JP2007249180A - 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置 - Google Patents

光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置 Download PDF

Info

Publication number
JP2007249180A
JP2007249180A JP2007013047A JP2007013047A JP2007249180A JP 2007249180 A JP2007249180 A JP 2007249180A JP 2007013047 A JP2007013047 A JP 2007013047A JP 2007013047 A JP2007013047 A JP 2007013047A JP 2007249180 A JP2007249180 A JP 2007249180A
Authority
JP
Japan
Prior art keywords
group
film
rth
optical film
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013047A
Other languages
English (en)
Other versions
JP4989984B2 (ja
Inventor
Mamoru Sakurazawa
守 桜沢
Shigeo Kamihira
茂生 上平
Nobutaka Fukagawa
伸隆 深川
Susumu Sugiyama
享 杉山
Teruki Arai
輝樹 新居
Tomohiro Ogawa
智宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007013047A priority Critical patent/JP4989984B2/ja
Publication of JP2007249180A publication Critical patent/JP2007249180A/ja
Application granted granted Critical
Publication of JP4989984B2 publication Critical patent/JP4989984B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】斜めから観察しても黒表示が着色を起こさない、高い表示品位を可能とする光学フィルム、これを用いた偏光板および液晶表示装置を提供すること。
【解決手段】分子長軸方向と略直交方向の遷移電気双極子モーメントMyに由来する分子吸収波長が、該分子長軸方向と略平行方向の遷移電気双極子モーメントMxに由来する分子吸収波長より長波長であって、分子長軸方向と略直交方向の遷移電気双極子モーメントの大きさ|My|が分子長軸方向と略平行方向の遷移電気双極子モーメントの大きさ|Mx|より大きいことを特徴とする低分子化合物を少なくとも1種と、Rth上昇剤を少なくとも1種含有することを特徴とする光学フィルム。
【選択図】なし

