 얻어진 탄소나노튜브 분산체
EP2470220A1 (en) * 2009-08-28 2012-07-04 Innovative Health Technologies, Llc Polymer adhesive film for directed cellular growth
ES2366516B1 (es) * 2009-12-23 2012-09-04 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de recubrimiento de electrodos de un dispositivo electrónico por atrapamiento magnético, electrodo así obtenido, dispositivo que incorpora dicho electrodo y uso de dicho dispositivo.
EP3109928B1 (de) * 2015-06-24 2019-08-14 Airbus Defence and Space GmbH Verfahren zum herstellen einer elektrode insbesondere für elektrochemische energiespeicher, sowie eine elektrode und einen elektrochemischen energiespeicher
CN113325965A (zh) * 2020-02-28 2021-08-31 宸美(厦门)光电有限公司 电极、电极的制作方法及其装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149760A (ja) * 1996-09-18 1998-06-02 Toshiba Corp 電界放出型冷陰極装置、その製造方法及び真空マイクロ装置
JP2000141056A (ja) * 1998-09-21 2000-05-23 Lucent Technol Inc 接着性カ―ボンナノチュ―ブ膜を有するデバイス
JP2001288626A (ja) * 2000-04-03 2001-10-19 Nissan Motor Co Ltd カーボンナノ繊維固着体の製造方法
JP2002025425A (ja) * 2000-07-07 2002-01-25 Hitachi Ltd 電子エミッターとその製造法および電子線装置
JP2003249166A (ja) * 2002-02-22 2003-09-05 Sony Corp 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法
JP2005100885A (ja) * 2003-09-26 2005-04-14 Shimadzu Corp 電界放射電子源およびこれを用いた顕微鏡
JP2005116351A (ja) * 2003-10-08 2005-04-28 Sony Corp 電界電子放出電極用インクおよびそれを用いた電界電子放出膜・電界電子放出電極・電界電子放出表示装置の製造方法
JP2005150107A (ja) * 2003-10-24 2005-06-09 Taiyo Ink Mfg Ltd カーボンナノチューブのパターン形成方法およびそのパターン形成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538367B1 (en) * 1999-07-15 2003-03-25 Agere Systems Inc. Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same
DE19948106C2 (de) * 1999-09-27 2003-07-24 Heidenhain Gmbh Dr Johannes Positionsmeßsystem
US6741019B1 (en) * 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
US6908572B1 (en) * 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
US6723299B1 (en) * 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
JP3632682B2 (ja) * 2001-07-18 2005-03-23 ソニー株式会社 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法
US6890230B2 (en) * 2001-08-28 2005-05-10 Motorola, Inc. Method for activating nanotubes as field emission sources
US7195938B2 (en) * 2001-10-19 2007-03-27 Nano-Proprietary, Inc. Activation effect on carbon nanotubes
US6975063B2 (en) * 2002-04-12 2005-12-13 Si Diamond Technology, Inc. Metallization of carbon nanotubes for field emission applications
JP2004234865A (ja) * 2003-01-28 2004-08-19 Sony Corp カーボンナノチューブ配列材料とその製造方法、炭素繊維配列材料とその製造方法、及び電界放出表示素子
US7118440B2 (en) * 2004-01-09 2006-10-10 Teco Nanotech Co., Ltd. Spray with carbon nanotubes and method to spray the same
KR101013438B1 (ko) * 2004-02-09 2011-02-14 삼성에스디아이 주식회사 전계방출소자 및 그를 구비한 백라이트 장치
KR100620075B1 (ko) * 2004-12-03 2006-09-08 한국과학기술연구원 탄소나노튜브 후막 및 이를 이용한 전계방출형 표시소자,평판형 램프 및 화학센서 감지막

