JP2007224219A - Epoxy resin composition for sealing semiconductor and semiconductor device - Google Patents

Epoxy resin composition for sealing semiconductor and semiconductor device Download PDF

Info

Publication number
JP2007224219A
JP2007224219A JP2006049356A JP2006049356A JP2007224219A JP 2007224219 A JP2007224219 A JP 2007224219A JP 2006049356 A JP2006049356 A JP 2006049356A JP 2006049356 A JP2006049356 A JP 2006049356A JP 2007224219 A JP2007224219 A JP 2007224219A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
less
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049356A
Other languages
Japanese (ja)
Other versions
JP5162833B2 (en
Inventor
Yoshinori Nishitani
佳典 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006049356A priority Critical patent/JP5162833B2/en
Publication of JP2007224219A publication Critical patent/JP2007224219A/en
Application granted granted Critical
Publication of JP5162833B2 publication Critical patent/JP5162833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing semiconductors, excellent in low stress property and excellent also in high-temperature storage characteristic and reliability on moisture resistance and soldering resistance. <P>SOLUTION: In the epoxy resin composition comprising (A) an epoxy resin, (B) a phenol resin-based curing agent, (C) a curing accelerator, (D) an inorganic filler and (E) a liquid low-stress agent containing a butadiene-acrylonitrile copolymer having a carboxyl groups at both ends as a main component, (F) a non-phosphorus-based antioxidant is further included. The semiconductor device is obtained by sealing a semiconductor element with a cured material of the resin composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置に関し、特に高温保管特性、耐湿信頼性、耐半田性に優れた半導体封止用エポキシ樹脂組成物、及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device, and more particularly to an epoxy resin composition for semiconductor encapsulation and a semiconductor device excellent in high temperature storage characteristics, moisture resistance reliability, and solder resistance.

近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、半導体素子のサイズは大きくなり配線は微細化している。この様な半導体素子をエポキシ樹脂組成物の硬化物で封止した場合、半導体素子に直接エポキシ樹脂組成物の硬化物が接触するため、温度サイクルによるエポキシ樹脂組成物の硬化物の膨張、収縮によってひずみ応力が発生し、配線のずれやボンディングワイヤーの切断、半導体素子の破壊等の問題が生じる。これらの問題に対してエポキシ樹脂組成物の硬化物の弾性率を低減することによりエポキシ樹脂組成物の硬化物に柔軟性を持たせる必要がある。
また、半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生することにより、電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち信頼性の向上も大きな課題となっている。
この信頼性の向上を達成するためには、従来から低応力特性を付与するためにゴム粒子などに代表される低応力剤を添加するという方法が知られている。
一方、ダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物の硬化物が直接接する形式で封止されているが、エポキシ樹脂組成物の硬化物で封止された半導体装置を高温下で保管した場合、封止材の構成成分から熱分解したハロゲン化物や分解物などが遊離し、半導体素子の接合部を腐食し、半導体装置の信頼性を損なうことが知られている。このように、半導体装置を高温下(例えば、185℃等)に保管した後の半導体素子の接合部(ボンディングパッド部)の耐腐食性のことを高温保管特性といい、この高温保管特性を改善する手法としては、臭素原子含有難燃剤を使用せずに、水酸化アルミニウムを使用する方法(例えば、特許文献1、2参照。)等が提案され、効果が確認されているが、エポキシ樹脂組成物の種類によっては最近の半導体装置における高温保管特性の高い要求レベルに対しては不満足なものもあった。
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor elements have been highly integrated year by year. The size of semiconductor elements has increased and wiring has become finer. When such a semiconductor element is sealed with a cured product of the epoxy resin composition, the cured product of the epoxy resin composition is in direct contact with the semiconductor element. Strain stress is generated, causing problems such as misalignment of wiring, cutting of bonding wires, and destruction of semiconductor elements. With respect to these problems, it is necessary to make the cured product of the epoxy resin composition flexible by reducing the elastic modulus of the cured product of the epoxy resin composition.
Also, in the current situation where surface mounting of semiconductor devices has become common, moisture-absorbing semiconductor devices are exposed to high temperatures during solder processing, and cracks occur in the semiconductor devices due to the explosive stress of vaporized water vapor. Defects that greatly impair electrical reliability occur, and prevention of these defects, that is, improvement of reliability is also a major issue.
In order to achieve this improvement in reliability, a method of adding a low stress agent typified by rubber particles or the like is conventionally known in order to impart low stress characteristics.
On the other hand, electronic parts such as diodes, transistors, and integrated circuits are mainly sealed in a form in which a cured product of the epoxy resin composition is in direct contact with the semiconductor device sealed with the cured product of the epoxy resin composition. When stored at high temperatures, it is known that the thermally decomposed halides and decomposition products are liberated from the constituents of the encapsulant, which corrodes the junction of the semiconductor element and impairs the reliability of the semiconductor device. In this way, the corrosion resistance of the semiconductor element junction (bonding pad) after storing the semiconductor device at a high temperature (for example, 185 ° C.) is called the high temperature storage characteristic, and this high temperature storage characteristic is improved. As a technique to do this, a method using aluminum hydroxide without using a bromine atom-containing flame retardant has been proposed (for example, see Patent Documents 1 and 2), and the effect has been confirmed. Some types of objects are unsatisfactory with respect to the required level of high-temperature storage characteristics in recent semiconductor devices.

半導体装置のクラックを低減する手法としては、半導体封止用エポキシ樹脂組成物にブタジエン系ゴム粒子を添加する方法(例えば、特許文献3参照。)や、共役ジエン系ゴム及びアクリロニトリルなどの液剤を添加する方法(例えば、特許文献4参照。)などが挙げられる。しかし、前者は固体であるために樹脂と相溶又は分散させることが非常で困難であり、後者は熱劣化しやすいために低応力成分に対する酸化防止剤が必要であるが、その酸化防止剤により高温保管特性に悪影響を与えるという欠点をもっていた。
以上の事情から、低応力特性を付与しつつ、高温保管特性に優れ、かつ耐湿信頼性、耐半田性に優れたエポキシ樹脂組成物が求められている。
As a technique for reducing cracks in a semiconductor device, a method of adding butadiene rubber particles to an epoxy resin composition for semiconductor encapsulation (see, for example, Patent Document 3), or a liquid agent such as conjugated diene rubber and acrylonitrile is added. (For example, refer to Patent Document 4). However, since the former is a solid, it is very difficult and difficult to dissolve or disperse in the resin, and the latter is susceptible to thermal degradation, so an antioxidant for low stress components is necessary. It had the disadvantage of adversely affecting the high temperature storage characteristics.
In view of the above circumstances, there is a demand for an epoxy resin composition that is excellent in high-temperature storage characteristics, moisture resistance reliability, and solder resistance while imparting low stress characteristics.