Description

本発明は、光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置に関する。とりわけ視野角依存性が少ない高品位の視認性を実現させる光学フィルム、偏光板および液晶表示装置に関する。
液晶表示装置は、消費電力の小さい少スペースの画像表示装置として年々用途が広がっている。従来、画像の視野角依存性が大きいことが液晶表示装置の大きな欠点であったが、近年、液晶セル内の液晶分子の配列状態の異なる様々な高視野角モードが実用化されており、これによりテレビ等の高視野角が要求される市場でも液晶表示装置の需要が急速に拡大しつつある。
一般に液晶表示装置は液晶セル、光学補償シート、偏光子から構成される。光学補償シートは画像着色を解消したり、視野角を拡大するために用いられており、延伸した複屈折フィルムや透明フィルムに液晶を塗布したフィルムが使用されている。例えば、特許文献1ではディスコティック液晶をトリアセチルセルロースフィルム上に塗布し配向させて固定化した光学補償シートをTNモードの液晶セルに適用し、視野角を広げる技術が開示されている。しかしながら、大画面で様々な角度から見ることが想定されるテレビ用途の液晶表示装置は視野角依存性に対する要求が厳しく、前述のような手法をもってしても要求を満足することはできていない。そのため、IPS(In−Plane Switching)モード、OCB(Optically Compensatory Bend)モード、VA(Vertically Aligned)モードなど、TNモードとは異なる液晶表示装置が研究されている。
特にVAモードはコントラストが高く、比較的製造の歩留まりが高いことからTV用の液晶表示装置として着目されている。しかしながらVAモードではパネル法線方向においてはほぼ完全な黒色表示ができるものの、斜め方向からパネルを観察すると光漏れが発生し、視野角が狭くなるという問題があった。この問題を解決するためにnx>ny=nzとなる正の屈折率異方性を有する第一の位相差板とnx=ny>nzとなる負の屈折率異方性を有する第2の位相差板とを併用することにより光漏れを低減する方法が提案されている(例えば特許文献1)。さらにnx>ny>nzの光学的に二軸の位相差板を用いることによりVAモードの液晶表示装置の視野角特性を向上することが提案されている(例えば特許文献2)。ここでnx,ny,nzはそれぞれ前記位相差板における、X軸方向、Y軸方向およびZ軸方向の屈折率を示す。前記X軸方向は前記位相差板の面内方向において最大の屈折率を示す軸方向であり、前記Y軸方向は、前記面内における前記X軸方向に対して垂直な軸方向であり、前記Z軸方向は前記X軸方向および前記Y軸方向に垂直な厚み方向を示す。
一方IPS方式、OCB方式も含めた各液晶方式も近年の液晶テレビの需要増に伴い、表示方式を向上させてきている。
しかしながら、これらの方法は、ある波長域(例えば550nm付近の緑光)に対して光漏れを低減しているのみであり、それ以外の波長域(例えば450nm付近の青光、650nm付近の赤光)に対する光漏れは考慮していない。このため例えば黒表示をして斜めから観察すると、青色や赤色に着色するいわゆるカラーシフトの問題が解決されていなかった。
また、複屈折フィルム1枚で波長が短いほど位相差が小さい(即ち逆分散性を有する)フィルムを特殊なモノマー単位からなる共重合体またはブレンド高分子が開示されているが(例えば特許文献3)、低分子化合物で位相差が逆分散性となる複屈折フィルムはレターデーションの特性が不十分であった。
したがって、黒表示の視角コントラスト及び光漏れを向上する手段として、光学補償フィルムの青光、緑光、赤光についてレターデーションを最適化する方法が求められていた。
特許3027805号公報 特許3330574号公報 特開2002−156528号公報
本発明の課題は斜めから観察しても黒表示が着色を起こさない、高い表示品位を可能とする光学フィルム、これを用いた偏光板および液晶表示装置の提供を目的とする。
本発明の目的は、下記手段により達成された。
〔1〕
分子長軸方向と略直交方向の遷移電気双極子モーメントMyに由来する分子吸収波長が、該分子長軸方向と略平行方向の遷移電気双極子モーメントMxに由来する分子吸収波長より長波長であって、分子長軸方向と略直交方向の遷移電気双極子モーメントの大きさ|My|が分子長軸方向と略平行方向の遷移電気双極子モーメントの大きさ|Mx|より大きいことを特徴とする低分子化合物を少なくとも1種と、Rth上昇剤を少なくとも1種含有することを特徴とする光学フィルム。
〔2〕
下記一般式(I)で表される化合物を少なくとも一種含有し、かつRth上昇剤を少なくとも一種含有することを特徴とする光学フイルム。
一般式(I)
Figure 2007249180
(一般式(I)中、LおよびLは、それぞれ、単結合または二価の連結基を表す。AおよびAは−O―、―NR―(Rは水素原子または置換基)、―S―、―CO−からそれぞれ独立に選ばれる基である。R、R、R、RおよびRは置換基を表す。nは0から2までの整数を表す。)
〔3〕
下記一般式一般式(II)、(III)、(IV)、又は(V)で表される化合物から選ばれる少なくとも一種を含有することを特徴とする〔1〕又は〔2〕のいずれか1つに記載の光学フイルム。
一般式(II)
Figure 2007249180
(一般式(II)中、R12は、各々独立に、オルト位、メタ位およびパラ位の少なくともいずれかに置換基を有する芳香族環または複素環を表す。X11は、各々独立に、単結合または−NR13−を表す。ここで、R13は、各々独立に、水素原子、置換もしくは無置換のアルキル基、アルケニル基、アリール基または複素環基を表す。)
一般式(III)
Figure 2007249180
(一般式(III)中、R4、R5、R6、R7、R8及びR9は各々独立して、水素原子又は置換基を表す。)
一般式(IV)
71−Q72−OH
(一般式(IV)中、Q71は含窒素芳香族ヘテロ環、Q72は芳香族環を表す。)
一般式(V):
Figure 2007249180
(一般式(V)中、Q81及びQ82はそれぞれ独立に芳香族環を表す。X81はNR81(R81は水素原子又は置換基を表す)、酸素原子又は硫黄原子を表す。)
〔4〕
前記の低分子化合物及びRth上昇剤の少なくとも一方が100℃〜300℃の温度範囲で液晶相を示すことを特徴とする〔1〕〜〔3〕のいずれか1つに記載の光学フイルム。
〔5〕
下記式(1)〜(3)を満たすことを特徴とする〔1〕〜〔4〕いずれか1つに記載の光学フィルム。
式(1) Re(550)>20nm
式(2) 0.5<Nz<10
式(3) −2.5×Re(550)+300<Rth(550)<−2.5×Re(550)+500
(式中、Re(λ)及びRth(λ)はそれぞれ、波長λnmの光を入射させて測定した面内及び面外レターデーション(単位:n)であり、Nz=Rth(550)/Re(550)+0.5とする。)
〔6〕
下記式(A)〜(D)を満たすことを特徴とする〔1〕〜〔4〕のいずれか1つに記載の光学フイルム。
(A)0.1<Re(450)/Re(550)<0.95
(B)1.03<Re(650)/Re(550)<1.93
(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
(D)1.05<(Re/Rth(650))/(Re/Rth(550))<1.9
(式中、Re(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値であり、Rth(λ)は、波長λnmの光に対する該フィルムの厚み方向のレターデーション値であり、Re/Rth(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値と厚み方向のレターデーション値の比である(単位:nm)。)
〔7〕
フイルムを延伸する延伸工程と収縮させる収縮工程とを含む製造方法によって製造されたことを特徴とする〔1〕〜〔6〕のいずれか1つに記載の光学フイルム。
〔8〕
光学フイルムがセルロースアシレートからなることを特徴とする〔1〕〜〔7〕のいずれか1つに記載の光学フイルム。
〔9〕
セルロースアシレートのアシル置換基が実質的にアセチル基のみからなり、その全置換度が2.56〜3.00であることを特徴とする〔8〕記載の光学フイルム。
〔10〕
セルロースアシレートのグルコース単位の2位の水酸基のアシル基による置換度をDS2、3位の水酸基の置換度をDS3、6位の水酸基のアシル基による置換度をDS6としたときに、下記式(I)および(II)を満たすことを特徴とする〔8〕又は〔9〕記載の光学フイルム。
式(I):2.0≦(DS2+DS3+DS6)≦3.0
式(II):DS6/(DS2+DS3+DS6)≧0.315
〔11〕
アシル置換基が実質的にアセチル基、プロピオニル基及びブタノイル基から選ばれる少なくとも2種類からなり、その全置換度が2.50〜3.00であることを特徴とする〔8〕〜〔10〕のいずれか1つに記載の光学フイルム。
〔12〕
製造工程中にフイルムを延伸する延伸工程と収縮させる収縮工程とを含むことを特徴とする〔1〕〜〔11〕のいずれか1つに記載の光学フイルムの製造方法。
〔13〕
偏光膜と該偏光膜を挟持する一対の保護膜とを有する偏光板であって、前記保護膜の少なくとも一枚が〔1〕〜〔11〕のいずれか1つに記載の光学フイルムであることを特徴とする偏光板。
〔14〕
〔1〕〜〔11〕のいずれか1つに記載の光学フイルムまたは〔13〕に記載の偏光板を有することを特徴とする液晶表示装置。
〔15〕
下記式(10)、(11)を満たす光学異方性層をさらに有する〔14〕に記載の液晶表示装置:
式(10) Rt(550)/Re(550)>10
式(11) Rth(650)−Rth(450)<0
〔16〕
前記液晶表示装置がVAモードであることを特徴とする〔14〕又は〔15〕のいずれか1項に記載の液晶表示装置。
〔17〕
〔13〕に記載の偏光板をバックライト側に用いたことを特徴とする〔14〕〜〔16〕のいずれか1項に記載の液晶表示装置。
なお、本明細書において、「45゜」、「平行」あるいは「直交」とは、厳密な角度±5゜未満の範囲内であることを意味する。厳密な角度との誤差は、4゜未満であることが好ましく、3゜未満であることがより好ましい。また、角度について、「+」は時計周り方向を意味し、「−」は反時計周り方向を意味するものとする。また、「遅相軸」は、屈折率が最大となる方向を意味する。また、「可視光領域」とは、380nm〜780nmのことをいう。さらに屈折率の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。
本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体のことを意味するものとする。
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける正面レターデーションおよび膜厚方向のレターデーションを表す。Re(λ)は、自動複屈折計、例えばKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(自動複屈折計、例えばKOBRA・21ADHにより判断される)を傾斜軸としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基に自動複屈折計、例えばKOBRA・21ADHが算出する。
ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHのごとき自動複屈折計はnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx-Nz)/(nx-ny)が更に算出される。
また、本明細書では、Re(450)、Re(550)、Re(650)、Rth(450)、Rth(550)、Rth(650)の値は以下のようにして求めた。測定装置により3以上の異なる波長(例としてλ=479.2、546.3、632.8、745.3nm)を用いて測定し、それぞれの波長からRe、Rthを算出するものとする。これらの値をコーシーの式(第3項まで、Re=A+B/λ+C/λ)にて近似して値A、B、Cを求める。以上より波長λにおけるRe、Rthをプロットし直し、そこから波長450、550、650nmでのReおよびRth値であるRe(450)、Re(550)、Re(650)、Rth(450)、Rth(550)、Rth(650)を求めることができる。
本発明による光学フイルム、それを用いた偏光板、さらにそれを搭載した液晶表示装置は黒表示を斜め方向から見たときの着色が小さい高い表示品位の画像を得ることができる。
本発明は、入射光が法線方向とそれに対して傾いた斜め方向、例えば極角60度方向とで、レターデーションの波長分散が異なる光学特性をセルロースアシレートフィルムに持たせ、それを光学補償に積極的に用いることを特徴としている。本発明の範囲は、液晶層の表示モードによって限定されず、VAモード、IPSモード、ECBモード、TNモードおよびOCBモード等、いずれの表示モードの液晶層を有する液晶表示装置にも用いることができる。
以下に本発明の詳細を説明する。
本発明は分子長軸方向と略直交方向の遷移電気双極子モーメントMyに由来する分子吸収波長が、該分子長軸方向と略平行方向の遷移電気双極子モーメントMxに由来する分子吸収波長より長波長であって、分子長軸方向と略直交方向の遷移電気双極子モーメントの大きさ|My|が分子長軸方向と略平行方向の遷移電気双極子モーメントの大きさ|Mx|より大きいことを特徴とする低分子化合物(以下化合物(A)ということがある)を少なくとも1種と、Rth上昇剤を少なくとも1種含有することを特徴とする光学フィルムに関する。
以下本発明の光学フィルムに含まれる前記化合物(A)について説明する。
(分子長軸の決定)
本発明に用いる上記化合物(A)における分子長軸はコンピューターを用いた密度汎関数計算によって決定することが出来る。すなわち密度汎関数計算によって分子の最適化構造得て、得られた分子構造中の任意の2原子間距離のうち、最も距離の長い2原子同士を結んだ軸を分子長軸とする。
上記における分子構造の構築にあたっては、GausView3.0(Gaussain Inc.社製)を用いる。分子構造の最適化に用いるプログラムとしては、Gaussian03 Rev.D.02(Gaussain Inc.社製)を用い、基底関数としてB3LYP/6−31G(d)を用い、収束条件はデフォルト値を用いる。
(遷移電気双極子モーメントおよびこれらの大きさ、遷移電気双極子モーメントに由来する吸収波長の算出)
上記遷移電気双極子モーメントMx、My、およびこれらの大きさ|Mx|、|My|、さらにはMx、Myに由来する吸収波長は時間依存密度汎関数計算によって求めることが出来る。時間依存密度汎関数計算に用いるプログラムとしては、Gaussian03 Rev.D.02(Gaussain Inc.社製)、基底関数としてB3LYP/6−31+G(d)を用い、さらにPCM法により溶媒効果を導入する。
さらに具体的には上記計算によって求めた遷移電気双極子モーメントを構成するベクトルと前記分子長軸を構成する両端の原子のカルテシアン座標で表されるベクトルとの内積から遷移電気双極子モーメントと上記分子長軸とのなす角度を求め、これらを基に前記Mx、Myおよび|Mx|、|My|、MxおよびMyに由来する分子吸収波長を決定する。
なお本発明において「分子長軸方向と略直交方向の遷移電気双極子モーメント」という場合、分子長軸方向と厳密に90°の角度をなす遷移電気双極子モーメントを指すわけではなく、分子長軸方向と略平行方向と70°〜110°の角度をなす全ての遷移電気双極子モーメントのうち最も大きい遷移電気双極子モーメントを指すものである。
既に述べたように本発明の光学フィルムに用いる化合物(A)の特徴の一つは、分子長軸方向と略直交方向の遷移電気双極子モーメントMyに由来する分子吸収波長が、該分子長軸方向と略平行方向の遷移電気双極子モーメントMxに由来する分子吸収波長より長波長であることである。
ここで分子長軸方向に略直交する遷移電気双極子モーメントMxに由来する吸収波長は、分子長軸方向と略平行方向の遷移電気双極子モーメントMyに由来する吸収波長より10nm以上200nm以下長波長であることが好ましく、20nm以上150nm以下長波長あることがより好ましく、30nm以上120nm以下長波長であることがさらに好ましい。
上記長軸方向に略直交する遷移電気双極子モーメントMyに由来する吸収波長は250nm以上400nm以下の範囲であることが好ましく、300nm以上380nm以下の範囲であることがより好ましく、320nm以上375nm以下の範囲であることがさらに好ましい。
また本発明の光学フィルムに用いる化合物(A)の他の特徴は、上記分子長軸方向と略直交する遷移電気双極子モーメントの大きさ|My|が分子長軸方向と略平行方向の遷移電気双極子モーメントの大きさ|Mx|より大きいことである。即ち、両者の比(|My|/|Mx|)は1以上であることが好ましく、1以上50以下であることがより好ましく、1.1以上30以下であることがさらに好ましい。
本発明の光学フィルムに用いる化合物(A)は低分子化合物である。ここで低分子化合物とは分子量1500以下の化合物であり、1200以下であることがより好ましく、1000以下であることがさらに好ましい。
上記の範囲の分子量より大きな分子量を有する化合物はブリードアウトが発生しやすく好ましくない。
本発明の効果、すなわち液晶表示装置黒表示時における斜め方向から見たときの着色を低減するという効果を得るためには、これに用いる光学補償フィルムの面内レタデーションReが可視光域の光に対してその波長に依存して増大することが好ましい。
なお、以下の説明において光学フィルムの屈折率あるいは複屈折が可視光域の光に依存して(すなわち測定波長に依存して)変動することを、光学フィルムの屈折率あるいは複屈折の波長分散性といい、特に光学フィルムの屈折率あるいは複屈折が可視光域の光に対してその波長に依存して増大する性能を有することを「逆波長分散性を有する」、光学フィルムの屈折率あるいは複屈折が可視光域の光に対してその波長に依存して減少する性能を有することを「順波長分散性を有する」という。
本発明の前記効果を得る上では、高分子組成物に対して延伸等の配向処理処理を行って、延伸等による配向制御方向(以下、TD方向と示す)を正の方向とした場合の複屈折(Δn)を逆波長分散性とすることが好ましい。
ここで前記ΔnはTD方向の屈折率からMD方向の屈折率を差し引いた値である。このためΔnを逆波長分散性とするためにはTD方向の屈折率の波長分散性よりもMD方向の波長分散性がより右肩下がり(すなわち測定波長に対してそれぞれの屈折率の値を、短波長側を左、長波長側を右としてプロットした場合の屈折率の減少量が、MD方向のものが大きい)であることが必要である。
屈折率の波長分散性は、Lorentz−Lorenzの式で表されているように物質の吸収波形に密接な関係にあり、MD方向の屈折率の波長分散性を、TD方向の波長分散性より右肩下がりにするためには、TD方向に比較してMD方向における吸収遷移波長をより長波長化すればよい。
本発明では、高分子材料に対して化合物(A)のような化合物を添加し、さらに延伸等の配向処理を施すことで、TD方向に比較してMD方向における吸収遷移波長をより長波長化することを可能とするものである。
すなわち化合物(A)を高分子材料中添加し、これに延伸処理を施した場合、該化合物(A)の分子長軸はTD方向に配向する。前述のように化合物(A)においては分子長軸方向と略直交方向の遷移電気双極子モーメントMyに由来する分子吸収波長が、該分子長軸方向と略平行方向の遷移電気双極子モーメントMxに由来する分子吸収波長より長波長であって、分子長軸方向と略直交方向の遷移電気双極子モーメントの大きさ|My|が分子長軸方向と略平行方向の遷移電気双極子モーメントの大きさ|Mx|より大きい。このためTD方向に比較してMD方向における吸収遷移波長をより長波長化することが可能となる。
化合物(A)として好ましくは下記一般式(I)で表される化合物であるが、これに限定されるものではない。
以下に、一般式(I)の化合物について詳細に説明する。
一般式(I):
Figure 2007249180
(一般式(I)中、LおよびLは、それぞれ、単結合または二価の連結基を表す。AおよびAは−O―、―NR―(Rは水素原子または置換基)、―S―、―CO−からそれぞれ独立に選ばれる基である。R、R、R、RおよびRは置換基を表す。nは0から2までの整数を表す。)
およびLは好ましくは下記の例が挙げられる。
Figure 2007249180
さらに好ましくは−O―、―COO―、―OCO−である。
は置換基であり、複数存在する場合は同じでも異なっていてもよく、環を形成しても良い。置換基の例としては下記のものが適用できる。
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1〜30のアルキル基、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは、炭素数3〜30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素数5〜30の置換または無置換のビシクロアルキル基、つまり、炭素数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル、ビシクロ[2,2,2]オクタン−3−イル)、アルケニル基(好ましくは炭素数2〜30の置換または無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは、炭素数3〜30の置換または無置換のシクロアルケニル基、つまり、炭素数3〜30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル基)、ビシクロアルケニル基(置換または無置換のビシクロアルケニル基、好ましくは、炭素数5〜30の置換または無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト−2−エン−1−イル基、ビシクロ[2,2,2]オクト−2−エン−4−イル基)、アルキニル基(好ましくは、炭素数2〜30の置換または無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、
アリール基(好ましくは炭素数6〜30の置換または無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5または6員の置換または無置換の、芳香族または非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素数3〜30の5または6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1〜30の置換または無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素数6〜30の置換または無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、シリルオキシ基(好ましくは、炭素数3〜20のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは、炭素数2〜30の置換または無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2〜30の置換または無置換のアルキルカルボニルオキシ基、炭素数6〜30の置換または無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは、炭素数1〜30の置換または無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは、炭素数2〜30の置換または無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素数7〜30の置換または無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、
アミノ基(好ましくは、アミノ基、炭素数1〜30の置換または無置換のアルキルアミノ基、炭素数6〜30の置換または無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1〜30の置換または無置換のアルキルカルボニルアミノ基、炭素数6〜30の置換または無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素数1〜30の置換または無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30の置換または無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素数7〜30の置換または無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、スルファモイルアミノ基(好ましくは、炭素数0〜30の置換または無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキルおよびアリールスルホニルアミノ基(好ましくは炭素数1〜30の置換または無置換のアルキルスルホニルアミノ、炭素数6〜30の置換または無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、
メルカプト基、アルキルチオ基(好ましくは、炭素数1〜30の置換または無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素数6〜30の置換または無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素数2〜30の置換または無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、スルファモイル基(好ましくは炭素数0〜30の置換または無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N’フェニルカルバモイル)スルファモイル基)、スルホ基、アルキルおよびアリールスルフィニル基(好ましくは、炭素数1〜30の置換または無置換のアルキルスルフィニル基、6〜30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキルおよびアリールスルホニル基(好ましくは、炭素数1〜30の置換または無置換のアルキルスルホニル基、6〜30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、アシル基(好ましくはホルミル基、炭素数2〜30の置換または無置換のアルキルカルボニル基、炭素数7〜30の置換または無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素数7〜30の置換または無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素数2〜30の置換または無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、
カルバモイル基(好ましくは、炭素数1〜30の置換または無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、アリールおよびヘテロ環アゾ基(好ましくは炭素数6〜30の置換または無置換のアリールアゾ基、炭素数3〜30の置換または無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは、炭素数2〜30の置換または無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは、炭素数2〜30の置換または無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素数2〜30の置換または無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素数2〜30の置換または無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素数3〜30の置換または無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基)を表わす。
上記の置換基の中で、水素原子を有するものは、これを取り去り、さらに上記の基で置換されていてもよい。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
1は好ましくは、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
2、R3は各々独立に置換基を表す。例としては上記R1の例があげられる。好ましくは置換もしくは無置換のベンゼン環、置換もしくは無置換のシクロヘキサン環である。より好ましくは置換基を有するベンゼン環、置換基を有するシクロヘキサン環であり、さらに好ましくは4位に置換基を有するベンゼン環、4位に置換基を有するシクロヘキサン環である。
4、R5は各々独立に置換基を表す。例としては上記R1の例があげられる。好ましくは、ハメットの置換基定数σp値が0より大きい電子吸引性の置換基であることが好ましく、σp値が0〜1.5の電子吸引性の置換基を有していることがさらに好ましい。このような置換基としてはトリフルオロメチル基、シアノ基、カルボニル基、ニトロ基等が挙げられる。また、R4とR5とが結合して環を形成してもよい。
なお、ハメットの置換基定数のσp、σmに関しては、例えば、稲本直樹著「ハメット則−構造と反応性−」(丸善)、日本化学会編「新実験化学講座14 有機化合物の合成と反応V」2605頁(丸善)、仲谷忠雄著「理論有機化学解説」217頁(東京化学同人)、ケミカル レビュー,91巻,165〜195頁(1991年)等の成書に詳しく解説されている。
およびAは−O―、―NR―(Rは水素原子または置換基)、―S―、―CO−からそれぞれ独立に選ばれる基である。好ましくは−O―、―NR―(Rは置換基)、―S―からそれぞれ独立に選ばれる基である。
nは0または1が好ましく、0であることが最も好ましい。
以下、本発明の組成物が、少なくとも1種類以上含有する、一般式(I)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。下記化合物に関しては、指定のない限り括弧( )内の数字にて例示化合物(X)と示す。
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
一般式(I)又は(II)で表される化合物の合成は、既知の方法を参照して行うことができる。例えば、一般式(I)の例示化合物(16)は、下記スキームに従って合成することができる。
Figure 2007249180
化合物(1−A)から化合物(1−C)までの合成は“Journal of Chemical Crystallography”(1997);27(9);p.515-526.に記載の方法で行うことができる。
前記スキーム中、化合物(1−A)から化合物(1−D)までの合成は、“Journal of Chemical Crystallography”(1997);27(9);p.515-526.に記載の方法を参照して行うことができる。
さらに、前記スキームに示したように、化合物(1−E)のテトラヒドロフラン溶液に、メタンスルホン酸クロライドを加え、N,N−ジイソプロピルエチルアミンを滴下し攪拌した後、N,N−ジイソプロピルエチルアミンを加え、化合物(1−D)のテトラヒドロフラン溶液を滴下し、その後、N,N−ジメチルアミノピリジン(DMAP)のテトラヒドロフラン溶液を滴下することで、例示化合物(1)を得ることができる。
本発明の光学フィルムに用いられる前記化合物(A)としては前記一般式(I)で表される化合物の他に、アントラキノン誘導体を好ましく用いることが出来る。
本発明に用いることが出来るアントラキノン誘導体としては、具体的には下記のような化合物を用いることができるが、これらに限定されるものではない。
Figure 2007249180
本発明における、化合物(A)あるいは一般式(I)で表される化合物の含有量は、セルロース化合物に対して0.1〜30質量部であることが好ましく、0.5〜20質量部であることがより好ましく、1〜12質量部であることがさらに好ましく、1〜5質量部であることが最も好ましい。
化合物(A)あるいは一般式(I)で表される化合物は、100℃〜300℃の温度範囲で液晶相を発現することが好ましい。より好ましくは120℃〜200℃である。液晶相は、ネマチィク相またはスメクティック相が好ましい。
以下に本発明の光学フィルムに、化合物(A)あるいは一般式(I)で表される化合物とともに含有させるRth上昇剤について詳細に説明する。
本発明のRth上昇剤は以下の数式(1)及び(2)を満たすことが好ましい。
(1)(Rth(a)−Rth(0))/a≧5.0
(2) 0.01≦A≦30
ここで、
Rth(a):レターデーション上昇剤をA%含有したフィルムの波長550nmにおけるRth(nm)
Rth(0):レターデーション上昇剤含有しないフィルムの波長550nmにおけるRth(nm)
a:フィルム原料セルロースアシレートを100質量部としたときのRth上昇剤の質量(%)、である。
数式(1)はさらに、下記数式(1a)であることが好ましい。
(1a)(Rth(a)−Rth(0))/a≧10.0
数式(1)は、下記数式(1b)であることが最も好ましい。
(1a)(Rth(a)−Rth(0))/a≧15.0
本発明においてRth上昇剤は、250以上380nm以下に少なくとも1つの吸収極大を有することが好ましく、さらに250以上360nm以下に少なくとも1つの吸収極大を有することが好ましい。300以上355nm以下に少なくとも1つの吸収極大を有することが最も好ましい。
本発明においてRth上昇剤は、少なくとも二つの芳香族環を有する化合物が好ましい。
Rth上昇剤は、一般式(II)、(III)、(IV)、(V)で表される化合物から選ばれることが好ましい。
一般式(II)で表される化合物について説明する。
一般式(II)
Figure 2007249180
上記一般式(II)中:
12は、各々独立に、オルト位、メタ位およびパラ位の少なくともいずれかに置換基を有する芳香族環または複素環を表す。
11は、各々独立に、単結合または−NR13−を表す。ここで、R13は、各々独立に、水素原子、置換もしくは無置換のアルキル基、アルケニル基、アリール基または複素環基を表す。
12が表す芳香族環は、フェニルまたはナフチルであることが好ましく、フェニルであることが特に好ましい。R12が表す芳香族環はいずれかの置換位置に少なくとも一つの置換基を有してもよい。前記置換基の例には、ハロゲン原子、ヒドロキシル、シアノ、ニトロ、カルボキシル、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルオンアミド基、カルバモイル、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基およびアシル基が含まれる。
12が表す複素環基は、芳香族性を有することが好ましい。芳香族性を有する複素環は、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。複素環のヘテロ原子は、窒素原子、硫黄原子または酸素原子であることが好ましく、窒素原子であることが特に好ましい。芳香族性を有する複素環としては、ピリジン環(複素環基としては、2−ピリジルまたは4−ピリジル)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。
11が単結合である場合の複素環基は、窒素原子に遊離原子価をもつ複素環基であることが好ましい。窒素原子に遊離原子価をもつ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。また、複素環基は、窒素原子以外のヘテロ原子(例、O、S)を有していてもよい。以下に、窒素原子に遊離原子価をもつ複素環基の例を示す。
Figure 2007249180
一般式(II)中、X11は単結合または−NR13−を表す。R13は独立して、水素原子、置換もしくは無置換のアルキル基、アルケニル基、アリール基または複素環基を表す。
13が表すアルキル基は、環状アルキル基であっても鎖状アルキル基であってもよいが、鎖状アルキル基が好ましく、分岐を有する鎖状アルキル基よりも、直鎖状アルキル基がより好ましい。アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることがさらに好ましく、1〜8がさらにまた好ましく、1〜6であることが最も好ましい。アルキル基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、アルコキシ基(例えばメトキシ基、エトキシ基)およびアシルオキシ基(例、アクリロイルオキシ基、メタクリロイルオキシ基)が含まれる。
13が表すアルケニル基は、環状アルケニル基であっても鎖状アルケニル基であってもよいが、鎖状アルケニル基を表すのが好ましく、分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基を表すのがより好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることがさらに好ましく、2〜8であることがさらにまた好ましく、2〜6であることが最も好ましい。アルケニル基は置換基を有していてもよい。置換基の例には、前述のアルキル基の置換基と同様である。
13が表す芳香族環基および複素環基は、R12が表す芳香族環および複素環と同様であり、好ましい範囲も同様である。芳香族環基および複素環基はさらに置換基を有していてもよく、置換基の例にはR12の芳香族環および複素環の置換基と同様である。
以下に本発明で使用される一般式(II)で表されるレターデーション上昇剤の具体例を示す。各例示化合物中の同一構造式内に示す複数のRは、同一の基を意味する。Rの定義は具体例番号と共に式の後に示す。
Figure 2007249180
II-(1)フェニル
II-(2)3−エトキシカルボニルフェニル
II-(3)3−ブトキシフェニル
II-(4)m−ビフェニリル
II-(5)3−フェニルチオフェニル
II-(6)3−クロロフェニル
II-(7)3−ベンゾイルフェニル
II-(8)3−アセトキシフェニル
II-(9)3−ベンゾイルオキシフェニル
II-(10)3−フェノキシカルボニルフェニル
II-(11)3−メトキシフェニル
II-(12)3−アニリノフェニル
II-(13)3−イソブチリルアミノフェニル
II-(14)3−フェノキシカルボニルアミノフェニル
II-(15)3−(3−エチルウレイド)フェニル
II-(16)3−(3,3−ジエチルウレイド)フェニル
II-(17)3−メチルフェニル
II-(18)3−フェノキシフェニル
II-(19)3−ヒドロキシフェニル
II-(20)4−エトキシカルボニルフェニル
II-(21)4−ブトキシフェニル
II-(22)p−ビフェニリル
II-(23)4−フェニルチオフェニル
II-(24)4−クロロフェニル
II-(25)4−ベンゾイルフェニル
II-(26)4−アセトキシフェニル
II-(27)4−ベンゾイルオキシフェニル
II-(28)4−フェノキシカルボニルフェニル
II-(29)4−メトキシフェニル
II-(30)4−アニリノフェニル
II-(31)4−イソブチリルアミノフェニル
II-(32)4−フェノキシカルボニルアミノフェニル
II-(33)4−(3−エチルウレイド)フェニル
II-(34)4−(3,3−ジエチルウレイド)フェニル
II-(35)4−メチルフェニル
II-(36)4−フェノキシフェニル
II-(37)4−ヒドロキシフェニル
II-(38)3,4−ジエトキシカルボニルフェニル
II-(39)3,4−ジブトキシフェニル
II-(40)3,4−ジフェニルフェニル
II-(41)3,4−ジフェニルチオフェニル
II-(42)3,4−ジクロロフェニル
II-(43)3,4−ジベンゾイルフェニル
II-(44)3,4−ジアセトキシフェニル
II-(45)3,4−ジベンゾイルオキシフェニル
II-(46)3,4−ジフェノキシカルボニルフェニル
II-(47)3,4−ジメトキシフェニル
II-(48)3,4−ジアニリノフェニル
II-(49)3,4−ジメチルフェニル
II-(50)3,4−ジフェノキシフェニル
II-(51)3,4−ジヒドロキシフェニル
II-(52)2−ナフチル
II-(53)3,4,5−トリエトキシカルボニルフェニル
II-(54)3,4,5−トリブトキシフェニル
II-(55)3,4,5−トリフェニルフェニル
II-(56)3,4,5−トリフェニルチオフェニル
II-(57)3,4,5−トリクロロフェニル
II-(58)3,4,5−トリベンゾイルフェニル
II-(59)3,4,5−トリアセトキシフェニル
II-(60)3,4,5−トリベンゾイルオキシフェニル
II-(61)3,4,5−トリフェノキシカルボニルフェニル
II-(62)3,4,5−トリメトキシフェニル
II-(63)3,4,5−トリアニリノフェニル
II-(64)3,4,5−トリメチルフェニル
II-(65)3,4,5−トリフェノキシフェニル
II-(66)3,4,5−トリヒドロキシフェニル
Figure 2007249180
II-(67)フェニル
II-(68)3−エトキシカルボニルフェニル
II-(69)3−ブトキシフェニル
II-(70)m−ビフェニリル
II-(71)3−フェニルチオフェニル
II-(72)3−クロロフェニル
II-(73)3−ベンゾイルフェニル
II-(74)3−アセトキシフェニル
II-(75)3−ベンゾイルオキシフェニル
II-(76)3−フェノキシカルボニルフェニル
II-(77)3−メトキシフェニル
II-(78)3−アニリノフェニル
II-(79)3−イソブチリルアミノフェニル
II-(80)3−フェノキシカルボニルアミノフェニル
II-(81)3−(3−エチルウレイド)フェニル
II-(82)3−(3,3−ジエチルウレイド)フェニル
II-(83)3−メチルフェニル
II-(84)3−フェノキシフェニル
II-(85)3−ヒドロキシフェニル
II-(86)4−エトキシカルボニルフェニル
II-(87)4−ブトキシフェニル
II-(88)p−ビフェニリル
II-(89)4−フェニルチオフェニル
II-(90)4−クロロフェニル