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149760A (ja) * 1996-09-18 1998-06-02 Toshiba Corp 電界放出型冷陰極装置、その製造方法及び真空マイクロ装置
JP2000141056A (ja) * 1998-09-21 2000-05-23 Lucent Technol Inc 接着性カ―ボンナノチュ―ブ膜を有するデバイス
JP2001288626A (ja) * 2000-04-03 2001-10-19 Nissan Motor Co Ltd カーボンナノ繊維固着体の製造方法
JP2002025425A (ja) * 2000-07-07 2002-01-25 Hitachi Ltd 電子エミッターとその製造法および電子線装置
JP2003249166A (ja) * 2002-02-22 2003-09-05 Sony Corp 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法
JP2005100885A (ja) * 2003-09-26 2005-04-14 Shimadzu Corp 電界放射電子源およびこれを用いた顕微鏡
JP2005116351A (ja) * 2003-10-08 2005-04-28 Sony Corp 電界電子放出電極用インクおよびそれを用いた電界電子放出膜・電界電子放出電極・電界電子放出表示装置の製造方法
JP2005150107A (ja) * 2003-10-24 2005-06-09 Taiyo Ink Mfg Ltd カーボンナノチューブのパターン形成方法およびそのパターン形成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530647A (ja) * 2008-08-12 2011-12-22 エア プロダクツ アンド ケミカルズ インコーポレイテッド パー(フェニルエチニル)アレーン誘導体を含有するポリマー組成物
US8502401B2 (en) 2008-08-12 2013-08-06 Delsper LP Polymeric compositions comprising per(phenylethynyl) arene derivatives
US9006353B2 (en) 2011-11-18 2015-04-14 Delsper LP Crosslinking compounds for high glass transition temperature polymers

Also Published As

Publication number Publication date
JP2011040402A (ja) 2011-02-24
WO2007139271A1 (en) 2007-12-06
US20110027498A1 (en) 2011-02-03
JP5132993B2 (ja) 2013-01-30
US20070275627A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5132993B2 (ja) カーボンナノチューブの整列を用いた電界放出エミッタ電極の製造方法
JP4563686B2 (ja) ナノ構造材料のための堆積方法
US7455757B2 (en) Deposition method for nanostructure materials
CN101451262B (zh) 电泳沉积均匀的碳纳米管复合膜的方法与设备
CN1656264A (zh) 组装纳米物体的方法
JP2007533581A (ja) 電子電界放出特性を有する、小直径カーボンナノチューブの合成方法
JP2010138064A (ja) カーボンナノチューブフィルムの製造方法、カーボンナノチューブフィルム、およびカーボンナノチューブ素子
Yu et al. Electron field emission from soluble carbon nanotube films treated by hydrogen plasma
Lee et al. High-current field emission of point-type carbon nanotube emitters on Ni-coated metal wires
KR100785377B1 (ko) 탄소나노튜브가 수직으로 정렬된 전계방출 에미터 전극의제조방법
US7371696B2 (en) Carbon nanotube structure and method of vertically aligning carbon nanotubes
JP2010500719A (ja) ナノワイヤーの整列を用いた電界放出エミッタ電極の製造方法
JP2008124013A (ja) 電子放出素子の製造方法
Yu et al. Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission
KR100801131B1 (ko) 탄소나노튜브의 정렬을 통한 전계방출 에미터 전극의제조방법
JP5069486B2 (ja) 薄膜型電子放出材料、その製造方法、電界放出型素子及び電界放出型ディスプレイ
JP4554260B2 (ja) 膨張化炭素繊維、その製造法およびそれを含む電界放出素子ならびに電界放出ディスプレイ
TWI321802B (en) Method of making field emission electron source
TW200824494A (en) Anode device and method for making the same
JP4961561B2 (ja) 有機ケイ素化合物とカーボンナノチューブの複合材及びその製造方法
KR101151353B1 (ko) 침상 전계방출형 전자빔 에미터의 제조방법 및 이에 따라 제조되는 침상 전계방출형 전자빔 에미터
Ye et al. Fabrication of carbon nanotubes field emission backlight unit applied to LCD
JP2006140110A (ja) カーボンナノチューブペースト、電子放出源およびフィールドエミッションディスプレイ、ならびにこれらの製造方法
JP2008053177A (ja) ナノカーボンエミッタとその製造方法並びに面発光素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120703

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250