JP2007205618A - 給湯装置 - Google Patents

給湯装置 Download PDF

Info

Publication number
JP2007205618A
JP2007205618A JP2006024085A JP2006024085A JP2007205618A JP 2007205618 A JP2007205618 A JP 2007205618A JP 2006024085 A JP2006024085 A JP 2006024085A JP 2006024085 A JP2006024085 A JP 2006024085A JP 2007205618 A JP2007205618 A JP 2007205618A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
hot water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006024085A
Other languages
English (en)
Inventor
Hiroshi Kishimoto
啓 岸本
Kanetoshi Hayashi
謙年 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2006024085A priority Critical patent/JP2007205618A/ja
Publication of JP2007205618A publication Critical patent/JP2007205618A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】蓄熱時に時間の経過とともに、熱交換量が低下することがなく、したがって、熱源ユニットの熱を効率よく蓄熱することが可能な給湯装置を提供すること。
【解決手段】 熱源ユニットと、前記熱源ユニットの熱を蓄熱および放熱可能な蓄熱ユニットと、前記蓄熱ユニットに蓄えられた熱を利用して温水を作る給湯ユニットと、を備え、前記蓄熱ユニットは、蓄熱材としての潜熱蓄熱材が充填された潜熱蓄熱材槽と、蓄熱材としての水が充填された水槽とを有することを特徴とする給湯装置とする。
【選択図】 図3