II-(91)4−ベンゾイルフェニル
II-(92)4−アセトキシフェニル
II-(93)4−ベンゾイルオキシフェニル
II-(94)4−フェノキシカルボニルフェニル
II-(95)4−メトキシフェニル
II-(96)4−アニリノフェニル
II-(97)4−イソブチリルアミノフェニル
II-(98)4−フェノキシカルボニルアミノフェニル
II-(99)4−(3−エチルウレイド)フェニル
II-(100)4−(3,3−ジエチルウレイド)フェニル
II-(101)4−メチルフェニル
II-(102)4−フェノキシフェニル
II-(103)4−ヒドロキシフェニル
II-(104)3,4−ジエトキシカルボニルフェニル
II-(105)3,4−ジブトキシフェニル
II-(106)3,4−ジフェニルフェニル
II-(107)3,4−ジフェニルチオフェニル
II-(108)3,4−ジクロロフェニル
II-(109)3,4−ジベンゾイルフェニル
II-(110)3,4−ジアセトキシフェニル
II-(111)3,4−ジベンゾイルオキシフェニル
II-(112)3,4−ジフェノキシカルボニルフェニル
II-(113)3,4−ジメトキシフェニル
II-(114)3,4−ジアニリノフェニル
II-(115)3,4−ジメチルフェニル
II-(116)3,4−ジフェノキシフェニル
II-(117)3,4−ジヒドロキシフェニル
II-(118)2−ナフチル
II-(119)3,4,5−トリエトキシカルボニルフェニル
II-(120)3,4,5−トリブトキシフェニル
II-(121)3,4,5−トリフェニルフェニル
II-(122)3,4,5−トリフェニルチオフェニル
II-(123)3,4,5−トリクロロフェニル
II-(124)3,4,5−トリベンゾイルフェニル
II-(125)3,4,5−トリアセトキシフェニル
II-(126)3,4,5−トリベンゾイルオキシフェニル
II-(127)3,4,5−トリフェノキシカルボニルフェニル
II-(128)3,4,5−トリメトキシフェニル
II-(129)3,4,5−トリアニリノフェニル
II-(130)3,4,5−トリメチルフェニル
II-(131)3,4,5−トリフェノキシフェニル
II-(132)3,4,5−トリヒドロキシフェニル
Figure 2007249180
II-(133)フェニル
II-(134)4−ブチルフェニル
II-(135)4−(2−メトキシ−2−エトキシエチル)フェニル
II-(136)4−(5−ノネニル)フェニル
II-(137)p−ビフェニリル
II-(138)4−エトキシカルボニルフェニル
II-(139)4−ブトキシフェニル
II-(140)4−メチルフェニル
II-(141)4−クロロフェニル
II-(142)4−フェニルチオフェニル
II-(143)4−ベンゾイルフェニル
II-(144)4−アセトキシフェニル
II-(145)4−ベンゾイルオキシフェニル
II-(146)4−フェノキシカルボニルフェニル
II-(147)4−メトキシフェニル
II-(148)4−アニリノフェニル
II-(149)4−イソブチリルアミノフェニル
II-(150)4−フェノキシカルボニルアミノフェニル
II-(151)4−(3−エチルウレイド)フェニル
II-(152)4−(3,3−ジエチルウレイド)フェニル
II-(153)4−フェノキシフェニル
II-(154)4−ヒドロキシフェニル
II-(155)3−ブチルフェニル
II-(156)3−(2−メトキシ−2−エトキシエチル)フェニル
II-(157)3−(5−ノネニル)フェニル
II-(158)m−ビフェニリル
II-(159)3−エトキシカルボニルフェニル
II-(160)3−ブトキシフェニル
II-(161)3−メチルフェニル
II-(162)3−クロロフェニル
II-(163)3−フェニルチオフェニル
II-(164)3−ベンゾイルフェニル
II-(165)3−アセトキシフェニル
II-(166)3−ベンゾイルオキシフェニル
II-(167)3−フェノキシカルボニルフェニル
II-(168)3−メトキシフェニル
II-(169)3−アニリノフェニル
II-(170)3−イソブチリルアミノフェニル
II-(171)3−フェノキシカルボニルアミノフェニル
II-(172)3−(3−エチルウレイド)フェニル
II-(173)3−(3,3−ジエチルウレイド)フェニル
II-(174)3−フェノキシフェニル
II-(175)3−ヒドロキシフェニル
II-(176)2−ブチルフェニル
II-(177)2−(2−メトキシ−2−エトキシエチル)フェニル
II-(178)2−(5−ノネニル)フェニル
II-(179)o−ビフェニリル
II-(180)2−エトキシカルボニルフェニル
II-(181)2−ブトキシフェニル
II-(182)2−メチルフェニル
II-(183)2−クロロフェニル
II-(184)2−フェニルチオフェニル
II-(185)2−ベンゾイルフェニル
II-(186)2−アセトキシフェニル
II-(187)2−ベンゾイルオキシフェニル
II-(188)2−フェノキシカルボニルフェニル
II-(189)2−メトキシフェニル
II-(190)2−アニリノフェニル
II-(191)2−イソブチリルアミノフェニル
II-(192)2−フェノキシカルボニルアミノフェニル
II-(193)2−(3−エチルウレイド)フェニル
II-(194)2−(3,3−ジエチルウレイド)フェニル
II-(195)2−フェノキシフェニル
II-(196)2−ヒドロキシフェニル
II-(197)3,4−ジブチルフェニル
II-(198)3,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
II-(199)3,4−ジフェニルフェニル
II-(200)3,4−ジエトキシカルボニルフェニル
II-(201)3,4−ジドデシルオキシフェニル
II-(202)3,4−ジメチルフェニル
II-(203)3,4−ジクロロフェニル
II-(204)3,4−ジベンゾイルフェニル
II-(205)3,4−ジアセトキシフェニル
II-(206)3,4−ジメトキシフェニル
II-(207)3,4−ジ−N−メチルアミノフェニル
II-(208)3,4−ジイソブチリルアミノフェニル
II-(209)3,4−ジフェノキシフェニル
II-(210)3,4−ジヒドロキシフェニル
II-(211)3,5−ジブチルフェニル
II-(212)3,5−ジ(2−メトキシ−2−エトキシエチル)フェニル
II-(213)3,5−ジフェニルフェニル
II-(214)3,5−ジエトキシカルボニルフェニル
II-(215)3,5−ジドデシルオキシフェニル
II-(216)3,5−ジメチルフェニル
II-(217)3,5−ジクロロフェニル
II-(218)3,5−ジベンゾイルフェニル
II-(219)3,5−ジアセトキシフェニル
II-(220)3,5−ジメトキシフェニル
II-(221)3,5−ジ−N−メチルアミノフェニル
II-(222)3,5−ジイソブチリルアミノフェニル
II-(223)3,5−ジフェノキシフェニル
II-(224)3,5−ジヒドロキシフェニル
II-(225)2,4−ジブチルフェニル
II-(226)2,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
II-(227)2,4−ジフェニルフェニル
II-(228)2,4−ジエトキシカルボニルフェニル
II-(229)2,4−ジドデシルオキシフェニル
II-(230)2,4−ジメチルフェニル
II-(231)2,4−ジクロロフェニル
II-(232)2,4−ジベンゾイルフェニル
II-(233)2,4−ジアセトキシフェニル
II-(234)2,4−ジメトキシフェニル
II-(235)2,4−ジ−N−メチルアミノフェニル
II-(236)2,4−ジイソブチリルアミノフェニル
II-(237)2,4−ジフェノキシフェニル
II-(238)2,4−ジヒドロキシフェニル
II-(239)2,3−ジブチルフェニル
II-(240)2,3−ジ(2−メトキシ−2−エトキシエチル)フェニル
II-(241)2,3−ジフェニルフェニル
II-(242)2,3−ジエトキシカルボニルフェニル
II-(243)2,3−ジドデシルオキシフェニル
II-(244)2,3−ジメチルフェニル
II-(245)2,3−ジクロロフェニル
II-(246)2,3−ジベンゾイルフェニル
II-(247)2,3−ジアセトキシフェニル
II-(248)2,3−ジメトキシフェニル
II-(249)2,3−ジ−N−メチルアミノフェニル
II-(250)2,3−ジイソブチリルアミノフェニル
II-(251)2,3−ジフェノキシフェニル
II-(252)2,3−ジヒドロキシフェニル
II-(253)2,6−ジブチルフェニル
II-(254)2,6−ジ(2−メトキシ−2−エトキシエチル)フェニル
II-(255)2,6−ジフェニルフェニル
II-(256)2,6−ジエトキシカルボニルフェニル
II-(257)2,6−ジドデシルオキシフェニル
II-(258)2,6−ジメチルフェニル
II-(259)2,6−ジクロロフェニル
II-(260)2,6−ジベンゾイルフェニル
II-(261)2,6−ジアセトキシフェニル
II-(262)2,6−ジメトキシフェニル
II-(263)2,6−ジ−N−メチルアミノフェニル
II-(264)2,6−ジイソブチリルアミノフェニル
II-(265)2,6−ジフェノキシフェニル
II-(266)2,6−ジヒドロキシフェニル
II-(267)3,4,5−トリブチルフェニル
II-(268)3,4,5−トリ(2−メトキシ−2−エトキシエチル)フェニル
II-(269)3,4,5−トリフェニルフェニル
II-(270)3,4,5−トリエトキシカルボニルフェニル
II-(271)3,4,5−トリドデシルオキシフェニル
II-(272)3,4,5−トリメチルフェニル
II-(273)3,4,5−トリクロロフェニル
II-(274)3,4,5−トリベンゾイルフェニル
II-(275)3,4,5−トリアセトキシフェニル
II-(276)3,4,5−トリメトキシフェニル
II-(277)3,4,5−トリ−N−メチルアミノフェニル
II-(278)3,4,5−トリイソブチリルアミノフェニル
II-(279)3,4,5−トリフェノキシフェニル
II-(280)3,4,5−トリヒドロキシフェニル
II-(281)2,4,6−トリブチルフェニル
II-(282)2,4,6−トリ(2−メトキシ−2−エトキシエチル)フェニル
II-(283)2,4,6−トリフェニルフェニル
II-(284)2,4,6−トリエトキシカルボニルフェニル
II-(285)2,4,6−トリドデシルオキシフェニル
II-(286)2,4,6−トリメチルフェニル
II-(287)2,4,6−トリクロロフェニル
II-(288)2,4,6−トリベンゾイルフェニル
II-(289)2,4,6−トリアセトキシフェニル
II-(290)2,4,6−トリメトキシフェニル
II-(291)2,4,6−トリ−N−メチルアミノフェニル
II-(292)2,4,6−トリイソブチリルアミノフェニル
II-(293)2,4,6−トリフェノキシフェニル
II-(294)2,4,6−トリヒドロキシフェニル
II-(295)ペンタフルオロフェニル
II-(296)ペンタクロロフェニル
II-(297)ペンタメトキシフェニル
II-(298)6−N−メチルスルファモイル−8−メトキシ−2−ナフチル
II-(299)5−N−メチルスルファモイル−2−ナフチル
II-(300)6−N−フェニルスルファモイル−2−ナフチル
II-(301)5−エトキシ−7−N−メチルスルファモイル−2−ナフチル
II-(302)3−メトキシ−2−ナフチル
II-(303)1−エトキシ−2−ナフチル
II-(304)6−N−フェニルスルファモイル−8−メトキシ−2−ナフチル
II-(305)5−メトキシ−7−N−フェニルスルファモイル−2−ナフチル
II-(306)1−(4−メチルフェニル)−2−ナフチル
II-(307)6,8−ジ−N−メチルスルファモイル−2−ナフチル
II-(308)6−N−2−アセトキシエチルスルファモイル−8−メトキシ−2−ナフチル
II-(309)5−アセトキシ−7−N−フェニルスルファモイル−2−ナフチル
II-(310)3−ベンゾイルオキシ−2−ナフチル
II-(311)5−アセチルアミノ−1−ナフチル
II-(312)2−メトキシ−1−ナフチル
II-(313)4−フェノキシ−1−ナフチル
II-(314)5−N−メチルスルファモイル−1−ナフチル
II-(315)3−N−メチルカルバモイル−4−ヒドロキシ−1−ナフチル
II-(316)5−メトキシ−6−N−エチルスルファモイル−1−ナフチル
II-(317)7−テトラデシルオキシ−1−ナフチル
II-(318)4−(4−メチルフェノキシ)−1−ナフチル
II-(319)6−N−メチルスルファモイル−1−ナフチル
II-(320)3−N,N−ジメチルカルバモイル−4−メトキシ−1−ナフチル
II-(321)5−メトキシ−6−N−ベンジルスルファモイル−1−ナフチル
II-(322)3,6−ジ−N−フェニルスルファモイル−1−ナフチル
II-(323)メチル
II-(324)エチル
II-(325)ブチル
II-(326)オクチル
II-(327)ドデシル
II-(328)2−ブトキシ−2−エトキシエチル
II-(329)ベンジル
II-(330)4−メトキシベンジル
Figure 2007249180
II-(331)メチル
II-(332)フェニル
II-(333)ブチル
II-(334);下記化学式の化合物
Figure 2007249180
以下に一般式(III)で表される化合物について説明する。
一般式(III)
Figure 2007249180
式中、R4、R5、R6、R7、R8及びR9は各々独立して、水素原子又は置換基を表す。
4、R5、R6、R7、R8及びR9が各々表す置換基としては、アルキル基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜40、より好ましくは炭素数2〜30、特に好ましくは炭素数2〜20のアルケニル基であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜40、より好ましくは炭素数2〜30、特に好ましくは炭素数2〜20のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜40、より好ましくは炭素数0〜30、特に好ましくは炭素数0〜20のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アリールオキシ基(好ましくは炭素数6〜40、より好ましくは炭素数6〜30、特に好ましくは炭素数6〜20のアリールオキシ基であり、例えば、フェニルオキシ基、2−ナフチルオキシ基などが挙げられる)、アシル基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のアシル基であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜40、より好ましくは炭素数2〜30、特に好ましくは炭素数2〜20のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜40、より好ましくは炭素数7〜30、特に好ましくは炭素数7〜20のアリールオキシカルボニル基であり、例えば、フェニルオキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜40、より好ましくは炭素数2〜30、特に好ましくは炭素数2〜20のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、
アシルアミノ基(好ましくは炭素数2〜40、より好ましくは炭素数2〜30、特に好ましくは炭素数2〜20のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜40、より好ましくは炭素数2〜30、特に好ましくは炭素数2〜20のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜40、より好ましくは炭素数7〜30、特に好ましくは炭素数7〜20のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜40、より好ましくは炭素数0〜30、特に好ましくは炭素数0〜20のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜40、より好ましくは炭素数1〜30、特に好ましくは炭素数1〜20のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、1,3,5−トリアジル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基が二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
4、R5、R6、R7、R8及びR9各々表される置換基としては、好ましくはアルキル基、アリール基、置換もしくは無置換のアミノ基、アルコキシ基、アルキルチオ基又はハロゲン原子である。
以下に一般式(III)で表される化合物の具体例を挙げるが、こられに限定されない。
Figure 2007249180
Figure 2007249180
以下に一般式(IV)で表される化合物について説明する。
一般式(IV):Q71−Q72−OH
(式中、Q71は含窒素芳香族ヘテロ環、Q72は芳香族環を表す。)
一般式(IV)において、Q71は含窒素方向芳香族へテロ環を表し、好ましくは5〜7員の含窒素芳香族ヘテロ環であり、より好ましくは5〜6員の含窒素芳香族ヘテロ環である。
好ましい含窒素芳香族ヘテロ環としては、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等などの各環があげられ、更に好ましくは、トリアジン及び5員の含窒素芳香族ヘテロ環であり、具体的には、1,3,5−トリアジン、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールなどの各環が好ましく、特に好ましくは、1,3,5−トリアジン環及びベンゾトリアゾール環である。
71で表される含窒素芳香族ヘテロ環は、更に置換基を有してもよく、置換基としては後述する置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
72は芳香族環を表す。Q72で表される芳香族環は、芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
72で表される芳香族環として、好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q72は更に置換基を有してもよく、下記の置換基Tが好ましい。
置換基Tとしては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは1〜12、特に好ましくは1〜8のものであり、例えばメチル基、エチル基、イソプロピル基、t−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基など)、アルケニル基(好ましくは炭素数2〜20、より好ましくは2〜12、特に好ましくは2〜8であり、例えばビニル基、アリル基、2−ブテニル基、3−ペンテニル基など)、アルキニル基(好ましくは炭素数2〜20、より好ましくは2〜12、特に好ましくは2〜8であり、例えばプロパルギル基、3−ペンチニル基など)、アリール基(好ましくは炭素数6〜30、より好ましくは6〜20、特に好ましくは6〜12であり、例えばフェニル基、ビフェニル基、ナフチル基など)、アミノ基(好ましくは炭素数0〜20、より好ましくは0〜10、特に好ましくは0〜6であり、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基など)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは1〜12、特に好ましくは1〜8であり、例えばメトキシ基、エトキシ基、ブトキシ基など)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは6〜16、特に好ましくは6〜12であり、例えばフェニルオキシ基、2−ナフチルオキシ基など)、アシル基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばアセチル基、ベンゾイル基、ホルミル基、ピバロイル基など)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは2〜16、特に好ましくは2〜12であり、例えばメトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは7〜16、特に好ましくは7〜10であり、例えばフェニルオキシカルボニル基など)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは2〜16、特に好ましくは2〜10であり、例えばアセトキシ基、ベンゾイルオキシ基など)、
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは2〜16、特に好ましくは2〜10であり、例えばアセチルアミノ基、ベンゾイルアミノ基など)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは2〜16、特に好ましくは2〜12であり、例えばメトキシカルボニルアミノ基など)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは7〜16、特に好ましくは7〜12であり、例えばフェニルオキシカルボニルアミノ基など)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基など)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは0〜16、特に好ましくは0〜12であり、例えばスルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基など)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基など)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメチルチオ基、エチルチオ基など)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは6〜16、特に好ましくは6〜12であり、例えばフェニルチオ基など)、スルホニル基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメシル基、トシル基などが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばメタンスルフィニル基、ベンゼンスルフィニル基など)、ウレイド基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばウレイド基、メチルウレイド基、フェニルウレイド基など)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは1〜16、特に好ましくは1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなど)、
ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子など)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には、例えばイミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基など)、シリル基(好ましくは、炭素数3〜40、より好ましくは3〜30、特に好ましくは3〜24であり、例えば、トリメチルシリル基、トリフェニルシリル基など)などが挙げられる。
これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
以下に一般式(IV)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
(表1)
Figure 2007249180
以下に一般式(V)で表される化合物について説明する。
一般式(V):
Figure 2007249180
{一般式(V)中、Q81及びQ82はそれぞれ独立に芳香族環を表す。X81はNR81(R81は水素原子又は置換基を表す)、酸素原子又は硫黄原子を表す。}
81及びQ82で表される芳香族炭化水素環として、好ましくは炭素数6〜30の単環又は二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環など)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環であり、特に好ましくはベンゼン環である。
81及びQ82で表される芳香族ヘテロ環として、好ましくは酸素原子、窒素原子又は硫黄原子のどれかを少なくとも1つ含む芳香族ヘテロ環である。芳香族ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどの各環が挙げられる。芳香族ヘテロ環として好ましくは、ピリジン環、トリアジン環、キノリン環である。
81及びQ82で表される芳香族環として、好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換又は無置換のベンゼン環である。
81及びQ82は更に置換基を有してもよく、置換基としては前記の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
81はNR81(R81は、水素原子又は置換基を表し、置換基としては前記の置換基Tが適用できる)、酸素原子又は硫黄原子を表す。X81として好ましくは、NR81(R81として好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい)又は酸素原子であり、特に好ましくは酸素原子である。
以下に一般式(V)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure 2007249180
Figure 2007249180
Figure 2007249180
Figure 2007249180
本発明に用いるRth上昇剤は、一般式(II)及び(III)で表される化合物であることがよりこの好ましい。また、一般式(II)及び(III)で表される化合物に一般式(IV)で表される化合物を混合することも好ましく用いられる。
本発明に用いられるRth上昇剤及びレターデーション発現剤(一般式(II)ないし(IV)で表される化合物)の添加量はフィルムの基材ポリマーに対してそれぞれ0.1〜30質量%が好ましく、さらに好ましくは0.5〜20質量%、特に好ましくは1〜10質量%である。2種類以上を用いる場合には、その合計量が、上記の範囲を満たしていることが好ましい。
本発明に用いられるRth上昇剤は液晶性を示すことが好ましい。加熱により液晶性を示す(サーモトロピック液晶性を有する)ことがさらに好ましく、100℃〜300℃の温度範囲で液晶性を示すことが好ましい。液晶相は、カラムナー相、ネマチィク相またはスメクティック相が好ましく、カラムナー相であることがより好ましい。
前記一般式(I)の化合物およびRth上昇剤はフィルムの基材ポリマーの溶解時に同時に添加してもよいし、溶解後のドープに添加してもよい。特にスタティックミキサ等を用い、流延直前にドープに紫外線吸収剤溶液を添加する形態が、分光吸収特性を容易に調整することができるので好ましい。
(セルロースアシレート)
セルロースアシレートの原料綿は、公知の原料を用いることができる(例えば、発明協会公開技法2001−1745参照)。また、セルロースアシレートの合成も公知の方法で行うことができる(例えば、右田他、木材化学180〜190頁(共立出版、1968年)参照)。セルロースアシレートの粘度平均重合度は200〜700が好ましく250〜500が更に好ましく250〜350が最も好ましい。また、本発明に使用するセルロースエステルの数平均分子量(Mn)は10000以上150000以下、重量平均分子量(Mw)は20000以上500000以下、Z平均分子量(Mz)は5000以上550000以下が好ましい。また、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.5〜5.0であることが好ましく、2.0〜4.5であることがさらに好ましく、3.0〜4.0であることが最も好ましい。
該セルロースアシレートフィルムのアシル基は、特に制限はないが、アセチル基、プロピオニル基またはブチリル基またはベンゾイル基を用いることが好ましい。全アシル基の置換度は2.0〜3.0が好ましく、2.2〜2.95がさらに好ましい。本明細書において、アシル基の置換度とは、ASTM D817に従って算出した値である。アシル基は、アセチル基であることが最も好ましく、アシル基がアセチル基であるセルロースアセテートを用いる場合には、酢化度が57.0〜62.5%であることが好ましく、58.0〜62.0%であることがさらに好ましい。酢化度がこの範囲にあると、流延時の搬送テンションによってReが所望の値より大きくなることもなく、面内ばらつきも少なく、温湿度によるレターデーション値の変化も少ない。
特に、セルロースアシレートフィルムのセルロースを構成するグルコース単位の水酸基を炭素原子数が2以上のアシル基で置換して得られ、グルコース単位の2位の水酸基のアシル基による置換度をDS2、3位の水酸基のアシル基による置換度をDS3、6位の水酸基のアシル基による置換度をDS6としたときに、下記式(IV)および(V)を満たすと、所望のRe、Rthを出すことが容易となり、また温湿度によるRe値の変動がより小さくなり好ましい。
(IV):2.0≦(DS2+DS3+DS6)≦3.0
(V):DS6/(DS2+DS3+DS6)≧0.315
より好ましい範囲は、
(IV‘):2.2≦(DS2+DS3+DS6)≦2.9
(V’):DS6/(DS2+DS3+DS6)≧0.322
である。
あるいは特に、セルロースアシレートのグルコース単位の水酸基のアセチル基による置換度をA、プロピオニル基またはブチリル基またはベンゾイル基による置換度をBとした時、A、Bが式(VI)および(VII)を満たすと、所望のRe、Rthを出すことが容易となり、また破断することなく高延伸倍率を実現することが容易となり好ましい。
(VI) :2.0 ≦ A+B ≦ 3.0
(VII):0 < B
より好ましい範囲は、
(VI‘) : 2.6 ≦ A+B ≦ 3.0
(VII’): 0.5 ≦ B ≦ 1.5
である。
(セルロースアシレート以外のポリマー)
本発明に依る、フィルムを延伸する延伸工程と収縮させる収縮工程とを含むことを特徴とする製造方法により、好ましい光学物性を有するフィルムを得る方法は、セルロースアシレートに限定されず、光学フィルムとして使用可能なポリマー全般に適用可能で、セルロースアシレートと同様な効果が見込める。
これらの光学フィルムとして使用可能なポリマーとしては、例えばポリカーボネート共重合体や、環状オレフィン構造を有する重合体樹脂が挙げられる。
ポリカーボネート共重合体の例としては、下記式(A)で示される繰り返し単位および下記式(B)で示される繰り返し単位からなり、上記式(A)で表される繰り返し単位が全体の80〜30mol%を占めるポリカーボネート共重合体が挙げられる。
Figure 2007249180
上記式(A)において、R〜Rはそれぞれ独立に水素原子、ハロゲン原子及び炭素数1〜6の炭化水素基から選ばれる。かかる炭素数1〜6の炭化水素基としては、メチル基、エチル基、イソプロピル基、シクロヘキシル基等のアルキル基、フェニル基等のアリール基が挙げられる。この中で、水素原子、メチル基が好ましい。
Xは下記式(X)であり、RおよびR10はそれぞれ独立して水素原子、ハロゲン原子または炭素数1〜3のアルキル基である。炭素数1〜3のアルキル基としては上記したものと同じものをあげることができる。
Figure 2007249180
Figure 2007249180
上記式(B)において、R11〜R18はそれぞれ独立に水素原子、ハロン原子及び炭素数1〜22の炭化水素基から選ばれる。かかる炭素数1〜22の炭化水素基としては、メチル基、エチル基、イソプロピル基、シクロヘキシル基等の炭素数1〜9のアルキル基、フェニル基、ビフェニル基、ターフェニル基等のアリール基が挙げられる。この中で、水素原子、メチル基が好ましい。
Yは下記式群であり、R19〜R21、R23及びR24はそれぞれ独立に水素原子、ハロゲン原子及び炭素数1〜22の炭化水素基から選ばれる少なくとも1種の基である。かかる炭化水素基については、上記したものと同じものを挙げることができる。R22及びR25はそれぞれ独立に炭素数1〜20の炭化水素基から選ばれ、かかる炭化水素基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、シクロヘキシレン基、フェニレン基、ナフチレン基、ターフェニレン基が挙げられる。Ar〜Arとしてはフェニル基、ナフチル基等の炭素数6〜10のアリール基を挙げられる。
Figure 2007249180
上記ポリカーボネート共重合体としては、下記式(C)で示される繰り返し単位30〜60mol%、と、下記式(D)で示される繰り返し単位70〜40mol%とからなるポリカーボネート共重合体が好ましい。
Figure 2007249180
Figure 2007249180
さらに好ましくは上記式(C)で示される繰り返し単位45〜55mol%と上記式(D)で示される繰り返し単位55〜45mol%とからなるポリカーボネート共重合体である。
上記式(C)においてR26〜R27はそれぞれ独立に水素原子またはメチル基であり、取り扱い性の点から好ましくはメチル基である。
上記式(D)においてR28〜R29はそれぞれ独立に水素原子またはメチル基であり、経済性、フィルム特性等から水素原子が好ましい。
本発明の光学フィルムは、上記したフルオレン骨格を有するポリカーボネート共重合体を用いたものが好ましい。このフルオレン骨格を有するポリカーボネート共重合体としては、例えば上記式(A)で表わされる繰り返し単位と上記式(B)で表わされる繰り返し単位とからなる異なる組成比のポリカーボネート共重合体のブレンド体がよく、上記式(A)の含有率はポリカーボネート共重合体全体の80〜30mol%が好ましく、より好ましくは75〜35mol%であり、さらに好ましくは70〜40mol%である。
上記共重合体は、上記式(A)および(B)で表わされる繰り返し単位をそれぞれ2種類以上組み合わせたものでもよい。
ここで上記モル比は、光学フィルムを構成するポリカーボネートバルク全体に対するモル比で、例えば核磁気共鳴(NMR)装置により求めることができる。
上記したポリカーボネート共重合体は公知の方法によって製造し得る。ポリカーボネートはジヒドロキシ化合物とホスゲンとの重縮合による方法、溶融重縮合法等が好適に用いられる。
上記ポリカーボネート共重合体の極限粘度は0.3〜2.0dl/gであることが好ましい。0.3未満では脆くなり機械的強度が保てないといった問題があり、2.0を超えると溶液粘度が上がりすぎるため溶液製膜においてダイラインの発生等の問題や、重合終了時の精製が困難になるといった問題がある。
また本発明の光学フィルムは、前記ポリカーボネート共重合体と、その他の高分子化合物との組成物(ブレンド体)であってもよい。この場合、該高分子化合物としては、光学的に透明である必要があることから前記ポリカーボネート共重合体と相溶できるもの、または、各々の高分子の屈折率が略等しいことが好ましい。その他の高分子の具体例としては、スチレン−マレイン酸無水物コポリマーなどが挙げられ、ポリカーボネート共重合体と高分子化合物との組成比は、ポリカーボネート共重合体80〜30質量%、高分子化合物体20〜70質量%、好ましくはポリカーボネート共重合体80〜40質量%、高分子化合物体20〜60質量%である。ブレンド体の場合も、上記ポリカーボネート共重合体の繰り返し単位はそれぞれ2種類以上組み合わせてもよい。またブレンド体の場合、相溶性ブレンドが好ましいが、完全に相溶しなくても成分間の屈折率を合わせれば成分間の光散乱を抑え、透明性を向上させることが可能である。なお、ブレンド体は、3種類以上の材料を組合わせてもよく、複数種類のポリカーボネート共重合体とその他の高分子化合物とを組合わせることができる。
ポリカーボネート共重合体の質量平均分子量は、1,000〜1,000,000、好ましくは5,000〜500,000である。その他の高分子化合物の質量平均分子量は、500〜100,000、好ましくは1,000〜50,000である。
セルロースアシレート以外の本発明に適用できるポリマーには、環状オレフィン構造を有する重合体樹脂(以下、「環状ポリオレフィン系樹脂」あるいは「環状ポリオレフィン」ともいう)が含まれる。この例には、(1)ノルボルネン系重合体、(2)単環の環状オレフィンの重合体、(3)環状共役ジエンの重合体、(4)ビニル脂環式炭化水素重合体、及び(1)〜(4)の水素化物などがある。本発明に好ましい重合体は下記一般式(II)で表される繰り返し単位を少なくとも1種以上含む付加(共)重合体環状ポリオレフィン、および必要に応じて一般式(I)で表される繰り返し単位の少なくとも1種以上を更に含んでなる付加(共)重合体環状ポリオレフィンである。また、一般式(III)で表される環状繰り返し単位を少なくとも1種含む付加(共)重合体(開環(共)重合体も含む)も好適に使用することができる。また、一般式(III)で表される繰り返し単位を少なくとも一種に、必要に応じて一般式(I)で表される繰り返し単位の少なくとも1種以上を更に含んでなる付加(共)重合体環状ポリオレフィンも好ましく使用することができる。
Figure 2007249180
Figure 2007249180
Figure 2007249180
式中、mは0〜4の整数を表す。R1〜R6は水素原子又は炭素数1〜10の炭化水素基、X1〜X3およびY1〜Y3は、水素原子、炭素数1〜10の炭化水素基、ハロゲン原子、ハロゲン原子で置換された炭素数1〜10の炭化水素基、−(CH2)nCOOR11、−(CH2)nOCOR12、−(CH2)nNCO、−(CH2)nNO2、−(CH2)nCN、−(CH2)nCONR1314、−(CH2)nNR1314、−(CH2)nOZ、−(CH2)nW、またはX1とY1、X2とY2あるいはX3とY3から構成された(−CO)2O、(−CO)2NR15を示す。なお、R11,R12,R13,R14,R15は水素原子、炭素数1〜20の炭化水素基、Zは炭化水素基またはハロゲンで置換された炭化水素基、WはSiR16 p3−p(R16は炭素数1〜10の炭化水素基、Dはハロゲン原子−OCOR16または−OR16、pは0〜3の整数を示す)、nは0〜10の整数を示す。
1〜X3 、Y1 〜Y3の置換基に分極性の大きい官能基を導入することにより、光学フィルムの厚さ方向レターデーション(Rth)を大きくし、面内レターデーション(Re)の発現性を大きくすることが出来る。Re発現性の大きなフィルムは、製膜過程で延伸することによりRe値を大きくすることができる。
ノルボルネン系付加(共)重合体は、特開平10−7732号、特表2002−504184号、US2004229157A1号あるいはWO2004/070463A1号等の各公報に開示されている。ノルボルネン系多環状不飽和化合物同士を付加重合する事によって得られる。また、必要に応じ、ノルボルネン系多環状不飽和化合物と、エチレン、プロピレン、ブテン、ブタジエン、イソプレンのような共役ジエン;エチリデンノルボルネンのような非共役ジエン;アクリロニトリル、アクリル酸、メタアクリル酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビニル、塩化ビニルなどの線状ジエン化合物とを付加重合することもできる。このノルボルネン系付加(共)重合体は、三井化学(株)よりアペルの商品名で発売されており、ガラス転移温度(Tg)の異なる例えばAPL8008T(Tg70℃)、APL6013T(Tg125℃)あるいはAPL6015T(Tg145℃)などのグレードがある。ポリプラスチック(株)よりTOPAS8007、同6013、同6015などの商品名でペレットが発売されている。更に、Ferrania社よりAppear3000が発売されている。
ノルボルネン系重合体水素化物は、特開平1−240517号、特開平7−196736号、特開昭60−26024号、特開昭62−19801号、特開2003―159767号、特開2004―309979号等の各公報に開示されているように、多環状不飽和化合物を付加重合あるいはメタセシス開環重合したのち水素添加することにより作られる。本発明に用いるノルボルネン系重合体において、R5〜R6は水素原子又は−CH3 が好ましく、X3及びY3 は水素原子、Cl、−COOCH3 が好ましく、その他の基は適宜選択される。このノルボルネン系樹脂は、JSR(株)からアートン(Arton)GあるいはアートンFという商品名で発売されており、また日本ゼオン(株)からゼオノア(Zeonor)ZF14、ZF16、ゼオネックス(Zeonex)250あるいはゼオネックス280という商品名で市販されており、これらを使用することができる。
本発明の光学フィルムは偏光板の保護フィルムとしても用いることができ、様々な液晶モードに対応した位相差フィルムとしても好ましく用いることができる。
本発明の光学フィルムを位相差フィルムとして用いる場合、光学フィルムの好ましい光学特性は液晶モードによって異なる。
OCBモード用としては、視野角の拡大の点でRe(550)は10〜100nmのものが好ましく、20〜70nmのものがさらに好ましい。Rth(550)は50〜300nmのものが好ましく100〜250nmのものがさらに好ましい。
同様の観点でTN用としてはRe(550)は0〜50nmのものが好ましく、2〜30nmのものがさらに好ましい。Rth(550)は10〜200nmのものが好ましく30〜150nmのものがさらに好ましい。
また、OCB用モード及びTN用モードでは前記レターデーション値を有する光学フィルム上に光学異方性層を塗布して光学補償フィルムとして使用できる。