特開平10−279782号公報(第2〜6頁)Japanese Patent Laid-Open No. 10-297882 (pages 2-6) 特開平11−323090号公報(第2〜14頁)Japanese Patent Laid-Open No. 11-323090 (pages 2-14) 特開2003−82241号公報(第2〜11頁)JP 2003-82241 A (pages 2 to 11) 特開昭62−246920号公報(第1〜7頁)JP-A-62-246920 (pages 1-7)

本発明は、低応力特性に優れ、かつ、高温保管特性、耐湿信頼性、耐半田性にも優れた半導体封止用エポキシ樹脂組成物、及びその硬化物により半導体素子を封止してなる半導体装置を提供することにある。   The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in low-stress characteristics, high-temperature storage characteristics, moisture resistance reliability, and solder resistance, and a semiconductor formed by sealing a semiconductor element with a cured product thereof To provide an apparatus.

本発明は、
[1](A)エポキシ樹脂、(B)フェノール樹脂系硬化剤、(C)硬化促進剤、(D)無機質充填材、(E)下記一般式(1)で表される両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体を主成分とする液状低応力剤を含むエポキシ樹脂組成物であって、更に(F)非リン系酸化防止剤を含むことを特徴とする半導体封止用エポキシ樹脂組成物。

Figure 2007224219
(ただし、上記一般式(1)において、Buはブタジエン残基、ACNはアクリロニトリル残基を表す。xは1未満の正数。yは1未満の正数。x+y=1。zは50〜80の整数。) The present invention
[1] (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, (E) carboxyl groups at both ends represented by the following general formula (1) Epoxy resin composition containing a liquid low-stress agent, the main component of which is a butadiene-acrylonitrile copolymer having a hydrogen content, and further comprising (F) a non-phosphorus antioxidant. Composition.
Figure 2007224219
(In the above general formula (1), Bu represents a butadiene residue, ACN represents an acrylonitrile residue. X is a positive number less than 1. y is a positive number less than 1. x + y = 1. Z is 50-80. Integer.)

[2] 前記(F)非リン系酸化防止剤が前記(E)液状低応力剤に含まれる第[1]項記載の半導体封止用エポキシ樹脂組成物。
[3] 前記(F)非リン系酸化防止剤がフェノール系酸化防止剤である第[1]項又は第2項記載の半導体封止用エポキシ樹脂組成物、
[4] 前記(E)成分の配合量が全エポキシ樹脂組成物中に0.01重量%以上1重量%以下である第[1]項ないし第[3]項のいずれかに記載の半導体封止用エポキシ樹脂組成物、
[5] 前記(E)成分に含まれるナトリウムイオン量が10ppm以下、塩素イオン量が450ppm以下である請求項第[1]項ないし第[4]項のいずれかに記載の半導体封止用エポキシ樹脂組成物、
[6] 第[1]項ないし第[5]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を混合及び/又は溶融混練してなる半導体封止用エポキシ樹脂成形材料、
[7] 第[1]項ないし第[5]項のいずれかに記載の半導体封止用エポキシ樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置、
である。
[2] The epoxy resin composition for semiconductor encapsulation according to [1], wherein the (F) non-phosphorus antioxidant is contained in the (E) liquid low stress agent.
[3] The epoxy resin composition for semiconductor encapsulation according to [1] or [2], wherein the (F) non-phosphorus antioxidant is a phenolic antioxidant,
[4] The semiconductor encapsulation according to any one of items [1] to [3], wherein the amount of component (E) is 0.01% by weight or more and 1% by weight or less in the total epoxy resin composition. Epoxy resin composition for stopping,
[5] The epoxy for semiconductor encapsulation according to any one of [1] to [4], wherein the amount of sodium ions contained in the component (E) is 10 ppm or less and the amount of chlorine ions is 450 ppm or less. Resin composition,
[6] An epoxy resin molding material for semiconductor encapsulation formed by mixing and / or melt-kneading the epoxy resin composition for semiconductor encapsulation according to any one of [1] to [5],
[7] A semiconductor device comprising a semiconductor element sealed with a cured product of the epoxy resin composition for semiconductor sealing according to any one of [1] to [5],
It is.

本発明に従うと、低応力特性に優れ、かつ、高温保管特性、耐湿信頼性、耐半田性にも優れた半導体封止用エポキシ樹脂組成物、及び半導体装置を得ることができる。   According to the present invention, it is possible to obtain an epoxy resin composition for semiconductor encapsulation, and a semiconductor device, which are excellent in low stress characteristics and excellent in high temperature storage characteristics, moisture resistance reliability and solder resistance.

本発明は、(A)エポキシ樹脂、(B)フェノール樹脂系硬化剤、(C)硬化促進剤、(D)無機質充填材、(E)両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体を主成分とする液状低応力剤、及び(F)非リン系酸化防止剤を含むことによって、より好ましくは前記(E)成分に含まれるナトリウムイオン量、塩素イオン量が特定範囲内であることによって、低応力性に優れ、かつ、高温保管特性、耐湿信頼性、耐半田性にも優れた半導体封止用エポキシ樹脂組成物が得られるものである。
以下、本発明について詳細に説明する。
The present invention comprises (A) an epoxy resin, (B) a phenol resin-based curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) a butadiene / acrylonitrile copolymer having carboxyl groups at both ends. By containing a liquid low stress agent as a main component and (F) a non-phosphorus antioxidant, more preferably, the amount of sodium ions and chlorine ions contained in the component (E) are within a specific range. In addition, an epoxy resin composition for semiconductor encapsulation that is excellent in low-stress property and excellent in high-temperature storage characteristics, moisture resistance reliability, and solder resistance can be obtained.
The present invention will be described in detail below.

本発明で用いられる(A)エポキシ樹脂は、分子中に2個以上のエポキシ基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。これらのエポキシ樹脂は1種類を単独で用いても2種類以上併用してもよい。これらの内で特に耐半田性が求められる場合、常温では結晶性の固体であるが、溶融粘度が低く無機質充填材を高充填可能なビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等が好ましい。その他のエポキシ樹脂も極力粘度の低いものを使用することが望ましい。更に可撓性、低吸湿化のために、フェニレン骨格、又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂の使用が好ましい。 The (A) epoxy resin used in the present invention is a monomer, oligomer or polymer in general having two or more epoxy groups in the molecule. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin. Bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, alkyl modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type Examples include, but are not limited to, epoxy resins. These epoxy resins may be used alone or in combination of two or more. Among these, when solder resistance is particularly required, it is a crystalline solid at room temperature, but it has a low melt viscosity and can be highly filled with inorganic fillers, such as biphenyl type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, etc. Is preferred. It is desirable to use other epoxy resins having a viscosity as low as possible. Furthermore, for flexibility and low moisture absorption, it is preferable to use a phenol aralkyl type epoxy resin having a phenylene skeleton or a biphenylene skeleton.