Description

本発明は、給湯装置に関する。
従来からエンジン、燃料電池、ヒートポンプサイクルなどを熱源ユニットとし、当該熱源ユニットの熱を利用して水道水等を加熱して温水を生成する給湯装置が開発されている。
このような給湯装置のうち、電力によって駆動される熱源ユニットを用いる場合には、前記熱源ユニットを駆動するにあたり、コスト削減のために夜間電力を用いることが多い。しかしながら、夜間電力を利用して温熱を生成した場合、温水が実際に使用される日中までこれを貯蔵しておくことが必要となる。
また、エンジンや燃料電池を熱源ユニットとする場合には、それらを駆動して動力や電力を発生させ、その際に同時に発生する熱を利用する、いわゆるコジェネレーションであり、動力や電力の需要時間と、熱の需要時間が一致していない場合にも発生温熱を蓄熱しておく必要が生じる。
従来、温熱の蓄熱用としては一般的に水が利用されている。しかし、水を蓄熱材として利用した場合その顕熱で蓄熱することになるため単位体積あたりの熱容量が十分ではなく、また、蓄熱材としての水を温度成層化することが必要であるため蓄熱容器が大型化する問題が生じる。
このような問題を解消するために、相変化に伴う大きな潜熱量を有する潜熱蓄熱材を水の代わりに使用する装置が開示されている。(例えば、特許文献1)。相変化に伴う潜熱を利用することにより、水の顕熱による蓄熱に比べて単位体積あたりの熱容量を増大させることができ、蓄熱槽をコンパクト化できる。
特開2001−207163号公報
蓄熱ユニットへの蓄熱運転時、蓄熱材は熱源ユニットから熱を供給され加熱される。これは逆に熱源ユニット側から見ると蓄熱材によって冷却されていることになる。一般に、熱源ユニットは、冷却が不十分の場合その効率が低下する。
ヒートポンプサイクルの場合には、投入エネルギーあたりの熱出力、すなわちCOPが低下する。特に冷媒として二酸化炭素を用いたヒートポンプサイクルの場合、圧縮時の二酸化炭素冷媒が超臨界状態となっているためCOPの低下が顕著となる。
また、エンジンや燃料電池においても、冷却不十分の場合、出力低下や燃料消費率悪化、さらには装置の故障にもつながる。
ここで、図1は、従来の潜熱蓄熱材を用いた給湯装置の一部の構成を示す概略図である。
図1に示すように、一般に、潜熱蓄熱材を用いて給湯装置を構成する場合、蓄熱材100を蓄熱槽101内に入れておき、同じく蓄熱槽101内に設置した熱交換器102(一般的にはチューブ)に熱源ユニット103から供給される高温の熱媒体を流通させ蓄熱材100と熱交換するようにしている。
この場合、蓄熱時において潜熱蓄熱材100の温度が上昇してくると、熱媒体と潜熱蓄熱材100との間で熱交換される熱量が低下してしまい、熱媒体が熱交換器102を通過しても十分に低温とならず、その結果、熱源ユニット103の冷却が不十分となり、熱源ユニットの効率が低下してしまうという問題が生じる。
なお、熱媒体とは、熱源ユニットで生成される熱を保有し、搬送する物質である。一般的に温水または蒸気がよく使用される。熱源ユニットがヒートポンプユニットの場合は、高温状態の冷媒と熱交換した温水を熱媒体とすることが多いが、作動冷媒そのものを熱媒体とすることも可能である。
図2は、この問題を分かりやすく説明するための模式図である。
図2(1)〜(6)は、潜熱蓄熱材に蓄熱をした場合における、当該潜熱蓄熱材とこれと熱交換される熱媒体の温度の経時変化を模式的に示したものである。
なお、図2(1)が蓄熱開始時であり、時間の経過とともに図2(1)から(6)へと変化する。また、図2の各図は、潜熱蓄熱材が充填された蓄熱槽において、当該蓄熱槽の上端から下端へ向かって熱媒体が当該蓄熱槽内部に設置された熱交換器を通過することにより、熱媒体と潜熱蓄熱材とが熱交換する場合を想定し、この場合における当該蓄熱槽1の鉛直方向の各場所(例えば、上端近傍や下端近傍など)を縦軸に表し、各場所における潜熱蓄熱材と熱媒体それぞれの温度を横軸に表している。
図2(1)は蓄熱開始時を示している。蓄熱開始時においては、潜熱蓄熱材は蓄熱槽の上端から下端まで、均一な温度Tpcm−iを呈しており、この温度は熱媒体に対して十分に低温である。したがって熱源ユニットによって熱せられた熱媒体が上端側から導入された場合、潜熱蓄熱材と熱媒体とが互いに熱交換し、熱媒体は十分に冷却されて蓄熱槽の下端から排出される。