本発明の光学フィルムをVAモードに使用する場合、セルの両側に1枚ずつ合計2枚使用する形態(2枚型)と、セルの上下のいずれか一方の側にのみ使用する形態(1枚型)の2通りで好ましい光学特性は異なる。
VAモードに使用する1枚型あるいはIPSモード用の場合、Re(550)は30〜150nmが好ましく、40〜100nmがさらに好ましい。Rth(550)については100〜300nmが好ましく、150〜250nmがさらに好ましい。
VA用液晶表示装置の光学補償フィルムとして液晶セルの両側に使用し、2枚型として使用する場合には、Re(550)が20〜100nmの範囲であり、かつRth(550)が100〜200nmの範囲であることが好ましく、Re(550)が25〜80nmであり、Rth(550)が100〜150nmであることがさらに好ましい。
特に2枚型として使用する場合には前述のカラーシフトの問題の改良の点で、本発明の光学フイルムは下記式(A)〜(D)を満たすことが好ましい。
(A)0.1<Re(450)/Re(550)<0.95
(B)1.03<Re(650)/Re(550)<1.93
(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
(D)1.05<(Re/Rth(650))/(Re/Rth(550))<1.9
(式中、Re(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値であり、Rth(λ)は、波長λnmの光に対する該フィルムの厚み方向のレターデーション値であり、Re/Rth(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値と厚み方向のレターデーション値の比である(単位:nm)。)
上記式(A)〜(D)を満たす本発明のフィルムは同様の観点でVAモードに使用する1枚型として用いることも出来る。
さらに、上記式(A)〜(D)を満たす本発明の光学フイルムを1枚型として使用する場合、下記式(A1)〜(D1)を満たすことがより好ましい。
(A1)0.4<Re(450)/Re(550)<0.95
(B1)1.05<Re(650)/Re(550)<1.93
(C1)0.45<(Re/Rth(450))/(Re/Rth(550))<0.95
(D1)1.05<(Re/Rth(650))/(Re/Rth(550))<1.7
また、本発明の光学フイルムは、下記式(A2)〜(D2)を満たすことがさらに好ましい。
(A2)0.5<Re(450)/Re(550)<0.95
(B2)1.10<Re(650)/Re(550)<1.93
(C2)0.50<(Re/Rth(450))/(Re/Rth(550))<0.95
(D2)1.05<(Re/Rth(650))/(Re/Rth(550))<1.5
本発明は、前記光学特性を有する光学補償フィルムを用いることによって、斜め方向に入射したR、G、B各波長の光について、各波長ごとに異なった遅相軸及びレターデーションで光学補償することを可能としている。その結果、従来の液晶表示装置と比較して、黒表示の視角コントラストを格段に向上されるとともに、さらに黒表示の視角方向における色付きも格段に軽減される。ここで、本明細書においては、R、G、Bの波長として、Rは波長650nm、Gは波長550nm、Bは波長450nmを用いた。R、G、Bの波長は必ずしもこの波長で代表されるものではないが、本発明の効果を奏する光学特性を規定するのに適当な波長であると考えられる。
なお、光学フィルムの複屈折率(Δn:nx−ny)は、0.00乃至〜0.002μmの範囲にあることが好ましい。また、支持体フィルムおよび対向フィルムの厚み方向の複屈折率{(nx+ny)/2−nz}は、0.00乃至〜0.04の範囲にあることが好ましい。
本発明の光学フィルムは、前記の特定のセルロースアシレートまたは特定のポリマーと必要に応じて添加剤とを有機溶媒に溶解させた溶液を用いてフィルム化することにより得ることができる。
〔添加剤〕
本発明において前記セルロースアシレート溶液に用いることができる添加剤としては、例えば、可塑剤、紫外線吸収剤、劣化防止剤、レターデーション(光学異方性)発現剤、レターデーション(光学異方性)低下剤、波長分散調整剤、染料、微粒子、剥離促進剤、赤外吸収剤などを挙げることができる。本発明においては、レターデーション発現剤を用いるのが好ましい。また、可塑剤、紫外線吸収剤及び剥離促進剤の少なくとも1種以上を用いるのが好ましい。
それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収剤を混合して用いたり、同様に可塑剤を混合して用いたりすることができ、例えば特開2001−151901号公報などに記載されている。
[劣化防止剤]
前記劣化防止剤は、セルローストリアセテート等が劣化、分解するのを防止することができる。劣化防止剤としては、ブチルアミン、ヒンダードアミン化合物(特開平8−325537号公報)、グアニジン化合物(特開平5−271471号公報)、ベンゾトリアゾール系UV吸収剤(特開平6−235819号公報)、ベンゾフェノン系UV吸収剤(特開平6−118233号公報)などの化合物がある。
[可塑剤]
可塑剤としては、リン酸エステル、カルボン酸エステルであることが好ましい。リン酸エステル系可塑剤としては、例えばトリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ビフェニルジフェニルホスフェート(BDP)、トリオクチルホスフェート、トリブチルホスフェート等;カルボン酸エステル系可塑剤としては、例えばジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)、ジエチルヘキシルフタレート(DEHP)、O−アセチルクエン酸トリエチル(OACTE)、O−アセチルクエン酸トリブチル(OACTB)、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等を挙げることができ、本発明に用いられる可塑剤はこれら例示の可塑剤から選ばれたものであることがより好ましい。さらに、前記可塑剤が、(ジ)ペンタエリスリトールエステル類、グリセロールエステル類、ジグリセロールエステル類であることが好ましい。
[剥離促進剤]
剥離促進剤としては、クエン酸のエチルエステル類が例として挙げられる。
[赤外吸収剤]
さらに赤外吸収剤としては例えば特開2001−194522号公報に記載されている。
[添加時期等]
これらの添加剤を添加する時期は、ドープ作製工程において何れで添加してもよいが、ドープ調製工程の最後の調製工程に、添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。
また、光学フィルムが多層である場合、各層の添加物の種類や添加量が異なってもよい。例えば、特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。
これら添加剤の種類や添加量の選択によって、セルロースアシレートフィルムの動的粘弾性測定機「バイブロン:DVA−225」{アイティー計測制御(株)製}}で測定するガラス転移点Tgを70〜150℃に、引張試験機「ストログラフ−R2」{(株)東洋精機製作所製}で測定する弾性率を1500〜4000MPaすることが好ましい。より好ましくは、ガラス転移点Tgが80〜135℃、弾性率が1500〜3000MPaである。すなわち、本発明に好ましく用いられる光学フィルムは、偏光板加工や液晶表示装置組立ての工程適性の点で、ガラス転移点Tg、弾性率を上記の範囲とすることが好ましい。
さらに添加剤については、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)16頁以降に詳細に記載されているものを適宜用いることができる。
(LogP値)
光学的異方性の低い光学フィルムを作製するにあたっては、上述のように、フィルム中のセルロースアシレート等が面内及び膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0〜7である化合物が好ましい。化合物のlogP値が7以下であれば、セルロースアシレート等との相溶性が良好で、フィルムの白濁や粉吹きなどの不具合を生じにくいので好ましい。
また化合物のlogP値が0以上であれば、親水性が高くなりすぎることがなく、セルロースアシレートフィルムの耐水性を悪化させることがないので好ましい。logP値としてさらに好ましい範囲は1〜6であり、特に好ましい範囲は1.5〜5である。
オクタノール−水分配係数(logP値)の測定は、JIS Z−7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法又は経験的方法により見積もることも可能である。
計算方法としては、Crippen’s fragmentation法{J.Chem.Inf.Comput.Sci.,27巻、21頁(1987年)}、Viswanadhan’s fragmentation法{J.Chem.Inf.Comput.Sci.,29巻、163頁(1989年)}、Broto’s fragmentation法{Eur.J.Med.Chem.−Chim.Theor.,19巻、71頁(1984年)}などが好ましく用いられるが、Crippen’s fragmentation法{J.Chem.Inf.Comput.Sci.,27巻、21頁(1987年)}がより好ましい。
ある化合物のlogPの値が測定方法又は計算方法により異なる場合に、該化合物が上記の範囲内であるかどうかは、Crippen’s fragmentation法により判断することが好ましい。
[染料]
また本発明では、色相調整のための染料を添加してもよい。染料の含有量は、セルロースアシレート等のポリマーに対する質量割合で10〜1000ppmが好ましく、50〜500ppmが更に好ましい。このように染料を含有させることにより、セルロースアシレートフィルムのライトパイピングが減少でき、黄色味を改良することができる。これらの化合物は、セルロースアシレート溶液の調製の際に、セルロースアシレートや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。またインライン添加する紫外線吸収剤液に添加してもよい。特開平5−34858号公報に記載の染料を用いることができる。
[マット剤微粒子]
本発明に好ましく用いられる光学フィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は、珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、且つ見掛け比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見掛け比重は90〜200g/L以上が好ましく、100〜200g/L以上がさらに好ましい。見掛け比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
マット剤として二酸化珪素微粒子を用いる場合の、その使用量は、セルロースアシレート等を含むポリマー成分100質量部に対して0.01〜0.3質量部とするのが好ましい。
これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成するが、フィルム中では1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次粒子の平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。該平均粒子径が1.5μm以下であればヘイズが強くなりすぎることがなく、また0.2μm以上であればきしみ防止効果が十分に発揮されるので好ましい。
微粒子の1次、2次粒子径は、フィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とする。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。
二酸化珪素の微粒子は、例えば、「アエロジル」R972、R972V、R974、R812、200、200V、300、R202、OX50、TT600{以上、日本アエロジル(株)製}などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、「アエロジル」R976及びR811{以上、日本アエロジル(株)製}の商品名で市販されており、使用することができる。
これらの中で「アエロジル200V」、「アエロジルR972V」が、1次平均粒子径が20nm以下であり、且つ見掛け比重が70g/L以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
本発明において、2次平均粒子径の小さな粒子を含有する光学フィルムを得るためには、微粒子の分散液を調製する際いくつかの手法が考えられる。例えば、溶媒と微粒子を撹拌混合した微粒子分散液を予め作製し、この微粒子分散液を、別途用意した少量のセルロースアシレート溶液等に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶媒に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行ってこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明においては、これらの方法に限定されるものではないが、二酸化珪素微粒子を溶媒などと混合して分散するときの、二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。
分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレート等のドープ溶液中でのマット剤の添加量は1m2当たり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。
使用される溶媒は、低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては、特に限定されないが、セルロースエステルの製膜時に用いられる溶媒を用いることが好ましい。
次に、本発明に好ましく用いられるセルロースアシレート等が溶解される前記有機溶媒について記述する。
本発明においては、有機溶媒として、塩素系有機溶媒を主溶媒とする塩素系溶媒と、塩素系有機溶媒を含まない非塩素系溶媒とのいずれをも用いることができる。
〔塩素系溶媒〕
本発明において好ましく用いられるセルロースアシレートの溶液を作製するに際しては、主溶媒として塩素系有機溶媒が好ましく用いられる。本発明においては、セルロースアシレートが溶解し、流延・製膜できる範囲において、その目的が達成できる限りは、その塩素系有機溶媒の種類は特に限定されない。これらの塩素系有機溶媒は、好ましくはジクロロメタン、クロロホルムである。特にジクロロメタンが好ましい。また、塩素系有機溶媒以外の有機溶媒を混合することも特に問題ない。その場合ジクロロメタンは、有機溶媒全体量中少なくとも50質量%使用することが好ましい。
本発明で塩素系有機溶媒と併用される他の有機溶媒について以下に記す。
すなわち、好ましい他の有機溶媒としては、炭素原子数が3〜12のエステル、ケトン、エーテル、アルコール、炭化水素などから選ばれる溶媒が好ましい。エステル、ケトン、エーテル及びアルコールは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及び−COO−)のいずれかを2つ以上有する化合物も、溶媒として用いることができ、例えばアルコール性水酸基のような他の官能基を同時に有していてもよい。2種類以上の官能基を有する溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテート等が挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノン等が挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソール及びフェネトール等が挙げられる。2種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノール及び2−ブトキシエタノール等が挙げられる。
また塩素系有機溶媒と併用されるアルコールとしては、好ましくは、直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノール及びシクロヘキサノールが含まれる。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエン及びキシレンが含まれる。
塩素系有機溶媒と他の有機溶媒との組合せ例としては、以下の組成を挙げることができるが、これらに限定されるものではない。
ジクロロメタン/メタノール/エタノール/ブタノール=80/10/5/5(質量部)、ジクロロメタン/アセトン/メタノール/プロパノール=80/10/5/5(質量部)、ジクロロメタン/メタノール/ブタノール/シクロヘキサン=80/10/5/5(質量部)、ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/10/5/5(質量部)、ジクロロメタン/アセトン/メチルエチルケトン/エタノール/イソプロパノール=75/8/5/5/7(質量部)、ジクロロメタン/シクロペンタノン/メタノール/イソプロパノール=80/7/5/8(質量部)ジクロロメタン/酢酸メチル/ブタノール=80/10/10(質量部)、ジクロロメタン/シクロヘキサノン/メタノール/ヘキサン=70/20/5/5(質量部)、ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール=50/20/20/5/5(質量部)、ジクロロメタン/1、3ジオキソラン/メタノール/エタノール=70/20/5/5(質量部)、ジクロロメタン/ジオキサン/アセトン/メタノール/エタノール=60/20/10/5/5(質量部)、ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン=65/10/10/5/5/5(質量部)、ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール=70/10/10/5/5(質量部)、ジクロロメタン/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン=65/10/10/5/5/5(質量部)、ジクロロメタン/アセト酢酸メチル/メタノール/エタノール=65/20/10/5(質量部)、ジクロロメタン/シクロペンタノン/エタノール/ブタノール=65/20/10/5(質量部)。
〔非塩素系溶媒〕
次に、本発明において好ましく用いられるセルロースアシレートの溶液を作製するに際して、好ましく用いられる非塩素系有機溶媒について記載する。本発明においては、セルロースアシレートが溶解し、流延・製膜できる範囲において、その目的が達成できる限りは、非塩素系有機溶媒は特に限定されない。本発明で用いられる非塩素系有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテルから選ばれる溶媒が好ましい。エステル、ケトン及び、エーテルは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、−O−、−CO−及び−COO−)のいずれかを2つ以上有する化合物も、主溶媒として用いることができ、例えばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する主溶媒の場合、その炭素原子数は、いずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、蟻酸エチル、蟻酸プロピル、蟻酸ペンチル、酢酸メチル、酢酸エチル及び酢酸ペンチルが挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン及びアセチル酢酸メチルが挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソール及びフェネトールが挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノール及び2−ブトキシエタノールが挙げられる。
以上の、セルロースアシレートに用いられる非塩素系有機溶媒については、前述のいろいろな観点から選定されるが、好ましくは以下のとおりである。
すなわち、非塩素系溶媒としては、上記非塩素系有機溶媒を主溶媒とする混合溶媒が好ましく、互いに異なる3種類以上の溶媒の混合溶媒であって、第1の溶媒が酢酸メチル、酢酸エチル、蟻酸メチル、蟻酸エチル、アセトン、ジオキソラン、ジオキサンから選ばれる少なくとも1種又はそれらの混合液であり、第2の溶媒が炭素原子数4〜7のケトン類又はアセト酢酸エステルから選ばれ、第3の溶媒が炭素数1〜10のアルコール又は炭化水素、より好ましくは炭素数1〜8のアルコールから選ばれる混合溶媒である。なお第1の溶媒が、2種以上の溶媒の混合液である場合は、第2の溶媒がなくてもよい。第1の溶媒は、さらに好ましくは、酢酸メチル、アセトン、蟻酸メチル、蟻酸エチル又はこれらの混合物であり、第2の溶媒は、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、アセチル酢酸メチルが好ましく、これらの混合溶媒であってもよい。
第3の溶媒であるアルコールは、その炭化水素鎖が直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素鎖であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノール及びシクロヘキサノールが含まれる。なおアルコールとしては、その炭化水素鎖の水素の一部又は全部がフッ素で置換されたフッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。
さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエン及びキシレンが含まれる。
これらの第3の溶媒であるアルコール及び炭化水素は、単独で用いてもよいし、2種類以上の混合物で用いてもよく特に限定されない。第3の溶媒としては、好ましい具体的化合物は、アルコールとして、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、及びシクロヘキサノール、炭化水素として、シクロヘキサン、ヘキサンなどを挙げることができ、特に好ましくはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールである。
以上の3種類の混合溶媒の混合割合は、混合溶媒全体量中、第1の溶媒が20〜95質量%、第2の溶媒が2〜60質量%、そして第3の溶媒が2〜30質量%の比率で含まれることが好ましく、さらに第1の溶媒が30〜90質量%であり、第2の溶媒が3〜50質量%、そして第3のアルコールが3〜25質量%含まれることが好ましい。また特に第1の溶媒が30〜90質量%であり、第2の溶媒が3〜30質量%、第3の溶媒がアルコールであって3〜15質量%含まれることが好ましい。
以上の本発明で用いられる非塩素系有機溶媒は、さらに詳細には発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)12−16頁に詳細に記載されている。
本発明の好ましい非塩素系有機溶媒の組合せは以下挙げることができるが、これらに限定されるものではない。
酢酸メチル/アセトン/メタノール/エタノール/ブタノール=75/10/5/5/5(質量部)、酢酸メチル/アセトン/メタノール/エタノール/プロパノール=75/10/5/5/5(質量部)、酢酸メチル/アセトン/メタノール/ブタノール/シクロヘキサン=75/10/5/5/5(質量部)、酢酸メチル/アセトン/エタノール/ブタノール=81/8/7/4(質量部)、酢酸メチル/アセトン/エタノール/ブタノール=82/10/4/4(質量部)、酢酸メチル/アセトン/エタノール/ブタノール=80/10/4/6(質量部)、酢酸メチル/メチルエチルケトン/メタノール/ブタノール=80/10/5/5(質量部)、酢酸メチル/アセトン/メチルエチルケトン/エタノール/イソプロパノール=75/8/5/5/7(質量部)、酢酸メチル/シクロペンタノン/メタノール/イソプロパノール=80/7/5/8(質量部)、酢酸メチル/アセトン/ブタノール=85/10/5(質量部)、酢酸メチル/シクロペンタノン/アセトン/メタノール/ブタノール=60/15/14/5/6(質量部)、酢酸メチル/シクロヘキサノン/メタノール/ヘキサン=70/20/5/5(質量部)、酢酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール=50/20/20/5/5(質量部)、酢酸メチル/1、3−ジオキソラン/メタノール/エタノール=70/20/5/5(質量部)、酢酸メチル/ジオキサン/アセトン/メタノール/エタノール=60/20/10/5/5(質量部)、
酢酸メチル/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン=65/10/10/5/5/5(質量部)、
ギ酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール=50/20/20/5/5(質量部)、ギ酸メチル/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン=65/10/10/5/5/5(質量部)、アセトン/アセト酢酸メチル/メタノール/エタノール=65/20/10/5(質量部)、アセトン/シクロペンタノン/エタノール/ブタノール=65/20/10/5(質量部)、
アセトン/1,3−ジオキソラン/エタノール/ブタノール=65/20/10/5(質量部)、1、3−ジオキソラン/シクロヘキサノン/メチルエチルケトン/メタノール/ブタノール=55/20/10/5/5/5(質量部)、などをあげることができる。
更に、下記の方法で調整したセルロースアシレート溶液を用いることもできる。
酢酸メチル/アセトン/エタノール/ブタノール=81/8/7/4(質量部)でセルロースアシレート溶液を作製し、濾過・濃縮後に2質量部のブタノールを追加添加する方法、
酢酸メチル/アセトン/エタノール/ブタノール=84/10/4/2(質量部)でセルロースアシレート溶液を作製し、濾過・濃縮後に4質量部のブタノールを追加添加する方法、
酢酸メチル/アセトン/エタノール=84/10/6(質量部)でセルロースアシレート溶液を作製し、濾過・濃縮後に5質量部のブタノールを追加添加する方法、
本発明に用いるドープには、上記本発明の非塩素系有機溶媒以外に、ジクロロメタンを本発明に用いる全有機溶媒量の10質量%以下含有させてもよい。
〔セルロースアシレート溶液特性〕
セルロースアシレートの溶液は、前記有機溶媒にセルロースアシレートを溶解させた溶液であり、その濃度は10〜30質量%の範囲であることが、製膜流延適性の点で好ましく、より好ましくは13〜27質量%であり、特に好ましくは15〜25質量%である。
セルロースアシレート溶液をこのような濃度範囲にする方法は、溶解する段階で所定の濃度になるようにしてもよく、また予め低濃度溶液(例えば9〜14質量%)として作製した後に、後述する濃縮工程で所定の高濃度溶液に調整してもよい。さらに、予め高濃度のセルロースアシレート溶液とした後に、種々の添加物を添加することで所定の低濃度のセルロースアシレート溶液としてもよく、いずれの方法でも本発明において好ましく用いられるセルロースアシレート溶液濃度になるように実施されれば特に問題ない。
次に、本発明では、セルロースアシレート溶液を同一組成の有機溶媒で0.1〜5質量%にしたときの、希釈溶液中のセルロースアシレートの会合体分子量が15万〜1500万であることが、溶媒への溶解性の点で好ましい。会合分子量は18万〜900万であることがさらに好ましい。この会合分子量は、静的光散乱法で求めることができる。その際に、同時に求められる慣性半径は10〜200nmになるように溶解することが好ましい。さらに好ましい慣性半径は20〜200nmである。更にまた、第2ビリアル係数が−2×10-4〜+4×10-4となるように溶解することが好ましく、より好ましくは第2ビリアル係数が−2×10-4〜+2×10-4である。
ここで、本発明での会合分子量、さらに慣性半径及び第2ビリアル係数の定義について述べる。これらは下記方法に従って、静的光散乱法を用いて測定する。測定は装置の都合上希薄領域で測定するが、これらの測定値は本発明の高濃度域でのドープの挙動を反映するものである。
まず、セルロースアシレートをドープに使用する溶媒に溶かし、0.1質量%、0.2質量%、0.3質量%、0.4質量%の溶液を調製する。なお秤量は、吸湿を防ぐため、セルロースアシレートは、120℃で2時間乾燥したものを用い、25℃、10%RHで行う。溶解方法は、ドープ溶解時に採用した方法(常温溶解法、冷却溶解法、高温溶解法)に従って実施する。続いてこれらの溶液、及び溶媒を0.2μmのテフロン(登録商標)製フィルターで濾過する。そして、濾過した溶液の静的光散乱を、光散乱測定装置“DLS−700”{大塚電子(株)製}を用い、25℃において30゜から140゜まで10゜間隔で測定する。得られたデータをBERRYプロット法にて解析する。なお、この解析に必要な屈折率は、アッベ屈折系で求めた溶媒の値を用い、屈折率の濃度勾配(dn/dc)は、示差屈折計“DRM−1021”{大塚電子(株)製}を用い、光散乱測定に用いた溶媒及び溶液を用いて測定する。
〔ドープの調製〕
次に、セルロースアシレートの流延・製膜用の溶液(ドープ)の調製について述べる。
セルロースアシレートの溶解方法は、特に限定されず、室温溶解法でもよく、また冷却溶解法又は高温溶解法、さらにはこれらの組み合わせで実施されてもよい。これらに関しては、例えば特開平5−163301号、特開昭61−106628号、特開昭58−127737号、特開平9−95544号、特開平10−95854号、特開平10−45950号、特開2000−53784号、特開平11−322946号、さらに特開平11−322947号、特開平2−276830号、特開2000−273239号、特開平11−71463号、特開平04−259511号、特開2000−273184号、特開平11−323017号、特開平11−302388号などの各公報にセルロースアシレート溶液の調製法として記載されている。
上記公報等に記載された、これらのセルロースアシレートの有機溶媒への溶解方法は、適宜本発明の範囲であれば、本発明においてもこれらの技術を適用できるものである。これらの詳細、特に非塩素系溶媒系については、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)22−25頁にも詳細に記載されており、その方法に従って実施することができる。さらに本発明において好ましく用いられるセルロースアシレートのドープ溶液については、通常、溶液濃縮、濾過が実施されるが、これらについては同様に発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)25頁に詳細に記載されている。なお、高温度で溶解する場合には、使用する有機溶媒の沸点以上の場合がほとんどであり、その場合は加圧状態で行われる。
セルロースアシレート溶液は、その溶液の粘度と動的貯蔵弾性率が以下に述べる範囲であることが、流延しやすく好ましい。これらの値は、試料溶液1mLをレオメーター“CLS 500”に、直径4cm/2°の“Steel Cone”(共にTA Instruments社製)を用いて測定する。測定条件はOscillation Step/Temperature Rampで40℃〜−10℃の範囲を2℃/分で可変して測定し、40℃の静的非ニュートン粘度n*(Pa・s)及び−5℃の貯蔵弾性率G'(Pa)を求める。なお試料溶液は、予め測定開始温度にて液温一定となるまで保温した後に測定を開始する。
本発明では、40℃での粘度が1〜400Pa・sであり、15℃での動的貯蔵弾性率が500Pa以上であることが好ましく、より好ましくは40℃での粘度が10〜200Pa・sで、15℃での動的貯蔵弾性率が100〜100万であるのがよい。さらには、低温での動的貯蔵弾性率は大きいほど好ましく、例えば流延支持体が−5℃の場合は、動的貯蔵弾性率が−5℃で1万〜100万Paであることが好ましく、支持体が−50℃の場合は、−50℃での動的貯蔵弾性率が1万〜500万Paであることが好ましい。
本発明においては、前述の特定のセルロースアシレートを用いているので、高濃度のドープが得られるのが特徴であり、濃縮という手段に頼らずとも高濃度で、しかも安定性の優れたセルロースアシレート溶液が得られる。更に溶解し易くするために、低い濃度で溶解してから濃縮手段を用いて濃縮してもよい。濃縮の方法としては、特に限定するものはないが、例えば、低濃度溶液を筒体とその内部の周方向に回転する回転羽根外周の回転軌跡との間に導くとともに、溶液との間に温度差を与えて、溶媒を蒸発させながら高濃度溶液を得る方法(例えば、特開平4−259511号公報等)、加熱した低濃度溶液をノズルから容器内に吹き込み、溶液をノズルから容器内壁に当たるまでの間で溶媒をフラッシュ蒸発させるとともに、溶媒蒸気を容器から抜き出し、高濃度溶液を容器底から抜き出す方法(例えば、米国特許第2,541,012号、米国特許第2,858,229号、米国特許第4,414,341号、米国特許第4,504,355号各明細書等などに記載の方法)等で実施できる。
ドープ溶液は、流延に先だって金網やネルなどの適当な濾材を用いて、未溶解物やゴミ、不純物などの異物を濾過除去しておくのが好ましい。セルロースアシレート溶液の濾過には、絶対濾過精度が0.1〜100μmのフィルターを用いることが好ましく、さらには絶対濾過精度が0.5〜25μmであるフィルターを用いることが好ましい。フィルターの厚さは、0.1〜10mmが好ましく、更には0.2〜2mmが好ましい。その場合、濾過圧力は1.6MPa以下が好ましく、より好ましくは1.2MPa以下、更には1.0MPa以下、特に0.2MPa以下で濾過することが好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知である材料を好ましく用いることができ、特にセラミックス、金属等が好ましく用いられる。セルロースアシレート溶液の製膜直前の粘度は、製膜の際に流延可能な範囲であればよく、通常10Pa・s〜2000Pa・sの範囲に調製されることが好ましく、30Pa・s〜1000Pa・sがより好ましく、40Pa・s〜500Pa・sが更に好ましい。なお、この時の温度はその流延時の温度であれば特に限定されないが、好ましくは−5〜+70℃であり、より好ましくは−5〜+55℃である。
〔製膜〕
本発明に好ましく用いられる光学フィルムは、前記セルロースアシレート等の溶液(ドープ)を用いて製膜を行うことにより得ることができる。製膜方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)から、エンドレスに走行している流延部の金属支持体の上に均一に流延し、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して、巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。電子ディスプレイ用機能性保護膜に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。以下に各製造工程について簡単に述べるが、これらに限定されるものではない。
ソルベントキャスト法によりセルロースアシレートフィルム等光学フィルムを作製するに際しては、まず、調製したセルロースアシレート等ポリマー溶液(ドープ)を、ドラム又はバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が5〜40質量%となるように濃度を調整しておくことが好ましい。ドラム又はバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が30℃以下のドラム又はバンド上に流延する方法が好ましく採用され、特には金属支持体温度が−10〜20℃の範囲であることが好ましい。さらに本発明では、特開2000−301555号、特開2000−301558号、特開平07−032391号、特開平03−193316号、特開平05−086212号、特開昭62−037113号、特開平02−276607号、特開昭55−014201号、特開平02−111511号、及び特開平02−208650号の各公報に記載の方法を用いることができる。
[重層流延]
セルロースアシレート等ポリマー溶液は、金属支持体としての平滑なバンド上又はドラム上に単層液として流延してもよいし、2層以上の複数のセルロースアシレート等ポリマー液を流延してもよい。複数のセルロースアシレート等ポリマー溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口から、セルロースアシレート等ポリマーを含む溶液をそれぞれ流延させて、積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、及び特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート等ポリマー溶液を流延することによってフィルム化することもでき、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、及び特開平6−134933号の各公報に記載の方法で実施できる。さらに、特開昭56−162617号公報に記載の、高粘度セルロースアシレート等ポリマー溶液の流れを低粘度のセルロースアシレート等ポリマー溶液で包み込み、その高粘度及び低粘度のセルロースアシレート等ポリマー溶液を同時に押出す、セルロースアシレートフィルム等光学フィルム流延方法でもよい。更にまた、特開昭61−94724号及び特開昭61−94725号の各公報に記載の、外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。あるいはまた2個の流延口を用い、第一の流延口により金属支持体上に形成したフィルムを剥離した後、そのフィルムの金属支持体面に接していた側に第二の流延を行うことでより、複数の層のフィルムを作製することもでき、例えば特公昭44−20235号公報に記載されている方法を挙げることができる。流延するセルロースアシレート等ポリマー溶液は、同一の溶液でもよいし、異なるセルロースアシレート等ポリマー溶液でもよく、特に限定されない。複数のセルロースアシレート等ポリマー層に機能を持たせるためには、その機能に応じたセルロースアシレート等ポリマー溶液を、それぞれの流延口から押出せばよい。さらにセルロースアシレート等ポリマー溶液は、他の機能層(例えば、粘着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。
従来の単層液では、必要なフィルム厚さにするためには、高濃度で高粘度のセルロースアシレート等ポリマー溶液を押出すことが必要であり、その場合セルロースアシレート等ポリマー溶液の安定性が悪くなりがちで固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多かった。この解決法として、複数のセルロースアシレート等ポリマー溶液を、複数の流延口から相対的に少量ずつ流延することにより、高粘度の溶液を同時に金属支持体上に押出すことが可能になり、平面性も改善されて優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート等ポリマー溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合には、金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さとして定義する。共流延の場合、前記の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロースアシレート等ポリマー溶液を共流延して、積層構造のセルロースアシレートフィルム等光学フィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルム等光学フィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。またコア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び紫外線吸収剤の少なくともいずれかを含ませ、コア層に可塑性に優れた可塑剤、あるいは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。さらに剥離促進剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。さらにまた、冷却ドラム法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていてもよく、スキン層のTgよりコア層のTgが低いことが好ましい。またさらに流延時のセルロースアシレート等ポリマーを含む溶液の粘度も、スキン層とコア層で異なっていてもよく、スキン層の粘度がコア層の粘度よりも小さいことが好ましいが、コア層の粘度がスキン層の粘度より小さくてもよい。
[流延方法]
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるが、いずれも好ましく用いることができる。またここで挙げた方法以外にも、従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施することができ、用いる溶媒の沸点等の違いを考慮して各条件を設定することにより、それぞれの公報に記載の内容と同様の効果が得られる。
本発明に好ましく用いられるセルロースアシレートフィルム等光学フィルムを製造するのに使用される、エンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バンドといってもよい)が用いられる。使用される加圧ダイは、金属支持体の上方に1基又は2基以上の設置でもよい。好ましくは1基又は2基である。2基以上設置する場合には、流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート等ポリマー溶液の温度は−10〜55℃が好ましく、より好ましくは25〜50℃である。その場合、工程のすべての溶液温度が同一でもよく、又は工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。