本発明で用いられる(B)フェノール樹脂系硬化剤は、分子中に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェノールメタン型フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格、又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格、又はビフェニレン骨格を有するナフトールアラルキル樹脂等が挙げられるが、これらに限定されるものではない。これらのフェノール樹脂は1種類を単独で用いても2種類以上併用してもよい。これらの内で特に耐半田性が求められる場合、エポキシ樹脂と同様に溶融粘度の低いもの、更に可撓性、低吸湿化のためには、フェニレン骨格、又はビフェニレン骨格を有するフェノールアラルキル樹脂の使用が好ましい。   The (B) phenol resin-based curing agent used in the present invention includes monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in the molecule. For example, phenol novolak resin, cresol novolak resin, triphenolmethane type Examples include, but are not limited to, phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, phenol aralkyl resins having a phenylene skeleton or a biphenylene skeleton, naphthol aralkyl resins having a phenylene skeleton or a biphenylene skeleton, and the like. is not. These phenol resins may be used alone or in combination of two or more. Of these, when solder resistance is particularly required, use a phenol aralkyl resin having a low melt viscosity as in the case of an epoxy resin, and also having a phenylene skeleton or a biphenylene skeleton for flexibility and low moisture absorption. Is preferred.

本発明に用いられる全エポキシ樹脂のエポキシ基(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基(OH)の当量比(EP/OH)としては、好ましくは0.5以上、2以下であり、特に好ましくは0.7以上、1.5以下である。上記範囲内にすることで、耐湿性、硬化性等の低下を抑えることができる。   The equivalent ratio (EP / OH) of the epoxy groups (EP) of all epoxy resins and phenolic hydroxyl groups (OH) of all phenol resin-based curing agents used in the present invention is preferably 0.5 or more and 2 or less. Particularly preferably, it is 0.7 or more and 1.5 or less. By setting it within the above range, it is possible to suppress a decrease in moisture resistance, curability and the like.

本発明で用いられる(C)硬化促進剤としては、エポキシ樹脂中のエポキシ基とフェノール樹脂系硬化剤中のフェノール性水酸基との硬化反応の触媒となり得るものを指し、例えばトリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。またこれらの硬化促進剤は単独でも混合して用いてもよい。   The (C) curing accelerator used in the present invention refers to one that can serve as a catalyst for the curing reaction between the epoxy group in the epoxy resin and the phenolic hydroxyl group in the phenol resin-based curing agent. For example, tributylamine, 1,8 -Amine compounds such as diazabicyclo (5,4,0) undecene-7, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole. However, it is not limited to these. These curing accelerators may be used alone or in combination.

本発明で用いられる(D)無機質充填材としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができ、特に限定されるものではないが、例えば溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機質充填材の配合量を特に多くする場合は、溶融シリカを用いるのが一般的である。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつエポキシ樹脂組成物の溶融粘度の上昇を抑えるためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布がより広くなるように調整することが望ましい。本発明で用いることができる(D)無機充填材の含有量は、全エポキシ樹脂組成物中に60重量%以上、95重量%以下であることが好ましく、より好ましくは70重量%以上、90重量%以下である。上記範囲内であると、良好な流動性や耐半田性を得ることができる。   As the inorganic filler (D) used in the present invention, those generally used in epoxy resin compositions for semiconductor encapsulation can be used, and are not particularly limited. For example, fused silica, crystalline silica , Alumina, silicon nitride, aluminum nitride and the like. When the amount of the inorganic filler is particularly large, it is common to use fused silica. Fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of fused silica and to suppress the increase in the melt viscosity of the epoxy resin composition, it is preferable to mainly use a spherical one. . In order to further increase the blending amount of the spherical silica, it is desirable to adjust so that the particle size distribution of the spherical silica becomes wider. The content of the inorganic filler (D) that can be used in the present invention is preferably 60% by weight or more and 95% by weight or less, more preferably 70% by weight or more and 90% by weight in the total epoxy resin composition. % Or less. Within the above range, good fluidity and solder resistance can be obtained.

本発明においては、(E)下記式(1)で表される両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体を主成分とする液状低応力剤を含むことが必須であるが、全エポキシ樹脂組成物中に0.01重量%以上、1重量%以下の割合で含むことが好ましく、より好ましくは0.05以上、0.5重量%以下であり、特に好ましくは0.1以上、0.3重量%以下である。上記範囲内にすることで、流動性の低下による成形時における充填不良の発生や高粘度化による金線変形等の不具合の発生を抑えることができる。また、前記(E)液状低応力剤を樹脂組成物に配合すると低応力特性を向上させることが可能であり、その結果として優れた温度サイクル耐性や耐半田性が得られる。   In the present invention, (E) it is essential to include a liquid low stress agent mainly composed of a butadiene-acrylonitrile copolymer having carboxyl groups at both ends represented by the following formula (1). It is preferably contained in the resin composition in a proportion of 0.01% by weight or more and 1% by weight or less, more preferably 0.05 or more and 0.5% by weight or less, particularly preferably 0.1 or more, 0 or less. .3% by weight or less. By setting it within the above range, it is possible to suppress the occurrence of defective filling during molding due to a decrease in fluidity and the occurrence of defects such as gold wire deformation due to increased viscosity. Further, when the (E) liquid low-stress agent is added to the resin composition, low-stress characteristics can be improved, and as a result, excellent temperature cycle resistance and solder resistance can be obtained.

Figure 2007224219
(ただし、上記一般式(1)において、Buはブタジエン残基、ACNはアクリロニトリル残基を表す。xは1未満の正数。yは1未満の正数。x+y=1。zは50〜80の整数。)
Figure 2007224219
(In the above general formula (1), Bu represents a butadiene residue, ACN represents an acrylonitrile residue. X is a positive number less than 1. y is a positive number less than 1. x + y = 1. Z is 50-80. Integer.)