図2(2)は、前記(1)から所定の時間が経過した時を示している。熱源ユニットによって熱せられた高温の熱媒体が導入される蓄熱槽の上端近傍の潜熱蓄熱材の温度が若干上昇しているため、熱媒体と潜熱蓄熱材の平均温度差が減少し、全体としての熱交換量が低下してしまう。その結果、熱媒体は前記(1)より温度が高い状態で蓄熱槽の下端から排出される(つまり、熱媒体の出口温度が上昇する。)。
図2(3)は、前記(2)からさらに所定の時間が経過した時を示している。熱源ユニットによって熱せられた高温の熱媒体が導入されてから所定の時間が経過しているため、蓄熱槽の上端近傍の潜熱蓄熱材の温度はさらに上昇し、潜熱蓄熱材の融点Tmに達し、当該部分の一部は融解が始まる。その結果、全体としての熱交換量はさらに低下し、熱媒体の出口温度もこれに伴いさらに上昇する。
図2(4)は、前記(3)からさらに所定の時間が経過した時を示している。熱源ユニットによって熱せられた高温の熱媒体が導入されてからさらに時間が経過しているため、蓄熱槽内の潜熱蓄熱材の約半分が融点Tmに達して融解が進む。その結果、全体としての熱交換量はさらに低下し、熱媒体の出口温度もこれに伴いさらに上昇する。
図2(5)は、前記(4)からさらに所定の時間が経過した時を示している。熱源ユニットによって熱せられた高温の熱媒体が導入されてから相当の時間が経過しているため、蓄熱槽内の潜熱蓄熱材の大部分が融点Tmに達してしまい、さらに蓄熱槽の上端近傍に位置する潜熱蓄熱材にあっては液体への相変化が完了し、温度上昇が始まる。その結果、導入される熱媒体との温度差がほとんどなくなってしまい、熱交換が効率よく行われず、熱媒体の出口温度はさらに上昇しつづける。
図2(6)は、潜熱蓄熱材がすべて融解した状態、すなわち蓄熱完了時を示している。この状態では、蓄熱槽内の潜熱蓄熱材の全てが融点Tm以上となっており、全ての蓄熱材が液体となり、温度上昇がさらに進む。その結果、導入される熱媒体と潜熱蓄熱材との温度差がほとんどなくなってしまい、熱交換がほとんど行われないままに熱媒体が排出されることとなる。このとき、熱媒体出口温度は潜熱蓄熱材の融点Tmよりも高温となっている。
これが、上記した潜熱蓄熱材との熱交換量が低下してしまうという問題である。
また、蓄熱完了時において、熱媒体排出温度は蓄熱材融点Tmよりも高温となっていることは上述した通りである。この熱媒体排出温度Toと蓄熱材融点Tmの温度差(dT1=To−Tm)は熱交換するために必要不可欠なものである。
前記の特許文献1は、当該問題について言及し、これを解決するために、融点の異なる2種類の潜熱蓄熱材を用い、これらを直列に配置することにより熱媒体の出口温度を低下させている。つまり、前記図2(6)において排出される熱媒体をさらに別の、融点がより低い潜熱蓄熱材(低温側潜熱蓄熱材)が充填された蓄熱槽に導入することにより冷媒との熱交換を行っている。
しかしながら、当該方法では、潜熱蓄熱材の温度上昇に伴い熱交換量が低下するという問題の根本的な解決になっていない。つまり、当該方法では、時間の経過とともに最終的には熱媒体の出口温度は潜熱蓄熱材の融点よりも高温となることは必至であり、それでもなお熱媒体の出口温度を十分に低下させるためには、相当低温に融点を有する潜熱蓄熱材を用いることが必要となる。しかしながら、当該潜熱蓄熱材からの放熱を利用して温水を生成する場合、低温側潜熱蓄熱材に蓄熱されている熱量を有効に利用するためには、低温側潜熱蓄熱材の融点Tmを、加熱されるべき水の給水温度Tiより熱交換に必要な温度差分だけは高くしておく必要がある。このときの必要温度差をdT2とすると、
Ti+dT2≦Tm
また上述したように、
Tm+dT1≦To
であり、従って
Ti+dT1+dT2≦To
となる。すなわち、前記特許文献1の場合、熱媒体排出温度Toは給水温度TiよりもすくなくともdT1+dT2以上高温となってしまうことになる。
本発明はこのような状況に鑑みなされたものであり、潜熱蓄熱材を用いた蓄熱ユニットを備えた給湯装置にあって、蓄熱時に時間の経過とともに熱交換量が低下することがなく、したがって、熱源ユニットの熱を効率よく蓄熱・放熱することが可能な給湯装置を提供することを主たる課題とする。
上記の課題を解決するための、本発明は、熱源ユニットと、前記熱源ユニットの熱を蓄熱および放熱可能な蓄熱ユニットと、前記蓄熱ユニットに蓄えられた熱を利用して温水を作る給湯ユニットと、を備え、前記蓄熱ユニットは、蓄熱材としての潜熱蓄熱材が充填された潜熱蓄熱材槽と、蓄熱材としての水が充填された水槽とを有することを特徴とする給湯装置である。
また、前記の給湯装置にあっては、前記熱源ユニットは、二酸化炭素を冷媒として用い、熱源側熱交換器と、膨張弁と、蒸発器と、圧縮機と、から構成されるヒートポンプユニットであってもよい。
本発明の給湯装置によれば、蓄熱材としての潜熱蓄熱材を充填した潜熱蓄熱材槽と、蓄熱材としての水を充填した水槽との両方を併せ持っているため、両者の利点を併せ持った給湯装置とすることが可能となる。
より具体的には、水槽のみならず潜熱蓄熱材槽を備えているため、水のみを蓄熱材として用いる従来のものに比べて、蓄熱ユニット全体の大きさを小さくすることが可能となる。一方で、潜熱蓄熱材のみを備えている従来のものは、前述したような問題、つまり潜熱蓄熱材の温度が上昇することにより、蓄熱時に時間の経過とともに熱交換量が低下するという問題を抱えていたが、本発明の給湯装置は、潜熱蓄熱材槽のみならず水槽を備えているため、たとえ潜熱蓄熱材槽が温度上昇してしまい、循環する水が当該潜熱蓄熱材槽において十分に冷却されなかった場合であっても、当該冷却が不十分な水は、水槽内に導入されることとなり、当該水槽内で温度成層化されることとなる。そして、熱源ユニットと熱交換する水は、つねに当該水槽内に充填されている水のうちで上記冷却が不十分な水ではなく、温度成層化されて下層に位置する低温の水となるため、熱交換量が低下することはない。
また、このような本発明において、前記熱源ユニットを、二酸化炭素を冷媒として用い、熱源側熱交換器と、膨張弁と、蒸発器と、圧縮機と、から構成されるヒートポンプユニットとすることにより、上記作用効果を十分に発揮することができる。
以下に、本発明の給湯装置について、図面を用いて具体的に説明する。
なお、以下の本発明において、放熱運転時とは、高温の潜熱蓄熱材から放熱させて低温とする(つまり温水を生成する)運転時を言い、蓄熱運転時とは、低温の潜熱蓄熱材に熱を供給し高温とする(つまり、熱源ユニットの熱を潜熱蓄熱材に溜める)運転時を言う。
図3は、本発明の給湯装置20の構成図である。
図3に示すように、本発明の給湯装置20は、熱源ユニット21と、前記熱源ユニット21の熱を蓄熱および放熱可能な蓄熱ユニット22と、前記蓄熱ユニットに蓄えられた熱を利用して温水を作る給湯ユニット23とを備えている。
熱源ユニット21は、蓄熱ユニット22において用いられている潜熱蓄熱材と熱交換を行い、当該潜熱蓄熱材を十分な温度にまで高温化することができる程度の熱量を発生するものであれば特に限定されることはなく、適宜応用して本発明の給湯装置に利用することができる。具体的には、ヒートポンプユニットのほか、例えば、各種内燃・外燃機関(エンジン)、燃料電池、などを挙げることができる。これらの熱源ユニット21にあっては、蓄熱すべき温度(例えば85℃)よりも高温の熱が供給でき、また十分な熱出力が得られることが必要であることはいうまでもない。十分な熱出力とは、例えば、夜間中に蓄熱する場合には、決められた蓄熱時間(例えば夜10時〜翌朝6時までの8時間)に必要な蓄熱量を満蓄できるだけの熱出力である。
図3に示すように、本発明の給湯装置20にあっては、二酸化炭素を冷媒として用い、主要な構成要素として、熱源側熱交換器24と、膨張弁25と、蒸発器26と、圧縮機27と、から構成されている熱源ユニット21を用いることもできる。当該熱源ユニット21は、いわゆる二酸化炭素を冷媒としたヒートポンプユニットであり、現在一般家庭において広く利用されている。
この熱源ユニット21は、主要な構成機器として前記熱源側熱交換器24から圧縮機27までがこの順番で並んでおり、これらは配管によって接続されている。そして、当該配管内および各装置内を冷媒としての二酸化炭素が循環するように構成されている。
まず、冷媒としての二酸化炭素は、外部動力(電力駆動のモータなど)によって作動する圧縮機27によって圧縮されることにより、後述する熱源側熱交換機24において潜熱蓄熱材と熱交換をするのに十分な程度にまで高温・高圧となる(例えば90℃、9MPa)。この時の二酸化炭素は超臨界状態となっており、液体とも気体とも言えない状態となっている。
圧縮機27によって圧縮されたことにより高温・高圧となった二酸化炭素(超臨界状態)は配管内を通り、熱源側熱交換器24内に導入され、当該熱源側熱交換器24内において、他方から導入された低温(例えば25℃)の水と熱交換して冷却される。この際、二酸化炭素は超臨界状態であるため冷却されても凝縮することなく温度降下する。熱交換器24において、二酸化炭素と蓄熱ユニット内を循環する水は対向流型で熱交換するようにする。
水との熱交換が終了し、高圧状態のまま低温(例えば30℃)となった二酸化炭素は、熱源側熱交換機24から排出され、膨張弁25が設けられた配管を通りながら減圧され臨界圧力以下の気液混相状態となる。
気液混相状態となった二酸化炭素は、さらに配管を通り蒸発器26内に導入される。当該蒸発器26は熱交換器の一種であり、二酸化炭素と空気との間で熱交換をさせて二酸化炭素を加熱しガス化させる。ガス化した二酸化炭素は再度配管を通り前述した圧縮機27によって圧縮されることとなる。
図4は、熱源ユニット21内を循環する冷媒としての二酸化炭素のモリエル線図(p−h線図)である。
図に示されている台形はヒートポンプサイクルである。A→Bは圧縮機27での圧縮、B→Cは熱源側熱交換器24での冷却、C→Dは膨張弁25での膨張、D→Aは蒸発器26での蒸発である。高圧側は超臨界状態となっているのがわかる。ヒートポンプとしての熱出力は線分3〜2の長さに相当する。また、投入エネルギーは線分1〜2の長さに相当する。従って、ヒートポンプとしての効率(COP)は、
COP=(線分3〜2)/(線分1〜2)
で表現される。
ここで、熱源側熱交換器での冷却が十分でない場合には、熱源側熱交換器出口温度が高くなり、Cの位置が図中で右側にシフトする。二酸化炭素冷媒の場合、熱源側熱交換器での冷媒は超臨界状態となっているためにそのシフト量が大きくなる。例えば、50℃までしか冷却されない場合には、線分B〜Cと50℃の等温線との交点Eまでシフトする。その結果、ヒートポンプとしての熱出力は線分4〜2の長さ分まで減少するが、投入エネルギー量は変わらないため、COPは大幅に低下してしまうことになる。
なお、このような構成からなる熱源ユニット21にあっては、運転コスト削減の目的から、夜間電力により運転することが通常である。
次に本発明の給湯装置20を構成する蓄熱ユニット22について説明する。
蓄熱ユニット22は、前記で説明した熱源ユニット21で発生する熱を蓄熱し、必要に応じて放熱するためのユニット、さらに具体的には、前述のごとく熱源ユニット21は通常夜間に運転されることが多い一方で、当該熱を用いて生成する温水を実際に使用するのは日中であるため、夜間に発生した熱をこれが使用される日中まで蓄熱しておき、日中に放熱することが必要であり、これを実現するためのユニットである。
このような蓄熱ユニット22は、図示するように、蓄熱材としての潜熱蓄熱材が充填された潜熱蓄熱材槽28aと、蓄熱材としての水が充填された水槽28bと、蓄熱ポンプ30、放熱ポンプ31、各種配管等により構成することができ、各種配管内には、水が循環するようになっている。蓄熱ポンプ30は蓄熱運転時に蓄熱材としての水を蓄熱ユニット−熱源ユニット間で循環させるためのポンプであり(図中の矢印参照)、放熱ポンプ31は放熱運転時に潜熱蓄熱材を蓄熱ユニット−給湯ユニット間で循環させるためのポンプである(図中の矢印参照)。なお、蓄熱ポンプと放熱ポンプを蓄熱ユニットに含めず、別構成にしても良い。
ここで、本発明の最大の特徴は、蓄熱ユニット22には、蓄熱材としての潜熱蓄熱材が充填された潜熱蓄熱材槽28aと、蓄熱材としての水が充填された水槽28bとが併設されている点にある。以下に蓄熱運転時、および放熱運転時におけるそれぞれの作用効果について説明する。
蓄熱運転時においては、蓄熱ポンプ30において流動される水(例えば25℃)は、配管H1を通り、熱源ユニット21内の熱源側熱交換器24において、冷媒(二酸化炭素)と熱交換される。この際、水は、冷媒との熱交換により加熱され高温状態(例えば85℃)となり、高温状態を保ったまま、配管H2を通り、潜熱蓄熱材槽28aに導入される。導入された高温状態の水は、潜熱蓄熱材槽28a内に充填される潜熱蓄熱材と熱交換をし、熱は潜熱蓄熱材に保持されることとなり、冷却された水は水槽28bの上端より、水槽28b内に導入される。この場合、水と冷媒との熱交換は、対向流型で行うことが好ましい。
この際、蓄熱運転開始直後にあっては、潜熱蓄熱材の温度が十分に低温であるため、潜熱蓄熱材槽28a内を通過する水は、十分に冷却されて25℃程度にまで冷却されることとなり問題を生じることはないが、蓄熱運転を開始して相当時間が経過している場合には、潜熱蓄熱材の温度が上昇しており、潜熱蓄熱材槽28a内を通過しても水が十分に冷却されず、たとえば45〜50℃程度までしか冷却されない場合も生じうる。しかしながら、本発明の装置によれば、このように十分に冷却されなかった水(45〜50℃)がそのままの状態で熱源ユニット21内の熱源側熱交換器24内に導入されることはなく、一旦水槽28b内にその上端から導入されることになるので、当該高温の水は水槽の上端近傍に位置し、その下端近傍に存在する低温(25℃)の水とは混ざらないので(つまり、水槽内は温度成層化されているので)、当該水槽28bの下端から水を抜き出すことにより、熱源側熱交換器24には、常に低温(25℃)の水を供給することができ、その結果、熱交換の効率を低下させることがないのである。
上記の説明からも分かるように、本発明の給湯装置にあっては、常に潜熱蓄熱材槽28aと水槽28bを併用する必要はない。つまり、蓄熱運転開始時にあっては、潜熱蓄熱材の温度が低温であり、これのみで水を十分に低温状態とすることができる場合には、その下流に設けられている水槽28bを経由させる必要は必ずしもなく、例えば、図3に示すバイパス配管H3を用いて、潜熱蓄熱材槽28aを通過した水をそのまま熱源ユニット21内の熱源側熱交換器24内に導入してもよい。そして、所定時間が経過した場合、若しくは潜熱蓄熱材槽28a内に温度計を設け、当該温度計の値が所定の温度に達した場合、その時点で水槽28bを用い、潜熱蓄熱材槽28a内を通過した水を水槽28bの上端へ導入するようにしてもよい。
また一方で、放熱運転時、つまり蓄熱ユニット22に蓄えられた水を利用して温水を生成する場合においては、水槽28b内の上端近傍から吸い出された水は潜熱蓄熱材槽28a内で潜熱蓄熱材と熱交換をし、高温状態となった水(例えば85℃)は、配管H2を通り、放熱ポンプ31により後述する給湯ユニット23の給湯熱交換器29内へ導入され、他方から導入される水(例えば水道水)と熱交換される。この場合も対向流型で熱交換することが好ましい。水(水道水)との熱交換により冷却され低温状態(例えば25℃)となった蓄熱材としての水は、配管H1により水槽28b内にその下端側から導入される。この場合においても、水槽内は温度成層化されているため、その上端近傍にある比較的温度の高い水とは混ざりあうことがない。
また、放熱運転時にあっても、前記蓄熱運転時と同様に、常に潜熱蓄熱材槽28aと水槽28bを併用する必要はない。たとえば、蓄熱運転の時間が長く、水槽中にも比較的高温の水が相当量蓄積されている場合には、放熱運転時の開始直後にあっては、潜熱蓄熱材槽28aを経由することなく、例えば、図3に示すバイパス配管H4を用いて、直接に給湯熱交換器29内に水を導入するようにしてもよい。
本発明の給湯装置にあっては、潜熱蓄熱材槽28aと水槽28bの大きさについては特に限定することはなく、水槽28bの出口温度を蓄熱開始時の温度(約25℃)に維持できる程度に(つまり、出口温度を当該温度にできるような潜熱蓄熱材槽28aと水槽28bの保有熱量となるように)適宜設定すればよい。
次に、本発明の給湯装置20を構成する給湯ユニット23について説明する。
給湯ユニット23は、前述するように水(主に水道水など)と蓄熱ユニット22内から導入される高温の水とを熱交換するための給湯熱交換器29を備えている。本発明にあっては、当該給湯ユニットのその詳細な構成については特に限定することはなく、適宜配管等を準備し、従来から用いられている各種熱交換器を適宜選択して用いることができる。
例えば、図示するように給湯熱交換器29内に導入された給水(一般的には水道水(約25℃))は、給湯熱交換器29内で、他方から導入される高温の水と対向流型で熱交換し、所望の温度(約40〜60℃)まで昇温せしめられた後、給湯熱交換器の他端から排出される。
図3に示す二つの反時計回りの矢印は、それぞれ蓄熱運転時(主に夜間)と放熱運転時(主に日中)の場合の潜熱蓄熱材の循環経路を示す矢印である。
次に本発明の給湯装置において用いられる潜熱蓄熱材について説明する。
本発明において用いられる潜熱蓄熱材としては、蓄熱運転時において、所定量の熱を蓄熱することが可能であり、放熱運転時においては、所定量の熱を放熱することが可能であれば特に限定されることはなく、その融点と利用温度の関係で適宜選択して用いることが可能である。
従来の潜熱蓄材を用いた給湯装置の一部の構成を示す概略図である。 従来技術の問題点をわかりやすく説明するための模式図である。 本発明の給湯装置の構成図である。 冷媒としての二酸化炭素のモリエル線図である。
符号の説明
20 … 給湯装置
21 … 熱源ユニット
22 … 蓄熱ユニット
23 … 給湯ユニット
24 … 熱源側熱交換器
25 … 膨張弁
26 … 蒸発器
27 … 圧縮機
28a … 潜熱蓄熱材槽
28b … 水槽
29 … 給湯熱交換器
30 … 蓄熱ポンプ
31 … 放熱ポンプ
100 … 蓄熱材
101 … 蓄熱槽
102 … 熱交換器
103 … 熱源ユニット

Claims (2)

  1. 熱源ユニットと、
    前記熱源ユニットの熱を蓄熱および放熱可能な蓄熱ユニットと、
    前記蓄熱ユニットに蓄えられた熱を利用して温水を作る給湯ユニットと、
    を備え、
    前記蓄熱ユニットは、蓄熱材としての潜熱蓄熱材が充填された潜熱蓄熱材槽と、蓄熱材としての水が充填された水槽とを有することを特徴とする給湯装置。
  2. 請求項1に記載の給湯装置であって、
    前記熱源ユニットは、二酸化炭素を冷媒として用い、熱源側熱交換器と、膨張弁と、蒸発器と、圧縮機と、から構成されるヒートポンプユニットであることを特徴とする給湯装置。
JP2006024085A 2006-02-01 2006-02-01 給湯装置 Pending JP2007205618A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024085A JP2007205618A (ja) 2006-02-01 2006-02-01 給湯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024085A JP2007205618A (ja) 2006-02-01 2006-02-01 給湯装置

Publications (1)

Publication Number Publication Date
JP2007205618A true JP2007205618A (ja) 2007-08-16

Family

ID=38485243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024085A Pending JP2007205618A (ja) 2006-02-01 2006-02-01 給湯装置

Country Status (1)

Country Link
JP (1) JP2007205618A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109101A (ja) * 2007-10-31 2009-05-21 Panasonic Corp ヒートポンプ給湯装置
CN109899863A (zh) * 2019-03-18 2019-06-18 国电南瑞科技股份有限公司 一种自然循环高温蓄热供汽供暖装置及使用方法
JPWO2021156905A1 (ja) * 2020-02-03 2021-08-12
JP7034402B1 (ja) * 2021-08-11 2022-03-11 三菱電機株式会社 給湯機

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109101A (ja) * 2007-10-31 2009-05-21 Panasonic Corp ヒートポンプ給湯装置
CN109899863A (zh) * 2019-03-18 2019-06-18 国电南瑞科技股份有限公司 一种自然循环高温蓄热供汽供暖装置及使用方法
CN109899863B (zh) * 2019-03-18 2023-11-28 国电南瑞科技股份有限公司 一种自然循环高温蓄热供汽供暖装置及使用方法
JPWO2021156905A1 (ja) * 2020-02-03 2021-08-12
WO2021156905A1 (ja) * 2020-02-03 2021-08-12 三菱電機株式会社 蓄熱給湯装置
JP7224504B2 (ja) 2020-02-03 2023-02-17 三菱電機株式会社 蓄熱給湯装置
JP7034402B1 (ja) * 2021-08-11 2022-03-11 三菱電機株式会社 給湯機
WO2023017573A1 (ja) * 2021-08-11 2023-02-16 三菱電機株式会社 給湯機

Similar Documents

Publication Publication Date Title
KR100750375B1 (ko) 2패스라인 폐수열회수기와 히트펌프를 이용한 냉난방 겸용시스템
US20080023961A1 (en) Co-generation and control method of the same
JP2004069286A (ja) 冷水及び温水製造装置を備える空気調和機
CN104075443A (zh) 热泵供热水装置
CN101377371A (zh) 动态过冷水循环制冰系统
JP3719444B1 (ja) 圧縮式ヒートポンプシステム及びコージェネレーションシステム
JP2008164240A (ja) ヒートポンプシステム
JP2010223537A (ja) ヒートポンプ給湯システム
JP2009074750A (ja) 給湯システム
JP2007205618A (ja) 給湯装置
JP4830572B2 (ja) 潜熱蓄熱材
CN109860383A (zh) 废热回收发电的热电模块
CN201116809Y (zh) 动态过冷水循环制冰系统
JP2006292365A (ja) 給湯装置
JP2011085284A (ja) ヒートポンプ式暖房装置
JP4779591B2 (ja) 給湯装置
JP5629341B2 (ja) 船舶機関室のタンク加熱システム
JP2007064548A (ja) 蓄熱及び貯湯式給湯装置
JP2005265249A (ja) 給湯・空調システム
JP2007278655A (ja) 蓄熱式給湯機
JP4222273B2 (ja) ヒートポンプ給湯機
JP2005241092A (ja) ヒートポンプ給湯装置
JP2007205628A (ja) 給湯装置、および蓄放熱方法
JP4749161B2 (ja) 燃料供給装置及びこの燃料供給装置を備えた原動機の運転方法
JP4464114B2 (ja) 蓄熱装置及び蓄熱制御方法