[乾燥]
セルロースアシレートフィルム等光学フィルムの製造に係わる、金属支持体上におけるドープの乾燥は、一般的には、金属支持体(ドラム又はベルト)の表面側、つまり金属支持体上にあるウェブの表面から熱風を当てる方法、ドラム又はベルトの裏面から熱風を当てる方法、温度コントロールした液体をベルトやドラムのドープ流延面の反対側である裏面から接触させて、伝熱によりドラム又はベルトを加熱し表面温度をコントロールする裏面液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。流延される前の金属支持体の表面温度は、ドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するためには、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1〜10℃低い温度に設定することが好ましい。なお流延ドープを冷却して乾燥することなく剥ぎ取る場合はこの限りではない。
上記の偏光板を斜めから見たときの光漏れの抑制のためには、偏光子の透過軸とセルロースアシレートフィルム等光学フィルムの面内の遅相軸を平行に配置する必要がある。連続的に製造されるロールフィルム状の偏光子の透過軸は、一般的に、ロールフィルムの幅方向に平行であるので、前記ロールフィルム状の偏光子とロールフィルム状のセルロースアシレートフィルム等光学フィルムからなる保護膜を連続的に貼り合せるためには、ロールフィルム状の保護膜の面内遅相軸は、フィルムの幅方向に平行であることが必要となる。従って幅方向により多く延伸することが好ましい。また延伸処理は、製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理してもよい。前者の場合には残留溶媒を含んだ状態で延伸を行ってもよく、残留溶媒量が2〜30質量%で好ましく延伸することができる。
乾燥後得られる、本発明に好ましく用いられるセルロースアシレートフィルム等光学フィルムの膜厚は、使用目的によって異なり、通常、5〜500μmの範囲であることが好ましく、更に20〜300μmの範囲が好ましく、特に30〜150μmの範囲が好ましい。また、光学用、特にVA液晶表示装置用としては、40〜110μmであることが好ましい。フィルム厚さの調整は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。
〔延伸処理〕
本発明の光学フィルムは、延伸処理されたものであることが好ましい。延伸処理によりレターデーション発現剤の配向を効果的に制御でき、フィルムに所望のレターデーションを付与することが可能である。フィルムの延伸方向は幅方向、長手方向のいずれでも好ましい。
幅方向に延伸する方法は、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号などの各公報に記載されている。
フィルムの延伸温度は(Tg−10℃)以上(Tg+60℃)以下が好ましく、さらに好ましくは、(Tg+10℃)以上(Tg+40℃以下)がさらに好ましい。
さらに、レターデーション発現剤が液晶性化合物の場合、レターデーション発現剤の結晶−液晶転移温度以上で延伸し、液晶-結晶転移温度以下になるまで、フィルムを一定延伸倍率で把持して、フィルムにかかる応力を維持することが好ましい。上記条件でフィルムを延伸することにより、レターデーション発現剤の配向度を高め、高いレタデーション発現効率を得ることが可能となる。
長手方向の延伸の場合、例えば、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。幅方向の延伸の場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによってもフィルムを延伸できる。フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。
本発明においては特にフィルムの搬送方向に延伸する延伸工程と、フィルムの幅方向にフィルムを把持しながら収縮させる収縮工程とを含むことを特徴とするセルロースアシレート等光学フィルムの製造方法、あるいはフィルムの幅方向に延伸する延伸工程と、フィルムの搬送方向に収縮させる収縮工程とを含むことを特徴とするセルロースアシレート等光学フィルムの製造方法が好ましく用いられる。
まずフィルムの搬送方向に延伸する延伸工程と、フィルムの幅方向にフィルムを把持しながら収縮させる収縮工程とを含むことを特徴とするセルロースアシレート等光学フィルムの製造方法について説明する。
この場合、フィルムの搬送方向にフィルムを延伸することとなるが、フィルムの搬送方向に延伸する方法としては、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くする方法が好ましく用いられる。
この場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に狭めることでフィルムを延伸方向と略直交して収縮させることが出来る。
具体的にはチェーン式、スクリュー式、パンタグラフ式、リニアモーター式等のテンターによって保持し、搬送方向に延伸しながら、テンターの巾を徐々に狭めることでフィルムを延伸するのと同時に直交方向には収縮することが出来る。
一方、フィルムの幅方向に延伸する延伸工程と、フィルムの搬送方向に収縮させる収縮工程を含むことを特徴とするセルロースアシレート等ポリマーの製造方法においてはチェーン式、スクリュー式、パンタグラフ式、リニアモーター式等によって保持し、フィルムの幅方向に延伸しながら搬送方向にはクリップの間隔を徐々に狭めることでフィルムを収縮させることが出来る。
前記で説明した方法は、延伸工程と収縮工程の少なくとも一部が、同時に行われているということができる。
なお、上記のようなフィルムの長手方向または幅方向のいずれか一方を延伸し、同時にもう一方を収縮させ、同時にフィルムの膜厚を増加させる延伸工程を具体的に行う延伸装置として、市金工業社製FITZ機などを望ましく用いることができる。この装置に関しては(特開2001−38802号公報)に記載されている。
延伸工程における延伸率および収縮工程における収縮率としては目的とする正面レターデーションReおよび膜厚方向のレターデーションRthの値により、任意に適切な値を選択することができるが、延伸工程における延伸率が10%以上であり、かつ収縮工程における収縮率が5%以上とすることが好ましい。
なお、本発明でいう延伸率とは、延伸方向における延伸前のフィルムの長さに対する延伸後のフィルムの長さの延びた割合を意味し、収縮率とは、収縮方向における収縮前のフィルムの長さに対する収縮後のフィルムの収縮した長さの割合を意味する。
また延伸率としては3〜200%が好ましく、10〜100%が好ましく、15〜45%が特に好ましい。一方、収縮率としては5〜40%が好ましく、10〜30%が特に好ましい。
また処理温度とは非接触赤外線温度計で測定したフィルム表面の温度である。
フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。また、延伸は1段で行っても良く、多段で行っても良い。多段で行う場合は各延伸倍率の積がこの範囲にはいるようにすれば良い。
延伸速度は5%/分〜1000%/分であることが好ましく、さらに10%/分〜500%/分であることが好ましい。延伸はヒートロールあるいは/および放射熱源(IRヒーター等)、温風により行うことが好ましい。また、温度の均一性を高めるために恒温槽を設けてもよい。ロール延伸で一軸延伸を行う場合、ロール間距離(L)とフィルム幅(W)の比であるL/Wが、2.0乃至5.0であることが好ましい。
以上のようにして得られた、セルロースアシレートフィルム等の光学フィルムの幅は0.5〜3mが好ましく、より好ましくは0.6〜2.5m、さらに好ましくは0.8〜2.2mである。長さは、1ロール当たり100〜10000mで巻き取るのが好ましく、より好ましくは500〜7000mであり、さらに好ましくは1000〜6000mである。巻き取る際、少なくとも片端にナーリングを付与するのが好ましく、ナーリングの幅は3mm〜50mmが好ましく、より好ましくは5mm〜30mm、高さは0.5〜500μmが好ましく、より好ましくは1〜200μmである。これは片押しであっても両押しであってもよい。
フィルムの幅方向のRe(590)値のばらつきは、±5nmであることが好ましく、±3nmであることが更に好ましい。また幅方向のRth590値のバラツキは±10nm
が好ましく、±5nmであることが更に好ましい。また、長さ方向のRe値、及びRth値のバラツキも、幅方向のバラツキの範囲内であることが好ましい。
本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムの、フィルム面内の遅相軸角度のバラつきは、ロールフィルムの基準方向に対して−2゜〜+2゜の範囲にあることが好ましく、−1゜〜+1゜の範囲にあることがさらに好ましく、−0.5゜〜+0.5゜の範囲にあることが最も好ましい。ここで、基準方向とは、セルロースアシレートフィルムを縦延伸する場合にはロールフィルムの長手方向であり、横延伸する場合にはロールフィルムの幅方向である。
また、本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムは、25℃、10%RHにおけるRe値と、25℃、80%RHにおけるRe値との差ΔRe(=Re10%−Re80%)が0〜10nmであり、25℃、10%RHにおけるRth値と、25℃、80%RHにおけるRth値との差ΔRth(=Rth10%−Rth80%)が0〜30nmであるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
さらに本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムは、25℃、80%RHにおける平衡含水率が3.2%以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
含水率の測定法は、セルロースアシレートフィルム等の光学フィルム試料7mm×35mmを、水分測定器、試料乾燥装置{“CA−03”、“VA−05”、共に三菱化学(株)}を用いてカールフィッシャー法で測定する。水分量(g)を試料質量(g)で除して算出する。
さらにまた、本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムは、60℃、95%RH、24時間の透湿度(膜厚80μm換算)が、400g/m2・24hr以上1800g/m2・24hr以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
透湿度は、セルロースアシレートフィルム等の光学フィルムの膜厚が厚ければ小さくなり、膜厚が薄ければ大きくなる。そこで、どのような膜厚のサンプルでも基準となる膜厚を設け換算する必要がある。本発明においては、基準となる膜厚を80μmとして、次の数式(13)に従って膜厚を換算した。
数式(13):
80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができる。
ガラス転移温度の測定は、セルロースアシレートフィルム等の光学フィルム試料(未延伸)5mm×30mmを、25℃、60%RHで2時間以上調湿した後に、動的粘弾性測定装置「バイブロン:DVA−225」{アイティー計測制御(株)製}}を用いて、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜200℃、周波数1Hzで測定し、縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる、貯蔵弾性率の急激な減少を示す温度をガラス転移温度Tgとした。具体的には、得られたチャート上において、固体領域で直線1を引き、ガラス転移領域で直線2を引いたときの直線1と直線2の交点が、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度であり、ガラス転移領域に移行し始める温度であることから、ガラス転移温度Tg(動的粘弾性)とした。
弾性率の測定は、セルロースアシレートフィルム等の光学フィルム試料10mm×150mmを、25℃、60%RHで2時間以上調湿した後、引張り試験機「ストログラフ−R2」{(株)東洋精機製作所製}}で、チャック間距離100mm、温度25℃、延伸速度10mm/分で行った。
吸湿膨張係数の測定は、25℃、80%RH下に2時間以上放置したフィルムの寸法をピンゲージで測定した値L80%と、25℃、10%RH下に2時間以上放置したフィルムの寸法をピンゲージで測定した値L10%とから、次の数式(14)により求めた。
数式(14):(L80%−L10%)/(80%RH−10%RH)×106
また、本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムは、そのヘイズが0.01〜2%の範囲であるのが好ましい。ここでヘイズは、以下のようにして測定できる。
ヘイズの測定は、セルロースアシレートフィルム等の光学フィルム試料40mm×80mmを、25℃、60%RHでヘイズメーター“HGM−2DP”{スガ試験機(株)製}でJIS K−6714に従って測定する。
さらに本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムは、80℃、90%RHの条件下に48時間静置した場合の質量変化が、0〜5質量%の範囲であるのが好ましい。
またさらに、本発明に好ましく用いられるセルロースアシレートフィルム等の光学フィルムは、60℃、95%RHの条件下に24時間静置した場合の寸度変化、及び90℃、5%RHの条件下に24時間静置した場合の寸度変化が、いずれも0〜5%の範囲であるのが好ましい。
光弾性係数は、50×10-13cm2/dyn(50×10-8cm2/N)以下であるの
が、液晶表示装置の経時による色味変化を少なくする上で好ましい。
具体的な測定方法としては、セルロースアシレートフィルム等の光学フィルム試料10mm×100mmの、長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター例えば“M150”{日本分光(株)}で測定し、応力に対するレターデーションの変化量から光弾性係数を算出する方法が用いられる。
[溶融製膜]
本発明の光学フィルムの製法は、溶融製膜であっても良い。原料となるポリマー、添加剤等の原料を加熱溶融させ、これを押出し射出成型によりフィルム化しても良いし、加熱した2枚のプレートに原料を挟み込み、プレス加工してフィルム化しても良い。
加熱溶融の温度は、原料ポリマーが共に均一に溶融する温度であれば特に制限されない。具体的には融点又は軟化点以上の温度に加熱する。均一なフィルムを得るためには、原料ポリマーの融点よりも高い温度、好ましくは融点よりも5〜40℃高い温度、特に好ましくは融点よりも8〜30℃高い温度に加熱して溶融させることが好ましい。
[配向膜]
光学補償フィルムは、本発明のセルロースアシレートフィルムと光学異方性層との間に配向膜を有していてもよい。また、光学異方性層を作製する際にのみ配向膜を使用し、配向膜上に光学異方性層を作製した後に、該光学異方性層のみを本発明のセルロースアシレートフィルム上に転写してもよい。
本発明において、前記配向膜は、架橋されたポリマーからなる層であるのが好ましい。配向膜に使用されるポリマーは、それ自体架橋可能なポリマーであっても、架橋剤により架橋されるポリマーのいずれも使用することができる。上記配向膜は、官能基を有するポリマーあるいはポリマーに官能基を導入したものを、光、熱又はpH変化等により、ポリマー間で反応させて形成する;又は、反応活性の高い化合物である架橋剤を用いてポリマー間に架橋剤に由来する結合基を導入して、ポリマー間を架橋することにより形成する;ことができる。
架橋されたポリマーからなる配向膜は、通常、上記ポリマー又はポリマーと架橋剤との混合物を含む塗布液を、支持体上に塗布した後、加熱等を行うことにより形成することができる。後述のラビング工程において、配向膜の発塵を抑制するために、架橋度を上げておくことが好ましい。前記塗布液中に添加する架橋剤の量(Mb)に対して、架橋後に残存している架橋剤の量(Ma)の比率(Ma/Mb)を1から引いた値(1−(Ma/Mb))を架橋度と定義した場合、架橋度は50%〜100%が好ましく、65%〜100%が更に好ましく、75%〜100%が最も好ましい。
本発明において、前記配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができる。勿論双方の機能を有するポリマーを使用することもできる。上記ポリマーの例としては、ポリメチルメタクリレート、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、スチレン/ビニルトルエン共重合体、クロロスルホン化ポリエチレン、ニトロセルロース、ポリ塩化ビニル、塩素化ポリオレフィン、ポリエステル、ポリイミド、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体、カルボキシメチルセルロース、ゼラチン、ポリエチレン、ポリプロピレン及びポリカーボネート等のポリマー及びシランカップリング剤等の化合物を挙げることができる。好ましいポリマーの例としては、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビルアルコール及び変性ポリビニルアルコール等の水溶性ポリマーであり、さらにゼラチン、ポリビルアルコール及び変性ポリビニルアルコールが好ましく、特にポリビルアルコール及び変性ポリビニルアルコールを挙げることができる。
本発明のセルロースアシレートフィルムへポリビルアルコール及び変性ポリビニルアルコールを直接塗設する場合、親水性の下塗り層を設けるか、もしくは、鹸化処理を施す方法が好ましく使用される。
上記ポリマーの中で、ポリビニルアルコール又は変性ポリビニルアルコールが好ましい。
ポリビニルアルコールとしては、例えば鹸化度70〜100%のものがあり、一般には鹸化度80〜100%のものが好ましく、鹸化度82〜98%のものがより好ましい。重合度としては、100〜3000の範囲のものが好ましい。
変性ポリビニルアルコールとしては、共重合変性したもの(変性基として、例えば、COONa、Si(OX)3、N(CH3)3・Cl、C919COO、SO3Na、C1225等が
導入される)、連鎖移動により変性したもの(変性基として、例えば、COONa、SH、SC1225等が導入されている)、ブロック重合による変性をしたもの(変性基として、例えば、COOH、CONH2、COOR(Rは炭素数12以下のアルキル基)、C65等が導入される)等のポリビニルアルコールの変性物を挙げることができる。重合度としては、100〜3000の範囲が好ましい。これらの中で、鹸化度80〜100%の未変性もしくは変性ポリビニルアルコールが好ましく、より好ましくは鹸化度85〜95%の未変性ないしアルキルチオ変性ポリビニルアルコールである。
該ポリビニルアルコールには、セルロースアシレートフィルム等の光学フィルムと光学異方性層との密着性を付与するために、架橋・重合活性基を導入することが好ましく、その好ましい例としては、特開平8−338913号公報に詳しく記載されている。
配向膜にポリビニルアルコール等の親水性ポリマーを使用する場合、硬膜度の観点から、含水率を制御することが好ましく、0.4%〜2.5%であることが好ましく、0.6%〜1.6%であることが更に好ましい。含水率は、市販のカールフィッシャー法の水分率測定器で測定することができる。
なお、配向膜は、10ミクロン以下の膜厚であるのが好ましい。
[偏光板]
本発明では、偏光膜と該偏光膜を挟持する一対の保護とからなる偏光板であって、前記保護膜の少なくとも一枚が前記の光学フィルムを含む偏光板を提供するものである。例えば、ポリビニルアルコールフィルム等からなる偏光膜をヨウ素にて染色し、延伸を行い、その両面を保護フィルムにて積層して得られる偏光板を用いることができる。該偏光板は液晶セルの外側に配置される。偏光膜と該偏光膜を挟持する一対の保護膜とからなる一対の偏光板を、液晶セルを挟持して配置させるのが好ましい。なお、液晶セル側に配置される保護膜は、本発明の光学フィルムまたはセルロースアシレートフィルムであるのが好ましい。
また、本発明は、偏光子と、該偏光子の片面に本発明の光学フィルムを有する偏光板にも関する。本発明の光学フィルムと同様、本発明の偏光板の態様は、液晶表示装置にそのまま組み込むことが可能な大きさに切断されたフィルム片の態様の偏光板のみならず、連続生産により、長尺状に作製され、ロール状に巻き上げられた態様(例えば、ロール長2500m又は3900m以上)の偏光板も含まれる。大画面液晶表示装置用とするためには、上記した通り、偏光板の幅は1470mm以上であることが好ましい。
本発明の偏光板は図1(a)及び(b)に示す態様においても用いることが出来る。
図1(a)は偏光子11の一方の面に保護フィルム16を設け、他方の面に保護フィルム14として本発明の光学フィルムを配置し、さらにその上に光学異方性層15を設けたものである。光学異方性層15としては後述する式(10)および式(11)を満たす光学異方性であることが好ましい。
この偏光板を液晶表示装置に組み込む際は、本発明の光学フィルムおよび光学異方性層15を液晶セル側にして配置するのが好ましい。
保護フィルム16は、外側に配置されるので、低透湿性の材料を用いるのが耐久性の点で好ましい。具体的には、透湿度が200g/(m・day)以下のフィルムを用いるのが好ましく、50g/(m・day)以下のフィルムを用いるのがより好ましく、20g/(m・day)以下のフィルムを用いるのがさらに好ましい。透湿度の下限値については特に制限されないが、一般的には、フィルムの透湿度は、10g/(m・day)程度が下限である。ここで、フィルム透湿度は40℃60%RHで測定された値のことを示す。詳細はJIS0208に記載されている。かかる特性を示す保護フィルムとしては、ノルボルネン系ポリマーフィルムが好ましく、市販品であるゼオノアフィルム等を用いることができる。また、フィルム基材の上に低透湿性の被覆層(バリア層と称する場合もある)を設けた低透湿性材料も好ましく用いることができる。被覆層の例としては、塩素含有ビニル単量体から誘導される繰り返し単位を含む重合体(以下塩素含有重合体とも称する)があげられる。塩素含有ビニル単量体としては、一般的には、塩化ビニル、塩化ビニリデンが挙げられる。塩素含有重合体は、これら塩化ビニル又は塩化ビニリデン単量体に、これらと共重合可能な単量体を共重合することにより得ることができる。またこの塩素含有ビニル単量体と他の単量体を共重合させることもできる。塩素含有ビニル単量体と共重合可能な単量体としては、オレフィン類、スチレン類、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタアクリルアミド類、イタコン酸ジエステル類、マレイン酸エステル類、フマル酸ジエステル類、N−アルキルマレイミド類、無水マレイン酸、アクリロニトリル、ビニルエーテル類、ビニルエステル類、ビニルケトン類、ビニル異節環化合物、グリシジルエステル類、不飽和ニトリル類、不飽和カルボン酸類等から選ばれる単量体が挙げられる。
なお、透湿度が低いフィルムを液晶表示装置の、外側に用いて湿度の進入を防ぐ理由や、透湿度が低いフィルムが偏光子との接着性が低い等の理由により、図1(b)に示す通り、偏光子11と低透湿性の保護フィルム16との間に、保護フィルム16’を別途配置してもよい。保護フィルム16’としては、セルロースアシレートフィルムが好ましい。この場合、本発明の例として、セルロースアシレートフイルムを保護フィルム16’とし、上述の塩素含有重合体を保護フィルム16として設置した低透湿性のフィルムを好ましく用いることができる。
なお、偏光子11と保護フィルム14との間にも、別途偏光子を保護する機能を有する保護フィルムを配置してもよいが、かかる保護フィルムが光学補償能を低下させないように、レターデーションがほぼ0であるフィルム、例えば、特開2005−138375に記載のセルロースアシレートフィルム等、を用いるのが好ましい。
《接着剤》
偏光膜と保護膜との接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01〜10ミクロンが好ましく、0.05〜5ミクロンが特に好ましい。
《偏光膜と保護膜の一貫製造工程》
本発明に使用可能な偏光板は、偏光膜用フィルムを延伸後、収縮させ揮発分率を低下させる乾燥工程を有して製造され得るが、乾燥後もしくは乾燥中に少なくとも片面に保護膜を貼り合わせた後、後加熱工程を有することが好ましい。具体的な貼り付け方法として、フィルムの乾燥工程中、両端を保持した状態で接着剤を用いて偏光膜に保護膜を貼り付け、その後両端を耳きりする、もしくは乾燥後、両端保持部から偏光膜用フィルムを解除し、フィルム両端を耳きりした後、保護膜を貼り付けるなどの方法がある。耳きりの方法としては、刃物などのカッターで切る方法、レーザーを用いる方法など、一般的な技術を用いることができる。貼り合わせた後に、接着剤を乾燥させるため、及び偏光性能を良化させるために、加熱することが好ましい。加熱の条件としては、接着剤により異なるが、水系の場合は、30℃以上が好ましく、さらに好ましくは40℃〜100℃、さらに好ましくは50℃〜90℃である。これらの工程は一貫のラインで製造されることが、性能上及び生産効率上更に好ましい。
《偏光板の性能》
本発明の偏光板の光学的性質及び耐久性(短期、長期での保存性)は、市販のスーパーハイコントラスト品(例えば、株式会社サンリッツ社製HLC2−5618等)同等以上の性能を有することが好ましい。具体的には、可視光透過率が42.5%以上で、偏光度{(Tp−Tc)/(Tp+Tc)}1/2≧0.9995(但し、Tpは平行透過率、Tcは直交透過率)であり、60℃、湿度90%RH雰囲気下に500時間及び80℃、ドライ雰囲気下に500時間放置した場合のその前後における光透過率の変化率が絶対値に基づいて3%以下、更には1%以下、偏光度の変化率は絶対値に基づいて1%以下、更には0.1%以下であることが好ましい。
〔セルロースアシレートフィルムの表面処理〕
本発明に好ましく用いられるセルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層及びバック層)との接着性の向上を達成することができる。表面処理としては、例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸又はアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)30−32頁に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000keV下で20〜500kGyの照射エネルギーが用いられ、より好ましくは30〜500keV下で20〜300kGyの照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ鹸化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。
[アルカリ鹸化処理]
アルカリ鹸化処理は、セルロースアシレートフィルムを鹸化液の槽に直接浸漬する方法、又は鹸化液をセルロースアシレートフィルムに塗布する方法により実施することが好ましい。塗布方法としては、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法及びE型塗布法を挙げることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液をセルロースアシレートフィルムに対して塗布するために、濡れ性がよく、また鹸化液溶媒によってセルロースアシレートフィルム表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がさらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒以上5分以下が好ましく、5秒以上5分以下がさらに好ましく、20秒以上3分以下が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。
また、本発明に関する偏光板は、保護膜の上に光学異方性層を設けることが好ましい。
光学異方性層は、液晶性化合物、非液晶性化合物、無機化合物、有機/無機複合化合物等、材料は限定されない。液晶性化合物としては、重合性基を有する低分子化合物を配向させた後に光または熱による重合により配向を固定化するものや、液晶性高分子を加熱し配向させた後に冷却しガラス状態で配向固定化するものを使うことができる。液晶性化合物としては円盤状構造を有するもの、棒状構造を有するもの、光学的二軸性を示す構造を有するものを使うことができる。非液晶性化合物としては、ポリイミド、ポリエステル等の芳香族環を有する高分子を使うことができる。
光学異方性層の形成方法は、塗布、蒸着、スパッタリング等種々の手法を使用することができる。
偏光板の保護膜の上に光学異方性層を設ける場合、粘着層は偏光子側からさらに該光学異方性層の外側に設けられる。
さらに本発明に関する偏光板は、偏光板の少なくとも一方の側の保護膜の表面に、ハードコート層、防眩層又は反射防止層の少なくとも一層を設けられたものであるのが好ましい。すなわち、ように、偏光板の液晶表示装置への使用時において、液晶セルと反対側に配置される保護膜には、反射防止層などの機能性膜を設けることが好ましく、かかる機能性膜としては、ハードコート層、防眩層又は反射防止層の少なくとも一層を設けるのが好ましい。なお、各層はそれぞれ別個の層として設ける必要はなく、例えば、反射防止層やハードコート層に防眩性の機能を持たせることにより、反射防止層及び防眩層の二層を設ける代わりに、防眩性反射防止層として機能させてもよい。
〔反射防止層〕
本発明では、偏光板の保護膜上に、少なくとも光散乱層と低屈折率層がこの順で積層されてなる反射防止層、又は保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に設けられる。以下にそれらの好ましい例を記載する。なお前者の構成では、一般的に鏡面反射率は1%以上となり、Low Reflection(LR)フィルムと呼ばれる。後者の構成では、鏡面反射率0.5%以下を実現するものが可能となり、Anti―Reflection(AR)フィルムと呼ばれる。
[LRフィルム]
偏光板の保護膜上に、光散乱層と低屈折率層を設けた反射防止層(LRフィルム)の好ましい例について述べる。
光散乱層には、マット粒子が分散されているのが好ましく、光散乱層のマット粒子以外の部分の素材の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層の屈折率は1.20〜1.49の範囲にあることが好ましい。本発明において光散乱層は、防眩性とハードコート性を兼ね備えており、一層でもよいし、複数層、例えば二層〜四層で構成されていてもよい。
反射防止層は、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.40μm、10点平均粗さRzがRaの10倍以下、平均凹凸間距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均凹凸間距離Smの標準偏差が20μm以下、傾斜角0〜5゜の面が10%以上となるように設計することで、十分な防眩性と目視での均一なマット感が達成されるので好ましい。
また、C光源(CIE標準平均昼光タイプC)下での反射光の色味がL*a*b*色度座標空間においてa*値が−2〜2、b*値が−3〜3であり、380nm〜780nmの範囲内での反射率の最小値と最大値の比が0.5〜0.99であることにより、反射光の色味がニュートラルとなるので好ましい。さらにC光源下での透過光のb*値を0〜3とすることで、表示装置に適用した際の白表示の黄色味が低減されるので好ましい。さらにまた、面光源上と反射防止層の間に120μm×40μmの格子を挿入して、フィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明の偏光板を適用したときのギラツキが低減されるので好ましい。
本発明で用いることができる反射防止層は、その光学特性として、鏡面反射率2.5%以下、透過率90%以上、60゜光沢度70%以下とすることで、外光の反射を抑制でき、視認性が向上するため好ましい。特に鏡面反射率は1%以下がより好ましく、0.5%以下であることが最も好ましい。ヘイズ20%〜50%、内部ヘイズ/全ヘイズ値の比が0.3〜1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度20%〜50%、垂直透過光/垂直から2゜傾斜方向の透過率比が1.5〜5.0とすることで、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成されるので好ましい。
(低屈折率層)
本発明で用いることができる低屈折率層の屈折率は、好ましくは1.20〜1.49であり、更に好ましくは1.30〜1.44の範囲にある。さらに、低屈折率層は下記数式(19)を満たすことが低反射率化の点で好ましい。
数式(19):(m/4)λ×0.7<nLL<(m/4)λ×1.3
式中、mは正の奇数であり、nLは低屈折率層の屈折率であり、そして、dLは低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
低屈折率層を形成する素材について以下に説明する。
低屈折率層は、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。
フッ素ポリマーとしては、動摩擦係数0.03〜0.20、水に対する接触角90〜120゜、純水の滑落角が70゜以下の、熱又は電離放射線により架橋する含フッ素ポリマーが好ましい。本発明に関する偏光板を画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましく、引張試験機で測定した場合、該剥離力が500gf(4.9N)以下であることが好ましく、300gf(3.96N)以下であることがより好ましく、100gf(0.98N)以下であることが最も好ましい。また、微小硬度計で測定した表面硬度が高いほど傷がつき難く、該表面硬度は0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
低屈折率層に用いられる含フッ素ポリマーとしては、ペルフルオロアルキル基含有シラン化合物{例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン}の加水分解物、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。
含フッ素モノマーの具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ペルフルオロオクチルエチレン、ヘキサフルオロプロピレン、ペルフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類[例えば「ビスコート6FM」{大阪有機化学工業(株)製}や“M−2020”{ダイキン工業(株)製}等]、完全又は部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはペルフルオロオレフィン類であり、屈折率、溶解性、透明性、入手し易さ等の観点から特に好ましくはヘキサフルオロプロピレンである。
架橋反応性付与のための構成単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように、分子内に予め自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー{例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等}の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶媒への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−t−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。
上記のポリマーに対しては、特開平10−25388号及び特開平10−147739号各公報に記載のごとく、適宜硬化剤を併用してもよい。
(光散乱層)
光散乱層は、表面散乱及び内部散乱の少なくともいずれかによる光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに付与する目的で形成される。従って、ハードコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、及び必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成される。また、このような光散乱層を設けることにより、該光散乱層が防眩層としても機能し、偏光板が防眩層を有することになる。
光散乱層の膜厚は、ハードコート性を付与する目的で、1〜10μmが好ましく、1.2〜6μmがより好ましい。光散乱層の膜厚が該下限値以上であれば、ハード性が不足するなどの問題が生じにくく、該上限値以下であれば、カールや脆性が悪化して加工適性が不足するなどの不都合が生じにくいので好ましい。
光散乱層のバインダーとしては、飽和炭化水素鎖又はポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。またバインダーポリマーは架橋構造を有することが好ましい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、且つ架橋構造を有するバインダーポリマーとしては、2個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むものを選択することもできる。
2個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル{例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート}、上記のエチレンオキシド変性体、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。これらのモノマーは2種以上併用してもよい。
高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤又は熱ラジカル開始剤の存在下、電離放射線の照射又は加熱により行うことができる。従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤又は熱ラジカル開始剤、マット粒子及び無機フィラーを含有する塗布液を調製し、該塗布液を保護膜上に塗布後、電離放射線又は熱による重合反応により硬化して反射防止層を形成することができる。これらの光ラジカル開始剤等は公知のものを使用することができる。
ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤又は熱酸発生剤の存在下、電離放射線の照射又は加熱により行うことができる。従って、多官能エポシキシ化合物、光酸発生剤又は熱酸発生剤、マット粒子及び無機フィラーを含有する塗布液を調製し、該塗布液を保護膜上に塗布後電離放射線又は熱による重合反応により硬化して反射防止層を形成することができる。
2個以上のエチレン性不飽和基を有するモノマーの代わりに、又はそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
光散乱層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒径が1〜10μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子又は樹脂粒子が含有される。マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。マット粒子の形状は、球状あるいは不定形のいずれも使用できる。
また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。
さらに、上記マット粒子の粒子径分布としては、単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほどよい。例えば、平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。
上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2となるように光散乱層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。
光散乱層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2及び
ZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、光散乱層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
光散乱層のバインダー及び無機フィラーの混合物のバルクの屈折率は、1.50〜2.00であることが好ましく、より好ましくは1.51〜1.80である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、又はその両者を光散乱層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明において好ましく用いられる反射防止層の塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。
[ARフィルム]
次に保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層された反射防止層(ARフィルム)について述べる。
保護膜上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成からなる反射防止層は、以下の関係を満足する屈折率を有する様に設計される。
高屈折率層の屈折率>中屈折率層の屈折率>保護膜の屈折率>低屈折率層の屈折率
また、保護膜と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよく、例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等に記載の反射防止層が挙げられる。
さらに各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例えば、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
反射防止層のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また、膜の表面強度は、JIS K−5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
(高屈折率層及び中屈折率層)
反射防止層の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物微粒子及びマトリックスバインダーを少なくとも含有する硬化膜からなる。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
このような微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908号公報、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等に記載)、高屈折率粒子をコアとしたコアシェル構造とすること(特開2001−166104号公報等に記載)、特定の分散剤を併用すること(例えば、特開平11−153703号公報、米国特許第6210858号明細書、特開2002−277609号公報等参照)等挙げられる。
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
更に好ましい材料としては、ラジカル重合性及びカチオン重合性の少なくともいずれかの重合性基を2個以上有する多官能性化合物含有組成物、加水分解性基を含有する有機金属化合物を含有する組成物、及びその部分縮合体を含有する組成物から選ばれる少なくとも1種の組成物が挙げられ、例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。また、厚さは5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
(低屈折率層)
低屈折率層は、高屈折率層の上に順次積層してなる。低屈折率層の屈折率は1.20〜1.55であることが好ましい。より好ましくは1.30〜1.50である。
低屈折率層は、耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等からなる薄膜層の手段を適用できる。
含フッ素化合物は、フッ素原子を35〜80質量%の範囲で含む架橋性又は重合性の官能基を含む化合物が好ましく、例えば、特開平9−222503号公報段落番号[0018]〜[0026]、同11−38202号公報段落番号[0019]〜[0030]、特開2001−40284号公報段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物が挙げられる。
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。
シリコーン化合物としては、ポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン[例えば、「サイラプレーン」{チッソ(株)製等}]、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
架橋又は重合性基を有する、含フッ素ポリマー及びシロキサンポリマーの少なくともいずれかの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時に、又は塗布後に光照射や加熱することにより低屈折率層を形成することが好ましい。
またシランカップリング剤等の有機金属化合物と、特定のフッ素含有炭化水素基含有のシランカップリング剤とを、触媒共存下に縮合反応で硬化するゾル/ゲル硬化膜も好ましい。
例えば、ポリフルオロアルキル基含有シラン化合物又はその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ(ペルフルオロアルキルエーテル)基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
低屈折率層は、上記以外の添加剤として、充填剤{例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820号公報の段落番号[0020]〜[0038]に記載の有機微粒子等}、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されてもよい。安価に製造できる点で、塗布法が好ましい。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
(ハードコート層)
ハードコート層は、反射防止層を設けた保護膜に物理強度を付与するために、保護膜の表面に設ける。特に、保護膜と前記高屈折率層の間に設けることが好ましい。ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。硬化性化合物における硬化性官能基としては、光重合性官能基が好ましい。また加水分解性官能基含有の有機金属化合物や有機アルコキシシリル化合物も好ましい。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。
ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第00/46617号パンフレット等記載のものが挙げられる。
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。
ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層を兼ねることもできる。
ハードコート層の膜厚は、用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。
ハードコート層の表面強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。またJIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
(反射防止層の他の層)
さらに、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
(帯電防止層)
帯電防止層を設ける場合には、体積抵抗率が10-8(Ωcm-3)以下の導電性を付与することが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、アニオンポリマー、コロイダルシリカ等の使用により10-8(Ωcm-3)の体積抵抗率の付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物には着色しているものがあるが、これらの金属酸化物を導電性層素材として用いるとフィルム全体が着色してしまい好ましくない。着色のない金属酸化物を形成する金属として、Zn、Ti、Sn、Al、In、Si、Mg、Ba、Mo、W又はVをあげることができ、これらを主成分とした金属酸化物を用いることが好ましい。
上記金属酸化物の具体的な例としては、ZnO、TiO2、SnO2、Al23、In2
3、SiO2、MgO、BaO、MoO3、WO3、V25等、又はこれらの複合酸化物がよく、特にZnO、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加物、SnO2に対してはSb、Nb、ハロゲン元素等の添加、またTiO2に対してはNb、Ta等の添加が効果的である。
更にまた、特公昭59−6235号公報に記載の如く、他の結晶性金属粒子又は繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用してもよい。なお体積抵抗値と表面抵抗値は別の物性値であり、単純に比較することはできないが、体積抵抗値で10-8(Ωcm-3)以下の導電性を確保するためには、該帯電防止層が概ね10-10(Ω/□)以下の表面抵抗値を有していればよく、更に好ましくは10-8(Ω/□)である。帯電防止層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが必要であり、積層フィルムを形成する途中の段階で測定することができる。
[液晶表示装置]
上記のセルロースアシレートフィルム、またはセルロースアシレートフィルムと偏光膜とを貼り合わせて得られた偏光板は、液晶表示装置、特に透過型液晶表示装置に有利に用いられる。
透過型液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板からなる。偏光板は、偏光膜およびその両側に配置された二枚の透明保護膜からなる。液晶セルは、二枚の電極基板の間に液晶を担持している。
本発明の偏光板は、液晶セルの一方に一枚配置するか、あるいは液晶セルの両面に二枚配置する。
液晶セルは、VAモード、OCBモード、IPSモード、またはTNモードであることが好ましい。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845頁記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59頁(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶表示装置の場合、本発明の偏光板を1枚のみ使用する場合は、バックライト側に用いるのが好ましい。
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。
そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
本発明の光学フィルムは、IPSモードおよびECBモードの液晶セルを有するIPS型液晶表示装置およびECB型液晶表示装置の光学補償シートの支持体、または偏光板の保護膜としても用いてもよい。これらのモードは黒表示時に液晶材料が略平行に配向する態様であり、電圧無印加状態で液晶分子を基板面に対して平行配向させて、黒表示する。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60乃至120゜にねじれ配向している。
TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
本発明の光学フィルムあるいは偏光板を液晶表示装置に用いる場合、この液晶表示装置は下記式(10)、(11)を満たす光学異方性層をさらに有することか好ましい。このような態様の液晶表示装置においては前述のカラーシフトの問題がさらに改良される。
本態様は特に液晶セルがVAモードである場合に好ましい。
式(10) Rt(550)/Re(550)>10
式(11) Rth(650)−Rth(450)<0
前記式(10)および(11)を満たす光学異方性層を構成する材料としては特に制限はないが、紫外線吸収剤を用いた含有するセルロースエステルフィルムあるいは環状シクロオレフィンフィルムなどを好ましく用いることが出来る。
このように本発明の光学フィルムあるいは偏光板を前記式(10)、式(11)を満たす光学異方性層とあわせて用いる場合には、本発明の光学フィルムはカラーシフトの問題の改良の点でさらに下記式(1)〜(3)を満たすことが好ましい。
式(1) Re(550)>20nm
式(2) 0.5<Nz<10
式(3) −2.5×Re(550)+300<Rth(550)<−2.5×Re(550)+500
(式中、Re(λ)及びRth(λ)はそれぞれ、波長λnmの光を入射させて測定した面内及び面外レターデーション(単位:n)であり、Nz=Rth(550)/Re(550)+0.5とする。)
また本発明の光学フィルムは、より好ましくは下記式(1)’〜(3)’、さらに好ましくは式(4)〜(7)、特に好ましくは式(4a)〜(7a)を満たすことがさらに好ましい。
式(1)’ Re(550)>30nm
式(2)’ 1.5≦Nz<10
式(3)’ −2.5×Re(550)+320<Rth(550)<−2.5×Re(550)+480
式(4)0.60<Re(450)/Re(550)<1.0
式(5)1.0<Re(650)/Re(550)<1.25
式(6)0.60<Rth(450)/Rth(550)<1.0
式(7)1.0<Rth(650)/Rth(550)<1.25
式(4a)0.70<Re(450)/Re(550)<1.0
式(5a)1.0<Re(650)/Re(550)<1.15
式(6a)0.70<Rth(450)/Rth(550)<1.0
式(7a)1.0<Rth(650)/Rth(550)<1.15
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されない。
[実施例1]
<一般式(I)の例示化合物(16)の合成>
化合物(1−C)62.7g(0.2mol)のN−メチルピロリドン500ml溶液に、シアノ酢酸イソプロピルエステル30ml(0.24mol)を加え、内温120度で5時間攪拌した。冷却した後、酢酸エチルおよび水を加えて分液し、有機層を水洗した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去し固化させた。固形物をアセトン/へキサン混合溶媒で分散させ、ろ過を行う作業を2度繰り返すことで、化合物(16−D)58.0gを得た(収率93mol%)。
化合物(16−E)(Yantai valiant Fine Chem.製)10.49g(44mmol)のテトラヒドロフラン(THF)100ml溶液に、氷冷下にてメタンスルホン酸クロライド3.4ml(44mmol)を加え、N,N−ジイソプロピルエチルアミン8.05ml(46.2mmol)をゆっくりと滴下した。1時間攪拌した後、N,N−ジイソプロピルエチルアミン8.05ml(46.2mmol)を加え、化合物(16−D)6.19g(20mmol)のテトラヒドロフラン50ml溶液を滴下した。その後、N,N−ジメチルアミノピリジン(DMAP)0.05gのテトラヒドロフラン20ml溶液を滴下した。氷冷下にて1時間攪拌した後、室温まで昇温し、6時間攪拌した。酢酸エチルおよび水を加えて分液し、有機層を水、1N塩酸水、水の順に水洗した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。塩化メチレン/メタノール混合溶媒を溶離液とし、シリカゲルカラムクロマトグラフィにて精製を行うことで、例示化合物(16)5.4gを得た(収率36mol%)。
<セルロースアシレートフィルムの製膜>
(1)セルロースアシレート
原料のセルロースに、触媒として硫酸を添加し、さらにアシル置換基の原料となる無水カルボン酸を添加してアシル化反応を行い、その後、中和、ケン化熟成することによって調製した。この時、触媒量、無水カルボン酸の種類、量、中和剤の添加量、水添加量、反応温度、熟成温度を調整することで、アシル基の種類、置換度、嵩比重、重合度の異なるセルロースアシレートを調製した。さらにこのセルロースアシレートの低分子量成分をアセトンで洗浄し除去した。
上記のようにして調製したセルロースアシレートのうち、アセチル基置換度2.87、DS6/(DS2+DS3+DS6)=0.310のセルロースアシレートを用い、以下のドープ調製を行った。
(2)ドープ調製
<1−1> セルロースアシレート溶液
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、更に90℃で約10分間加熱した後、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した。
―――――――――――――――――――――――――――――――――
セルロースアシレート溶液
―――――――――――――――――――――――――――――――――
セルロースアシレート 100.0質量部
トリフェニルフォスフェイト 4.0質量部
ビフェニルジフェニルフォスフェイト 4.0質量部
エチルフタリルエチルグリコレート 4.0質量部
メチレンクロライド 403.0質量部
メタノール 60.2質量部
―――――――――――――――――――――――――――――――――
<1−2> マット剤分散液
次に上記方法で作製したセルロースアシレート溶液を含む下記組成物を分散機に投入し、マット剤分散液を調製した。
――――――――――――――――――――――――――――――――――
マット剤分散液
――――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製 2.0質量部
メチレンクロライド 72.4質量部
メタノール 10.8質量部
セルロースアシレート溶液 10.3質量部
――――――――――――――――――――――――――――――――――
<1−3> レターデーション発現剤溶液
次に上記方法で作製したセルロースアシレート溶液を含む下記組成物をミキシングタンクに投入し、加熱しながら攪拌して溶解し、レターデーション発現剤溶液Aを調製した。
―――――――――――――――――――――――――――――――――
レターデーション発現剤溶液A
―――――――――――――――――――――――――――――――――
一般式(I)の例示化合物(16) 14.0質量部
例示化合物(III−1) 7.8質量部
メチレンクロライド 63.5質量部
メタノール 9.5質量部
セルロースアシレート溶液 14.0質量部
―――――――――――――――――――――――――――――――――
上記セルロースアシレート溶液を100質量部、マット剤分散液を1.35質量部、更にセルロースアシレートフィルム中のレターデーション発現剤がセルロースアシレート100質量部当たり、一般式(I)の例示化合物(16)が3.5質量部、例示化合物(III−1)が2.0質量部となる量のレターデーション発現剤溶液を混合し、製膜用ドープを調製した。
一般式(I)の例示化合物(16)は120℃〜170℃の温度領域でネマチック液晶相を示した。
(流延)
上述のドープをガラス板流延装置を用いて流延した。給気温度70℃の温風で6分間乾燥し、ガラス板から剥ぎ取ったフィルムを枠に固定し、給気温度100℃の温風で10分間、給気温度140℃の温風で20分間乾燥し、膜厚108μmのセルロースアシレートフィルムを製造した。
次に、得られたフィルムを160℃の条件でテンターを用いて20%の延伸倍率まで、30%/分の延伸速度で横延伸した後、フィルムを巻き取った。出来上がったセルロースアシレートフィルムの、膜厚は92μmであった。このフィルムをフィルム101とした。
(フィルム102〜109の作製)
フィルム101のレターデーション発現剤溶液を表2に示す組成となるように、化合物の種類と添加量を調整し、フィルム101と同様に製膜・延伸を行いフィルム102〜109を作製した。
またこれらのフィルムに使用したRth上昇剤の数式(1)の値は以下に示すようにいずれも5.0以上の良好なものであった。
III−1 13
II −334 28
IV −16 18
IV −18 24
IV −43 22
V −23 17
<フィルムの波長450、550、650nmにおけるRe、Rth>
このフィルムの波長450、550、650nmにおけるRe、Rthを、先に述べた方法に従い、KOBRA 21ADH(王子計測機器(株)製)複屈折計にて測定した。
結果を表2に示す。表2から本発明の製造方法で製造したセルロースアシレートフィルムの波長450、550、650nmにおけるRe、Rthの値は前記式(A)〜(D)の関係をいずれも満たしていることが分かる。
<偏光板の作製>
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光膜を作製した。
作製したセルロースアシレートフィルム101〜109をポリビニルアルコール系接着剤を用いて、偏光膜の片側に貼り付けた。なお、ケン化処理は以下のような条件で行った。
1.5モル/リットルの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01モル/リットルの希硫酸水溶液を調製し、35℃に保温した。作製したセルロースアシレートフィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。 最後に試料を120℃で十分に乾燥させた。
市販のセルローストリアシレートフィルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付け、70℃で10分以上乾燥した。
偏光膜の透過軸と上記のように作製したセルロースアシレートフィルムの遅相軸とが平行になるように配置した。偏光膜の透過軸と市販のセルローストリアシレートフィルムの遅相軸とは直交するように配置した。
<液晶セルの作製>
液晶セルは、基板間のセルギャップを3.6μmとし、負の誘電率異方性を有する液晶材料(「MLC6608」、メルク社製)を基板間に滴下注入して封入し、基板間に液晶層を形成して作製した。液晶層のレターデーション(即ち、液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・d)を300nmとした。なお、液晶材料は垂直配向するように配向させた。
<VAパネルへの実装>
上記の垂直配向型液晶セルを使用した液晶表示装置の上側偏光板(観察者側)には、市販品のスーパーハイコントラスト品(株式会社サンリッツ社製HLC2−5618)を用いた。下側偏光板(バックライト側)には上記セルロースアシレートフィルム101〜109を備えた偏光板を、該セルロースアシレートフィルムが液晶セル側となるように設置した。上側偏光板および下側偏光板は粘着剤を介して液晶セルに貼りつけた。上側偏光板の透過軸が上下方向に、そして下側偏光板の透過軸が左右方向になるように、クロスニコル配置とした。
液晶セルに55Hzの矩形波電圧を印加した。白表示5V、黒表示0Vのノーマリーブラックモードとした。黒表示の方位角45度、極角60度方向視野角における黒表示透過率(%)及び、方位角45度極角60度と方位角180度極角60度との色ずれΔxを求めた。
また、透過率の比(白表示/黒表示)をコントラスト比として、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角(コントラスト比が10以上で黒側の階調反転のない極角範囲)を測定した。
作製した液晶表示装置を観察した結果、本発明のフイルムを用いた液晶パネルは正面方向および視野角方向のいずれにおいても、ニュートラルな黒表示が実現できていた。
視野角(コントラスト比が10以上で黒側の階調反転のない極角範囲)
○ 上下左右で極角80°以上
○△ 上下左右の内、3方向で極角80°以上
△ 上下左右の内、2方向で極角80°以上
× 上下左右の内、0〜1方向で極角80°以上
黒表示時の色ずれ(Δx)
○ 0.02未満
○△ 0.02〜0.04
△ 0.04〜0.06
× 0.06以上
Figure 2007249180
Rth上昇剤のみでは550nmにおけるRe、Rthを大きくすることは可能であるが、波長分散特性を数式(A)〜(D)の条件を全て満足することは困難である。本発明の一般式(I)はReの波長分散特性を短波長が小さい逆分散に制御でき、かつRthへの影響が極めて小さいため、Rth上昇剤と併用することで、Re、Rthがともに大きくかつ適切な波長分散制御が可能である。
[実施例2]
実施例1におけるフイルム101の作製条件において、延伸工程を以下のように変更した以外は同様にフイルム201を作成した。
2軸延伸試験装置((株)東洋精機製作所製)にて4辺を把持し、表3の条件で延伸および収縮工程を行った。延伸および収縮工程の共通条件として、これらの工程前に各例での給気温度180℃で2分間の予備加熱を行った後、この給気温度にてTD方向へ延伸およびMD方向へ緩和を行った。給気温度とフイルム温度は一致していることを別途確認した。これらの工程の終了後にクリップで把持したまま5分間、送風冷却を行った。表中のMDとはガラス板流延時の流延方向を指し、TDとはそれと直行する幅方向を指す。
実施例1同様に液晶パネルを作成し、視野角および黒表示時の色ずれを評価し、良好な結果を得た。
Figure 2007249180
本発明による延伸工程と緩和工程を両方含むことにより、視野角が広く、黒表示時の色ずれが小さい液晶表示装置を得ることができることがわかる。
[実施例3]
実施例1で作製したセルロースアシレートフィルム101、108に、1.0Nの水酸化カリウム溶液(溶媒:水/イソプロピルアルコール/プロピレングリコール=69.2質量部/15質量部/15.8質量部)を10ml/m2塗布し、約40℃の状態で30秒間保持した後、アルカリ液を掻き取り、純水で水洗し、エアーナイフで水滴を削除した。その後、100℃で15秒間乾燥した。
アルカリ処理面の純水に対する接触角を測定したところ、41°であった。
(配向膜の形成)
該アルカリ処理面に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで28ml/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥し、配向膜を形成した。
───────────────────────────────────
配向膜塗布液組成
───────────────────────────────────
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
クエン酸エステル(AS3、三協化学(株)製) 0.35質量部
────────────────────────────────────
Figure 2007249180
(ラビング処理)
配向膜を形成した透明支持体を速度20m/分で搬送し、長手方向に対して45°にラビング処理されるようにラビングロール(300mm直径)を設定し、650rpmで回転させて、透明支持体の配向膜設置表面にラビング処理を施した。ラビングロールと透明支持体の接触長は、18mmとなるように設定した。
(光学異方性層の形成)
102Kgのメチルエチルケトンに、円盤状液晶性化合物(下記段落40)40.01Kg、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.06Kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.35Kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.31Kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.47Kgを溶解した。溶液に、フルオロ脂肪族基含有共重合体(メガファックF780 大日本インキ(株)製)0.1Kgを加え、塗布液を調製した。塗布液を、#3.2のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されている透明支持体の配向膜面に連続的に塗布した。
Figure 2007249180
室温から100℃に連続的に加温し、溶媒を乾燥させ、その後、130℃の乾燥ゾーンで円盤状液晶性化合物を含む光学異方性層の膜面風速が、2.5m/secとなるように、約90秒間加熱し、円盤状液晶性化合物を配向させた。次に、80℃の乾燥ゾーンに搬送させて、フィルムの表面温度が約100℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、エネルギー強度600mWの紫外線を4秒間照射し、架橋反応を進行させて、円盤状液晶性化合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態にした。このようにして、ロール状光学補償フィルムを作製した。
127℃の膜面温度で光学異方性層の粘度を測定したところ、695cp(695mPa・s)であった。粘度は、光学異方性層と同じ組成の液晶層(溶媒は除く)を加熱型のE型粘度系で測定した結果である。
作製したロール状光学補償フィルムの一部を切り取り、サンプルとして用いて、光学特性を測定した。波長546nmで測定した光学異方性層のReレターデーション値は36nmであった。また、光学異方性層中の円盤状液晶性化合物の円盤面と支持体面との角度(傾斜角)は、層の深さ方向で連続的に変化し、平均で28゜であった。さらに、サンプルから光学異方性層のみを剥離し、光学異方性層の分子対称軸の平均方向を測定したところ、光学補償フィルムの長手方向に対して、45°となっていた。
〈OCBパネルへの実装評価〉
これらのセルロースアシレートフィルム試料を実施例1同様に偏光板に加工した。
<液晶表示装置での実装評価>
(ベンド配向液晶セルの作製)
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた二枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを4.7μmに設定した。セルギャップにΔnが0.1396の液晶性化合物(ZLI1132、メルク社製)を注入し、ベンド配向液晶セルを作製した。
作製したベンド配向セルを挟むように作製した偏光板を二枚貼り付けた。液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置した。
液晶セルに55Hzの矩形波電圧を印加した。白表示2V、黒表示5Vのノーマリーホワイトモードとした。正面における透過率が最も小さくなる電圧すなわち黒電圧を印加し、そのときの方位角0°、極角60°方向視野角における黒表示透過率(%)及び、方位角0度極角60度と方位角180度極角60度との色ずれΔxを求めた。結果は第4表に示す。また、透過率の比(白表示/黒表示)をコントラスト比として、測定機(EZ−Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角を測定した。結果を実施例1同様に整理した。視野角、黒表示時の色ずれともに、良好な性能を示した。
[実施例4]
(試料401の作製)
実施例1のフィルム101の作製に用いたドープ(試料101)において、一般式(I)の化合物及びRth上昇剤を以下の表4に示すように変更した以外同様にしてセルロースアシレートフィルム試料を作成し試料401とした。
作製した試料401の光学性能は表4に示すように、前述の式(1)〜(3)を満たしている。
(位相差フィルムC−1の作製)
国際公開第2003/032060号パンフレットに記載の方法により表4に記載のレターデーション特性を有する延伸ARTONフィルムを作製し、位相差フィルムC−1とした。
(低透湿のバリア層付きの偏光板用保護フィルムの作製)
1)低透湿被覆層の塗設
80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、スロットルダイを有するコーターを用いて、下記の組成の低透湿被覆層用塗布液を直接押し出して塗布した。搬送速度30m/分の条件で塗布し、60℃で5分乾燥して、巻き取った。
───────────────────────────────────
低透湿被覆層用塗布液
───────────────────────────────────
塩素含有重合体:R204 12g
{旭化成ライフ&リビング(株)製「サランレジンR204」}
テトラヒドロフラン 63g
───────────────────────────────────
2)ハードコート層の塗設
上記の低透湿被覆層を塗設した80μmの厚さのトリアセチルセルロースフィルム(タック−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、スロットルダイを有するコーターを用いて、下記の組成のハードコート層用塗布液を直接押し出して塗布した。搬送速度30m/分の条件で塗布し、30℃で15秒間、90℃で20秒間乾燥の後、更に窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量90mJ/cmの紫外線を照射して塗布層を硬化させ、厚さ6.0μmの防眩性を有するハードコート層を形成し、巻き取った。
───────────────────────────────────
ハードコート層用塗布液
───────────────────────────────────
PET−30 40.0g
DPHA 10.0g
イルガキュア184 2.0g
SX−350(30%) 2.0g
架橋アクリルースチレン粒子(30%) 13.0g
FP−13 0.06g
ゾル液a 11.0g
トルエン 38.5g
───────────────────────────────────
ハードコート層用塗布液を調整する際に使用した上記各化合物を以下に示す。
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[日本化薬(株)製]
・PET−30:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・SX−350:平均粒径3.5μm架橋ポリスチレン粒子[屈折率1.60、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10,000rpmで20分分散後使用]
・架橋アクリル−スチレン粒子:平均粒径3.5μm[屈折率1.55、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10,000rpmで20分分散後使用]
・FP−13フッ素系表面改質剤:
Figure 2007249180
(ゾル液aの調製)
温度計、窒素導入管、滴下ロートを備えた1,000mlの反応容器に、アクリロキシオキシプロピルトリメトキシシラン187g(0.80mol)、メチルトリメトキシシラン27.2g(0.20mol)、メタノール320g(10mol)とKF0.06g(0.001mol)を仕込み、攪拌下室温で水15.1g(0.86mol)をゆっくり滴下した。滴下終了後室温で3時間攪拌した後、メタノール還溜下2時間加熱攪拌した。
この後、低沸分を減圧留去し、更にろ過することによりゾル液aを120g得た。このようにして得た物質をGPC測定した結果、質量平均分子量は1,500であり、オリゴマー成分以上の成分のうち、分子量が1,000〜20,000の成分は30%であった。
以上により、低透湿のバリア層付きの偏光板用保護フィルム402を作製した。作製した偏光板保護フィルム402の透湿度は、33g/(m・day)であった。
<偏光板の作製>
上記で作製した光学フィルム401及び偏光板用保護フィルム402の一方の面(低透湿層が塗布されていない側)をアルカリ鹸化処理した。1.5規定の水酸化ナトリウム水溶液に55℃で2分間浸漬し、室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して厚さ20μmの偏光膜を得た。ポリビニルアルコール(クラレ製PVA−117H)3%水溶液を接着剤として、前記のアルカリ鹸化処理した光学フィルム401と、同様にアルカリ鹸化処理した偏光板用保護フィルム402とを、鹸化処理面が偏光膜側となるようにして偏光膜を間に挟んで貼り合わせ偏光板401を得た。この際、ポリマーフィルムのMD方向が、偏光膜の吸収軸と平行になるように貼り付けた。
さらに前記の位相差フィルムC−1を、粘着剤を用いて市販の偏光板である(株)サンリッツ社製HLC2−5618の片面に粘着剤を用いて貼り付け、偏光板C−1を作製した。
<VAパネルへの実装>
実施例1の垂直配向型液晶セルを使用した液晶表示装置の下側偏光板(バックライト側)には、偏光板401を、該セルロースアシレートフィルム401が液晶セル側となるように設置した。上側偏光板(観察者側)には上記の偏光板C−1を位相差フィルムC−1が液晶セル側となるように用いた。上側偏光板および下側偏光板は粘着剤を介して液晶セルに貼りつけた。上側偏光板の透過軸が上下方向に、そして下側偏光板の透過軸が左右方向になるように、クロスニコル配置とした。
Figure 2007249180
実施例1と同様に、本発明の光学フィルムを用いた液晶パネルは正面方向および視野角方向のいずれにおいても、ニュートラルな黒表示が実現できる。
[実施例5]
(光学フィルム501の作製)
<環状ポリオレフィン重合体P−1の合成>
精製トルエン100質量部とノルボルネンカルボン酸メチルエステル100質量部を反応釜に投入した。次いでトルエン中に溶解したエチルヘキサノエート−Ni25mmol%(対モノマー質量)、トリ(ペンタフルオロフェニル)ボロン0.225mol%(対モノマー質量)及びトルエンに溶解したトリエチルアルミニウム0.25mol%(対モノマー質量)を反応釜に投入した。室温で攪拌しながら18時間反応させた。反応終了後過剰のエタノール中に反応混合物を投入し、共重合物の沈殿を生成させた。沈殿を精製し得られた環状ポリオレフィン重合体(P−1)を真空乾燥で65℃24時間乾燥した。
[ポリマーフィルム501の製膜]
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解した後、平均孔径34μmのろ紙及び平均孔径10μmの焼結金属フィルターでろ過し、環状ポリオレフィン重合体溶液D−1を調整した。
―――――――――――――――――――――――――――――――――
環状ポリオレフィン重合体溶液 D−1
―――――――――――――――――――――――――――――――――
環状ポリオレフィン重合体P−1 150質量部
一般式(I)の例示化合物(4) 6.0質量部
ジクロロメタン 380質量部
メタノール 70質量部
―――――――――――――――――――――――――――――――――
次に上記方法で作製した環状ポリオレフィン重合体溶液D−1を含む下記組成物を分散機に投入し、マット剤分散液M−1を調製した。
――――――――――――――――――――――――――――――――――
マット剤分散液 M−1
――――――――――――――――――――――――――――――――――
平均一次粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製) 2質量部
ジクロロメタン 73質量部
メタノール 10質量部
環状ポリオレフィン重合体溶液D−1 10質量部
――――――――――――――――――――――――――――――――――
上記環状ポリオレフィン重合体溶液D−1を100質量部と、マット剤分散液M−1を1.43質量部とを混合し、製膜用ドープを調製した。
上述のドープをバンド流延機を用いて、製造速度20m/分で流延した。残留溶剤量が約25質量%でバンドから剥ぎ取ったフィルムを、テンターを用いて12%の延伸率で幅方向に延伸して、フィルムに皺が入らないように保持しながら、熱風を当てて乾燥した。その後テンター搬送からロール搬送に移行し、更に120℃から140℃で乾燥し巻き取った。このようにして膜厚60μmのポリマーフィルム501を得た。
一般式(I)の例示化合物(4)は220℃〜300℃の温度領域でネマチック液晶相を示した。
(フィルムの表面処理)
ポリマーフィルム501の両面に12W・分/m2の条件で春日電機(株)製コロナ放電して親水性を付与した。
<フィルムの波長450、550、650nmにおけるRe、Rth>
光学フィルム501の波長450、550、650nmにおけるRe、Rthを、先に述べた方法に従い、KOBRA 21ADH(王子計測機器(株)製)複屈折計にて測定した。結果を表5に示す。
ポリマーフィルム501のRe、Rthは前述の式(A)ないし(D)を満足する良好なものであった。
<偏光板の作製>
(接着剤の調製)
ポリエステル系ウレタン(三井武田ケミカル社製,タケラックXW−74−C154)10部及びイソシアネート系架橋剤(三井武田ケミカル社製、タケネートWD−725)1部を、水に溶解し、固形分を20%に調整した溶液を調製した。これを接着剤として用いた。
(偏光板の作製)
上記偏光子の両面に、上記接着剤溶液を塗布した後、ポリマーフィルム501と上記で作製した鹸化処理済みの富士タックTD80とを偏光子を挟み込むように、ポリマーフィルム面が偏光膜と接する向きにして貼り合わせ、40℃のオーブンで72時間乾燥キュアして、偏光板501を作製した。
<VAパネルへの実装>
実施例1と同じ垂直配向型液晶セルを使用した液晶表示装置の上側偏光板(観察者側)には、市販品のスーパーハイコントラスト品(株式会社サンリッツ社製HLC2−5618)を用いた。下側偏光板(バックライト側)には偏光板501を、ポリマーフィルム501が液晶セル側となるように設置した。上側偏光板及び下側偏光板は粘着剤を介して液晶セルに貼りつけた。上側偏光板の透過軸が上下方向に、そして下側偏光板の透過軸が左右方向になるように、クロスニコル配置とした。
Figure 2007249180
実施例1と同様に、本発明の光学フィルムを用いた液晶パネルは正面方向および視野角方向のいずれにおいても、ニュートラルな黒表示が実現できる。
[実施例6]
前記の方法に従い、実施例1ないし実施例5で使用した低分子化合物のMxに由来する吸収波長(nm)、Myに由来する吸収波長(nm)、Myが分子長軸となす角度(°)及び|My|/|Mx|を下記表6に示す。
Figure 2007249180
表−6より、本発明に用いた低分子化合物はMyに由来する吸収波長(nm)がMxに由来する吸収波長(nm)より長波長であり、長波成分の遷移電子双極子モーメントMyが分子長軸方向に略直交し、|My|/|Mx|の値が1よりも大きいことから、|My|が|Mx|よりも大きいことが分かる。
本発明によれば、液晶セルが正確に光学的に補償し、高いコントラストと黒表示時の視角方向に依存した色ずれを改良する、特にVAおよびOCBモード用のセルロースアシレートフィルム、その製造方法、該セルロースアシレートフィルムを用いた偏光板が提供される。
本発明の偏光板の断面概略図の例である。
符号の説明
11 偏光子
14 保護フィルム
15 光学異方性層
16 保護フィルム
16‘ 保護フィルム

Claims (17)

  1. 分子長軸方向と略直交方向の遷移電気双極子モーメントMyに由来する分子吸収波長が、該分子長軸方向と略平行方向の遷移電気双極子モーメントMxに由来する分子吸収波長より長波長であって、分子長軸方向と略直交方向の遷移電気双極子モーメントの大きさ|My|が分子長軸方向と略平行方向の遷移電気双極子モーメントの大きさ|Mx|より大きいことを特徴とする低分子化合物を少なくとも1種と、Rth上昇剤を少なくとも1種含有することを特徴とする光学フィルム。
  2. 下記一般式(I)で表される化合物を少なくとも一種含有し、かつRth上昇剤を少なくとも一種含有することを特徴とする光学フイルム。
    一般式(I)
    Figure 2007249180
    (一般式(I)中、LおよびLは、それぞれ、単結合または二価の連結基を表す。AおよびAは−O―、―NR―(Rは水素原子または置換基)、―S―、―CO−からそれぞれ独立に選ばれる基である。R、R、R、RおよびRは置換基を表す。nは0から2までの整数を表す。)
  3. 下記一般式一般式(II)、(III)、(IV)、又は(V)で表される化合物から選ばれる少なくとも一種を含有することを特徴とする請求項1又は2のいずれか1項に記載の光学フイルム。
    一般式(II)
    Figure 2007249180
    (一般式(II)中、R12は、各々独立に、オルト位、メタ位およびパラ位の少なくともいずれかに置換基を有する芳香族環または複素環を表す。X11は、各々独立に、単結合または−NR13−を表す。ここで、R13は、各々独立に、水素原子、置換もしくは無置換のアルキル基、アルケニル基、アリール基または複素環基を表す。)
    一般式(III)
    Figure 2007249180
    (一般式(III)中、R4、R5、R6、R7、R8及びR9は各々独立して、水素原子又は置換基を表す。)
    一般式(IV)
    71−Q72−OH
    (一般式(IV)中、Q71は含窒素芳香族ヘテロ環、Q72は芳香族環を表す。)
    一般式(V):
    Figure 2007249180
    (一般式(V)中、Q81及びQ82はそれぞれ独立に芳香族環を表す。X81はNR81(R81は水素原子又は置換基を表す)、酸素原子又は硫黄原子を表す。)
  4. 前記の低分子化合物及びRth上昇剤の少なくとも一方が100℃〜300℃の温度範囲で液晶相を示すことを特徴とする請求項1〜3のいずれか1項に記載の光学フイルム。
  5. 下記式(1)〜(3)を満たすことを特徴とする請求項1〜4いずれか1項に記載の光学フィルム。
    式(1) Re(550)>20nm
    式(2) 0.5<Nz<10
    式(3) −2.5×Re(550)+300<Rth(550)<−2.5×Re(550)+500
    (式中、Re(λ)及びRth(λ)はそれぞれ、波長λnmの光を入射させて測定した面内及び面外レターデーション(単位:n)であり、Nz=Rth(550)/Re(550)+0.5とする。)
  6. 下記式(A)〜(D)を満たすことを特徴とする請求項1〜4のいずれか1項に記載の光学フイルム。
    (A)0.1<Re(450)/Re(550)<0.95
    (B)1.03<Re(650)/Re(550)<1.93
    (C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
    (D)1.05<(Re/Rth(650))/(Re/Rth(550))<1.9
    (式中、Re(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値であり、Rth(λ)は、波長λnmの光に対する該フィルムの厚み方向のレターデーション値であり、Re/Rth(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値と厚み方向のレターデーション値の比である(単位:nm)。)
  7. フイルムを延伸する延伸工程と収縮させる収縮工程とを含む製造方法によって製造されたことを特徴とする請求項1〜6のいずれか1項に記載の光学フイルム。
  8. 光学フイルムがセルロースアシレートからなることを特徴とする請求項1〜7のいずれかに1項に記載の光学フイルム。
  9. セルロースアシレートのアシル置換基が実質的にアセチル基のみからなり、その全置換度が2.56〜3.00であることを特徴とする請求項8記載の光学フイルム。
  10. セルロースアシレートのグルコース単位の2位の水酸基のアシル基による置換度をDS2、3位の水酸基の置換度をDS3、6位の水酸基のアシル基による置換度をDS6としたときに、下記式(I)および(II)を満たすことを特徴とする請求項8又は9記載の光学フイルム。
    式(I):2.0≦(DS2+DS3+DS6)≦3.0
    式(II):DS6/(DS2+DS3+DS6)≧0.315
  11. アシル置換基が実質的にアセチル基、プロピオニル基及びブタノイル基から選ばれる少なくとも2種類からなり、その全置換度が2.50〜3.00であることを特徴とする請求項8〜10のいずれか1項に記載の光学フイルム。
  12. 製造工程中にフイルムを延伸する延伸工程と収縮させる収縮工程とを含むことを特徴とする請求項1〜11のいずれか1項に記載の光学フイルムの製造方法。
  13. 偏光膜と該偏光膜を挟持する一対の保護膜とを有する偏光板であって、前記保護膜の少なくとも一枚が請求項1〜11のいずれか1項に記載の光学フイルムであることを特徴とする偏光板。
  14. 請求項1〜11のいずれか1項に記載の光学フイルムまたは請求項13に記載の偏光板を有することを特徴とする液晶表示装置。
  15. 下記式(10)、(11)を満たす光学異方性層をさらに有する請求項14に記載の液晶表示装置。
    式(10) Rt(550)/Re(550)>10
    式(11) Rth(650)−Rth(450)<0
  16. 前記液晶表示装置がVAモードであることを特徴とする請求項14又は15のいずれか1項に記載の液晶表示装置。
  17. 請求項13に記載の偏光板をバックライト側に用いたことを特徴とする請求項14〜16のいずれか1項に記載の液晶表示装置。
JP2007013047A 2006-02-16 2007-01-23 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置 Active JP4989984B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013047A JP4989984B2 (ja) 2006-02-16 2007-01-23 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006039603 2006-02-16
JP2006039603 2006-02-16
JP2007013047A JP4989984B2 (ja) 2006-02-16 2007-01-23 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置

Publications (2)

Publication Number Publication Date
JP2007249180A true JP2007249180A (ja) 2007-09-27
JP4989984B2 JP4989984B2 (ja) 2012-08-01

Family

ID=38593481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013047A Active JP4989984B2 (ja) 2006-02-16 2007-01-23 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置

Country Status (1)

Country Link
JP (1) JP4989984B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102565A (ja) * 2007-10-25 2009-05-14 Fujifilm Corp 組成物、フィルム、偏光板、及び液晶表示装置
JP2009179563A (ja) * 2008-01-29 2009-08-13 Fujifilm Corp 化合物、液晶組成物及び異方性材料
JP2009199070A (ja) * 2008-01-21 2009-09-03 Fujifilm Corp 偏光板及び液晶表示装置
JP2010079241A (ja) * 2008-08-27 2010-04-08 Fujifilm Corp セルロースアシレートフィルム、光学補償フィルム、偏光板、及び液晶表示装置
JP2011075924A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 光学フィルム、位相差板、偏光板、ならびに液晶表示装置
JP2012071541A (ja) * 2010-09-29 2012-04-12 Fujifilm Corp セルロースアシレートフィルムとその製造方法、偏光板および液晶表示装置
WO2013136977A1 (ja) * 2012-03-12 2013-09-19 コニカミノルタ株式会社 λ/4位相差フィルムとその製造方法、円偏光板及び有機エレクトロルミネッセンス表示装置
JP2014142421A (ja) * 2013-01-22 2014-08-07 Konica Minolta Inc 光学フィルム、円偏光板および有機el表示装置
KR20140125385A (ko) 2012-02-22 2014-10-28 코니카 미놀타 가부시키가이샤 광학 필름, 원편광판 및 화상 표시 장치
KR20150048822A (ko) 2012-10-29 2015-05-07 코니카 미놀타 가부시키가이샤 위상차 필름, 원편광판 및 화상 표시 장치
KR20160011199A (ko) 2013-05-21 2016-01-29 코니카 미놀타 가부시키가이샤 위상차 필름, 해당 위상차 필름을 사용한 원편광판 및 화상 표시 장치
KR20220092919A (ko) 2019-12-04 2022-07-04 코니카 미놀타 가부시키가이샤 광학 필름 및 그 제조 방법, 편광판 그리고 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111914A (ja) * 1998-09-30 2000-04-21 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤、光学補償シートおよび液晶表示装置
JP2000275434A (ja) * 1999-03-25 2000-10-06 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤、光学補償シートおよび液晶表示装置
JP2002296421A (ja) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd レターデーション制御剤およびセルロースエステルフイルム
JP2005181450A (ja) * 2003-12-16 2005-07-07 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置
JP2006030425A (ja) * 2004-07-14 2006-02-02 Konica Minolta Opto Inc 位相差フィルム、その製造方法、及び位相差フィルムを用いて作製した偏光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111914A (ja) * 1998-09-30 2000-04-21 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤、光学補償シートおよび液晶表示装置
JP2000275434A (ja) * 1999-03-25 2000-10-06 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤、光学補償シートおよび液晶表示装置
JP2002296421A (ja) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd レターデーション制御剤およびセルロースエステルフイルム
JP2005181450A (ja) * 2003-12-16 2005-07-07 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置
JP2006030425A (ja) * 2004-07-14 2006-02-02 Konica Minolta Opto Inc 位相差フィルム、その製造方法、及び位相差フィルムを用いて作製した偏光板

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658261B2 (en) 2007-10-25 2014-02-25 Fujifilm Corporation Composition, film, polarizing plate, and liquid crystal display device
JP2009102565A (ja) * 2007-10-25 2009-05-14 Fujifilm Corp 組成物、フィルム、偏光板、及び液晶表示装置
JP2009199070A (ja) * 2008-01-21 2009-09-03 Fujifilm Corp 偏光板及び液晶表示装置
JP2009179563A (ja) * 2008-01-29 2009-08-13 Fujifilm Corp 化合物、液晶組成物及び異方性材料
JP2010079241A (ja) * 2008-08-27 2010-04-08 Fujifilm Corp セルロースアシレートフィルム、光学補償フィルム、偏光板、及び液晶表示装置
JP2011075924A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 光学フィルム、位相差板、偏光板、ならびに液晶表示装置
JP2012071541A (ja) * 2010-09-29 2012-04-12 Fujifilm Corp セルロースアシレートフィルムとその製造方法、偏光板および液晶表示装置
KR20140125385A (ko) 2012-02-22 2014-10-28 코니카 미놀타 가부시키가이샤 광학 필름, 원편광판 및 화상 표시 장치
US9500790B2 (en) 2012-02-22 2016-11-22 Konica Minolta, Inc. Optical film, circularly polarizing plate, and image display device
KR101635298B1 (ko) * 2012-02-22 2016-06-30 코니카 미놀타 가부시키가이샤 광학 필름, 원편광판 및 화상 표시 장치
JPWO2013136977A1 (ja) * 2012-03-12 2015-08-03 コニカミノルタ株式会社 λ/4位相差フィルムとその製造方法、円偏光板及び有機エレクトロルミネッセンス表示装置
KR20140121446A (ko) 2012-03-12 2014-10-15 코니카 미놀타 가부시키가이샤 λ/4 위상차 필름과 그의 제조 방법, 원 편광판 및 유기 일렉트로루미네센스 표시 장치
KR101662920B1 (ko) * 2012-03-12 2016-10-05 코니카 미놀타 가부시키가이샤 λ/4 위상차 필름과 그의 제조 방법, 원 편광판 및 유기 일렉트로루미네센스 표시 장치
WO2013136977A1 (ja) * 2012-03-12 2013-09-19 コニカミノルタ株式会社 λ/4位相差フィルムとその製造方法、円偏光板及び有機エレクトロルミネッセンス表示装置
KR20150048822A (ko) 2012-10-29 2015-05-07 코니카 미놀타 가부시키가이샤 위상차 필름, 원편광판 및 화상 표시 장치
JP2014142421A (ja) * 2013-01-22 2014-08-07 Konica Minolta Inc 光学フィルム、円偏光板および有機el表示装置
KR20160011199A (ko) 2013-05-21 2016-01-29 코니카 미놀타 가부시키가이샤 위상차 필름, 해당 위상차 필름을 사용한 원편광판 및 화상 표시 장치
KR20220092919A (ko) 2019-12-04 2022-07-04 코니카 미놀타 가부시키가이샤 광학 필름 및 그 제조 방법, 편광판 그리고 표시 장치

Also Published As

Publication number Publication date
JP4989984B2 (ja) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4989984B2 (ja) 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置
JP4759317B2 (ja) 偏光板及びこれを用いた液晶表示装置
JP4856989B2 (ja) 光学樹脂フィルム、これを用いた偏光板および液晶表示装置
JP4628140B2 (ja) セルロースアシレートフィルム、偏光板および液晶表示装置
US7839569B2 (en) Polarizing plate and liquid crystal display
JP2006308936A (ja) 偏光板および液晶表示装置
JP2007538269A (ja) 偏光板及び液晶表示装置
JP2007079533A (ja) 光学樹脂フィルム、これを用いた偏光板および液晶表示装置
KR20060051547A (ko) 편광판 및 액정 표시 장치
JP2008020895A (ja) 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
JP2008003126A (ja) 偏光板、液晶表示装置及び偏光板用保護膜の製造方法
JP2006257380A (ja) セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板及び液晶表示装置
JP2007261189A (ja) セルロースアシレートフィルムの製造方法、偏光板および液晶表示装置
JP5016834B2 (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2006243132A (ja) 偏光板及び液晶表示装置
JP2007304287A (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2007264287A (ja) 光学フィルム、偏光板および液晶表示装置
JP2008224840A (ja) 偏光板および液晶表示装置
JP2007119717A (ja) セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2007292944A (ja) 液晶表示装置
JP2007256494A (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2008233530A (ja) 光学フィルムの製造方法、偏光板および液晶表示装置
JP5010883B2 (ja) 液晶表示装置
JP2006091374A (ja) 偏光板及び液晶表示装置
JP2006028479A (ja) 光学用セルロースアシレートフィルム、偏光板及び液晶表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4989984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250