前記(E)液状低応力剤の主成分である両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体は両端のカルボキシル基と共重合体中のニトリル基が極性を有しているため、封止用エポキシ樹脂組成物の原料として含まれるエポキシ樹脂中での分散性が良好となり、均質で高い低応力性をもたらす。一般式(1)のxは1未満の正数、yは1未満の正数、x+y=1、zは50〜80の整数である。xは、0.5以上、1未満が好ましく、より好ましくは0.7以上、0.95未満、特に好ましくは0.75以上、0.9未満である。yは、0.05以上、0.5未満が好ましく、より好ましくは0.05以上、0.3未満、特に好ましくは0.1以上、0.25未満である。上記範囲内であると、エポキシ樹脂マトリックスとの相溶性が高くなり該共重合体とエポキシ樹脂マトリックスとが相分離を生じず、金型汚れや樹脂硬化物外観の悪化を引き起こすのを抑えることができる。また、流動性が低下することによって、成形時に充填不良等が生じ、又は高粘度化により半導体装置内の金線変形等の不都合を引き起こす恐れが少ない。   The butadiene-acrylonitrile copolymer having carboxyl groups at both ends, which is the main component of the liquid low stress agent (E), is sealed because the carboxyl groups at both ends and the nitrile groups in the copolymer are polar. Dispersibility in the epoxy resin contained as a raw material for the epoxy resin composition for use is improved, resulting in homogeneous and high low stress properties. In general formula (1), x is a positive number less than 1, y is a positive number less than 1, x + y = 1, and z is an integer of 50 to 80. x is preferably 0.5 or more and less than 1, more preferably 0.7 or more and less than 0.95, and particularly preferably 0.75 or more and less than 0.9. y is preferably 0.05 or more and less than 0.5, more preferably 0.05 or more and less than 0.3, and particularly preferably 0.1 or more and less than 0.25. Within the above range, the compatibility with the epoxy resin matrix becomes high, the phase separation between the copolymer and the epoxy resin matrix does not occur, and it is possible to suppress the mold stain and the deterioration of the cured resin appearance. it can. In addition, the fluidity is less likely to cause defective filling during molding or to cause inconveniences such as deformation of the gold wire in the semiconductor device due to increased viscosity.

前記(E)液状低応力剤の主成分である両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体の数平均分子量は、2000以上、5000以下が好ましく、より好ましくは3000以上、4000以下である。上記範囲内にすることで、流動性の低下による成形時における充填不良の発生や高粘度化による金線変形等の不具合の発生を抑えることができる。
また、前記(E)液状低応力剤の主成分である両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体のカルボキシル基当量は、1200以上、3000以下が好ましく、より好ましくは1700以上、2500以下である。上記範囲内にすることで、樹脂組成物の成形時における流動性や離型性を低下させることなく、金型や成形品の汚れがより発生し難く、連続成形性が特に良好となる効果が得られる。
The number average molecular weight of the butadiene / acrylonitrile copolymer having carboxyl groups at both ends, which is the main component of the liquid low stress agent (E), is preferably 2000 or more and 5000 or less, more preferably 3000 or more and 4000 or less. . By setting it within the above range, it is possible to suppress the occurrence of defective filling during molding due to a decrease in fluidity and the occurrence of defects such as gold wire deformation due to increased viscosity.
The carboxyl group equivalent of the butadiene / acrylonitrile copolymer having carboxyl groups at both ends, which is the main component of the liquid low stress agent (E), is preferably 1200 or more and 3000 or less, more preferably 1700 or more and 2500 or less. It is. By making it within the above range, the mold and molded product are less likely to be soiled without lowering the fluidity and releasability at the time of molding the resin composition, and the continuous moldability is particularly good. can get.

本発明に用いられる(E)液状低応力剤は、一般式(1)で表されるカルボキシル基を有するブタジエン・アクリロニトリル共重合体の全量又は一部を、エポキシ樹脂と硬化促進剤により予め溶融・反応させた反応生成物を含むものであってもよい。ここで言う、エポキシ樹脂とは、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではなく、(A)エポキシ樹脂として前述したものと同じものを用いることができる。また、ここで言う硬化促進剤とは、ブタジエン・アクリロニトリル共重合体中のカルボキシル基とエポキシ樹脂中のエポキシ基との硬化反応を促進させるものであればよく、前述した(C)硬化促進剤と同じものを用いることができる。   The liquid low stress agent (E) used in the present invention is prepared by previously melting the butadiene / acrylonitrile copolymer having a carboxyl group represented by the general formula (1) by melting an epoxy resin and a curing accelerator in advance. It may contain a reacted reaction product. The term “epoxy resin” as used herein refers to monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. The same can be used. The curing accelerator referred to here may be any accelerator that promotes the curing reaction between the carboxyl group in the butadiene-acrylonitrile copolymer and the epoxy group in the epoxy resin. The same can be used.

本発明に用いられる(E)液状低応力剤に含まれるナトリウムイオン量は10ppm以下、塩素イオン量は450ppm以下であることが好ましい。ナトリウムイオン量及び塩素イオン量は以下の方法で求めることができる。(E)液状低応力剤を乾式分解・灰化後酸溶解し、ICP発光分析法にてナトリウムイオン量を測定する。また塩素イオン量は燃焼管式酸素法−IC法にて測定する。ナトリウムイオン量や塩素イオン量が上記範囲内であると、ナトリウムイオンや塩素イオンによる半田応対回路の腐食が進み易くなることによる半田応対装置の耐湿信頼性の低下を引き起こす恐れが少ない。   The amount of sodium ions contained in the (E) liquid low stress agent used in the present invention is preferably 10 ppm or less, and the amount of chlorine ions is preferably 450 ppm or less. The amount of sodium ions and the amount of chloride ions can be determined by the following method. (E) The liquid low-stress agent is subjected to dry decomposition and ashing and then dissolved in acid, and the amount of sodium ions is measured by ICP emission analysis. Chlorine ion content is measured by the combustion tube oxygen method-IC method. When the amount of sodium ions or chlorine ions is within the above range, the corrosion resistance of the solder receiving circuit due to sodium ions or chlorine ions is likely to proceed, and there is little possibility of causing a decrease in the moisture resistance reliability of the solder receiving device.

本発明では、(E)液状低応力剤の主成分であるブタジエン・アクリロニトリル共重合体が、耐熱性が低く、封止材の成形時等における熱により劣化し低応力剤としての効果が低下する可能性があり、それを防止するため(F)非リン系酸化防止剤を添加することを必須とする。一般に用いられる酸化防止剤の例としては、リン系化合物、窒素原子含有化合物、イオウ原子含有化合物、ヒンダードフェノールを含むフェノール系化合物等が挙げられるが、酸化防止剤としてリン系化合物を用いた場合には、低応力性が十分維持できず、また耐湿性が低下する可能性があり不適である。しかし非リン系酸化防止剤を用いた場合には、前記問題点を克服することができる。その中でも、耐湿性をより向上させるためには、窒素、硫黄などの元素を含まない酸化防止剤を用いることが好ましい。その例としては、4,6−ジ−ターシャリー−ブチルフェノール(例えば、チバガイギー社製、Irganox129等が市販されている)等のヒンダードフェノールが挙げられるがこれに限定されるものではない。該酸化防止剤は、目的により単独もしくは複数添加することができる。(F)非リン系酸化防止剤は予め(E)液状低応力剤に混合することも、エポキシ樹脂組成物の混合時に添加することもできる。その添加割合は一般式(1)で示されるブタジエン・アクリロニトリル共重合体に対して0.01重量%以上、10重量%以下の割合であることが好ましい。この範囲内においては良好な酸化防止効果と低応力性が発現する。   In the present invention, (E) the butadiene-acrylonitrile copolymer, which is the main component of the liquid low stress agent, has low heat resistance and deteriorates due to heat during molding of the sealing material, thereby reducing the effect as the low stress agent. In order to prevent this, it is essential to add (F) a non-phosphorus antioxidant. Examples of commonly used antioxidants include phosphorus compounds, nitrogen atom-containing compounds, sulfur atom-containing compounds, phenolic compounds including hindered phenols, etc., but when phosphorus compounds are used as antioxidants In this case, the low stress cannot be sufficiently maintained, and the moisture resistance may be lowered. However, when a non-phosphorus antioxidant is used, the above problems can be overcome. Among these, in order to further improve the moisture resistance, it is preferable to use an antioxidant that does not contain elements such as nitrogen and sulfur. Examples thereof include, but are not limited to, hindered phenols such as 4,6-di-tertiary-butylphenol (for example, Irganox 129 manufactured by Ciba Geigy Corporation). The antioxidant can be added singly or in plural depending on the purpose. (F) The non-phosphorus antioxidant can be mixed in advance with the (E) liquid low-stress agent, or can be added when the epoxy resin composition is mixed. The addition ratio is preferably 0.01% by weight or more and 10% by weight or less with respect to the butadiene / acrylonitrile copolymer represented by the general formula (1). Within this range, a good antioxidant effect and low stress are exhibited.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン等の難燃剤を含有することは差し支えないが、半導体装置の150〜200℃の高温下での電気特性の安定性が要求される用途では、臭素原子、アンチモン原子の含有量が、ともに全エポキシ樹脂組成物中に0.01重量%未満であることが好ましく、完全に含まれない方がより好ましい。また、環境保護の観点からも、臭素原子、アンチモン原子の含有量がともに0.1重量%未満で、極力含有されていないことが望ましい。   The epoxy resin composition of the present invention may contain flame retardants such as brominated epoxy resin and antimony oxide as needed in addition to the components (A) to (F), but it is 150 to 200 of the semiconductor device. In applications where stability of electrical properties at a high temperature of ℃ is required, the content of bromine atoms and antimony atoms is preferably less than 0.01% by weight in the total epoxy resin composition. More preferably not included. Also, from the viewpoint of environmental protection, it is desirable that the content of bromine atoms and antimony atoms is less than 0.1% by weight and is not contained as much as possible.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分、難燃剤の他、さらに必要に応じてエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤、カーボンブラック等の着色剤、天然ワックス、合成ワックス等の離型剤、及びシリコーンオイル等、種々の添加剤を適宜配合しても差し支えない。   In addition to the components (A) to (F) and the flame retardant, the epoxy resin composition of the present invention further includes a silane coupling agent such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, etc. , Titanate coupling agents, aluminum coupling agents, coupling agents such as aluminum / zirconium coupling agents, colorants such as carbon black, mold release agents such as natural wax and synthetic wax, and various additives such as silicone oil May be blended appropriately.

また、本発明のエポキシ樹脂組成物は、(A)〜(F)成分、及びその他の添加剤等を、例えば、ミキサー等を用いて充分に均一に混合した後、更に押し出し機、熱ロール又はニーダー等の混練機を用いて溶融混練し、続いて冷却、粉砕してエポキシ樹脂成形材料とすることができる。
本発明のエポキシ樹脂成形材料を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
In addition, the epoxy resin composition of the present invention comprises the components (A) to (F), other additives, etc., which are sufficiently uniformly mixed using, for example, a mixer, and then further an extruder, a hot roll or It can be melt-kneaded using a kneader or the like, and then cooled and pulverized to obtain an epoxy resin molding material.
The epoxy resin molding material of the present invention is used to seal various electronic components such as semiconductor elements and manufacture a semiconductor device by using a conventional molding method such as transfer molding, compression molding, or injection molding. do it.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。   Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.

実施例1
エポキシ樹脂1:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC3000P、軟化点58℃、エポキシ当量274)
7.8重量部
フェノール樹脂1:ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、MEH7851SS、軟化点107℃、水酸基当量203)
5.2重量部
硬化促進剤:1,8−ジアザビシクロ(5,4,0)ウンデセン 0.2重量部
溶融球状シリカ(平均粒径26.5μm) 86.0重量部
Example 1
Epoxy resin 1: phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC3000P, softening point 58 ° C., epoxy equivalent 274)
7.8 parts by weight Phenol resin 1: Phenol aralkyl resin having a biphenylene skeleton (Maywa Kasei Co., Ltd., MEH7851SS, softening point 107 ° C., hydroxyl group equivalent 203)
5.2 parts by weight Curing accelerator: 1,8-diazabicyclo (5,4,0) undecene 0.2 parts by weight Fused spherical silica (average particle size 26.5 μm) 86.0 parts by weight

液状低応力剤1:式(1)のブタジエン・アクリロニトリル共重合体を主成分とする液状ゴム(式(1)においてx=0.82、y=0.18、zの平均値は62、数平均分子量3550、カルボキシル基当量2200g/eq、ナトリウムイオン量5ppm、塩素イオン量200ppm、酸化防止剤として4,6−ジ−ターシャリー−ブチルフェノール(非リン系酸化防止剤)を3.0重量%含有) 0.2重量部

Figure 2007224219
Liquid low stress agent 1: Liquid rubber mainly composed of butadiene-acrylonitrile copolymer of formula (1) (in formula (1), x = 0.82, y = 0.18, z has an average value of 62, several Average molecular weight 3550, carboxyl group equivalent 2200 g / eq, sodium ion amount 5 ppm, chlorine ion amount 200 ppm, and 4,6-di-tert-butylphenol (non-phosphorus antioxidant) as an antioxidant ) 0.2 parts by weight
Figure 2007224219

γ−グリシドキシプロピルトリメトキシシラン 0.1重量部
γ−メルカプトプロピルトリメトキシシラン 0.1重量部
カルナバワックス 0.2重量部
カーボンブラック 0.2重量部
を常温でミキサーを用いて混合し、70〜100℃でロール混練し、冷却後粉砕してエポキシ樹脂成形材料を得た。得られたエポキシ樹脂成形材料を用いて以下の方法で評価した。結果を表1に示す。
γ-glycidoxypropyltrimethoxysilane 0.1 part by weight γ-mercaptopropyltrimethoxysilane 0.1 part by weight Carnauba wax 0.2 part by weight Carbon black 0.2 part by weight is mixed at room temperature using a mixer, Roll kneading at 70 to 100 ° C., cooling and pulverization gave an epoxy resin molding material. Evaluation was made by the following method using the obtained epoxy resin molding material. The results are shown in Table 1.

評価方法
スパイラルフロー:低圧トランスファー成形機を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂成形材料を注入し、流動長を測定した。単位はcm。
Evaluation method Spiral flow: Using a low-pressure transfer molding machine, a spiral flow measurement mold conforming to EMMI-1-66, epoxy resin under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds A molding material was injected and the flow length was measured. The unit is cm.

熱時曲げ弾性率:低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒の条件で試験片(80mm×10mm×4mm)を成形し、アフターベークとして175℃、8時間加熱処理した後、260℃(熱時)での曲げ強度及び曲げ弾性率をJIS K 6911に準じて測定した。単位はN/mmBending elastic modulus during heating: Using a low-pressure transfer molding machine, a test piece (80 mm × 10 mm × 4 mm) was molded under the conditions of a molding temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. After heat treatment for 8 hours, the bending strength and bending elastic modulus at 260 ° C. (during heating) were measured according to JIS K 6911. The unit is N / mm 2 .

高温保管特性:低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒の条件で16pSOP(チップサイズ12mm×7mm×2mm)を成形し、アフターベークとして175℃、8時間処理した後、高温保管試験(185℃、1000時間)を行い、配線間の電気抵抗値が初期値に対し20%増加したパッケージを不良と判定した。15個のパッケージ中の不良個数を示す。不良パッケージの数が5個未満を合格基準とした。   High-temperature storage characteristics: Using a low-pressure transfer molding machine, 16 pSOP (chip size 12 mm × 7 mm × 2 mm) was molded under the conditions of a molding temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. After the time treatment, a high-temperature storage test (185 ° C., 1000 hours) was performed, and a package in which the electrical resistance value between the wirings increased by 20% with respect to the initial value was determined to be defective. The number of defects in 15 packages is shown. The number of defective packages was less than 5 as acceptance criteria.

耐湿信頼性:低圧トランスファー成形機を用いて、成形温度175℃、圧力6.9MPa、硬化時間120秒の条件で16pSOP(チップサイズ12mm×7mm×2mm)を成形し、アフターベークとして175℃、8時間処理した後、プレッシャークッカー試験(125℃、圧力2.2×10Pa、500時間)を行い、回路の断線によるオープン不良を測定した。15個のパッケージ中の不良個数を示す。不良パッケージが5個未満を合格基準とした。 Moisture resistance reliability: Using a low-pressure transfer molding machine, 16 pSOP (chip size 12 mm × 7 mm × 2 mm) was molded at a molding temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. After the time treatment, a pressure cooker test (125 ° C., pressure 2.2 × 10 5 Pa, 500 hours) was performed to measure open defects due to circuit disconnection. The number of defects in 15 packages is shown. Acceptance criteria were less than 5 defective packages.

耐半田性:208ピンQFPパッケージ(パッケージサイズは28×28mm、厚み3.2mm、シリコンチップのサイズは、8.0×8.0mm、リードフレームは銅製)を金型温度175℃、注入圧力9.3MPa、硬化時間90秒間の条件でトランスファー成形し、175℃で4時間の後硬化をした。得られたパッケージ10個を60℃、相対湿度60%の環境下で120時間加湿処理し、その後このパッケージを260℃の赤外リフロー炉にて20秒処理した。このパッケージを超音波探傷装置を用いて観察し、チップ(SiNコート品)とエポキシ樹脂組成物の硬化物との界面に剥離が発生した個数を数えた。合格基準は剥離パッケージが5個未満とした。   Solder resistance: 208-pin QFP package (package size is 28 x 28 mm, thickness is 3.2 mm, silicon chip size is 8.0 x 8.0 mm, lead frame is made of copper), mold temperature is 175 ° C, injection pressure is 9 Transfer molding was performed under conditions of 3 MPa and a curing time of 90 seconds, followed by post-curing at 175 ° C. for 4 hours. Ten obtained packages were humidified in an environment of 60 ° C. and a relative humidity of 60% for 120 hours, and then this package was treated in an infrared reflow oven at 260 ° C. for 20 seconds. This package was observed using an ultrasonic flaw detector, and the number of peelings at the interface between the chip (SiN coated product) and the cured product of the epoxy resin composition was counted. The acceptance criteria were less than 5 peel packages.

耐温度サイクル性:208ピンQFPパッケージ(パッケージサイズは28×28mm、厚み3.2mm、シリコンチップのサイズは、8.0×8.0mm、リードフレームは銅製)を金型温度175℃、注入圧力9.3MPa、硬化時間90秒間でトランスファー成形し、175℃で4時間の後硬化をした。得られたパッケージ10個を−60℃/30分〜150℃/30分の環境下で繰り返し処理を行い、外部クラックの有無を観察した。評価したパッケージの50%以上の個数に外部クラックが生じた時間を測定し、「50%不良発生時間」で示した。単位はhr。50%不良発生時間が長いほど好ましく、1000時間以上で合格とした。   Temperature cycle resistance: 208-pin QFP package (package size is 28 x 28 mm, thickness is 3.2 mm, silicon chip size is 8.0 x 8.0 mm, lead frame is made of copper), mold temperature is 175 ° C, injection pressure Transfer molding was performed at 9.3 MPa and a curing time of 90 seconds, followed by post-curing at 175 ° C. for 4 hours. Ten obtained packages were repeatedly treated in an environment of −60 ° C./30 minutes to 150 ° C./30 minutes, and the presence or absence of external cracks was observed. The time when external cracks occurred in 50% or more of the evaluated packages was measured and indicated as “50% defect occurrence time”. The unit is hr. The longer the 50% defect occurrence time is, the more preferable.

実施例2〜6、比較例1〜5
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂成形材料を得、実施例1と同様にして評価した。結果を表1、表2に示す。
実施例1以外で用いた成分について、以下に示す。
エポキシ樹脂2:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000HK、エポキシ当量193、融点105℃)
フェノール樹脂2:フェノールアラルキル樹脂(三井化学(株)製、商品名XLC−LL、水酸基当量174、軟化点79℃)
液状低応力剤2:式(1)のブタジエン・アクリロニトリル共重合体(式(1)においてx=0.82、y=0.18、zの平均値は62、数平均分子量3550、カルボキシル基当量2200g/eq、ナトリウムイオン量5ppm、塩素イオン量200ppm、酸化防止剤としてAGIRITE製Geltrol(有機リン系酸化防止剤)を3.0重量%含有)
液状低応力剤3:式(1)のブタジエン・アクリロニトリル共重合体(式(1)においてx=0.82、y=0.18、zの平均値は62、数平均分子量3550、カルボキシル基当量2200g/eq、ナトリウムイオン量500ppm、塩素イオン量1500ppm、酸化防止剤としてAGIRITE製Geltrol(有機リン系酸化防止剤)を3.0重量%含有)
液状低応力剤4:式(1)のブタジエン・アクリロニトリル共重合体(式(1)においてx=0.82、y=0.18、zの平均値は62、数平均分子量3550、カルボキシル基当量2200g/eq、ナトリウムイオン量5ppm、塩素イオン量200ppm、酸化防止剤無し)
Examples 2-6, Comparative Examples 1-5
According to the composition of Tables 1 and 2, an epoxy resin molding material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
Components used in Examples other than Example 1 are shown below.
Epoxy resin 2: biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000HK, epoxy equivalent 193, melting point 105 ° C.)
Phenol resin 2: Phenol aralkyl resin (Mitsui Chemicals, trade name: XLC-LL, hydroxyl group equivalent: 174, softening point: 79 ° C.)
Liquid low stress agent 2: butadiene-acrylonitrile copolymer of formula (1) (in formula (1), x = 0.82, y = 0.18, z has an average value of 62, number average molecular weight 3550, carboxyl group equivalent 2200 g / eq, sodium ion amount 5 ppm, chlorine ion amount 200 ppm, containing 3.0% by weight of AGIRITE Geltrol (an organic phosphorus antioxidant) as an antioxidant)
Liquid low stress agent 3: butadiene-acrylonitrile copolymer of formula (1) (in formula (1), x = 0.82, y = 0.18, z has an average value of 62, number average molecular weight 3550, carboxyl group equivalent 2200 g / eq, sodium ion amount 500 ppm, chlorine ion amount 1500 ppm, containing 3.0% by weight of AGIRITE Geltrol (an organophosphorus antioxidant) as an antioxidant)
Liquid low stress agent 4: butadiene-acrylonitrile copolymer of formula (1) (in formula (1), x = 0.82, y = 0.18, z has an average value of 62, number average molecular weight 3550, carboxyl group equivalent 2200 g / eq, sodium ion amount 5 ppm, chlorine ion amount 200 ppm, no antioxidant)

Figure 2007224219
Figure 2007224219

Figure 2007224219
Figure 2007224219

Figure 2007224219
Figure 2007224219

実施例1〜6は(E)一般式(1)で表されるカルボキシル基を有するブタジエン・アクリロニトリル共重合体を主成分とする液状低応力剤を用いて、その添加量を変えたもの、ならびに異なるエポキシ樹脂とフェノール樹脂系硬化剤において同様な実験を行ったものであるが、いずれも高温保管特性、耐湿信頼性、耐半田性、耐温度サイクル性の全てにわたって良好な結果が得られた。
一方、(E)液状低応力剤を添加しなかった比較例1、5では、樹脂系に関わらず耐半田性、及び耐温度サイクル性が著しく劣る結果が得られた。また、リン系酸化防止剤を含む液状低応力剤を用いた比較例2では、高温保管特性が著しく劣り、耐湿信頼性、耐半田性、耐温度サイクル性も若干劣る結果が得られた。また、リン系酸化防止剤を含み、かつイオン性不純物量が多い液状低応力剤を用いた比較例3では、高温保管特性、耐湿信頼性が著しく劣る結果が得られた。さらに、酸化防止剤を含まない液状低応力剤を用いた比較例4では、耐半田性、耐温度サイクル性が著しく劣る結果となった。これは、成形時の熱により低応力剤が劣化し、低応力剤としての効果が薄れたことが原因であると推察される。
本発明に従うと、低応力特性を付与しつつ、高温保管特性、耐湿信頼性、耐半田性に優れたエポキシ樹脂組成物が得られることが分かった。
Examples 1 to 6 are (E) a liquid low-stress agent mainly composed of a butadiene-acrylonitrile copolymer having a carboxyl group represented by the general formula (1), and the addition amount thereof is changed. Similar experiments were conducted with different epoxy resins and phenolic resin-based curing agents, and all obtained good results in all of high-temperature storage characteristics, moisture resistance reliability, solder resistance, and temperature cycle resistance.
On the other hand, in Comparative Examples 1 and 5 in which (E) the liquid low-stress agent was not added, the results were remarkably inferior in solder resistance and temperature cycle resistance regardless of the resin system. Further, in Comparative Example 2 using a liquid low stress agent containing a phosphorus-based antioxidant, the high temperature storage characteristics were remarkably inferior, and the moisture resistance reliability, solder resistance and temperature cycle resistance were slightly inferior. Further, in Comparative Example 3 using a liquid low stress agent containing a phosphorus-based antioxidant and having a large amount of ionic impurities, results were obtained in which the high-temperature storage characteristics and the moisture resistance reliability were remarkably inferior. Furthermore, in Comparative Example 4 using a liquid low stress agent not containing an antioxidant, the results were extremely poor in solder resistance and temperature cycle resistance. This is presumably because the low stress agent deteriorates due to heat during molding, and the effect as the low stress agent is diminished.
According to the present invention, it was found that an epoxy resin composition excellent in high temperature storage characteristics, moisture resistance reliability and solder resistance can be obtained while imparting low stress characteristics.

Claims (7)

(A)エポキシ樹脂、(B)フェノール樹脂系硬化剤、(C)硬化促進剤、(D)無機質充填材、(E)下記一般式(1)で表される両末端にカルボキシル基を有するブタジエン・アクリロニトリル共重合体を主成分とする液状低応力剤を含むエポキシ樹脂組成物であって、更に(F)非リン系酸化防止剤を含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2007224219
(ただし、上記一般式(1)において、Buはブタジエン残基、ACNはアクリロニトリル残基を表す。xは1未満の正数。yは1未満の正数。x+y=1。zは50〜80の整数。)
(A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, (E) butadiene having carboxyl groups at both ends represented by the following general formula (1) -An epoxy resin composition containing a liquid low-stress agent having an acrylonitrile copolymer as a main component, and further comprising (F) a non-phosphorus antioxidant, and an epoxy resin composition for semiconductor encapsulation.
Figure 2007224219
(In the above general formula (1), Bu represents a butadiene residue, ACN represents an acrylonitrile residue. X is a positive number less than 1. y is a positive number less than 1. x + y = 1. Z is 50-80. Integer.)
前記(F)非リン系酸化防止剤が前記(E)液状低応力剤に含まれる請求項1記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the (F) non-phosphorus antioxidant is contained in the (E) liquid low stress agent. 前記(F)非リン系酸化防止剤がフェノール系酸化防止剤である請求項1又は請求項2記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the (F) non-phosphorus antioxidant is a phenol antioxidant. 前記(E)成分の配合量が全エポキシ樹脂組成物中に0.01重量%以上1重量%以下である請求項1ないし請求項3のいずれかに記載の半導体封止用エポキシ樹脂組成物。 The compounding quantity of the said (E) component is 0.01 weight% or more and 1 weight% or less in the whole epoxy resin composition, The epoxy resin composition for semiconductor sealing in any one of Claim 1 thru | or 3. 前記(E)成分に含まれるナトリウムイオン量が10ppm以下、塩素イオン量が450ppm以下である請求項1ないし請求項4のいずれかに記載の半導体封止用エポキシ樹脂組成物。 5. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the amount of sodium ions contained in the component (E) is 10 ppm or less, and the amount of chlorine ions is 450 ppm or less. 請求項1ないし請求項5のいずれかに記載の半導体封止用エポキシ樹脂組成物を混合及び/又は溶融混練してなる半導体封止用エポキシ樹脂成形材料。 The epoxy resin molding material for semiconductor sealing formed by mixing and / or melt-kneading the epoxy resin composition for semiconductor sealing in any one of Claims 1 thru | or 5. 請求項1ないし請求項5のいずれかに記載の半導体封止用エポキシ樹脂組成物の硬化物により半導体素子を封止してなることを特徴とする半導体装置。 6. A semiconductor device, wherein a semiconductor element is sealed with a cured product of the epoxy resin composition for sealing a semiconductor according to any one of claims 1 to 5.
JP2006049356A 2006-02-24 2006-02-24 Epoxy resin composition for semiconductor encapsulation and semiconductor device Expired - Fee Related JP5162833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049356A JP5162833B2 (en) 2006-02-24 2006-02-24 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049356A JP5162833B2 (en) 2006-02-24 2006-02-24 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2007224219A true JP2007224219A (en) 2007-09-06
JP5162833B2 JP5162833B2 (en) 2013-03-13

Family

ID=38546316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049356A Expired - Fee Related JP5162833B2 (en) 2006-02-24 2006-02-24 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP5162833B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001424A (en) * 2009-06-17 2011-01-06 Hitachi Industrial Equipment Systems Co Ltd Insulated casting resin for electric appliance, and high voltage electric appliance using the same
KR101234845B1 (en) * 2008-12-17 2013-02-19 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
WO2016181591A1 (en) * 2015-05-13 2016-11-17 パナソニックIpマネジメント株式会社 Epoxy resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272745A (en) * 1985-09-25 1987-04-03 Matsushita Electric Works Ltd Epoxy resin composition
JPS6335615A (en) * 1986-07-29 1988-02-16 Ube Ind Ltd Epoxy resin composition for sealing semiconductor
JPS63230725A (en) * 1987-03-20 1988-09-27 Fujitsu Ltd Epoxy resin composition for semiconductor sealing
JPH0286149A (en) * 1988-09-21 1990-03-27 Nitto Denko Corp Semiconductor device
JPH09153570A (en) * 1995-11-30 1997-06-10 Namitsukusu Kk Fluidic resin material for sealing semiconductor
JPH10130374A (en) * 1996-09-06 1998-05-19 Toray Ind Inc Resin composition for sealing semiconductor and its semiconductor apparatus
JPH1117075A (en) * 1997-04-28 1999-01-22 Nitto Denko Corp Semiconductor device
JPH11140274A (en) * 1997-11-05 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2006098425A1 (en) * 2005-03-16 2006-09-21 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272745A (en) * 1985-09-25 1987-04-03 Matsushita Electric Works Ltd Epoxy resin composition
JPS6335615A (en) * 1986-07-29 1988-02-16 Ube Ind Ltd Epoxy resin composition for sealing semiconductor
JPS63230725A (en) * 1987-03-20 1988-09-27 Fujitsu Ltd Epoxy resin composition for semiconductor sealing
JPH0286149A (en) * 1988-09-21 1990-03-27 Nitto Denko Corp Semiconductor device
JPH09153570A (en) * 1995-11-30 1997-06-10 Namitsukusu Kk Fluidic resin material for sealing semiconductor
JPH10130374A (en) * 1996-09-06 1998-05-19 Toray Ind Inc Resin composition for sealing semiconductor and its semiconductor apparatus
JPH1117075A (en) * 1997-04-28 1999-01-22 Nitto Denko Corp Semiconductor device
JPH11140274A (en) * 1997-11-05 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2006098425A1 (en) * 2005-03-16 2006-09-21 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234845B1 (en) * 2008-12-17 2013-02-19 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
JP2011001424A (en) * 2009-06-17 2011-01-06 Hitachi Industrial Equipment Systems Co Ltd Insulated casting resin for electric appliance, and high voltage electric appliance using the same
WO2016181591A1 (en) * 2015-05-13 2016-11-17 パナソニックIpマネジメント株式会社 Epoxy resin composition

Also Published As

Publication number Publication date
JP5162833B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
KR100547069B1 (en) Epoxy Resin Composition for Sealing Semiconductor and Semiconductor Device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4774784B2 (en) Epoxy resin composition and semiconductor device
JP2009144107A (en) Encapsulating epoxy resin composition and semiconductor device
JP5162833B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP4765294B2 (en) Semiconductor device
JP2004123847A (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5125901B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP4296820B2 (en) Epoxy resin composition and semiconductor device
JP5162835B2 (en) Epoxy resin composition and semiconductor device
JP2001064363A (en) Epoxy resin molding material for sealing and electronic part device
JP4660973B2 (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2006143865A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5162833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees