JP2007193017A - 偏光板及び液晶表示装置 - Google Patents
偏光板及び液晶表示装置 Download PDFInfo
- Publication number
- JP2007193017A JP2007193017A JP2006010138A JP2006010138A JP2007193017A JP 2007193017 A JP2007193017 A JP 2007193017A JP 2006010138 A JP2006010138 A JP 2006010138A JP 2006010138 A JP2006010138 A JP 2006010138A JP 2007193017 A JP2007193017 A JP 2007193017A
- Authority
- JP
- Japan
- Prior art keywords
- group
- layer
- film
- liquid crystal
- polarizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
【課題】 表示面の防眩性が高く、写りこみが少なく、また、黒表示時の光漏れが少なく、従ってコントラストの高い画像を表示可能な液晶表示装置を提供する。
【解決手段】 一方の表面上に垂直入射した光に対するレタデーションをRe、フィルム面の法線と40°をなす角度で入射した光に対するレタデーションをRe(40)としたとき0.92≦Re(40)/Re≦1.08を満足する光学補償フィルムと、少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルムと、を有する液晶表示装置である。
【選択図】 なし
【解決手段】 一方の表面上に垂直入射した光に対するレタデーションをRe、フィルム面の法線と40°をなす角度で入射した光に対するレタデーションをRe(40)としたとき0.92≦Re(40)/Re≦1.08を満足する光学補償フィルムと、少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルムと、を有する液晶表示装置である。
【選択図】 なし
Description
本発明は液晶表示装置の技術分野に関し、特にIPSモードやFFSモードの液晶表示装置等に関する。また、本発明は、IPSモード等の液晶表示装置の表示特性の改善、特に視野角の拡大に寄与する偏光板にも関する。
液晶表示装置としては、2枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶性化合物による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性化合物がハイブリッド配向したフィルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、液晶性化合物を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での階調反転が抑えきれないという問題を生じていた。
かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるIPSモードやFFSモードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、テレビ用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった、黒表示時の対角位斜め入射方向での僅かな光漏れが表示品質の低下の原因として顕在化してきた。
この色調や黒表示の視野角を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSやFFSモードにおいても検討されている。例えば、傾斜時の液晶層のレタデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示又は中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコティック液晶性化合物からなる光学補償フィルムを使用した方法(特許文献2、3、4参照)や光学補償フィルムとして複屈折が正で光学軸がフィルムの面内にある膜と複屈折が正で光学軸がフィルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レタデーションが二分の一波長の二軸性の光学補償フィルムを使用する方法(特許文献6参照)、偏光板の保護膜として負のレタデーションを有する膜を使い、この表面に正のレタデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。
また、特許文献8には、延伸により作製した2軸性のセルロースアシレートフィルム上に棒状液晶を塗布配向させた補償フィルムを搭載した、IPS液晶装置が提案されている。この方法では、簡単な構成で、表示品位と視野角が著しく改善されている。
一方、液晶表示装置の画像表示装置には、画像品位を向上させる目的で視野角補償フィルムに加えて、表面に反射防止フィルムが搭載されている。
反射防止フィルムは一般に、CRT、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、外光の反射による像の映り込みを防止するために、ディスプレイの最表面に配置される。反射防止フィルムは、通常、フィルムの表面に低屈折率層を形成することで、表面の反射率を低減し、表面への像の映り込みを低減する。
また、防眩フィルムは、散乱を利用して、映りこんだ画像をぼやけさせる効果を持つ防眩層を有するフィルムである。更に、表面の映り込みを低減するためには、表面に凹凸を形成し、その凹凸での表面散乱を利用して、表面へ映りこんだ画像をぼやけさせることを利用した防眩性反射防止フィルムがある。また、反射防止フィルムには表面散乱性以外に内部散乱性を有するフィルムがある。
反射防止フィルムは一般に、CRT、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、外光の反射による像の映り込みを防止するために、ディスプレイの最表面に配置される。反射防止フィルムは、通常、フィルムの表面に低屈折率層を形成することで、表面の反射率を低減し、表面への像の映り込みを低減する。
また、防眩フィルムは、散乱を利用して、映りこんだ画像をぼやけさせる効果を持つ防眩層を有するフィルムである。更に、表面の映り込みを低減するためには、表面に凹凸を形成し、その凹凸での表面散乱を利用して、表面へ映りこんだ画像をぼやけさせることを利用した防眩性反射防止フィルムがある。また、反射防止フィルムには表面散乱性以外に内部散乱性を有するフィルムがある。
ところで、充分に光学補償を行った、液晶表示装置、特にIPSモードやFFSモードなど横電解方式の液晶表示装置における黒表示時の光漏れに対し悪影響を及ぼすことが本発明者の研究により明らかとなり、防眩反射防止フィルムを使用する上では、解決しなければならない課題であった。
特許文献9には光学補償フィルムと反射防止フィルムを組み合わせ、液晶表示装置の表示性能を改善する提案がなされているが、特に横電解方式の液晶表示装置において光学補償フィルムと反射防止フィルムを組み合わせ、光漏れを改善する提案はなされていない。
上記のことに鑑み、本発明の目的は、表示面の防眩性が高く、写りこみが少なく、また、黒表示時の光漏れが少なく、従ってコントラストの高い画像を表示可能な液晶表示装置、特にIPSモードの液晶表示装置、及び該液晶表示装置に用いられる偏光板を提供することである。
前記課題を解決するための手段は以下の通りである。
[1] 偏光層と、該偏光層の一方の表面上に下記の光学補償フィルムI、及び前記偏光層の他方の表面上に下記の防眩フィルムIIを有する偏光板:
光学補償フィルムI
垂直入射した光に対するレタデーションをRe、フィルム面の法線と40°をなす角度で入射した光に対するレタデーションをRe(40)としたとき
数式(1)
0.92≦Re(40)/Re≦1.08
を満足する光学補償フィルム;
防眩フィルムII
少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルム。
[2] 前記防眩フィルムIIの防眩層の膜厚が、8〜40μmである[1]の偏光板。
[3] 前記防眩フィルムIIの防眩層側表面のヘイズが、1〜5%である[1]又は[2]の偏光板。
[4] 前記防眩フィルムIIの防眩層側表面の水の接触角が、90度以上である[1]〜[3]のいずれかの偏光板。
[5] 前記防眩フィルムIIが、前記偏光層の保護フィルムである[1]〜[4]のいずれかの偏光板。
[6] 前記光学補償フィルムIが、少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層の面内のレタデーションが0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmである[1]〜[5]のいずれかの偏光板。
[7] 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、前記第1の光学異方性層中、該棒状液晶化合物の分子が層平面に対して実質的に垂直に配向した状態に固定されている[6]の偏光板。
[8] 前記第1の光学異方性層と前記偏光層との間には、実質的に等方的な接着剤層、及び/又は実質的に等方的な保護フィルムのみが含まれる[7]又は[8]の偏光板。
[9] 前記透明保護フィルムがセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである[8]の偏光板。
[10] 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している[6]〜[9]のいずれかの偏光板。
[11] 前記第2の光学異方性層、前記第1の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である[6]〜[9]のいずれかの偏光板。
[12] 対向して配置されている一対の偏光板と、該一対の偏光板の間に配置され、基板面に平行な電界により配向方位が変化する液晶層と、前記一対の偏光板の一方(第一の偏光板)と液晶層との間に配置された前記光学補償フィルムIと、視認性側の偏光板の表面に配置された前記防眩フィルムIIとを有する横電界方式の液晶表示装置。
[13] 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[10]の偏光板を有し、該一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
[14] 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[11]の偏光板を有し、該一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
[15] 前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれる[13]又は[14]の液晶表示装置。
[16] 前記透明保護フィルムがセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである[15]の液晶表示装置。
[1] 偏光層と、該偏光層の一方の表面上に下記の光学補償フィルムI、及び前記偏光層の他方の表面上に下記の防眩フィルムIIを有する偏光板:
光学補償フィルムI
垂直入射した光に対するレタデーションをRe、フィルム面の法線と40°をなす角度で入射した光に対するレタデーションをRe(40)としたとき
数式(1)
0.92≦Re(40)/Re≦1.08
を満足する光学補償フィルム;
防眩フィルムII
少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルム。
[2] 前記防眩フィルムIIの防眩層の膜厚が、8〜40μmである[1]の偏光板。
[3] 前記防眩フィルムIIの防眩層側表面のヘイズが、1〜5%である[1]又は[2]の偏光板。
[4] 前記防眩フィルムIIの防眩層側表面の水の接触角が、90度以上である[1]〜[3]のいずれかの偏光板。
[5] 前記防眩フィルムIIが、前記偏光層の保護フィルムである[1]〜[4]のいずれかの偏光板。
[6] 前記光学補償フィルムIが、少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層の面内のレタデーションが0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmである[1]〜[5]のいずれかの偏光板。
[7] 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、前記第1の光学異方性層中、該棒状液晶化合物の分子が層平面に対して実質的に垂直に配向した状態に固定されている[6]の偏光板。
[8] 前記第1の光学異方性層と前記偏光層との間には、実質的に等方的な接着剤層、及び/又は実質的に等方的な保護フィルムのみが含まれる[7]又は[8]の偏光板。
[9] 前記透明保護フィルムがセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである[8]の偏光板。
[10] 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している[6]〜[9]のいずれかの偏光板。
[11] 前記第2の光学異方性層、前記第1の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である[6]〜[9]のいずれかの偏光板。
[12] 対向して配置されている一対の偏光板と、該一対の偏光板の間に配置され、基板面に平行な電界により配向方位が変化する液晶層と、前記一対の偏光板の一方(第一の偏光板)と液晶層との間に配置された前記光学補償フィルムIと、視認性側の偏光板の表面に配置された前記防眩フィルムIIとを有する横電界方式の液晶表示装置。
[13] 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[10]の偏光板を有し、該一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
[14] 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[11]の偏光板を有し、該一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
[15] 前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれる[13]又は[14]の液晶表示装置。
[16] 前記透明保護フィルムがセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである[15]の液晶表示装置。
本発明によれば、表示面の防眩性が高く、写りこみが少なく、また、黒表示時の光漏れが少なく、従ってコントラストの高い画像を表示可能な液晶表示装置、特にIPSモードの液晶表示装置、及び該液晶表示装置に用いられる偏光板を提供することができる。
以下において、本発明の光学補償フィルム、偏光板及び液晶表示装置の実施形態について順次説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、「平行」、「直交」とは、厳密な角度±10゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±5゜未満であることが好ましく、±2゜未満であることがより好ましい。また、「実質的に垂直」とは、厳密な垂直の角度よりも±20゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±15゜未満であることが好ましく、±10゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。
本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。
本明細書において、Re、Re(40)、Rthは各々、ある波長λnmにおける面内のリターデーション及び厚さ方向のリターデーションを表す。ReはKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rthは前記Re、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレタデーション値Re(40)、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレタデーション値の計3つの方向で測定したレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値はポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)が更に算出される。なお、本明細書において、特に断らない限り測定波長は590nmとする。
[偏光板]
本発明の偏光板は、偏光層と、該偏光層の一方の表面に所定の光学特性を有する光学補償フィルムと、該偏光層の他方の表面上に所定の防眩フィルムとを有する。以下、本発明の偏光板を構成する各部材について詳細に説明する。
[光学補償フィルム]
本発明で用いる光学補償フィルムは、垂直入射した光に対するレタデーション値をReとし、垂直入射から傾斜角40°で入射した光に対するレタデーション値をRe(40)としたとき、
数式(1) 0.92≦Re(40)/Re≦1.08
を満たすことが必要である。
本発明の偏光板は、偏光層と、該偏光層の一方の表面に所定の光学特性を有する光学補償フィルムと、該偏光層の他方の表面上に所定の防眩フィルムとを有する。以下、本発明の偏光板を構成する各部材について詳細に説明する。
[光学補償フィルム]
本発明で用いる光学補償フィルムは、垂直入射した光に対するレタデーション値をReとし、垂直入射から傾斜角40°で入射した光に対するレタデーション値をRe(40)としたとき、
数式(1) 0.92≦Re(40)/Re≦1.08
を満たすことが必要である。
かかる特性を有するフィルムは、予めフィルム面の法線方向に高分子が配向してなるフィルムを延伸することによって得られる。
予め垂直方向に分子が配向してなるフィルムは、面に対し垂直入射の光に対してはレタデーションがゼロあるいはわずかであるが、斜入射の光に対しては複屈折値が増大する光学特性を有する。該フィルムを一軸に延伸した場合、フィルム面に対して垂直入射した光に対しては、該延伸による配向によって複屈折が発現する。この場合、入射角を垂直入射から延伸方向に傾けた場合初期の法線方向の配向が残存し、複屈折値の急激な低下を防止し得る。従って複屈折値と光路長の積で定義されるレタデーション値を斜入射においてもほぼ一定に保つことができる。又、入射角を垂直入射から延伸軸に直角な方向に傾けた場合、初期の法線方向の配向が延伸時に乱れることにより、斜入射において複屈折が適度に減少する。従って複屈折と光路長との積であるレタデーションが一定に保たれる。
予め垂直方向に分子が配向してなるフィルムは、面に対し垂直入射の光に対してはレタデーションがゼロあるいはわずかであるが、斜入射の光に対しては複屈折値が増大する光学特性を有する。該フィルムを一軸に延伸した場合、フィルム面に対して垂直入射した光に対しては、該延伸による配向によって複屈折が発現する。この場合、入射角を垂直入射から延伸方向に傾けた場合初期の法線方向の配向が残存し、複屈折値の急激な低下を防止し得る。従って複屈折値と光路長の積で定義されるレタデーション値を斜入射においてもほぼ一定に保つことができる。又、入射角を垂直入射から延伸軸に直角な方向に傾けた場合、初期の法線方向の配向が延伸時に乱れることにより、斜入射において複屈折が適度に減少する。従って複屈折と光路長との積であるレタデーションが一定に保たれる。
また、本発明で用いる光学補償フィルムは上記式(1)を満足すれば、フィルムは1層構成であっても、2層以上の積層体構成であっても構わない。
本発明で用いる光学補償フィルムの好ましい例として、面内のレタデーションが0〜10nmであり、且つ厚さ方向のレタデーションが−400〜−80nmである第1の光学異方性層と、面内のレタデーションが20〜150nmであり、厚さ方向のレタデーションが100〜300nmである第2の光学異方性層とを有する積層フィルムが挙げられる。以下、前記光学補償フィルムの作製に用いられる種々の材料等について説明する。
[第1の光学異方性層]
前記光学異方性層の、面内のレタデーションは0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmであるが好ましい。前記第1の光学異方性層は面内のレタデーションは、0〜5nmであることがより好ましく、0〜3nmであることがよりさらに好ましい。さらに、該光学異方性層の厚さ方向のレタデーションは、−360〜−100nmであることが好ましく、−320〜−120nmであることがさらに好ましい。
前記光学異方性層の、面内のレタデーションは0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmであるが好ましい。前記第1の光学異方性層は面内のレタデーションは、0〜5nmであることがより好ましく、0〜3nmであることがよりさらに好ましい。さらに、該光学異方性層の厚さ方向のレタデーションは、−360〜−100nmであることが好ましく、−320〜−120nmであることがさらに好ましい。
第1の光学異方性層は、液晶化合物の少なくとも一種を含有する組成物から形成されていることが好ましい。前記液晶化合物は棒状液晶化合物であることが好ましい。棒状液晶化合物を用いた場合は、前記第1の光学異方性層において棒状分子が垂直配向しているのが好ましい。
液晶性化合物の種類については特に制限されない。本発明の光学補償フィルムに含まれる第1の光学異方性層は、例えば、低分子液晶性化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して作製してもよい。また、高分子液晶性化合物を液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して作製してもよい。なお本発明では、光学異方性層の作製に液晶性化合物が用いられるが、作製の過程で液晶性化合物は重合等によって固定された状態で光学異方性層に含有される場合が多く、最終的には液晶性を示す必要はない。重合性液晶性化合物は、多官能性重合性液晶でもよいし、単官能性重合性液晶性化合物でもよい。
前記第1の光学異方性層において、液晶化合物の分子は、所定の配向状態、好ましくは垂直配向の状態に固定されていることが好ましい。棒状液晶性化合物が実質的に垂直とは、フィルム面と棒状液晶性化合物のダイレクターとのなす角度が70°〜90°の範囲内であることを意味する。80°〜90°がより好ましく、85°〜90°がさらに好ましい。
前記第1の光学異方性層は、支持体上に形成してもよい。支持体として後述する第2の光学異方性層を用いてもよいし、仮の支持体上に第1の光学異方性層に設けた後、偏光層や第2の光学異方性層に転写してもよいし、光学的に等方性のフィルムを支持体として用いてもよい。偏光層と本発明の光学補償フィルムとを積層して、偏光板として、液晶表示装置等に組み込むことができる。
前記第1の光学異方性層は、棒状液晶性化合物等の液晶性化合物と、所望により、下記の重合開始剤や配向制御剤や他の添加剤を含む組成物から形成することができる。
(棒状液晶性化合物)
本発明では、棒状液晶性化合物を用いて第1の光学異方性層を形成することが好ましい。棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶性化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は好ましくは1〜6個、より好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、特開2001−328973号公報、特開2004−240188号公報、特開2005−99236号公報、特開2005−99237号公報、特開2005−121827号公報、特開2002−30042号公報などに記載の化合物を用いることができる。
本発明では、棒状液晶性化合物を用いて第1の光学異方性層を形成することが好ましい。棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶性化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は好ましくは1〜6個、より好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、特開2001−328973号公報、特開2004−240188号公報、特開2005−99236号公報、特開2005−99237号公報、特開2005−121827号公報、特開2002−30042号公報などに記載の化合物を用いることができる。
(垂直配向促進剤)
液晶性化合物を均一に垂直配向させるためには、配向膜界面側及び空気界面側において液晶性化合物を垂直に配向制御することが必要である。この目的のために、配向膜に、排除体積効果、静電気的効果又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を添加した組成物を採用してもよい。また、空気界面側の配向制御に関しては液晶性化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を配合した液晶性組成物を採用してもよい。このような配向膜界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)としては、ピリジニウム誘導体が好適に用いられる。空気界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。また、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。以下に垂直配向剤に関して詳細に説明する。
液晶性化合物を均一に垂直配向させるためには、配向膜界面側及び空気界面側において液晶性化合物を垂直に配向制御することが必要である。この目的のために、配向膜に、排除体積効果、静電気的効果又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を添加した組成物を採用してもよい。また、空気界面側の配向制御に関しては液晶性化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を配合した液晶性組成物を採用してもよい。このような配向膜界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)としては、ピリジニウム誘導体が好適に用いられる。空気界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。また、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。以下に垂直配向剤に関して詳細に説明する。
(配向膜界面側垂直配向剤)
本発明に使用可能な配向膜界面側垂直配向剤としては、下記式(I)で表されるピリジニウム誘導体(ピリジニウム塩)が好適に用いられる。該ピリジニウム誘導体の少なくとも1種を前記液晶性組成物に添加することによって、ディスコティック液晶性化合物の分子を配向膜近傍で実質的に垂直に配向させることができる。
本発明に使用可能な配向膜界面側垂直配向剤としては、下記式(I)で表されるピリジニウム誘導体(ピリジニウム塩)が好適に用いられる。該ピリジニウム誘導体の少なくとも1種を前記液晶性組成物に添加することによって、ディスコティック液晶性化合物の分子を配向膜近傍で実質的に垂直に配向させることができる。
一般式(I)
式(I)において、L0は2価の連結基を表し、アルキレン基と−O−、−S−、−CO−、−SO2−、−NRa−(但し、Raは炭素原子数が1〜5のアルキル基又は水素原子である)、アルケニレン基、アルキニレン基又はアリーレン基との組み合わせからなる炭素原子数が1〜20の2価の連結基であることが好ましい。アルキレン基は、直鎖であっても分岐であってもよい。
式(I)において、R0は、水素原子、無置換のアミノ基又は炭素原子数が1〜20の置換基で置換された置換アミノ基である。R0が置換アミノ基である場合、脂肪族基によって置換されていることが好ましい。脂肪族基は、例えば、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基及び置換アルキニル基が挙げられる。また、R0が2置換アミノ基である場合、2つの脂肪族基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環であることが好ましい。R0は水素原子、無置換のアミノ基又は炭素原子数が1〜20の置換アミノ基であることが好ましく、水素原子、無置換のアミノ基又は炭素原子数が2〜12の置換アミノ基であることがより好ましく、水素原子、無置換のアミノ基又は炭素原子数が2〜8の置換アミノ基であることがさらに好ましい。R0がアミノ基である場合、ピリジニウム環の4位に置換されていることが好ましい。
式(I)において、X0はアニオンである。アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホン酸イオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、p−トルエンスルホン酸イオン、p−クロロベンゼンスルホン酸イオン、1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオンなど)、硫酸イオン、炭酸イオン、硝酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ピクリン酸イオン、酢酸イオン、ギ酸イオン、トリフルオロ酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸イオンなどが挙げられる。X0は、好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸イオンである。
式(I)において、Y1は5員環又は6員環を部分構造として有する炭素数1〜30の2価の連結基である。Y1に含まれる環状部分構造はシクロヘキシル環、芳香族環又は複素環であることがより好ましい。芳香族環としては、ベンゼン環、インデン環、ナフタレン環、フルオレン環、フェナントレン環、アントラセン環、ビフェニル環、及びピレン環を挙げることができる。ベンゼン環、ビフェニル環、及びナフタレン環がさらに好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、例えば、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環などを挙げることができる。複素環は6員環であることが好ましい。Y1で表される5員環又は6員環を部分構造として有する2価の連結基は置換基を有していてもよい。
式(I)において、Zは、ハロゲン置換フェニル基、ニトロ置換フェニル基、シアノ置換フェニル基、炭素原子数が1〜10のアルキル基で置換されたフェニル基、炭素原子数が2〜10のアルコキシ基で置換されたフェニル基、炭素原子数が1〜12のアルキル基、炭素原子数が2〜20のアルキニル基、炭素原子数が1〜12のアルコキシ基、炭素原子数が2〜13のアルコキシカルボニル基、炭素原子数が7〜26のアリールオキシカルボニル基、炭素原子数が7〜26のアリールカルボニルオキシ基であり、シアノ置換フェニル基、ハロゲン置換フェニル基、炭素原子数が1〜10のアルキル基で置換されたフェニル基、炭素原子数が2〜10のアルコキシ基で置換されたフェニル基、炭素原子数が7〜26のアリールオキシカルボニル基又は炭素原子数が7〜26のアリールカルボニルオキシ基であるのが好ましい。
Zは、さらに置換基を有していてもよく、置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数が1〜16のアルキル基、炭素原子数が1〜16のアルケニル基、炭素原子数が1〜16のアルキニル基、炭素原子数が1〜16のハロゲン置換アルキル基、炭素原子数が1〜16のアルコキシ基、炭素原子数が2〜16のアシル基、炭素原子数が1〜16のアルキルチオ基、炭素原子数が2〜16のアシルオキシ基、炭素原子数が2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数が2〜16のアルキル置換カルバモイル基及び炭素原子数が2〜16のアシルアミノ基が含まれる。
Zは、さらに置換基を有していてもよく、置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数が1〜16のアルキル基、炭素原子数が1〜16のアルケニル基、炭素原子数が1〜16のアルキニル基、炭素原子数が1〜16のハロゲン置換アルキル基、炭素原子数が1〜16のアルコキシ基、炭素原子数が2〜16のアシル基、炭素原子数が1〜16のアルキルチオ基、炭素原子数が2〜16のアシルオキシ基、炭素原子数が2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数が2〜16のアルキル置換カルバモイル基及び炭素原子数が2〜16のアシルアミノ基が含まれる。
本発明に用いられるピリジニウム化合物としては、下記式(Ia)で表されるピリジニウム化合物が好ましい。
一般式(Ia)
式(Ia)において、L03は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−、−N=N−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又はO−CO−AL−CO−O−である。ALは、炭素原子数が1〜10のアルキレン基である。L03は、単結合、−O−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又はO−CO−AL−CO−O−であるのが好ましく、単結合又はO−であるのがより好ましい。
式(Ia)において、L04は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−又はN=N−である。
式(Ia)において、R03は、水素原子、無置換アミノ基又は炭素原子数が2〜20のアルキル置換アミノ基である。R03がジアルキル置換アミノ基である場合、2つのアルキル基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環が好ましい。R03は水素原子、無置換アミノ基又は炭素原子数が2〜12のジアルキル置換アミノ基がさらに好ましく、水素原子、無置換アミノ基又は炭素原子数が2〜8のジアルキル置換アミノ基が最も好ましい。R03が無置換アミノ基である場合、ピリジニウム環の4位がアミノ置換されていることが好ましい。
式(Ia)において、Y2及びY3は、それぞれ独立に、置換基を有していてもよい6員環からなる2価の基である。6員環の例は、脂肪族環、芳香族環(ベンゼン環)及び複素環が挙げられる。6員脂肪族環の例は、シクロヘキサン環、シクロヘキセン環及びシクロヘキサジエン環が挙げられる。6員複素環の例は、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環が挙げられる。6員環に、他の6員環又は5員環が縮合していてもよい。
置換基の例は、ハロゲン原子、シアノ基、炭素原子数が1〜12のアルキル基及び炭素原子数が1〜12のアルコキシ基が挙げられる。アルキル基及びアルコキシ基は、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。アシル基及びアシルオキシ基の定義は、後述する。
置換基の例は、ハロゲン原子、シアノ基、炭素原子数が1〜12のアルキル基及び炭素原子数が1〜12のアルコキシ基が挙げられる。アルキル基及びアルコキシ基は、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。アシル基及びアシルオキシ基の定義は、後述する。
式(Ia)において、X01はアニオンである。X01は、一価のアニオンであることが好ましい。アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン)及びスルホン酸イオン(例えば、メタンスルホン酸イオン、p−トルエンスルン酸イオン、ベンゼンスルン酸イオン)が含まれる。
式(Ia)において、Z1は水素原子、シアノ基、炭素原子数が1〜12のアルキル基又は炭素原子数が1〜12のアルコキシ基であって、アルキル基及びアルコキシ基は、それぞれ、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。
式(Ia)において、mは1又は2であって、mが2の場合、2つのL04及び2つのY3は、異なっていてもよい。
mが2の場合、Z1は、シアノ基、炭素原子数が1〜10のアルキル基又は炭素原子数が1〜10のアルコキシ基であることが好ましい。
mが1の場合、Z1は、炭素原子数が7〜12のアルキル基、炭素原子数が7〜12のアルコキシ基、炭素原子数が7〜12のアシル置換アルキル基、炭素原子数が7〜12のアシル置換アルコキシ基、炭素原子数が7〜12のアシルオキシ置換アルキル基又は炭素原子数が7〜12のアシルオキシ置換アルコキシ基であることが好ましい。
mが2の場合、Z1は、シアノ基、炭素原子数が1〜10のアルキル基又は炭素原子数が1〜10のアルコキシ基であることが好ましい。
mが1の場合、Z1は、炭素原子数が7〜12のアルキル基、炭素原子数が7〜12のアルコキシ基、炭素原子数が7〜12のアシル置換アルキル基、炭素原子数が7〜12のアシル置換アルコキシ基、炭素原子数が7〜12のアシルオキシ置換アルキル基又は炭素原子数が7〜12のアシルオキシ置換アルコキシ基であることが好ましい。
アシル基は−CO−R、アシルオキシ基は−O−CO−Rで表され、Rは脂肪族基(アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基)又は芳香族基(アリール基、置換アリール基)である。Rは、脂肪族基であることが好ましく、アルキル基又はアルケニル基であることがさらに好ましい。
式(Ia)において、pは、1〜10の整数である。CpH2pは、分岐構造を有していてもよい鎖状アルキレン基を意味する。CpH2pは、直鎖状アルキレン基であることが好ましい。また、pは1又は2であることがより好ましい。
以下に、式(I)及び/又は(Ia)で表される化合物の具体例を示す。ここで、Meはメチル基を表す。
ピリジニウム誘導体は、一般にピリジン環をアルキル化(メンシュトキン反応)して得られる。
前記液晶性組成物中における前記ピリジニウム誘導体の含有量の好ましい範囲は、その用途によって異なるが、液晶性組成物(塗布液として調製した場合は溶媒を除いた液晶性組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましい。
(空気界面側垂直配向剤)
本発明に使用可能な空気界面側垂直配向剤としては、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有するフルオロ脂肪族基含有ポリマー(以下、「フッ素系ポリマー」という)、又は一般式(III)で表される含フッ素化合物が好適に用いられる。
本発明に使用可能な空気界面側垂直配向剤としては、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有するフルオロ脂肪族基含有ポリマー(以下、「フッ素系ポリマー」という)、又は一般式(III)で表される含フッ素化合物が好適に用いられる。
まず、フッ素系ポリマーについて説明する。
本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有することを特徴とする。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1〜4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、ポリテトラフルオロエチレン(PTFE)類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。前記フッ素系ポリマーは、ポリオレフィン類であることが好ましい。
本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有することを特徴とする。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1〜4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、ポリテトラフルオロエチレン(PTFE)類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。前記フッ素系ポリマーは、ポリオレフィン類であることが好ましい。
前記フッ素系ポリマーは、フルオロ脂肪族基を側鎖に有するポリマーである。前記フルオロ脂肪族基は、炭素数1〜12であるのが好ましく、6〜10であるのがより好ましい。脂肪族基は、鎖状であっても環状であってもよく、鎖状である場合は直鎖状であっても分岐鎖状であってもよい。中でも、直鎖状の炭素数6〜10のフルオロ脂肪族基が好ましい。フッ素原子による置換の程度については特に制限はないが、脂肪族基中の50%以上の水素原子がフッ素原子に置換されているのが好ましく、60%以上が置換されているのがより好ましい。フルオロ脂肪族基は、エステル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合、エーテル結合、チオエーテル結合、芳香族環などを介してポリマー主鎖と結合した側鎖に含まれる。フルオロ脂肪族基の一つは、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれるものである。これらのフルオロ脂肪族化合物の製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117〜118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath,American Chemical Society 1995)の747〜752ページに記載されている。テロメリゼーション法とは、ヨウ化物等の連鎖移動常数の大きいアルキルハライドをテローゲンとして、テトラフルオロエチレン等のフッ素含有ビニル化合物のラジカル重合を行い、テロマーを合成する方法である(Scheme−1に例を示した)。
得られた、末端ヨウ素化テロマーは通常、例えば[Scheme2]のごとき適切な末端化学修飾を施され、フルオロ脂肪族化合物へと導かれる。これらの化合物は必要に応じ、さらに所望のモノマー構造へと変換され、フッ素系ポリマーの製造に使用される。
本発明に使用可能なフッ素系ポリマーの製造に利用可能なモノマーの具体例を以下に挙げるが、本発明は以下の具体例によってなんら制限されるものではない。
本発明に使用可能なフッ素系ポリマーの一態様は、フルオロ脂肪族基含有モノマー(以下、「フッ素系モノマー」ということがある)より誘導される繰り返し単位と、下記式(II)で表される親水性基を含有する繰り返し単位とを有する共重合体である。
一般式(II)
上記式(II)において、R61、R62及びR63はそれぞれ独立に、水素原子又は置換基を表す。Qはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又は、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩を表す。Lは下記の連結基群から選ばれる任意の基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。
(連結基群)
単結合、−O−、−CO−、−NRb−(Rbは水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(ORf)−(Rfはアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
(連結基群)
単結合、−O−、−CO−、−NRb−(Rbは水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(ORf)−(Rfはアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
式(II)中、R61、R62及びR63は、それぞれ独立に、水素原子又は下記に例示した置換基群から選ばれる置換基を表す。
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、さらに好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、さらに好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、さらに好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
R61、R62及びR63はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、又は後述する−L−Qで表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L−Qで表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることが特に好ましく、水素原子、炭素数1〜2のアルキル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していてもよい。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。
Lは、上記連結基群から選ばれる2価の連結基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NRb−のRbは、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。また、−PO(ORf)−のRfはアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。Rb及びRfがアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NRb−、−S−、−SO2−、アルキレン基又はアリーレン基を含むことが好ましく、−CO−、−O−、−NRb−、アルキレン基又はアリーレン基を含んでいることが特に好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は好ましくは1〜10、より好ましくは1〜8、さらに好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン基、エチレン基、トリメチレン基、テトラブチレン基、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、さらに好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン基、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜34、より好ましくは7〜26、さらに好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。Lとして挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR61、R62、R63における置換基として挙げた置換基と同様なものを挙げることができる。
以下にLの具体的構造を例示する。
以下にLの具体的構造を例示する。
前記式(II)中、Qはカルボキシル基、カルボキシル基の塩(例えば、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)を表す。より好ましくはカルボキシル基、スルホ基、ホスホ基であり、特に好ましいのはカルボキシル基又はスルホ基である。
前記フッ素系ポリマーは、前記式(II)で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。また、前記フッ素系ポリマーは、上記各繰り返し単位以外の他の繰り返し単位を1種又は2種以上有していてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。以下、他の繰り返し単位を誘導するモノマーの具体例を挙げる。前記フッ素系ポリマーは、下記モノマー群から選ばれる1種又は2種以上のモノマーから誘導される繰り返し単位を含有していてもよい。
モノマー群
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
(3)α,β−不飽和カルボン酸の誘導体
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
(3b)アルキルメタクリレート類
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
(3c)不飽和多価カルボン酸のジエステル類
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
(3d)α、β−不飽和カルボン酸のアミド類
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tertブチルアクリルアミド、N−tertオクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tertブチルアクリルアミド、N−tertオクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
(4)不飽和ニトリル類
アクリロニトリル、メタクリロニトリルなど;
(5)スチレン及びその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tertブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
アクリロニトリル、メタクリロニトリルなど;
(5)スチレン及びその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tertブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
(7)ビニルエーテル類
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;及び
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;及び
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
前記フッ素系ポリマー中、フルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのがさらに好ましい。前記フッ素系ポリマーにおいて、前記式(II)で表される繰り返し単位の量は、該フッ素ポリマーの構成モノマー総量の0.5質量%以上であるのが好ましく、1〜20質量%であるのがより好ましく、1〜10質量%であるのがさらに好ましい。上記の質量百分率は使用するモノマーの分子量により好ましい範囲の数値が変動し易いため、ポリマーの単位質量当たりの官能基モル数で表す方が、式(II)で表される繰り返し単位の含有量を正確に規定できる。該表記を用いた場合、前記フッ素系ポリマー中に含有される親水性基(式(II)中のQ)の好ましい量は、0.1mmol/g〜10mmol/gであり、より好ましい量は0.2mmol/g〜8mmol/gである。
本発明に用いる前記フッ素系ポリマーの質量平均分子量は1,000,000以下が好ましく、500,000以下がより好ましく、100,000以下がさらに好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。
前記フッ素系ポリマーの重合方法は、特に限定されるものではないが、例えば、ビニル基を利用したカチオン重合やラジカル重合、又は、アニオン重合等の重合方法を採ることができ、これらの中ではラジカル重合が汎用に利用できる点で特に好ましい。ラジカル重合の重合開始剤としては、ラジカル熱重合開始剤や、ラジカル光重合開始剤等の公知の化合物を使用することができるが、特に、ラジカル熱重合開始剤を使用することが好ましい。ここで、ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ジアシルパーオキサイド(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ケトンパーオキサイド(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ハイドロパーオキサイド(過酸化水素、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド(ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシエステル類(tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等)、アゾ系化合物(アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等)、過硫酸塩類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
ラジカル重合方法は、特に制限されるものでなく、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等を採ることが可能である。典型的なラジカル重合方法である溶液重合についてさらに具体的に説明する。他の重合方法についても概要は同等であり、その詳細は例えば「高分子科学実験法」高分子学会編(東京化学同人、1981年)等に記載されている。
溶液重合を行うためには有機溶媒を使用する。これらの有機溶媒は本発明の目的、効果を損なわない範囲で任意に選択可能である。これらの有機溶媒は通常、大気圧下での沸点が50〜200℃の範囲内の値を有する有機化合物であり、各構成成分を均一に溶解させる有機化合物が好ましい。好ましい有機溶媒の例を示すと、イソプロパノール、ブタノール等のアルコール類;ジブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸アミル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;が挙げられる。なお、これらの有機溶媒は、1種単独又は2種以上を組み合わせて用いることが可能である。さらに、モノマーや生成するポリマーの溶解性の観点から上記有機溶媒に水を併用した水混合有機溶媒も適用可能である。
また、溶液重合条件も特に制限されるものではないが、例えば、50〜200℃の温度範囲内で、10分〜30時間加熱することが好ましい。さらに、発生したラジカルが失活しないように、溶液重合中はもちろんのこと、溶液重合開始前にも、不活性ガスパージを行うことが好ましい。不活性ガスとしては通常窒素ガスが好適に用いられる。
前記フッ素系ポリマーを好ましい分子量範囲で得るためには、連鎖移動剤を用いたラジカル重合法が特に有効である。連鎖移動剤としてはメルカプタン類(例えば、オクチルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン、オクタデシルメルカプタン、チオフェノール、p−ノニルチオフェノール等)、ポリハロゲン化アルキル類(例えば、四塩化炭素、クロロホルム、1,1,1−トリクロロエタン、1,1,1−トリブロモオクタンなど)、低活性モノマー類(α−メチルスチレン、α−メチルスチレンダイマー等)のいずれも用いることができるが、好ましくは炭素数4〜16のメルカプタン類である。これらの連鎖移動剤の使用量は、連鎖移動剤の活性やモノマーの組み合わせ、重合条件などにより著しく影響され精密な制御が必要であるが、使用するモノマーの全モル数に対して好ましくは0.01モル%〜50モル%程度であり、より好ましくは0.05モル%〜30モル%、さらに好ましくは0.08モル%〜25モル%である。これらの連鎖移動剤は、重合過程において重合度を制御するべき対象のモノマーと同時に系内に存在させればよく、その添加方法については特に問わない。モノマーに溶解して添加してもよいし、モノマーと別途に添加することも可能である。
なお、本発明のフッ素系ポリマーは、ディスコティック液晶性化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
以下に、フッ素系ポリマーとして本発明に好ましく用いられる具体例を示すが、本発明はこれらの具体例によってなんら限定されるものではない。ここで式中の数値(a、b、c、d等の数値)は、それぞれ各モノマーの組成比を示す質量百分率であり、MwはGPCにより測定されたPEO換算の質量平均分子量である。
本発明に用いられるフッ素系ポリマーは、公知慣用の方法で製造することができる。例えば先にあげたフッ素系モノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。また、場合によりその他の付加重合性不飽和化合物を、さらに添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。
前記液晶性組成物(塗布液として調製した場合は、溶媒を除いた液晶性組成物)中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、液晶性組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。前記フッ素系ポリマーの添加量が0.005質量%未満では効果が不十分であり、また8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学フィルムとしての性能(例えばレタデーションの均一性等)に悪影響を及ぼす。
次に、同様に空気界面側垂直配向剤として使用可能な、式(III)で表される含フッ素化合物について説明する。
式(III)
(R100)mo−L100−(W)no
式中、R100はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、moは1以上の整数を表す。複数個のR100は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L100は(mo+no)価の連結基を表し、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩を表し、noは1以上の整数を表す。
式(III)
(R100)mo−L100−(W)no
式中、R100はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、moは1以上の整数を表す。複数個のR100は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L100は(mo+no)価の連結基を表し、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩を表し、noは1以上の整数を表す。
式(III)中、R100は含フッ素化合物の疎水性基として機能する。R100で表されるアルキル基は置換もしくは無置換のアルキル基であり、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは4〜16のアルキル基であり、特に好ましくは6〜16のアルキル基である。該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
R100で表される末端にCF3基を有するアルキル基は、好ましくは炭素数1〜20であり、より好ましくは4〜16であり、さらに好ましくは4〜8である。前記末端にCF3基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されているのが好ましく、60%以上が置換されているのがより好ましく、70%以上を置換されているのが特に好ましい。残りの水素原子は、さらに後述の置換基群Dとして例示された置換基によって置換されていてもよい。R100で表される末端にCF2H基を有するアルキル基は、好ましくは炭素数1〜20であり、より好ましくは4〜16であり、さらに好ましくは4〜8である。前記末端にCF2H基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されていることが好ましく、60%以上が置換されていることがより好ましく、70%以上を置換されていることがさらに好ましい。残りの水素原子は、さらに後述の置換基群Dとして例示する置換基によって置換されていてもよい。R100で表される末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基の例を以下に示す。
R1:n−C8F17−
R2:n−C6F13−
R3:n−C4F9−
R4:n−C8F17−(CH2)2−
R5:n−C6F13−(CH2)2−
R6:n−C4F9−(CH2)2−
R7:H−(CF2)8−
R8:H−(CF2)6−
R9:H−(CF2)4−
R10:H−(CF2)8−(CH2)−
R11:H−(CF2)6−(CH2)−
R12:H−(CF2)4−(CH2)−
R2:n−C6F13−
R3:n−C4F9−
R4:n−C8F17−(CH2)2−
R5:n−C6F13−(CH2)2−
R6:n−C4F9−(CH2)2−
R7:H−(CF2)8−
R8:H−(CF2)6−
R9:H−(CF2)4−
R10:H−(CF2)8−(CH2)−
R11:H−(CF2)6−(CH2)−
R12:H−(CF2)4−(CH2)−
式(III)において、L100で表される(mo+no)価の連結基は、アルキレン基、アルケニレン基、芳香族基、ヘテロ環基、−CO−、−NRd−(Rdは炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−からなる群より選ばれる基を少なくとも2つ組み合わせた連結基であることが好ましい。
式(III)において、Wはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ基{−OP(=O)(OH)2}もしくはその塩を表す。Wの好ましい範囲は、式(II)におけるQと同一である。
前記式 (III)で表される含フッ素化合物の中でも、下記式(III)−a又は式(III)−bで表される化合物が好ましい。
一般式(III)−a
式(III)−a中、R104及びR105は各々アルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表すが、R104及びR105が同時にアルキル基であることはない。W1及びW2は各々水素原子、カルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表すが、W1及びW2が同時に水素原子であることはない。
式(III)−b
(R106−L102−)m2(Ar101)−W3
式(III)−b中、R106はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、m2は1以上の整数を表し、複数個のR106は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L102は、アルキレン基、芳香族基、−CO−、−NR’−(R’は炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる群より選ばれる2価の連結基を表し、複数個のL102は同一でも異なっていてもよい。Ar101は芳香族炭化水素環又は芳香族ヘテロ環を表し、W3はカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表す。
(R106−L102−)m2(Ar101)−W3
式(III)−b中、R106はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、m2は1以上の整数を表し、複数個のR106は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L102は、アルキレン基、芳香族基、−CO−、−NR’−(R’は炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる群より選ばれる2価の連結基を表し、複数個のL102は同一でも異なっていてもよい。Ar101は芳香族炭化水素環又は芳香族ヘテロ環を表し、W3はカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有する、アルキル基、アルコキシ基もしくはアルキルアミノ基を表す。
まず、前記式(III)−aについて説明する。
R104及びR105は前記式(III)におけるR100と同義であり、その好ましい範囲も同一である。W1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩は前記式(III)におけるWと同義でありその好ましい範囲も同一である。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは1〜8のアルキル基であり、特に好ましくは1〜3のアルキル基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルコキシ基であり、更に好ましくは1〜8のアルコキシ基であり、特に好ましくは1〜4のアルコキシ基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキルアミノ基であり、より好ましくは1〜8のアルキルアミノ基であり、さらに好ましくは1〜4のアルキルアミノ基である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
R104及びR105は前記式(III)におけるR100と同義であり、その好ましい範囲も同一である。W1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩は前記式(III)におけるWと同義でありその好ましい範囲も同一である。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは1〜8のアルキル基であり、特に好ましくは1〜3のアルキル基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルコキシ基であり、更に好ましくは1〜8のアルコキシ基であり、特に好ましくは1〜4のアルコキシ基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキルアミノ基であり、より好ましくは1〜8のアルキルアミノ基であり、さらに好ましくは1〜4のアルキルアミノ基である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示する置換基のいずれかを適用できる。
W1及びW2は、特に好ましくはそれぞれ水素原子又は(CH2)nSO3M(nは0又は1を表す。)である。Mはカチオンを表すが、分子内で荷電が0になる場合は、Mはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
次に、前記式(III)−bについて説明する。
R106は前記式(III)−bにおけるR100と同義であり、その好ましい範囲も同一である。L102は、好ましくは炭素数1〜12のアルキレン基、炭素数6〜12の芳香族基、−CO−、−NR−、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる総炭素数0〜40の連結基を表し、より好ましくは炭素数1〜8のアルキレン基、フェニル基、−CO−、−NR−、−O−、−S−、−SO2−及びそれらの組み合わせからなる総炭素数0〜20の連結基を表す。Ar101は、好ましくは炭素数6〜12の芳香族炭化水素環を表し、より好ましくはベンゼン環又はナフタレン環を表す。W3で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基は、前記式(III)−aにおけるW1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基と同義でありその好ましい範囲も同一である。
R106は前記式(III)−bにおけるR100と同義であり、その好ましい範囲も同一である。L102は、好ましくは炭素数1〜12のアルキレン基、炭素数6〜12の芳香族基、−CO−、−NR−、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる総炭素数0〜40の連結基を表し、より好ましくは炭素数1〜8のアルキレン基、フェニル基、−CO−、−NR−、−O−、−S−、−SO2−及びそれらの組み合わせからなる総炭素数0〜20の連結基を表す。Ar101は、好ましくは炭素数6〜12の芳香族炭化水素環を表し、より好ましくはベンゼン環又はナフタレン環を表す。W3で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ基{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基は、前記式(III)−aにおけるW1及びW2で表されるカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、ホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は置換基としてカルボキシル基、スルホ基もしくはホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基と同義でありその好ましい範囲も同一である。
W3は、好ましくはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又は置換基としてカルボキシル基(−COOH)もしくはその塩又はスルホ基(−SO3H)もしくはその塩を有するアルキルアミノ基であり、特に好ましくはSO3M又はCO2Mである。Mはカチオンを表すが、分子内で荷電が0になる場合は、Mはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
本明細書において、置換基群Dには、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、さらに好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる)、
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールオキシ基であり、例えば、フェニルオキシ基、2−ナフチルオキシ基などが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアシル基であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜10のアリールオキシカルボニル基であり、例えば、フェニルオキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)。
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、さらに好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、さらに好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、さらに好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、さらに好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、さらに好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基が二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
なお、本発明の含フッ素化合物は、液晶性化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
本発明に使用可能な式(III)にて表される含フッ素化合物の具体例を以下に示すが、本発明に用いられる含フッ素化合物はこれらに限定されるものではない。
前記液晶性組成物中における前記含フッ素化合物の含有量の好ましい範囲は、その用途によって異なるが、前記液晶性組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。
(重合開始剤)
所望の配向状態(例えば、棒状液晶性化合物の場合は垂直配向)に配向させた液晶性化合物の分子を、その配向状態を維持して固定するのが好ましい。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。
所望の配向状態(例えば、棒状液晶性化合物の場合は垂直配向)に配向させた液晶性化合物の分子を、その配向状態を維持して固定するのが好ましい。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。
(第1の光学異方性層の他の添加剤)
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報中の段落番号[0028]〜[0056]記載の化合物、特開2005−62673号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。
液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
前記第1の光学異方性層は、例えば、液晶性化合物、及び所望により添加される重合開始剤、配向制御剤等の添加剤を、溶媒に溶解及び/又は分散させて調製した塗布液を、支持体上に塗布することで形成することができる。支持体上に配向膜を形成し、該配向膜表面に前記塗布液を塗布して形成するのが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
(塗布方法)
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。中でも、前記第1の光学異方性層を形成する際は、ワイヤーバーコーティング法を利用して塗布するのが好ましく、ワイヤーバーの回転数は下記式を満たすことが好ましい。
0.6<(W×(R+2r)×π)/V<1.4
[W:ワイヤーバーの回転数(rpm)、R:バーの芯の直径(m)、r:ワイヤーの直径(m)、V:支持体の搬送速度(m/min)]
(W×(R+2r)×π)/Vの範囲は、0.7〜1.3であることがより好ましく、0.8〜1.2であることがさらに好ましい。
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。中でも、前記第1の光学異方性層を形成する際は、ワイヤーバーコーティング法を利用して塗布するのが好ましく、ワイヤーバーの回転数は下記式を満たすことが好ましい。
0.6<(W×(R+2r)×π)/V<1.4
[W:ワイヤーバーの回転数(rpm)、R:バーの芯の直径(m)、r:ワイヤーの直径(m)、V:支持体の搬送速度(m/min)]
(W×(R+2r)×π)/Vの範囲は、0.7〜1.3であることがより好ましく、0.8〜1.2であることがさらに好ましい。
前記第1の光学異方性層の形成にはダイコーティング法が好ましく用いられ、特に、スライドコーター又はスロットダイコーターを利用した塗布方法が好ましい。例えば、特開2004−290775号、特開2004−290776号、特開2004−358296号、特開2005−13989号等に記載の塗布方法を用いることができる。
次に、上記の通り、支持体表面又は配向膜表面に前記組成物を塗布した後、液晶性化合物の分子を配向(棒状液晶性分子については好ましくは垂直配向)させて、分子をその配向状態に固定して光学異方性層を形成する。配向させる温度は、用いる液晶性化合物の転移温度、所望の配向状態等を考慮して、決定することができる。固定化は、液晶性分子や、組成物中に所望により添加される重合性モノマーの重合反応又は架橋反応により実施されるのが好ましい。重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
形成される光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましく、1〜5μmであることがよりさらに好ましい。
形成される光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましく、1〜5μmであることがよりさらに好ましい。
(配向膜)
前記第1の光学異方性層を形成する際は、配向膜の表面に前記組成物を塗布して、液晶性化合物の分子を配向させるのが好ましい。配向膜は液晶性化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。
前記第1の光学異方性層を形成する際は、配向膜の表面に前記組成物を塗布して、液晶性化合物の分子を配向させるのが好ましい。配向膜は液晶性化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。
ポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は100〜5000であることが好ましい。
前記第1の光学異方性層の作製に利用可能な配向膜は、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償フィルムの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償フィルムの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。
配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[0024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤及び添加剤を含む溶液を透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行ってよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。
配向膜作製時に利用する塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1〜10μmが好ましい。加熱乾燥は、20℃〜110℃で行うことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行うことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特に5が好ましい。
配向膜は、透明支持体上に設けられることが好ましい。配向膜は、上記のようにポリマー層を架橋した後、表面をラビング処理することにより得ることができる。
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
配向膜のラビング処理面に前記組成物を塗布して、液晶性化合物の分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させることで、前記第1の光学異方性層を形成することができる。
配向膜の膜厚は、0.1〜10μmの範囲とするのが好ましい。
配向膜の膜厚は、0.1〜10μmの範囲とするのが好ましい。
(支持体)
液晶性組成物からなる第1の光学異方性層は支持体上に形成してもよい。前記支持体としては、後述する第2の光学異方性層を用いてもよいし、仮の支持体上に第1の光学異方性層に設けた後、第2の光学異方性層上に転写してもよいし、別途、光学的に等方性のフィルムを支持体として用いてもよい。仮の支持体を用いる場合は、支持体の光学特性は特に問わないが、第1の光学異方性層が容易に剥離できることが好ましい。光学的に等方的な支持体上に第1の光学異方性層を形成した場合、液晶表示装置での使用時、該支持体は取り除いてもよいし、残してもよい。また、支持体は偏光層の保護フィルムとしても利用できる。支持体は光透過率が80%以上であることが好ましい。
液晶性組成物からなる第1の光学異方性層は支持体上に形成してもよい。前記支持体としては、後述する第2の光学異方性層を用いてもよいし、仮の支持体上に第1の光学異方性層に設けた後、第2の光学異方性層上に転写してもよいし、別途、光学的に等方性のフィルムを支持体として用いてもよい。仮の支持体を用いる場合は、支持体の光学特性は特に問わないが、第1の光学異方性層が容易に剥離できることが好ましい。光学的に等方的な支持体上に第1の光学異方性層を形成した場合、液晶表示装置での使用時、該支持体は取り除いてもよいし、残してもよい。また、支持体は偏光層の保護フィルムとしても利用できる。支持体は光透過率が80%以上であることが好ましい。
実質的に等方的な支持体としては、面内のレタデーション(Re)は0〜20nmであることが好ましく、0〜10nmであることがさらに好ましく、0〜5nmであることが最も好ましい。また、厚さ方向のレタデーション(Rth)は−60nm〜60nmであることが好ましく、−40nm〜40nmであることが好ましく、−20nm〜20nmであることが最も好ましい。波長分散は、Re400/Re700の比が1.2未満であることが好ましい。
ポリマーの例には、セルロースエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート、ポリメタクリレート及び環状ポリオレフィンが含まれる。セルロースエステルが好ましく、アセチルセルロースがさらに好ましく、トリアセチルセルロースが最も好ましい。環状ポリオレフィンとしては、特公平2−9619号公報記載のテトラシクロドデセン類の開環重合体又はテトラシクロドデセン類とノルボルネン類の開環共重合体を水素添加反応させて得られた重合体を構成成分とするポリマー、商品名としてはアートン(JSR製)や、ゼオネックス、ゼオノア(日本ゼオン製)のシリーズから使用することができる。ポリマーフィルムは、ソルベントキャスト法により形成することが好ましい。
ポリマーフィルムは、ソルベントキャスト法により形成することが好ましい。透明支持体の厚さは、20〜500μmであることが好ましく、50〜200μmであることがさらに好ましい。透明支持体とその上に設けられる層(接着層、垂直配向膜あるいは位相差層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10〜100nm程度の無機粒子を固形分重量比で5%〜40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。
[第2の光学異方性層]
本発明の偏光板が有する光学補償フィルムに含まれる第2の異方性層は、Reが20nm〜150nmであって、斜め方向の光漏れを効果的に低減するためには、第2の異方性層のReは、30nm〜130nmであるのがより好ましく、40nm〜110nmであるのがさらに好ましい。また、第2の異方性層の厚さ方向のレタデーションRthは、100〜300nmであることが好ましく、120〜280nmであることがさらに好ましく、140nm〜260nmであることが最も好ましい。
本発明の偏光板が有する光学補償フィルムに含まれる第2の異方性層は、Reが20nm〜150nmであって、斜め方向の光漏れを効果的に低減するためには、第2の異方性層のReは、30nm〜130nmであるのがより好ましく、40nm〜110nmであるのがさらに好ましい。また、第2の異方性層の厚さ方向のレタデーションRthは、100〜300nmであることが好ましく、120〜280nmであることがさらに好ましく、140nm〜260nmであることが最も好ましい。
前記第2の異方性層は、前記光学特性を有する限り、基本的にその材料及び形態については特に制限されない。例えば、複屈折ポリマーフィルムからなる位相差膜、支持体上に高分子化合物を塗布後に加熱延伸した膜、及び支持体上に低分子若しくは高分子液晶性化合物を塗布又は転写することによって形成された位相差層を有する位相差膜など、いずれも使用することができる。また、それぞれを積層して使用することもできる。
複屈折ポリマーフィルムとしては、複屈折特性の制御性や透明性、耐熱性に優れるものが好ましい。この場合、用いる高分子材料としては均一な二軸配向が達成できる高分子であれば特に制限はないが、従来公知のもので溶液流延法や押出し成形方式で製膜できるもの好ましく、ノルボルネン系高分子、ポリカーボネート系高分子、ポリアリレート系高分子、ポリエステル系高分子、ポリサルフォン等の芳香族系高分子、セルロースアシレート、又は、それらポリマーの2種又は3種以上を混合したポリマーなどがあげられる。
フィルムの二軸配向は、押出し成形方式や流延製膜方式等の適宜な方式で製造した当該熱可塑性樹脂からなるフィルムを、例えばロールによる縦延伸方式、テンターによる横延伸方式や二軸延伸方式などにより、延伸処理することにより達成することができる。前記のロールによる縦延伸方式では加熱ロールを用いる方法や雰囲気を加熱する方法、それらを併用する方法等の加熱方法を採ることができる。またテンターによる二軸延伸方式では全テンター方式による同時二軸延伸方法や、ロール・テンター法による逐次二軸延伸方法などの方法を採ることができる。
また、配向ムラや位相差ムラの少ないものが好ましい。その厚さは、位相差等により決定しうるが、一般には薄型化の点より1〜300μmであることが好ましく、10〜200μmであることがより好ましく、20〜150μmであることがさらに好ましい。
また、配向ムラや位相差ムラの少ないものが好ましい。その厚さは、位相差等により決定しうるが、一般には薄型化の点より1〜300μmであることが好ましく、10〜200μmであることがより好ましく、20〜150μmであることがさらに好ましい。
ノルボルネン系高分子としては、ノルボルネン及びその誘導体、テトラシクロドデセン及びその誘導体、ジシクロペンタジエン及びその誘導体、メタノテトラヒドロフルオレン及びその誘導体などのノルボルネン系モノマーの主成分とするモノマーの重合体であり、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーとこれと開環共重合可能なその他のモノマーとの開環共重合体、ノルボルネン系モノマーの付加重合体、ノルボルネン系モノマーとこれと共重合可能なその他のモノマーとの付加共重合体、及びの水素添加物などが挙げられる。これらの中でも、耐熱性、機械的強度等の観点から、ノルボルネン系モノマーの開環重合体水素化物が最も好ましい。ノルボルネン系重合体、単環の環状オレフィンの重合体又は環状共役ジエンの重合体の分子量は、使用目的に応じて適宜選択されるが、シクロヘキサン溶液(重合体樹脂が溶解しない場合はトルエン溶液)のゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量で、好ましくは5,000〜500,000、より好ましくは8,000〜200,000、さらに好ましくは10,000〜100,000の範囲であるときに、フィルム(A)の機械的強度、及び成形加工性とが高度にバランスされて好適である。代表的なポリマーとして、特開2003−327800号公報、特開2004−233604号公報に記載されたポリマーが挙げられる。
セルロースアシレートのアシル基としては、脂肪族基でも芳香族基でもよく、特に限定されない。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよく、総炭素数が22以下のエステル基が好ましい。これらの好ましいセルロースアシレートとしては、エステル部の総炭素数が22以下のアシル基(例えば、アセチル基、プロピオニル基、ブチロイル基、バレル基、ヘプタノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、ヘキサデカノイル基、オクタデカノイル基など)、アリールカルボニル基(アクリル、メタクリルなど)、アリルカルボニルキ(ベンゾイル、ナフタロイルなど)、シンナモイル基を挙げることができる。これらの中でも、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートステアレート、セルロースアセテートベンゾエートなどであり、混合エステルの場合はその比率は特に限定されないが、好ましくはアセテートが総エステルの30モル%以上であることが好ましい。
これらの中でも、セルロースアシレートが好ましく、特に写真用グレードのものが好ましく、市販の写真用グレードのものは粘度平均重合度、置換度等の品質を満足して入手することができる。写真用グレードのセルローストリアセテートのメーカーとしては、ダイセル化学工業(株)(例えばLT−20,30,40,50,70,35,55,105など)、イーストマンケミカル社(例えば、CAB−551−0.01、CAB−551−0.02、CAB−500−5、CAB−381−0.5、CAB−381−02、CAB−381−20、CAB−321−0.2、CAP−504−0.2、CAP−482−20、CA−398−3など)、コートルズ社、ヘキスト社等があり、何れも写真用グレードのセルロースアシレートを使用できる。また、フィルムの機械的特性や光学的な特性を制御する目的で、可塑剤、界面活性剤、レタデーション調節剤、UV吸収剤などを混合することができる。これらの添加剤の詳細については、例えば、特開2002−277632号公報、特開2002−182215号公報に記載がある。
透明樹脂をシート又はフィルム状に成形する方法は、例えば、加熱溶融成形法、溶液流延法のいずれも用いることができる。加熱溶融成形法は、さらに詳細に、押出成形法、プレス成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法などに分類できるが、これらの方法の中でも、機械的強度、表面精度等に優れたフィルムを得るためには、押出成形法、インフレーション成形法、及びプレス成形法が好ましく、押出成形法が最も好ましい。成形条件は、使用目的や成形方法により適宜選択されるが、加熱溶融成形法による場合は、シリンダー温度が、好ましくは100〜400℃、より好ましくは150〜350℃の範囲で適宜設定される。上記シート又はフィルムの厚みは、好ましくは10〜300μm、より好ましくは30〜200μmである。
上記シート又はフィルムの延伸は、該透明樹脂のガラス転移温度をTgとするとき、好ましくはTg−30℃からTg+60℃の温度範囲、より好ましくはTg−10℃からTg+50℃の温度範囲にて、少なくとも一方向に好ましくは1.01〜2倍の延伸倍率で行う。延伸方向は少なくとも一方向であればよいが、その方向は、シートが押出成形で得られたものである場合には、樹脂の機械的流れ方向(押出方向)であることが好ましく、延伸方法は自由収縮一軸延伸法、幅固定一軸延伸法、二軸延伸法などが好ましい。光学特性の制御はこの延伸倍率と加熱温度を制御することによって行なうことができる。
上記シート又はフィルムの延伸は、該透明樹脂のガラス転移温度をTgとするとき、好ましくはTg−30℃からTg+60℃の温度範囲、より好ましくはTg−10℃からTg+50℃の温度範囲にて、少なくとも一方向に好ましくは1.01〜2倍の延伸倍率で行う。延伸方向は少なくとも一方向であればよいが、その方向は、シートが押出成形で得られたものである場合には、樹脂の機械的流れ方向(押出方向)であることが好ましく、延伸方法は自由収縮一軸延伸法、幅固定一軸延伸法、二軸延伸法などが好ましい。光学特性の制御はこの延伸倍率と加熱温度を制御することによって行なうことができる。
(接着剤)
本発明では、前記第1の光学異方性層と前記第2の光学異方性層等とを、接着剤を利用して貼合してもよい。用いる接着剤としては、液晶性組成物層及びポリマーフィルムの双方に対して十分な接着力を有し、液晶性組成物層の光学的特性を損なわないものであれば、特に制限はなく、例えば、アクリル樹脂系、メタクリル樹脂系、エポキシ樹脂系、エチレン−酢酸ビニル共重合体系、ゴム系、ウレタン系、ポリビニルエーテル系及びこれらの混合物系や、熱硬化型及び/又は光硬化型、電子線硬化型等の各種反応性のものを挙げることができる。これらの接着剤は液晶性組成物層を保護する透明保護層の機能を兼ね備えたものも含まれる。なお、上記接着剤として粘着剤を用いることもできる。
本発明では、前記第1の光学異方性層と前記第2の光学異方性層等とを、接着剤を利用して貼合してもよい。用いる接着剤としては、液晶性組成物層及びポリマーフィルムの双方に対して十分な接着力を有し、液晶性組成物層の光学的特性を損なわないものであれば、特に制限はなく、例えば、アクリル樹脂系、メタクリル樹脂系、エポキシ樹脂系、エチレン−酢酸ビニル共重合体系、ゴム系、ウレタン系、ポリビニルエーテル系及びこれらの混合物系や、熱硬化型及び/又は光硬化型、電子線硬化型等の各種反応性のものを挙げることができる。これらの接着剤は液晶性組成物層を保護する透明保護層の機能を兼ね備えたものも含まれる。なお、上記接着剤として粘着剤を用いることもできる。
[防眩フィルム]
本発明の偏光板は所定の防眩フィルムを有する。該防眩フィルムは、少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルムである。例えば、前記防眩フィルムとして、防眩性反射防止フィルムを用いてもよい。以下、主に防眩性反射防止フィルムを例として、前記防眩フィルムの好ましい態様を説明する。
図1に、前記防眩フィルムとして利用可能な防眩性反射防止フィルムの好ましい一実施形態の断面模式図を示す。図1に示すフィルムは表面に凹凸を有するが、表面に凹凸を有さない形態であってもよい。
図1に示す好ましい実施形態の防眩性反射防止フィルム1は、透明支持体2と、透明支持体2上に形成された防眩層3と、防眩層3上に形成された低屈折率層4とからなる。防眩層3の上に低屈折率層4を光の波長の1/4前後の膜厚で形成することにより、薄膜干渉の原理により表面反射を低減することができる。
本発明の偏光板は所定の防眩フィルムを有する。該防眩フィルムは、少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルムである。例えば、前記防眩フィルムとして、防眩性反射防止フィルムを用いてもよい。以下、主に防眩性反射防止フィルムを例として、前記防眩フィルムの好ましい態様を説明する。
図1に、前記防眩フィルムとして利用可能な防眩性反射防止フィルムの好ましい一実施形態の断面模式図を示す。図1に示すフィルムは表面に凹凸を有するが、表面に凹凸を有さない形態であってもよい。
図1に示す好ましい実施形態の防眩性反射防止フィルム1は、透明支持体2と、透明支持体2上に形成された防眩層3と、防眩層3上に形成された低屈折率層4とからなる。防眩層3の上に低屈折率層4を光の波長の1/4前後の膜厚で形成することにより、薄膜干渉の原理により表面反射を低減することができる。
防眩層3は、一般に、表面凹凸形状に起因する表面散乱性と、内部散乱性を有する層であり、透光性樹脂と透光性樹脂中に分散された光拡散性粒子5とを含む。防眩層3は、防眩性とハードコート性を兼ね備えたものであることが好ましい。本実施形態においては、防眩層が1層形成されたものを例示しているが、複数層、例えば2層〜4層で構成されていてもよい。
また、帯電防止のために、防眩層3と透明支持体2との間又は防眩層3と低屈折率層4との間に透明導電性層を有することも望ましい。防眩層3と透明支持体2との間に透明導電性層を有することが特に望ましい。また、防眩層3と透明支持体2の間に透明導電性層を有し、かつ、防眩層内に通電性粒子を有するのは帯電防止に特に効果的である。また、防眩層3と透明支持体2との間には、透明導電性層以外に、防湿層等の機能層を設けてもよい。
また、低屈折率層4のない構成は積分反射率が高くなるが、製造コストを大幅に抑えることができ、この構成も好ましい態様の一つである。
前記防眩性反射防止フィルムを構成する各層の屈折率は以下の関係を満たすことが好ましい。
防眩層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
また、明室下での白ボケの低減、コントラスト向上面で特に優れた防眩性反射防止フィルムとする場合、表面散乱を利用した映り込み防止効果を抑えることが有効であり、したがって、積分反射率の低減による映り込み低減を十分に行うことが好ましい。そのためには防眩層の屈折率(na)と低屈折率層の屈折率(nb)との差na−nbは0.07以上が好ましい。0.07以上0.35以下が好ましく、0.10以上0.35以下であることがより好ましく、0.17以上0.30以下であることがさらに好ましい。両者の屈折率差が小さ過ぎると反射率を十分に下げることができず、表面への反射像の映り込みを十分に防止することができない。一方、屈折率差が大きすぎると、膜の強度が弱くなる、色味が強くなるなどの弊害が生じる。特定の屈折率差を得るためには、防眩層の屈折率を高くする、低屈折率層の屈折率を低くするという2通りの方法があり、いずれの方法を取ることもできるが、後述のように防眩層の屈折率は1.50〜1.54の範囲にすることがより好ましく、したがって、屈折率差をより大きくするためには、低屈折率層の屈折率を低くすることが好ましい。同じ屈折率差でも、低屈折率層の屈折率がより低いほうが色味低減の観点からも好ましい。
防眩層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
また、明室下での白ボケの低減、コントラスト向上面で特に優れた防眩性反射防止フィルムとする場合、表面散乱を利用した映り込み防止効果を抑えることが有効であり、したがって、積分反射率の低減による映り込み低減を十分に行うことが好ましい。そのためには防眩層の屈折率(na)と低屈折率層の屈折率(nb)との差na−nbは0.07以上が好ましい。0.07以上0.35以下が好ましく、0.10以上0.35以下であることがより好ましく、0.17以上0.30以下であることがさらに好ましい。両者の屈折率差が小さ過ぎると反射率を十分に下げることができず、表面への反射像の映り込みを十分に防止することができない。一方、屈折率差が大きすぎると、膜の強度が弱くなる、色味が強くなるなどの弊害が生じる。特定の屈折率差を得るためには、防眩層の屈折率を高くする、低屈折率層の屈折率を低くするという2通りの方法があり、いずれの方法を取ることもできるが、後述のように防眩層の屈折率は1.50〜1.54の範囲にすることがより好ましく、したがって、屈折率差をより大きくするためには、低屈折率層の屈折率を低くすることが好ましい。同じ屈折率差でも、低屈折率層の屈折率がより低いほうが色味低減の観点からも好ましい。
防眩層の屈折率(na)は1.50以上であることが好ましく、1.50以上1.70以下がより好ましく、1.50以上1.65以下がさらに好ましい。防眩層の屈折率を特定の値以上に高くすることで、低屈折率層との屈折率差を高くすることができ、反射率低減が可能となるが、屈折率を高くしすぎると、光拡散性粒子と透光性樹脂との屈折率差が大きくなりすぎ、内部ヘイズ値が大きくなりすぎるため、好ましくない。また、使用できる素材が限定され、高コストになるため、好ましくない。したがって、1.50〜1.54が特に望ましい。なお、本発明において防眩層の屈折率は光拡散性粒子を除いた固形分を含む塗膜の屈折率から求めた値である。
また、前記防眩フィルムの防眩層の設けられた側の表面散乱に起因するヘイズ(以後、「表面ヘイズ」という場合がある)値は、10%以下であることが好ましく、8%以下であることがより好ましく、5%以下であることが更に好ましく、3%以下であることが特に好ましい。この範囲で制御することにより、防眩性良好であり、正面コントラストの低下も少ない。なお、ヘイズ値の下限値については特に制限はないが、一般的には1%以上である。
また、前記防眩フィルムは、内部散乱に起因するヘイズ(以後、内部ヘイズと呼称する)が5%〜55%であることが好ましく、10%〜45%であることがより好ましく、15%〜40%であることが特に好ましい。
内部ヘイズは低い程、正面コントラストの低下を起こしにくいが、斜め方向のコントラストの改善効果が低い。内部散乱が55%を超えると、コントラストの悪化や画像ボケが起こる場合がある。
内部ヘイズは低い程、正面コントラストの低下を起こしにくいが、斜め方向のコントラストの改善効果が低い。内部散乱が55%を超えると、コントラストの悪化や画像ボケが起こる場合がある。
また、前記防眩フィルムの積分反射率が3.5%以下であることが好ましい。白ボケを低減するために、表面凹凸による散乱を抑えるため、映り込み防止のために反射率を低減することが好ましい。したがって、積分反射率はより2.5%以下が好ましく、2.0%以下が更に好ましい。特に好ましくは1.5%以下である。鏡面反射率は3.0%以下が好ましく、2.0%以下が好ましく、1.7%以下が更に好ましい。特に好ましくは1.4%以下である。透過率は90%以上とするのが、外光の反射を抑制でき、表面への像の映り込みを低減し、視認性が向上するため、好ましい。
さらに、前記防眩フィルムは、その表面凹凸形状として、中心線平均粗さRaが0.01〜0.15μm、10点平均粗さRzがRaの10倍以下となるように設計するのが、表面凹凸による白ボケを低減するために好ましい。Raはより好ましくは0.01〜0.12μmである。映り込み防止効果を重視する場合には0.05μm以上であることが好ましいが、表面の白ぼけを押さえることを重視する場合には0.01〜0.08の範囲にすることが望ましい。一般的な製法では0.01μm以下にすることは困難であり、0.15μmを超えるとギラツキ、白ボケ等の問題が発生する場合がある。
次に、前記防眩フィルムが有する防眩層について詳細に説明する。
[防眩層]
防眩層は、通常、表面凹凸形状に起因する表面散乱性と、内部散乱性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。前記防眩層が、ハードコート性を付与することのできる透光性樹脂、及び内部散乱性を付与するための光拡散性粒子を含有するのが好ましい。
[防眩層]
防眩層は、通常、表面凹凸形状に起因する表面散乱性と、内部散乱性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。前記防眩層が、ハードコート性を付与することのできる透光性樹脂、及び内部散乱性を付与するための光拡散性粒子を含有するのが好ましい。
(光拡散性粒子)
本発明においては、光拡散性粒子の平均粒径は4〜15μmであり、5〜12μmが好ましく、6〜10μmがより好ましい。光の散乱角度分布が広角にまで広がらず、ディスプレイの正面コントラスト低下を引き起こしにくい点で、平均粒径は5μm以上が好ましい。一方、防眩層の膜厚を厚くする必要がなく、カールが小さく、素材コストが抑えられる等の点で、15μm以下が好ましい。
光拡散性粒子の具体例としては、例えばポリ((メタ)アクリレート)粒子、架橋ポリ((メタ)アクリレート)粒子、ポリスチレン粒子、架橋ポリスチレン粒子、架橋ポリ(アクリル−スチレン)粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋ポリスチレン粒子、架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各光拡散性粒子の屈折率にあわせて透光性樹脂の屈折率を調整することにより、内部ヘイズ、表面ヘイズを所望の範囲にすることができ、透光性樹脂と光拡散性粒子、塗布組成物の溶媒の組み合わせ、添加量等を調整することで、中心線平均粗さを所望の範囲にすることができる。
本発明においては、光拡散性粒子の平均粒径は4〜15μmであり、5〜12μmが好ましく、6〜10μmがより好ましい。光の散乱角度分布が広角にまで広がらず、ディスプレイの正面コントラスト低下を引き起こしにくい点で、平均粒径は5μm以上が好ましい。一方、防眩層の膜厚を厚くする必要がなく、カールが小さく、素材コストが抑えられる等の点で、15μm以下が好ましい。
光拡散性粒子の具体例としては、例えばポリ((メタ)アクリレート)粒子、架橋ポリ((メタ)アクリレート)粒子、ポリスチレン粒子、架橋ポリスチレン粒子、架橋ポリ(アクリル−スチレン)粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋ポリスチレン粒子、架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各光拡散性粒子の屈折率にあわせて透光性樹脂の屈折率を調整することにより、内部ヘイズ、表面ヘイズを所望の範囲にすることができ、透光性樹脂と光拡散性粒子、塗布組成物の溶媒の組み合わせ、添加量等を調整することで、中心線平均粗さを所望の範囲にすることができる。
具体的には、後述する防眩層に好ましく用いられる3官能以上の(メタ)アクリレートモノマーを主成分とした透光性樹脂(硬化後の屈折率が1.50〜1.54)を用いた場合には、アクリル含率20〜100質量%である架橋ポリ(メタ)アクリレート重合体からなる光拡散性粒子を組み合わせることが好ましく、特に前記透光性樹脂と架橋ポリ(アクリル−スチレン)共重合体からなる光拡散性粒子(屈折率が1.48〜1.58)との組み合わせが好ましい。
ここで、「3官能以上の(メタ)アクリレートモノマーを主成分とした透光性樹脂」とは、透光性樹脂中に3官能以上の(メタ)アクリレートモノマーからなる繰り返し単位が、50〜100重量%含まれていることを意味する。3官能以上の(メタ)アクリレートモノマーからなる繰り返し単位の含有量は好ましくは60〜100重量%である。
ここで、「3官能以上の(メタ)アクリレートモノマーを主成分とした透光性樹脂」とは、透光性樹脂中に3官能以上の(メタ)アクリレートモノマーからなる繰り返し単位が、50〜100重量%含まれていることを意味する。3官能以上の(メタ)アクリレートモノマーからなる繰り返し単位の含有量は好ましくは60〜100重量%である。
また、粒子径の異なる2種以上の光拡散性粒子を併用してもよい。
前記光拡散性粒子は、形成された防眩層中に、防眩層全固形分中に3〜30質量%含有されるように配合されることが好ましい。より好ましくは4〜25質量%である。さらに好ましくは5〜15質量%である。内部散乱性が十分である点で、3質量%以上が好ましく、画像ボケや表面の白濁やギラツキ等の問題を抑制できる点で、30質量%以下が好ましい。
また、光拡散性粒子の密度は、好ましくは0.8〜3.2g/m2、より好ましくは0.9〜2.8g/m2である。
また、光拡散性粒子の密度は、好ましくは0.8〜3.2g/m2、より好ましくは0.9〜2.8g/m2である。
透光性樹脂と光拡散性粒子との屈折率は、上述の範囲であることが好ましい。また、透光性樹脂と光拡散性粒子との屈折率の差(光拡散性粒子の屈折率−透光性樹脂の屈折率)は、絶対値として好ましくは0.008〜0.15であり、より好ましくは0.01〜0.10である。特に好ましくは0.008〜0.05の範囲の光拡散性粒子を全光拡散性粒子の30%以上用いることである。以上のような範囲にすることで、画像のボケ、表面の白濁、コントラストなど良好な性能を得ることが可能である。
光拡散性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に光拡散性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
また、透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。透光性樹脂が硬化性の場合には硬化後の屈折率を指す。
光拡散性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に光拡散性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
また、透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。透光性樹脂が硬化性の場合には硬化後の屈折率を指す。
防眩層の平均膜厚は、8〜40μmであるのが好ましく、12〜35μmがより好ましく、18〜30μmが特に好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する、コストアップする、ムラが発生し易いなどの問題が発生する場合があるので、前記範囲内とするのが好ましい。
(透光性樹脂)
透光性樹脂は、飽和炭化水素鎖又はポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
透光性樹脂は、飽和炭化水素鎖又はポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル〔例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート〕、前記のエステルのエチレンオキサイド変性体やカプロラクトン変性体、ビニルベンゼン及びその誘導体〔例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン〕、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。前記モノマーは2種以上併用してもよい。
バインダーポリマーを高屈折率にするには、モノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含む高屈折率モノマーや、フルオレン骨格を分子内に有するモノマー等を選択することもできる。
高屈折率モノマーの具体例としては、フルオレン骨格を有する(メタ)アクリレート類、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
高屈折率モノマーの具体例としては、フルオレン骨格を有する(メタ)アクリレート類、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
これらのモノマーの重合は、例えば光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射又は加熱により行うことができる。
従って、前記防眩層は、例えば上述のエチレン性不飽和モノマー等の透光性樹脂形成用の活性エネルギー線硬化性化合物、光拡散性粒子及び必要に応じて、光ラジカル開始剤あるいは熱ラジカル開始剤、後述するような高分子増粘剤、無機フィラー等を含有する組成物、例えば塗液を調製し、該塗液を透明支持体上に塗布後電離放射線等の活性エネルギー線又は熱による重合反応により硬化させることにより形成することができる。
従って、前記防眩層は、例えば上述のエチレン性不飽和モノマー等の透光性樹脂形成用の活性エネルギー線硬化性化合物、光拡散性粒子及び必要に応じて、光ラジカル開始剤あるいは熱ラジカル開始剤、後述するような高分子増粘剤、無機フィラー等を含有する組成物、例えば塗液を調製し、該塗液を透明支持体上に塗布後電離放射線等の活性エネルギー線又は熱による重合反応により硬化させることにより形成することができる。
光ラジカル(重合)開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
最新UV硬化技術(p.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル(重合)開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光ラジカル(重合)開始剤は、硬化性化合物100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光ラジカル(重合)開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトン及びチオキサントンを挙げることができる。
最新UV硬化技術(p.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル(重合)開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光ラジカル(重合)開始剤は、硬化性化合物100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光ラジカル(重合)開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトン及びチオキサントンを挙げることができる。
熱ラジカル開始剤としては、公知の有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
二個以上のエチレン性不飽和基を有するモノマーの代わりに又はそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射又は加熱により行うことができる。このうち生産性の観点から紫外線によってカチオンを発生させる光酸発生剤の使用が好ましい。
紫外線によってカチオンを発生させる光酸発生剤としては、トリアリールスルホニウム塩やジアリールヨードニウム塩などのイオン性の硬化性樹脂やスルホン酸のニトロベンジルエステルなど、非イオン性の硬化性樹脂が挙げられ、有機エレクトロニクス材料研究会編、“イメージング用有機材料”ぶんしん出版社刊(1997)などに記載されている硬化性樹脂等種々の公知の光酸発生剤が使用できる。本発明では光拡散層を厚膜で形成する場合、トリアリールスルホニウム塩を用いると黄着色が問題となることがあり、着色を抑制するためにジアリールヨードニウム塩を用いることが好ましい。このことに関しては、本発明者等が特開2003−268141号公報に詳しく記載してある。対イオンとしてはPF6 -、SbF6 -、AsF6 -、(C6F5)4B-などが好ましい。また、トリアリールスルホニウム塩とジアリールヨードニウム塩を組み合わせて用いることも好ましい態様である。
(増粘剤)
前記防眩フィルムの作製、特に防眩層の作製には、フィルム形成用組成物、例えば、塗布液の粘度を調整するために増粘剤を用いてもよい。
ここでいう増粘剤とは、それを添加することにより液の粘度が増大するものを意味し、添加することにより塗布液の粘度が上昇する大きさとして好ましくは0.05〜50cPであり、さらに好ましくは0.10〜20cPであり、最も好ましくは0.10〜10cPである。
増粘剤としては、例えば、高分子増粘剤が好ましく用いられる。
このような高分子増粘剤を用いることにより、塗布液中の光拡散性粒子の沈降を防止できる上、硬化時の硬化収縮やカールを抑制することも同時にできるため、好ましい。
高分子増粘剤の含有量は防眩層中の全固形分に対して3〜30質量%であることが好ましく、5〜20質量%であることがより好ましく、8〜15質量%であることがさらに好ましい。この範囲にすることで、増粘効果、硬化収縮効果及び硬度を両立できる。
前記防眩フィルムの作製、特に防眩層の作製には、フィルム形成用組成物、例えば、塗布液の粘度を調整するために増粘剤を用いてもよい。
ここでいう増粘剤とは、それを添加することにより液の粘度が増大するものを意味し、添加することにより塗布液の粘度が上昇する大きさとして好ましくは0.05〜50cPであり、さらに好ましくは0.10〜20cPであり、最も好ましくは0.10〜10cPである。
増粘剤としては、例えば、高分子増粘剤が好ましく用いられる。
このような高分子増粘剤を用いることにより、塗布液中の光拡散性粒子の沈降を防止できる上、硬化時の硬化収縮やカールを抑制することも同時にできるため、好ましい。
高分子増粘剤の含有量は防眩層中の全固形分に対して3〜30質量%であることが好ましく、5〜20質量%であることがより好ましく、8〜15質量%であることがさらに好ましい。この範囲にすることで、増粘効果、硬化収縮効果及び硬度を両立できる。
このような増粘剤としては以下のものが挙げられるが、これに限定されない。
ポリ−ε−カプロラクトン
ポリ−ε−カプロラクトンジオール
ポリ−ε−カプロラクトントリオール
ポリビニルアセテート
ポリ(エチレンアジペート)
ポリ(1,4−ブチレンアジペート)
ポリ(1,4−ブチレングルタレート)
ポリ(1,4−ブチレンスクシネート)
ポリ(1,4−ブチレンテレフタレート)
ポリ(エチレンテレフタレート)
ポリ(2−メチル−1,3−プロピレンアジペート)
ポリ(2−メチル−1,3−プロピレングルタレート)
ポリ(ネオペンチルグリコールアジペート)
ポリ(ネオペンチルグリコールセバケート)
ポリ(1,3−プロピレンアジペート)
ポリ(1,3−プロピレングルタレート)
ポリビニルブチラール
ポリビニルホルマール
ポリビニルアセタール
ポリビニルプロパナール
ポリビニルヘキサナール
ポリビニルピロリドン
ポリアクリル酸エステル
ポリメタクリル酸エステル
セルロースアセテート
セルロースプロピオネート
セルロースアセテートブチレート
ポリ−ε−カプロラクトン
ポリ−ε−カプロラクトンジオール
ポリ−ε−カプロラクトントリオール
ポリビニルアセテート
ポリ(エチレンアジペート)
ポリ(1,4−ブチレンアジペート)
ポリ(1,4−ブチレングルタレート)
ポリ(1,4−ブチレンスクシネート)
ポリ(1,4−ブチレンテレフタレート)
ポリ(エチレンテレフタレート)
ポリ(2−メチル−1,3−プロピレンアジペート)
ポリ(2−メチル−1,3−プロピレングルタレート)
ポリ(ネオペンチルグリコールアジペート)
ポリ(ネオペンチルグリコールセバケート)
ポリ(1,3−プロピレンアジペート)
ポリ(1,3−プロピレングルタレート)
ポリビニルブチラール
ポリビニルホルマール
ポリビニルアセタール
ポリビニルプロパナール
ポリビニルヘキサナール
ポリビニルピロリドン
ポリアクリル酸エステル
ポリメタクリル酸エステル
セルロースアセテート
セルロースプロピオネート
セルロースアセテートブチレート
この他にも特開平8−325491号記載のスメクタイト、フッ素四珪素雲母、ベントナイト、シリカ、モンモリロナイト及びポリアクリル酸ソーダ、特開平10−219136エチルセルロース、ポリアクリル酸、有機粘土など、公知の粘度調整剤やチキソトロピー性付与剤を使用することが出来る。
(無機フィラー)
防眩層には、層の屈折率を調整して内部散乱に起因するヘイズ値を調整するため、また、低屈折率層との屈折率差を調整し、反射率、色味を好ましい範囲にするために、前記の光拡散性粒子に加えて、無機フィラーを含有してもよい。無機フィラーは、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなることが好ましい。また、平均粒径は、0.2μm以下であることが好ましく、より好ましくは0.1μm以下、さらに好ましくは0.06μm以下である。このような無機フィラーは、一般的に比重が有機物よりも高く、塗布組成物の密度を高くできるため、光拡散性粒子の沈降速度を遅くする効果もある。なお、このような無機フィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
防眩層には、層の屈折率を調整して内部散乱に起因するヘイズ値を調整するため、また、低屈折率層との屈折率差を調整し、反射率、色味を好ましい範囲にするために、前記の光拡散性粒子に加えて、無機フィラーを含有してもよい。無機フィラーは、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなることが好ましい。また、平均粒径は、0.2μm以下であることが好ましく、より好ましくは0.1μm以下、さらに好ましくは0.06μm以下である。このような無機フィラーは、一般的に比重が有機物よりも高く、塗布組成物の密度を高くできるため、光拡散性粒子の沈降速度を遅くする効果もある。なお、このような無機フィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
防眩層に用いられる無機フィラーは、表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、この場合はフィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
無機フィラーを添加する場合の添加量は、防眩層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
無機フィラーを添加する場合の添加量は、防眩層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
(オルガノシラン化合物)
防眩層にオルガノシラン化合物を用いることができる。オルガノシラン化合物の添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
防眩層に用いるオルガノシラン化合物としては、後述の低屈折率層用オルガノシラン化合物と同様のものを使用することができる。
防眩層にオルガノシラン化合物を用いることができる。オルガノシラン化合物の添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
防眩層に用いるオルガノシラン化合物としては、後述の低屈折率層用オルガノシラン化合物と同様のものを使用することができる。
本発明では防眩層を形成する硬化樹脂と同種の重合性基を有するオルガノシラン化合物の使用が好ましく、厚膜で形成される本発明の防眩層の硬化収縮やカールを抑制するために重合性基当たりの分子量が150以上であることが好ましい。
(防眩層用界面活性剤)
防眩層には、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層形成用の組成物、例えば塗布組成物中に含有することが好ましい。面状均一性を高めることにより、高速塗布することが可能となり、生産性を高めることができる。特にフッ素系の界面活性剤は、より少ない添加量において、防眩フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。
防眩層には、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層形成用の組成物、例えば塗布組成物中に含有することが好ましい。面状均一性を高めることにより、高速塗布することが可能となり、生産性を高めることができる。特にフッ素系の界面活性剤は、より少ない添加量において、防眩フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報中の段落番号[0028]〜[0056]記載の化合物、特開2005−62673号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。
また防眩層上に低屈折率層をオーバーコートする時点で表面エネルギーの低下を防げば、反射防止性能の悪化が防げる。このため、例えば防眩層塗布時にはフッ素系ポリマーを用いて塗布液の表面張力を下げて面状均一性を高め、高速塗布による高生産性を維持し、防眩層塗布後にコロナ処理、UV処理、熱処理、鹸化処理、溶剤処理といった表面処理手法を用いて、表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の防眩層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。表面処理手法として、特に好ましいのはコロナ処理である。
(防汚性の付与)
防汚性の観点から防眩層(もしくはその上に形成されるオーバーコート層等)の表面の水に対する接触角を90度以上とすることが好ましく、95度以上とすることがより好ましく、100度以上とすることが特に好ましい。従来、光拡散層表面の水に対する接触角を上記範囲とするために、防眩層を形成するための硬化性組成物に、フッ素及びケイ素原子の何れかの原子を有する化合物、即ちシリコーン系あるいはフッ素系の防汚剤を含有させることができる。
防汚性の観点から防眩層(もしくはその上に形成されるオーバーコート層等)の表面の水に対する接触角を90度以上とすることが好ましく、95度以上とすることがより好ましく、100度以上とすることが特に好ましい。従来、光拡散層表面の水に対する接触角を上記範囲とするために、防眩層を形成するための硬化性組成物に、フッ素及びケイ素原子の何れかの原子を有する化合物、即ちシリコーン系あるいはフッ素系の防汚剤を含有させることができる。
(溶媒)
防眩層は、直接透明支持体上にウエット塗布により形成される場合が多いので、特に塗布組成物に用いる溶媒は重要な要因となる。溶媒は、上記透光性樹脂等の各種溶質を充分に溶解すること、上記光拡散性粒子を溶解しないこと、塗布〜乾燥過程で塗布ムラ、乾燥ムラを発生しにくいこと、支持体を溶解しないこと(平面性悪化、白化等の故障防止に必要)、逆に最低限の程度には支持体を膨潤させること(密着性に必要)、等の要件を満たしていることが好ましい。
溶媒としては、少なくとも、透明支持体の膨潤性の低く、透明支持体を溶解しない溶媒を主溶媒として含有することが好ましい。主溶媒の具体例としては、支持体にトリアセチルセルロースを用いる場合には、各種ケトン(メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等)、各種セロソルブ(エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等)、その他として、各種アルコール類(プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等)、トルエンなどが好ましく用いられる。
防眩層は、直接透明支持体上にウエット塗布により形成される場合が多いので、特に塗布組成物に用いる溶媒は重要な要因となる。溶媒は、上記透光性樹脂等の各種溶質を充分に溶解すること、上記光拡散性粒子を溶解しないこと、塗布〜乾燥過程で塗布ムラ、乾燥ムラを発生しにくいこと、支持体を溶解しないこと(平面性悪化、白化等の故障防止に必要)、逆に最低限の程度には支持体を膨潤させること(密着性に必要)、等の要件を満たしていることが好ましい。
溶媒としては、少なくとも、透明支持体の膨潤性の低く、透明支持体を溶解しない溶媒を主溶媒として含有することが好ましい。主溶媒の具体例としては、支持体にトリアセチルセルロースを用いる場合には、各種ケトン(メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等)、各種セロソルブ(エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等)、その他として、各種アルコール類(プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等)、トルエンなどが好ましく用いられる。
また、上記の中から選択した、透明支持体の膨潤性の低い主溶媒に対して、膨潤性の高い少量溶媒を添加することにより、他の性能、面状を悪化させることなく、透明支持体との密着性を向上させることができる。具体的には、主溶媒として、メチルイソブチルケトン、トルエンを用い、少量溶媒として、メチルエチルケトン、アセトン、シクロヘキサノン、プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等を用いることができ、特に好ましくは、主溶媒として、メチルイソブチルケトン、トルエンを用い、少量溶媒として、メチルエチルケトン、シクロヘキサノン、を用いることである。また、溶媒の親水性制御のために、プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等を添加して用いることもでき、特にプロピレングリコール、エチレングリコールが好ましく用いることができる。
主溶媒と少量溶媒の混合比は、重量比で99:1〜50:50が好ましく、95:5〜60:40がより好ましい。塗布後の乾燥工程における面質のバラツキが小さくなる点で、50:50以下が好ましい。
主溶媒と少量溶媒の混合比は、重量比で99:1〜50:50が好ましく、95:5〜60:40がより好ましい。塗布後の乾燥工程における面質のバラツキが小さくなる点で、50:50以下が好ましい。
また、上記の中から選択した主溶媒に対して、水酸基を有する少量溶媒を添加することにより、表面凹凸が調整でき、好ましい。水酸基を有する少量溶媒は、塗布組成物の乾燥工程において主溶媒よりも後まで残留することで表面凹凸性を大きくすることができるため、20〜30℃の範囲内のある温度における蒸気圧が前記主溶媒に対して低いことが好ましい。例えば、主溶媒をメチルイソブチルケトン(21.7℃における蒸気圧:16.5mmHg)に対して水酸基を有する少量溶媒としてプロピレングリコール(20.0℃における蒸気圧:0.08mmHg)の組み合わせが好ましい一例として挙げられる。主溶媒と水酸基を有する少量溶媒の混合比は、重量比で100:0〜50:50が好ましく、100:0〜80:20がより好ましい。塗布液の安定性や、塗布後の乾燥工程における面質のバラツキが小さくなる点で、50:50以下が好ましい。特に、表面凹凸起因の表面散乱を抑制するためには、100:0〜97:3であるとより好ましい。
[低屈折率層]
前記防眩フィルムは、低屈折率層を有していてもよい。
前記低屈折率層の屈折率は、1.30〜1.55であることが好ましく、好ましくは1.35〜1.45の範囲である。膜の機械強度の点で屈折率は1.30以上が好ましく、反射防止性能の点で1.55以下が好ましい。
さらに、低屈折率層は下記数式(I)を満たすことが低反射率化の点で好ましい。
数式(I)
(mλ/4)×0.7<n1×d1<(mλ/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、前記数式(I)を満たすとは、前記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
前記防眩フィルムは、低屈折率層を有していてもよい。
前記低屈折率層の屈折率は、1.30〜1.55であることが好ましく、好ましくは1.35〜1.45の範囲である。膜の機械強度の点で屈折率は1.30以上が好ましく、反射防止性能の点で1.55以下が好ましい。
さらに、低屈折率層は下記数式(I)を満たすことが低反射率化の点で好ましい。
数式(I)
(mλ/4)×0.7<n1×d1<(mλ/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、前記数式(I)を満たすとは、前記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
低屈折率層は、例えば含フッ素ポリマーを主成分とする硬化性組成物を塗布、乾燥、硬化して形成される硬化膜である。ここで、「含フッ素ポリマーを主成分とする硬化性組成物」とは、低屈折率層を形成したときに含フッ素ポリマーがバインダーポリマーとして機能しうる程度の量で含まれていることを意味し、含フッ素ポリマーの含有量の好ましい範囲は後述の通りである。
また、低屈折率層には、含フッ素ポリマーのほかに、無機微粒子及びオルガノシラン化合物の少なくともいずれかを含有するのが好ましい。低屈折率層を形成する素材について以下に説明する。
また、低屈折率層には、含フッ素ポリマーのほかに、無機微粒子及びオルガノシラン化合物の少なくともいずれかを含有するのが好ましい。低屈折率層を形成する素材について以下に説明する。
(低屈折率層用含フッ素ポリマー)
含フッ素ポリマーは、硬化被膜にした場合の被膜の動摩擦係数が0.03〜0.20、水に対する接触角が90〜120°、純水の滑落角が70°以下であり、熱又は電離放射線により架橋するポリマーであるのが、ロールフィルムをウェブ搬送しながら塗布、硬化する場合などにおいて生産性向上の点で好ましい。
また、反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなるので、剥離力は、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難いので、該表面硬度が、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
含フッ素ポリマーは、硬化被膜にした場合の被膜の動摩擦係数が0.03〜0.20、水に対する接触角が90〜120°、純水の滑落角が70°以下であり、熱又は電離放射線により架橋するポリマーであるのが、ロールフィルムをウェブ搬送しながら塗布、硬化する場合などにおいて生産性向上の点で好ましい。
また、反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなるので、剥離力は、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難いので、該表面硬度が、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
低屈折率層に用いられる含フッ素ポリマーは、フッ素原子を35〜80質量%の範囲で含有し、且つ架橋性もしくは重合性の官能基を含む含フッ素ポリマーであることが好ましい。このような含フッ素ポリマーとしては、例えば、パーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。含フッ素共重合体の場合、主鎖は、炭素原子のみからなるのが好ましい。すなわち、主鎖骨格に酸素原子や窒素原子などを有しないのが好ましい。
前記含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
前記架橋反応性単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位;カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー〔例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等〕の重合によって得られる構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
また、前記含フッ素モノマー単位及び前記架橋反応性単位以外に溶剤への溶解性、皮膜の透明性等の観点から、適宜フッ素原子を含有しないモノマーを共重合させて、他の重合単位を導入することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類〔エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等〕、アクリル酸エステル類〔アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル〕、メタクリル酸エステル類〔メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等〕、スチレン誘導体〔スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等〕、ビニルエーテル類〔メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等〕、ビニルエステル類〔酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等〕、アクリルアミド類〔N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等〕、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。
前記含フッ素ポリマーに対しては特開平10−25388号及び特開平10−147739号各公報に記載のごとく適宜硬化剤を併用してもよい。
特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類又はビニルエステル類とのランダム共重合体である。特に単独で架橋反応可能な基〔(メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等〕を有していることが好ましい。
これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
低屈折率層用含フッ素ポリマーの好ましい形態として一般式1で表される共重合体が挙げられる。
一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N及びSから選ばれるヘテロ原子を有していてもよい。
好ましい例としては、*−(CH2)2−O−**, *−(CH2)2−NH−**, *−(CH2)4−O−**, *−(CH2)6−O−**, *−(CH2)2−O−(CH2)2−O−**,*−CONH−(CH2)3−O−**, *−CH2CH(OH)CH2−O−**, *−CH2CH2OCONH(CH2)3−O−**(* はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0又は1を表わす。
好ましい例としては、*−(CH2)2−O−**, *−(CH2)2−NH−**, *−(CH2)4−O−**, *−(CH2)6−O−**, *−(CH2)2−O−(CH2)2−O−**,*−CONH−(CH2)3−O−**, *−CH2CH(OH)CH2−O−**, *−CH2CH2OCONH(CH2)3−O−**(* はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0又は1を表わす。
一般式1中、Xは水素原子又はメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
一般式1中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていてもよい。
好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸及びその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。
x、y、zはそれぞれの構成成分のモル%を表わし、30≦x≦60、5≦y≦70、0≦z≦65が好ましく、更に好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。ただし、x+y+z=100である。
本発明に用いられる共重合体の特に好ましい形態として一般式2が挙げられる。
本発明に用いられる共重合体の特に好ましい形態として一般式2が挙げられる。
一般式2においてXは一般式1と同じ意味を表し、好ましい範囲も同じである。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を表し、単一組成であっても複数の組成によって構成されていてもよい。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
x、y、z1及びz2はそれぞれの繰返し単位のmol%を表し、x及びyは、それぞれ30≦x≦60、5≦y≦70を満たすのが好ましく、更に好ましくは、35≦x≦55、30≦y≦60の場合であり、特に好ましくは40≦x≦55、40≦y≦55の場合である。z1及びz2については、0≦z1≦65、0≦z2≦65を満たすのが好ましく、更に好ましくは0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。ただし、x+y+z1+z2=100である。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を表し、単一組成であっても複数の組成によって構成されていてもよい。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
x、y、z1及びz2はそれぞれの繰返し単位のmol%を表し、x及びyは、それぞれ30≦x≦60、5≦y≦70を満たすのが好ましく、更に好ましくは、35≦x≦55、30≦y≦60の場合であり、特に好ましくは40≦x≦55、40≦y≦55の場合である。z1及びz2については、0≦z1≦65、0≦z2≦65を満たすのが好ましく、更に好ましくは0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。ただし、x+y+z1+z2=100である。
一般式1又は2で表される共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。この際用いられる再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
一般式1又は2で表わされる共重合体の好ましい具体例としては、特開2004−45462号公報の[0035]〜[0047]に記載されたものを挙げることができ、該公報に記載の方法により合成することができる。
一般式1又は2で表わされる共重合体の好ましい具体例としては、特開2004−45462号公報の[0035]〜[0047]に記載されたものを挙げることができ、該公報に記載の方法により合成することができる。
(低屈折率層用無機微粒子)
低屈折率層中の無機微粒子の配合量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。
無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましい。例えば、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点で、シリカ微粒子が好ましい。
無機微粒子の平均粒径は、低屈折率層の厚みの30%以上100%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上100nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
前記無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。無機微粒子は、結晶質でも、アモルファスのいずれでもよく、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、無機微粒子の平均粒径はコールターカウンターにより測定することができる。
低屈折率層中の無機微粒子の配合量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。
無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましい。例えば、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点で、シリカ微粒子が好ましい。
無機微粒子の平均粒径は、低屈折率層の厚みの30%以上100%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上100nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
前記無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。無機微粒子は、結晶質でも、アモルファスのいずれでもよく、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、無機微粒子の平均粒径はコールターカウンターにより測定することができる。
低屈折率層の屈折率上昇をより一層少なくするために、前記無機微粒子は、中空構造であるのが好ましく、また、無機微粒子の屈折率は1.17〜1.40、より好ましくは1.17〜1.35、さらに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体としての屈折率を表し、中空構造の無機微粒子の場合に外殻の無機質のみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(II)で表される空隙率xは、好ましくは10〜60%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。
(数式II)
x=(4πa3/3)/(4πb3/3)×100
(数式II)
x=(4πa3/3)/(4πb3/3)×100
中空の無機微粒子の屈折率をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点からは屈折率1.17未満の低屈折率の粒子は成り立たない。
なお、無機微粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定することができる。
なお、無機微粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定することができる。
また、平均粒径が低屈折率層の厚みの25%未満である無機微粒子(以下「小サイズ無機微粒子」と称す)の少なくとも1種を前記の好ましい範囲内の粒径の無機微粒子(以下「大サイズ無機微粒子」と称す)と併用してもよい。
小サイズ無機微粒子は、大サイズ無機微粒子同士の隙間に存在することができるため、大サイズ無機微粒子の保持剤として寄与することができる。
小サイズ無機微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このような無機微粒子を用いると、原料コスト及び保持剤効果の点で好ましい。
小サイズ無機微粒子は、大サイズ無機微粒子同士の隙間に存在することができるため、大サイズ無機微粒子の保持剤として寄与することができる。
小サイズ無機微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このような無機微粒子を用いると、原料コスト及び保持剤効果の点で好ましい。
無機微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていてもよい。中でもカップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
カップリング剤は、低屈折率層の無機微粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
カップリング剤は、低屈折率層の無機微粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
(低屈折率層用オルガノシラン化合物及びその誘導体)
本発明において、反射防止フィルムの各層に特に好ましく用いることができるオルガノシラン化合物について記載する。
皮膜の物理強度(耐擦傷性など)、皮膜と皮膜に隣接する層の密着性を改良する点でオルガノシラン化合物及び/又はその誘導体を透明基材上のいずれかの層に添加することが好ましい。
本発明において、反射防止フィルムの各層に特に好ましく用いることができるオルガノシラン化合物について記載する。
皮膜の物理強度(耐擦傷性など)、皮膜と皮膜に隣接する層の密着性を改良する点でオルガノシラン化合物及び/又はその誘導体を透明基材上のいずれかの層に添加することが好ましい。
オルガノシラン化合物及び/又はその誘導体としては、下記一般式(a)で表される化合物及び/又はその誘導体を用いることができる。好ましいのは、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アルコキシシリル基、アシルオキシ基、アシルアミノ基を含有するオルガノシラン化合物であり、特に好ましいのはエポキシ基、重合性のアシルオキシ基((メタ)アクリロイルなど)、重合性のアシルアミノ基(アクリルアミノ、メタクリルアミノなど)を含有するオルガノシラン化合物である。
一般式(a) (R10)s−Si(Z)4-s
一般式(a)中、R10は置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。アルキル基としてはメチル、エチル、プロピル、イソプロピル、t−ブチル、sec−ブチル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6である。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Zは水酸基又は加水分解可能な基を表す。例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR12COO(R12は水素原子又は炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C2H5COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基又はエトキシ基である。
sは1〜3の整数を表す。好ましくは1又は2であり、特に好ましくは1である。
R10あるいはZが複数存在するとき、複数のR10あるいはZはそれぞれ異なっていてもよい。
Zは水酸基又は加水分解可能な基を表す。例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR12COO(R12は水素原子又は炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C2H5COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基又はエトキシ基である。
sは1〜3の整数を表す。好ましくは1又は2であり、特に好ましくは1である。
R10あるいはZが複数存在するとき、複数のR10あるいはZはそれぞれ異なっていてもよい。
R10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ基(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アルコキシシリル基(トリメトキシシリル、トリエトキシシリル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更にこれらの置換基で置換されていてもよい。
これらのうちで更に好ましくは水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アルコキシシリル基、アシルオキシ基、アシルアミノ基である。特に、架橋又は重合性の官能基が好ましく、エポキシ基、重合性のアシルオキシ基((メタ)アクリロイル)、重合性のアシルアミノ基(アクリルアミノ、メタクリルアミノ)が好ましい。またこれら置換基は更に上記の置換基で置換されていてもよい。
R10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましい。一般式(a)で表されるオルガノシラン化合物及びその誘導体の中でも、下記一般式(b)で表されるビニル重合性の置換基を有するオルガノシラン化合物及び/又はその誘導体が好ましい。
一般式(b)
一般式(b)において、R11は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、又は塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、及び塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、及び塩素原子が更に好ましく、水素原子及びメチル基が特に好ましい。
Yは単結合、*−COO−**、*−CONH−**、*−O−**、又は*−NH−CO−NH−**を表し、単結合、*−COO−**、*−CONH−**が好ましく、単結合、*−COO−**が更に好ましく、*−COO−**が特に好ましい。ここで、*は=C(R11)−に結合する位置を、**はLに結合する位置を表す。
Yは単結合、*−COO−**、*−CONH−**、*−O−**、又は*−NH−CO−NH−**を表し、単結合、*−COO−**、*−CONH−**が好ましく、単結合、*−COO−**が更に好ましく、*−COO−**が特に好ましい。ここで、*は=C(R11)−に結合する位置を、**はLに結合する位置を表す。
L1は2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていてもよい。
tは0又は1を表す。tとして好ましくは0である。
R10は一般式(a)と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Zは一般式(a)と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。Zが複数存在するとき、複数のZはそれぞれ同じであっても異なっていてもよい。
R10は一般式(a)と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Zは一般式(a)と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。Zが複数存在するとき、複数のZはそれぞれ同じであっても異なっていてもよい。
一般式(a)、一般式(b)の化合物、及びその誘導体は、2種類以上を併用してもよい。
一般式(a)、一般式(b)で表されるオルガノシラン化合物の好ましい具体例としては、特開2004−170901号公報の[0036]〜[0044]に記載されたM−1〜M−60が挙げられるが、本発明はこれらに限定されるものではない。
一般式(a)、一般式(b)で表されるオルガノシラン化合物の好ましい具体例としては、特開2004−170901号公報の[0036]〜[0044]に記載されたM−1〜M−60が挙げられるが、本発明はこれらに限定されるものではない。
これらのうち、(M−1)、(M−2)、及び(M−5)が特に好ましい。
本発明において、一般式(a)、一般式(b)で表されるオルガノシラン化合物の誘導体とは、一般式(a)、一般式(b)で表されるオルガノシラン化合物の加水分解物、部分縮合物などを意味する。以下、本発明で用いるオルガノシラン化合物の好ましい誘導体(加水分解物及び/又は部分縮合物)について説明する。
オルガノシラン化合物の加水分解反応及び/又は縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
オルガノシラン化合物の加水分解反応及び/又は縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。無機酸では塩酸、硫酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸がより好ましく、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が更に好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。
オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒を塗料あるいは塗料の一部として用いることが好ましく、その他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒を塗料あるいは塗料の一部として用いることが好ましく、その他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
このうち、アルコール類としては、例えば1価アルコール又は2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における固形分の濃度は特に限定されるものではないが通常1%〜90質量%の範囲であり、好ましくは20質量%〜70質量%の範囲である。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における固形分の濃度は特に限定されるものではないが通常1%〜90質量%の範囲であり、好ましくは20質量%〜70質量%の範囲である。
オルガノシラン化合物の加水分解性基1モルに対して0.3〜2モル、好ましくは0.5〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、25〜100℃で、撹拌することにより行われる。
本発明では、一般式R13OH(式中、R13は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R14COCH2COR15(式中、R14は炭素数1〜10のアルキル基、R15は炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti及びAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
本発明では、一般式R13OH(式中、R13は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R14COCH2COR15(式中、R14は炭素数1〜10のアルキル基、R15は炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti及びAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
金属キレート化合物は、一般式R13OH(式中、R13は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R14COCH2COR15(式中、R14は炭素数1〜10のアルキル基、R15は炭素数1〜10のアルキル基又は炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。2種以上の金属キレート化合物を併用してもよい。本発明に用いられる金属キレート化合物は、一般式Zr(OR13)p1(R14COCHCOR15)p2、Ti(OR13)q1(R14COCHCOR15)q2、及びAl(OR13)r1(R14COCHCOR15)r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物及び/又は部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR13及びR14は、同一又は異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R15は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1及びr2は、それぞれ、p1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
金属キレート化合物の具体例としは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシ・ビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウム、等が好ましい。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
金属キレート化合物は、前記オルガノシラン化合物に対し、好ましくは0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。0.01質量%未満では、オルガノシラン化合物の縮合反応が遅く、塗膜の耐久性が低下するおそれがあり、一方50質量%を超えると、オルガノシラン化合物の加水分解物及び/又は部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が低下するおそれがあり好ましくない。
上記オルガノシラン化合物及び/又はその誘導体(加水分解物、部分縮合物)、さらに必要に応じて添加される金属キレート化合物などを含む組成物に、β−ジケトン化合物及び/又はβ−ケトエステル化合物を添加することが好ましい。
低屈折率層における、含フッ素ポリマーに対するオルガノシランの化合物成分の使用量は、5〜100質量%が好ましく、5〜40質量%がより好ましく、8〜35質量%が更に好ましく、10〜30質量%が特に好ましい。この範囲で使用することで良好な面状を維持しながら、廷屈折率を実現できる。
(ゾルゲル素材)
低屈折率層用の素材として、各種ゾルゲル素材を用いることもできる。このようなゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物、及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
低屈折率層用の素材として、各種ゾルゲル素材を用いることもできる。このようなゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物、及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
(低屈折率層用組成物に含まれるその他の物質)
低屈折率層用組成物には、好ましくは、前述の含フッ素ポリマー、無機微粒子、及びオルガノシラン化合物の他に、必要に応じて各種添加剤及びラジカル重合開始剤、カチオン重合開始剤を添加することができる。この際、添加剤等の固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
低屈折率層用組成物には、好ましくは、前述の含フッ素ポリマー、無機微粒子、及びオルガノシラン化合物の他に、必要に応じて各種添加剤及びラジカル重合開始剤、カチオン重合開始剤を添加することができる。この際、添加剤等の固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
低屈折率層と直接接する下層との界面密着性等の観点からは、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸又はその無水物等の硬化剤を少量添加することもできる。これらを添加する場合には低屈折率層皮膜の全固形分に対して30質量%以下の範囲とすることが好ましく、20質量%以下の範囲とすることがより好ましく、10質量%以下の範囲とすることが特に好ましい。
また、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系化合物あるいはフッ素系化合物の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
シリコーン系化合物の好ましい例としては、ジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端及び/又は側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていてもよく、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、3000〜30000であることがさらに好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。
フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CF2CF3,−CH2(CF2)4H,−CH2(CF2)8CF3,−CH2CH2(CF2)4H等)であっても、分岐構造(例えば−CH(CF3)2,−CH2CF(CF3)2,−CH(CH3)CF2CF3,−CH(CH3)(CF2)5CF2H等)であっても、脂環式構造(好ましくは5員環又は6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基又はこれらで置換されたアルキル基等)であってもよく、エーテル結合を有していてもよい(例えば−CH2OCH2CF2CF3,−CH2CH2OCH2C4F8H,−CH2CH2OCH2CH2C8F17,−CH2CH2OCF2CF2OCF2CF2H等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。
フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていてもよく、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300(以上商品名)などが挙げられるがこれらに限定されるものではない。
防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低n層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。
また、低屈折率層用組成物には、上述した無機微粒子以外の無機フィラーを本発明の所望の効果を損なわない範囲の添加量で添加することもできる。無機フィラーとしては、前述のものを用いることができる。
(低屈折率層用の溶剤)
低屈折率層を形成するための組成物、例えば塗布組成物に用いられる溶剤としては、各成分を溶解又は分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で選ばれる各種の溶剤が使用できる。乾燥負荷の観点からは、常圧、室温における沸点が100℃以下の溶剤を主成分とし、乾燥速度の調整のために沸点が100℃以上の溶剤を少量含有することが好ましい。
低屈折率層を形成するための組成物、例えば塗布組成物に用いられる溶剤としては、各成分を溶解又は分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で選ばれる各種の溶剤が使用できる。乾燥負荷の観点からは、常圧、室温における沸点が100℃以下の溶剤を主成分とし、乾燥速度の調整のために沸点が100℃以上の溶剤を少量含有することが好ましい。
沸点が100℃以下の溶剤としては、例えば、ヘキサン(沸点68.7℃)、ヘプタン(98.4℃)、シクロヘキサン(80.7℃)、ベンゼン(80.1℃)などの炭化水素類、ジクロロメタン(39.8℃)、クロロホルム(61.2℃)、四塩化炭素(76.8℃)、1,2−ジクロロエタン(83.5℃)、トリクロロエチレン(87.2℃)などのハロゲン化炭化水素類、ジエチルエーテル(34.6℃)、ジイソプロピルエーテル(68.5℃)、ジプロピルエーテル (90.5℃)、テトラヒドロフラン(66℃)などのエーテル類、ギ酸エチル(54.2℃)、酢酸メチル(57.8℃)、酢酸エチル(77.1℃)、酢酸イソプロピル(89℃)などのエステル類、アセトン(56.1℃)、2−ブタノン(メチルエチルケトンと同じ、79.6℃)などのケトン類、メタノール(64.5℃)、エタノール(78.3℃)、2−プロパノール(82.4℃)、1−プロパノール(97.2℃)などのアルコール類、アセトニトリル(81.6℃)、プロピオニトリル(97.4℃)などのシアノ化合物類、二硫化炭素(46.2℃)などがある。このうちケトン類、エステル類が好ましく、特に好ましくはケトン類である。ケトン類の中では2−ブタノンが特に好ましい。
沸点が100℃以上の溶剤としては、例えば、オクタン(125.7℃)、トルエン(110.6℃)、キシレン(138℃)、テトラクロロエチレン(121.2℃)、クロロベンゼン(131.7℃)、ジオキサン(101.3℃)、ジブチルエーテル(142.4℃)、酢酸イソブチル(118℃)、シクロヘキサノン(155.7℃)、2−メチル−4−ペンタノン(MIBKと同じ、115.9℃)、1−ブタノール(117.7℃)、N,N−ジメチルホルムアミド(153℃)、N,N−ジメチルアセトアミド(166℃)、ジメチルスルホキシド(189℃)などがある。好ましくは、シクロヘキサノン、2−メチル−4−ペンタノンである。
[透明導電性層]
前記防眩フィルムには、帯電防止の目的で透明導電性層を設けることがフィルム表面での静電気防止の点で好ましい。透明導電性層は、ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合に有効である。透明導電性層を形成する方法としては、例えば、通電性粒子と反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の公知の方法を挙げることができる。塗工する場合、その方法は特に限定されず、塗工液の特性や塗工量に応じて、例えば、ロールコート、グラビアコート、バーコート、押出しコート等の公知の方法より最適な方法を選択して行えばよい。
透明導電性層は、透明支持体又は防眩層上に直接又はこれらとの接着を強固にするプライマー層を介して形成することができる。
前記防眩フィルムには、帯電防止の目的で透明導電性層を設けることがフィルム表面での静電気防止の点で好ましい。透明導電性層は、ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合に有効である。透明導電性層を形成する方法としては、例えば、通電性粒子と反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の公知の方法を挙げることができる。塗工する場合、その方法は特に限定されず、塗工液の特性や塗工量に応じて、例えば、ロールコート、グラビアコート、バーコート、押出しコート等の公知の方法より最適な方法を選択して行えばよい。
透明導電性層は、透明支持体又は防眩層上に直接又はこれらとの接着を強固にするプライマー層を介して形成することができる。
[透明支持体]
前記防眩フィルムの透明支持体としては、透明プラスチックフィルム基材を用いるのが好ましい。透明プラスチックフィルム基材を形成するポリマーとしては、セルロースアシレート(例、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、代表的には富士写真フイルム社製TAC−TD80U,TD80ULなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ノルボルネン系樹脂、非晶質ポリオレフィンが好ましく、特にトリアセチルセルロースが好ましい。
前記防眩フィルムの透明支持体としては、透明プラスチックフィルム基材を用いるのが好ましい。透明プラスチックフィルム基材を形成するポリマーとしては、セルロースアシレート(例、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、代表的には富士写真フイルム社製TAC−TD80U,TD80ULなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ノルボルネン系樹脂、非晶質ポリオレフィンが好ましく、特にトリアセチルセルロースが好ましい。
セルロースアシレートは、単層又は複数の層からなる。単層のセルロースアシレートは、特開平7−11055号等で開示されているドラム流延、あるいはバンド流延等により作成され、後者の複数の層からなるセルロースアシレートは、公開特許公報の特開昭61−94725号、特公昭62−43846号等で開示されている、いわゆる共流延法により作製される。すなわち、原料フレークをハロゲン化炭化水素類(ジクロロメタン等、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えた溶液(ドープと称する)を、水平式のエンドレスの金属ベルト又は回転するドラムからなる支持体の上に、ドープ供給手段(ダイと称する)により流延する際、単層ならば単一のドープを単層流延し、複数の層ならば高濃度のセルロースエステルドープの両側に低濃度ドープを共流延し、支持体上である程度乾燥して剛性が付与されたフィルムを支持体から剥離し、次いで各種の搬送手段により乾燥部を通過させて溶剤を除去することからなる方法である。
前記のような、セルロースアシレートを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし地球環境や作業環境の観点から、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。
前記のような種々のセルロースアシレートフィルム(トリアセチルセルロースなどからなるフィルム)及びその製造法については発明協会公開技報公技番号2001−1745号(2001年3月15日発行)に記載されている。
セルロースアシレートフィルムの厚みとしては40μm〜120μmが好ましい。ハンドリング適性、塗布適性等を考慮すると80μm前後が好ましいが、近年の表示装置の薄手化の傾向から、偏光板の薄手化のニーズが大きく、偏光板薄手化の観点では40μm〜60μm前後が好ましい。このような薄手のセルロースアシレートフィルムを本発明の防眩フィルムの透明支持体として用いる場合には、セルロースアシレートフィルムに直接塗布する層の溶媒、膜厚、架橋収縮率等を最適化することにより前記のハンドリング、塗布適性等の問題を回避することが好ましい。
[防眩フィルムのその他の層]
透明支持体と前記防眩層との間に設けてもよい他の層として、防湿層、密着改良層、虹ムラ(干渉ムラ)防止層等が挙げられる。これらの層は、公知の方法にて形成することができる。
透明支持体と前記防眩層との間に設けてもよい他の層として、防湿層、密着改良層、虹ムラ(干渉ムラ)防止層等が挙げられる。これらの層は、公知の方法にて形成することができる。
[防眩フィルムの製造方法]
前記防眩フィルム、例えば防眩性反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
また、防眩層及び低屈折層を設ける場合を例として説明するが、低屈折層を設けない態様を採用してもよい。
前記防眩フィルム、例えば防眩性反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
また、防眩層及び低屈折層を設ける場合を例として説明するが、低屈折層を設けない態様を採用してもよい。
(塗布液の調製)
まず、各層を形成するための成分を含有した塗布液を調製する。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。
まず、各層を形成するための成分を含有した塗布液を調製する。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。
防眩層を形成する塗布液中には、直接その上に形成される低屈折率層の乾燥膜厚(50nm〜120nm程度)に相当する大きさの異物を概ね全て(90%以上を指す)除去できるろ過をすることが好ましい。防眩性を付与する為の光拡散性粒子が低屈折率層の膜厚と同等以上であるため、前記ろ過は、光拡散性粒子以外の全ての素材を添加した中間液に対して行うことが好ましい。また、前記のような粒径の小さな異物を除去可能なフィルターが入手できない場合には、少なくとも直接その上に形成される層のウエット膜厚(8〜40μm程度)に相当する異物を概ね全て除去できるろ過をすることが好ましい。このような手段により、直接その上に形成される層の点欠陥を減少することができる。
(塗布)
次に、防眩層、及び必要に応じて低屈折率層を形成するための塗布液をエクストルージョン法(ダイコート法)、マイクログラビア法等の塗布方法により透明支持体上に塗布し、加熱・乾燥する。その後、活性エネルギー線、例えば光照射及び/又は加熱して、防眩層ないし低屈折率層を形成するための硬化性化合物を硬化する。これにより防眩層、低屈折率層が形成される。
次に、防眩層、及び必要に応じて低屈折率層を形成するための塗布液をエクストルージョン法(ダイコート法)、マイクログラビア法等の塗布方法により透明支持体上に塗布し、加熱・乾燥する。その後、活性エネルギー線、例えば光照射及び/又は加熱して、防眩層ないし低屈折率層を形成するための硬化性化合物を硬化する。これにより防眩層、低屈折率層が形成される。
(乾燥)
防眩層及び低屈折率層は、基材フィルム上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送される。その際の乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。
防眩層及び低屈折率層は、基材フィルム上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送される。その際の乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。
また、各層の塗布組成物を基材フィルム上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。
また、各層の塗布組成物を基材フィルム上に塗布した後、乾燥ゾーン内で基材フィルムの塗布面とは反対の面に接触する搬送ロールと基材フィルムとの温度差を0℃〜20℃の範囲内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
また、各層の塗布組成物を基材フィルム上に塗布した後、乾燥ゾーン内で基材フィルムの塗布面とは反対の面に接触する搬送ロールと基材フィルムとの温度差を0℃〜20℃の範囲内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
表面凹凸を乾燥条件である程度制御することも可能である。塗布後早く乾燥風を当てることで、表面凹凸の形成を抑制できることから、好ましい表面凹凸範囲に制御することも可能である。
(硬化)
溶剤の乾燥ゾーンの後に、ウェブで活性エネルギー線、例えば電離放射線及び/又は熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化する。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm2〜1000mJ/cm2の照射量の紫外線を照射して各層を硬化するのが好ましい。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。更に表面硬化を促進する為に窒素ガス等をパージして酸素濃度を低下する必要がある際には、酸素濃度0.01%〜5%が好ましく、幅方向の分布は酸素濃度で2%以下が好ましい。
溶剤の乾燥ゾーンの後に、ウェブで活性エネルギー線、例えば電離放射線及び/又は熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化する。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm2〜1000mJ/cm2の照射量の紫外線を照射して各層を硬化するのが好ましい。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。更に表面硬化を促進する為に窒素ガス等をパージして酸素濃度を低下する必要がある際には、酸素濃度0.01%〜5%が好ましく、幅方向の分布は酸素濃度で2%以下が好ましい。
また、防眩層の硬化率(100−残存官能基含率)が100%未満のある値となった場合、その上に低屈折率層を設けて電離放射線及び/又は熱により低屈折率層を硬化した際に下層の防眩層の硬化率が低屈折率層を設ける前よりも高くなると、防眩層と低屈折率層との間の密着性が改良され、好ましい。
以上のようにして製造された防眩フィルム、例えば防眩性反射防止フィルムを、偏光膜の表面に貼合等して本発明の偏光板を作製する。この偏光板を液晶表示装置内に配置する場合は、片面に粘着層を設ける等して、防眩フィルムがディスプレイの最表面に配置されるように組み込むのが好ましい。前記防眩フィルムは、偏光膜を保護する機能を有しているのが好ましく、偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。
前記防眩フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、前記防眩フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐擦傷性、防汚性等も優れた偏光板とすることができる。
前記防眩フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、前記防眩フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐擦傷性、防汚性等も優れた偏光板とすることができる。
防眩フィルムを偏光膜の2枚の保護フィルムの内の一方として用いて偏光板を作製する際には、前記防眩フィルムを、防眩構造を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。防眩フィルムの親水化処理としては、下記の鹸化処理を行うことが好ましい。
(鹸化処理)
(1)アルカリ液に浸漬する方法
アルカリ液の中に防眩フィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、防眩フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
(1)アルカリ液に浸漬する方法
アルカリ液の中に防眩フィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、防眩フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理は、防眩層や低屈折率層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、上記のような浸漬法では同時に防眩層や低屈折率層を有する表面から内部までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる各層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。偏光膜との接着性の点で、50度以下が好ましい。一方、反射防止膜の受けるダメージが小さく、物理強度を損なわない点で、10度以上が好ましい。
(2)アルカリ液を塗布する方法
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を防眩層や反射防止膜を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を防眩層や反射防止膜を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
前記(1)、(2)のどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、前述の防眩フィルム製造工程の後に加えて一連の操作で行ってもよい。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率よく偏光板を作成することができる。
(3)防眩層や反射防止層をラミネートフィルムで保護して鹸化する方法
前記(2)と同様に、防眩層及び/又は低屈折率層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、その後ラミネートフィルムを剥離することができる。この方法でも、防眩層、低屈折率層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理を透明支持体、例えばトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する反面、特別なアルカリ液を塗布する装置が不要である利点がある。
前記(2)と同様に、防眩層及び/又は低屈折率層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、その後ラミネートフィルムを剥離することができる。この方法でも、防眩層、低屈折率層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理を透明支持体、例えばトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する反面、特別なアルカリ液を塗布する装置が不要である利点がある。
(4)防眩層まで形成後にアルカリ液に浸漬する方法
防眩層まではアルカリ液に対する耐性があるが、低屈折率層がアルカリ液に対する耐性不足である場合には、防眩層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に防眩層上に低屈折率層を形成することもできる。製造工程が煩雑になるが、特に低屈折率層がフッ素含有ゾル−ゲル膜等、親水基を有する場合には防眩層と低屈折率層との層間密着性が向上する利点がある。
防眩層まではアルカリ液に対する耐性があるが、低屈折率層がアルカリ液に対する耐性不足である場合には、防眩層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に防眩層上に低屈折率層を形成することもできる。製造工程が煩雑になるが、特に低屈折率層がフッ素含有ゾル−ゲル膜等、親水基を有する場合には防眩層と低屈折率層との層間密着性が向上する利点がある。
(5)予め鹸化済の透明支持体、例えばトリアセチルセルロースフィルムに防眩層や反射防止層を形成する方法
透明支持体、例えばトリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接又は他の層を介して防眩層、低屈折率層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、防眩層又は他の層と鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、防眩層又は他の層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから防眩層又は他の層を形成することで対処できる。また、防眩層又は他の層が親水性基を有する場合には層間密着が良好なこともある。
透明支持体、例えばトリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接又は他の層を介して防眩層、低屈折率層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、防眩層又は他の層と鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、防眩層又は他の層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから防眩層又は他の層を形成することで対処できる。また、防眩層又は他の層が親水性基を有する場合には層間密着が良好なこともある。
[偏光層]
偏光層には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜を用いることができる。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光膜は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光膜は長手方向に対して垂直に吸収軸を有す。
偏光層には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜を用いることができる。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光膜は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光膜は長手方向に対して垂直に吸収軸を有す。
[偏光板の製造方法]
本発明の偏光板の好ましい製造方法は、防眩フィルム、偏光膜、及び光学補償フィルムをそれぞれ長尺の状態で連続的に積層する工程を含む。該長尺の偏光板は用いられる液晶表示装置の画面の大きさに合わせて裁断される。
本発明の偏光板の好ましい製造方法は、防眩フィルム、偏光膜、及び光学補償フィルムをそれぞれ長尺の状態で連続的に積層する工程を含む。該長尺の偏光板は用いられる液晶表示装置の画面の大きさに合わせて裁断される。
偏光層は、一般に双方の表面に保護膜を有する。本発明において、前記光学補償フィルム及び/又は前記防眩フィルムを、偏光層の保護膜として機能させることができる。かかる場合は、前記光学補償フィルム側及び/又は前記防眩フィルム側の偏光層の表面には、別途保護膜を貼り合わせる必要はない。本発明の偏光板において、偏光層と前記光学補償フィルムとの間には、等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれているのが好ましい。実質的に等方的な透明保護フィルムとしては、具体的には、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmであるフィルムである。セルロースアシレート又は環状ポリオレフィンを含むフィルムが好ましい。
本発明の偏光板の第1の態様は、前記第1の光学異方性層、前記第2の光学異方性層、前記偏光層及び前記防眩フィルムが、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している偏光板であり、及び本発明の偏光板の第2の態様は、前記第2の光学異方性層、前記第1の光学異方性層、前記偏光層及び前記防眩フィルムが、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である偏光板である。特定のセルロースアシレートフィルムからなる第2の光学異方性層の遅相軸の方向は、セルロースアシレートフィルムを作製する際の延伸方向等によって調整することができる。
[液晶表示装置]
本発明の液晶表示装置は、前記光学補償フィルムと前記防眩フィルムとを少なくとも含む。前記光学補償フィルムは、単独の部材として液晶表示装置に組み込まれてもよい。また、前記光学補償フィルム及び/又は前記防眩フィルムは、偏光板の一構成層等として、液晶表示装置に組み込まれていてもよい。本発明の液晶表示装置は、反射型、半透過型、透過型液晶表示装置等のいずれであってもよい。液晶表示装置は一般的に、偏光板、液晶セル、及び必要に応じて位相差板、反射層、光拡散層、バックライト、フロントライト、光制御フィルム、導光板、プリズムシート、カラーフィルター等の部材から構成されるが、本発明においては前記光学補償フィルムと前記防眩ふフィルムとを使用すること、又は本発明の偏光板を使用することを必須とする点を除いて特に制限は無い。前記光学補償フィルムの使用位置は特に制限はなく、また、1カ所でも複数カ所でもよい。液晶セルとしては特に制限されず、電極を備える一対の透明基板で液晶層を狭持したもの等の一般的な液晶セルが使用できる。液晶セルを構成する前記透明基板としては、液晶層を構成する液晶性を示す材料を特定の配向方向に配向させるものであれば特に制限はない。具体的には、基板自体が液晶を配向させる性質を有していている透明基板、基板自体は配向能に欠けるが、液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使用できる。また、液晶セルの電極は、公知のものが使用できる。通常、液晶層が接する透明基板の面上に設けることができ、配向膜を有する基板を使用する場合は、基板と配向膜との間に設けることができる。前記液晶層を形成する液晶性を示す材料としては、特に制限されず、各種の液晶セルを構成し得る通常の各種低分子液晶性化合物、高分子液晶性化合物及びこれらの混合物が挙げられる。また、これらに液晶性を損なわない範囲で色素やカイラル剤、非液晶性化合物等を添加することもできる。
本発明の液晶表示装置は、前記光学補償フィルムと前記防眩フィルムとを少なくとも含む。前記光学補償フィルムは、単独の部材として液晶表示装置に組み込まれてもよい。また、前記光学補償フィルム及び/又は前記防眩フィルムは、偏光板の一構成層等として、液晶表示装置に組み込まれていてもよい。本発明の液晶表示装置は、反射型、半透過型、透過型液晶表示装置等のいずれであってもよい。液晶表示装置は一般的に、偏光板、液晶セル、及び必要に応じて位相差板、反射層、光拡散層、バックライト、フロントライト、光制御フィルム、導光板、プリズムシート、カラーフィルター等の部材から構成されるが、本発明においては前記光学補償フィルムと前記防眩ふフィルムとを使用すること、又は本発明の偏光板を使用することを必須とする点を除いて特に制限は無い。前記光学補償フィルムの使用位置は特に制限はなく、また、1カ所でも複数カ所でもよい。液晶セルとしては特に制限されず、電極を備える一対の透明基板で液晶層を狭持したもの等の一般的な液晶セルが使用できる。液晶セルを構成する前記透明基板としては、液晶層を構成する液晶性を示す材料を特定の配向方向に配向させるものであれば特に制限はない。具体的には、基板自体が液晶を配向させる性質を有していている透明基板、基板自体は配向能に欠けるが、液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使用できる。また、液晶セルの電極は、公知のものが使用できる。通常、液晶層が接する透明基板の面上に設けることができ、配向膜を有する基板を使用する場合は、基板と配向膜との間に設けることができる。前記液晶層を形成する液晶性を示す材料としては、特に制限されず、各種の液晶セルを構成し得る通常の各種低分子液晶性化合物、高分子液晶性化合物及びこれらの混合物が挙げられる。また、これらに液晶性を損なわない範囲で色素やカイラル剤、非液晶性化合物等を添加することもできる。
前記液晶セルは、前記電極基板及び液晶層の他に、後述する各種の方式の液晶セルとするのに必要な各種の構成要素を備えていてもよい。前記液晶セルの方式としては、TN(Twisted Nematic)方式、STN(SuperTwisted Nematic)方式、ECB(Electrically Controlled Birefringence)方式、IPS(In−Plane Switching)方式、VA(Vertical Alignment)方式、MVA(Multidomain Vertical Alignment)方式、PVA(Patterned Vertical Alignment)方式、OCB(Optically Compensated Birefringence)方式、HAN(Hybrid Aligned Nematic)方式、ASM(Axially Symmetric Aligned Microcell)方式、ハーフトーングレイスケール方式、ドメイン分割方式、あるいは強誘電性液晶、反強誘電性液晶を利用した表示方式等の各種の方式が挙げられる。また、液晶セルの駆動方式も特に制限はなく、STN−LCD等に用いられるパッシブマトリクス方式、並びにTFT(Thin Film Transistor)電極、TFD(Thin Film Diode)電極等の能動電極を用いるアクティブマトリクス方式、プラズマアドレス方式等のいずれの駆動方式であってもよい。カラーフィルターを使用しないフィールドシーケンシャル方式であってもよい。
本発明の偏光板は、反射型、半透過型、及び透過型液晶表示装置に好ましく用いられる。反射型液晶表示装置は、反射板、液晶セル及び偏光板を、この順に積層した構成を有する。位相差板は、反射板と偏光膜との間(反射板と液晶セルとの間又は液晶セルと偏光膜との間)に配置される。反射板は、液晶セルと基板を共有していてもよい。前記偏光板として、本発明の偏光板を用いることができ、かかる場合は、位相差板を別途配置しなくてもよい。
また、半透過反射型液晶表示装置は、液晶セルと、該液晶セルより観察者側に配置された偏光板と、前記偏光板と前記液晶セルの間に配置される少なくとも1枚の位相差板と、観察者から見て前記液晶層よりも後方に設置された半透過反射層を少なくとも備え、さらに観察者から見て前記半透過反射層よりも後方に少なくとも1枚の位相差板と偏光板とを有す。このタイプの液晶表示装置では、バックライトを設置することで反射モードと透過モード両方の使用が可能となる。双方の偏光板が本発明の偏光板であってもよいし、一方のみが本発明の偏光板であってもよい。本発明の偏光板を配置する場合は、液晶セルと本発明の偏光板との間には、位相差板を別途配置しなくてもよい。
また、半透過反射型液晶表示装置は、液晶セルと、該液晶セルより観察者側に配置された偏光板と、前記偏光板と前記液晶セルの間に配置される少なくとも1枚の位相差板と、観察者から見て前記液晶層よりも後方に設置された半透過反射層を少なくとも備え、さらに観察者から見て前記半透過反射層よりも後方に少なくとも1枚の位相差板と偏光板とを有す。このタイプの液晶表示装置では、バックライトを設置することで反射モードと透過モード両方の使用が可能となる。双方の偏光板が本発明の偏光板であってもよいし、一方のみが本発明の偏光板であってもよい。本発明の偏光板を配置する場合は、液晶セルと本発明の偏光板との間には、位相差板を別途配置しなくてもよい。
液晶セルのモードは特に限定されないが、IPSモード又はFFSモードであることが好ましい。
IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の透過軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10−54982号公報、特開平11−202323号公報、特開平9−292522号公報、特開平11−133408号公報、特開平11−305217号公報、特開平10−307291号公報などに開示されている。
IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の透過軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10−54982号公報、特開平11−202323号公報、特開平9−292522号公報、特開平11−133408号公報、特開平11−305217号公報、特開平10−307291号公報などに開示されている。
例えば、前記第1の態様の偏光板を、一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル(例えば、IPSモードの液晶セル)を有する液晶表示装置に用いる場合は、前記一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板を配置し、及び他方の基板の外側にさらに第2の偏光層を配置することができる。この場合、双方の偏光層の吸収軸を互いに直交させて配置する。
また、前記第2の態様の偏光板を、一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル(例えば、IPSモードの液晶セル)を有する液晶表示装置に用いる場合は、前記一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板を配置し、及び他方の基板の外側にさらに第2の偏光層を配置することができる。この場合、双方の偏光層の吸収軸が互いに直交させて配置する。この場合も、双方の偏光層の吸収軸を互いに直交させて配置する。
前記いずれの態様においても、前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれているのが好ましい。実質的に等方的な透明保護フィルムとは、具体的には、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmであり、例えば、かかる光学特性を有するセルロースアシレート又は環状ポリオレフィンを含むフィルムが好ましい。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[防眩フィルムの作製]
(1)防眩層形成用の塗布液の調製
(ゾル液a−1の調製)
温度計、窒素導入管、滴下ロートを備えた1,000mlの反応容器に、アクリロキシオキシプロピルトリメトキシシラン187g(0.80mol)、メチルトリメトキシシラン27.2g(0.20mol)、メタノール320g(10mol)とKF0.06g(0.001mol)を仕込み、攪拌下室温で水15.1g(0.86mol)をゆっくり滴下した。滴下終了後室温で3時間攪拌した後、メタノール還溜下2時間加熱攪拌した。この後、低沸分を減圧留除去し、更にろ過することによりゾル液a−1を120g得た。このようにして得た物質をGPC測定した結果、質量平均分子量は1500であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は30%であった。
また1H−NMRの測定結果から、得られた物質の構造は、以下の一般式で表される構造であった。
(1)防眩層形成用の塗布液の調製
(ゾル液a−1の調製)
温度計、窒素導入管、滴下ロートを備えた1,000mlの反応容器に、アクリロキシオキシプロピルトリメトキシシラン187g(0.80mol)、メチルトリメトキシシラン27.2g(0.20mol)、メタノール320g(10mol)とKF0.06g(0.001mol)を仕込み、攪拌下室温で水15.1g(0.86mol)をゆっくり滴下した。滴下終了後室温で3時間攪拌した後、メタノール還溜下2時間加熱攪拌した。この後、低沸分を減圧留除去し、更にろ過することによりゾル液a−1を120g得た。このようにして得た物質をGPC測定した結果、質量平均分子量は1500であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は30%であった。
また1H−NMRの測定結果から、得られた物質の構造は、以下の一般式で表される構造であった。
更に、29Si−NMR測定による縮合率αは0.56であった。この分析結果から、本シランカップリング剤ゾルは直鎖状構造部分が大部分であることが分かった。
また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは5%以下の残存率であった。
また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは5%以下の残存率であった。
(ゾル液a−1の調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液a−3を得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液a−3を得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
────────────────────────────────────
防眩層用塗布液(HCL−1)の組成
────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
3.5μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%)133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
防眩層用塗布液(HCL−1)の組成
────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
3.5μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%)133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
────────────────────────────────────
防眩層用塗布液(HCL−2)の組成
────────────────────────────────────
PETA 561.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
5μm架橋ポリスチレン粒子トルエン分散液(30%) 9.0部
5μm架橋アクリル−スチレン粒子トルエン分散液(30%) 70.0部
トルエン 109.0部
シクロヘキサノン 97.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
防眩層用塗布液(HCL−2)の組成
────────────────────────────────────
PETA 561.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
5μm架橋ポリスチレン粒子トルエン分散液(30%) 9.0部
5μm架橋アクリル−スチレン粒子トルエン分散液(30%) 70.0部
トルエン 109.0部
シクロヘキサノン 97.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
────────────────────────────────────
防眩層用塗布液(HCL−3)の組成
────────────────────────────────────
PETA 550.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
5μm架橋ポリスチレン粒子トルエン分散液(30%) 13.0部
5μm架橋アクリル−スチレン粒子トルエン分散液(30%) 105.0部
トルエン 69.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
防眩層用塗布液(HCL−3)の組成
────────────────────────────────────
PETA 550.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
5μm架橋ポリスチレン粒子トルエン分散液(30%) 13.0部
5μm架橋アクリル−スチレン粒子トルエン分散液(30%) 105.0部
トルエン 69.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
────────────────────────────────────
防眩層用塗布液(HCL−4)の組成
────────────────────────────────────
PETA 548.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 14.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 109.0部
トルエン 66.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
防眩層用塗布液(HCL−4)の組成
────────────────────────────────────
PETA 548.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 14.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 109.0部
トルエン 66.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
────────────────────────────────────
防眩層用塗布液(HCL−5)の組成
────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
防眩層用塗布液(HCL−5)の組成
────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
────────────────────────────────────
防眩層用塗布液(HCL−6)の組成
────────────────────────────────────
PETA 535.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
10μm架橋ポリスチレン粒子トルエン分散液(30%) 41.0部
10μm架橋アクリル−スチレン粒子トルエン分散液(30%) 124.0部
トルエン 36.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
防眩層用塗布液(HCL−6)の組成
────────────────────────────────────
PETA 535.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
10μm架橋ポリスチレン粒子トルエン分散液(30%) 41.0部
10μm架橋アクリル−スチレン粒子トルエン分散液(30%) 124.0部
トルエン 36.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
────────────────────────────────────
────────────────────────────────────
防眩層用塗布液(HCL−7)の組成
────────────────────────────────────
PETA 448.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 14.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 109.0部
ゾル液a−1 100.0部
トルエン 66.0部
シクロヘキサノン 98.0部
FP−132 0.75部
────────────────────────────────────
防眩層用塗布液(HCL−7)の組成
────────────────────────────────────
PETA 448.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 14.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 109.0部
ゾル液a−1 100.0部
トルエン 66.0部
シクロヘキサノン 98.0部
FP−132 0.75部
────────────────────────────────────
[低屈折率層用塗布液の調製]
────────────────────────────────────
低屈折率層用塗布液(LNL−1)の組成
────────────────────────────────────
JTA−113 730.0部
中空シリカ液074 195.0部
ゾル液a−2 17.0部
メチルエチルケトン 475.0部
シクロヘキサノン 53.0部
────────────────────────────────────
────────────────────────────────────
低屈折率層用塗布液(LNL−1)の組成
────────────────────────────────────
JTA−113 730.0部
中空シリカ液074 195.0部
ゾル液a−2 17.0部
メチルエチルケトン 475.0部
シクロヘキサノン 53.0部
────────────────────────────────────
上記組成の塗布液をそれぞれ調製した。調製に使用した化合物を以下に示す。
・PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[KAYARAD PET−30:日本化薬(株)製]
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[KAYARAD DPHA:日本化薬(株)製]
・ポリメタクリル酸メチル溶液(20%):分子量12万のポリメタクリル酸メチル(アルドリッチ社製)の20%トルエン溶液
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[KAYARAD PET−30:日本化薬(株)製]
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[KAYARAD DPHA:日本化薬(株)製]
・ポリメタクリル酸メチル溶液(20%):分子量12万のポリメタクリル酸メチル(アルドリッチ社製)の20%トルエン溶液
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・3.5μm架橋ポリスチレン粒子トルエン分散液(30%):SX−350H[平均粒径3.5μm架橋ポリスチレン粒子、屈折率1.60、綜研化学(株)製]の30wt%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・5μm架橋ポリスチレン粒子トルエン分散液(30%):SX−500H[平均粒径5.0μm架橋ポリスチレン粒子、屈折率1.60、綜研化学(株)製]の30wt%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径8.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・10μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径10.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%):SX−350HL[平均粒径3.5μm、屈折率1.55、綜研化学(株)製]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・5μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径5.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径8.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・10μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径10.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・5μm架橋ポリスチレン粒子トルエン分散液(30%):SX−500H[平均粒径5.0μm架橋ポリスチレン粒子、屈折率1.60、綜研化学(株)製]の30wt%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径8.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・10μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径10.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%):SX−350HL[平均粒径3.5μm、屈折率1.55、綜研化学(株)製]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・5μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径5.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径8.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・10μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径10.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・X22−164C:両末端メタクリル変性ポリジメチルシロキサン(信越化学工業(株)製)
FP−132:フッ素系表面改質剤
・中空シリカ液:中空シリカゾル[CS−60 IPA、屈折率1.31、平均粒径60nm、シェル厚み10nm、固形分濃度18.2%、触媒化成工業(株)製]をKBM−5103表面修飾したもの表面修飾率対シリカ30質量%
(2)防眩層の形成
支持体(基材)として厚さ80μm、幅1340mm、長さ2600mのトリアセチルセルロースフィルム“TD80U”{富士写真フイルム(株)製}をロール形態で巻き出して、直接、各々表1に記載の防眩層用塗布液を、スロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、表2に示した表面ヘイズになるように乾燥条件を調整しながら、乾燥の後、更に窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、防眩層を形成し、巻き取った。
支持体(基材)として厚さ80μm、幅1340mm、長さ2600mのトリアセチルセルロースフィルム“TD80U”{富士写真フイルム(株)製}をロール形態で巻き出して、直接、各々表1に記載の防眩層用塗布液を、スロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、表2に示した表面ヘイズになるように乾燥条件を調整しながら、乾燥の後、更に窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、防眩層を形成し、巻き取った。
(3)低屈折率層の形成
HCL−7より形成した防眩層を塗設したトリアセチルセルロースフィルムを再び巻き出して、上記低屈折率層用塗布液を、スロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、120℃で75秒乾燥の後、更に10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
なお、HCL−1〜6より形成した防眩層には低屈折層を形成しなかった。上記により表1及び表2に示す防眩フィルムAGF−1〜7を作製した。
HCL−7より形成した防眩層を塗設したトリアセチルセルロースフィルムを再び巻き出して、上記低屈折率層用塗布液を、スロットダイを用いたダイコート法で、搬送速度30m/分の条件で塗布し、120℃で75秒乾燥の後、更に10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
なお、HCL−1〜6より形成した防眩層には低屈折層を形成しなかった。上記により表1及び表2に示す防眩フィルムAGF−1〜7を作製した。
[防眩フィルムの鹸化処理]
防眩フィルム試料(AGF−1〜7)の作製後、これら防眩フィルム試料について次のような処理を行った。
1.5mol/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/Lの希硫酸水溶液を調製し、35℃に保温した。作製した防眩フィルムをこの水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
防眩フィルム試料(AGF−1〜7)の作製後、これら防眩フィルム試料について次のような処理を行った。
1.5mol/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/Lの希硫酸水溶液を調製し、35℃に保温した。作製した防眩フィルムをこの水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
[防眩フィルムの評価]
(1)平均反射率
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における各防眩フィルム試料の分光反射率を測定した。結果には450〜650nmの平均反射率を用いた。
(1)平均反射率
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における各防眩フィルム試料の分光反射率を測定した。結果には450〜650nmの平均反射率を用いた。
(2)スチールウール(SW)耐傷性評価
防眩フィルム試料について、ラビングテスターを用い、以下の条件でこすりテストを行った。
評価環境条件:25℃、60%RH。
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)にスチールウール{日本スチールウール(株)製、「グレードNo.0000」}を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:1.96N/cm2。
先端部接触面積:1cm×1cm、こすり回数:10往復。
防眩フィルム試料について、ラビングテスターを用い、以下の条件でこすりテストを行った。
評価環境条件:25℃、60%RH。
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)にスチールウール{日本スチールウール(株)製、「グレードNo.0000」}を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:1.96N/cm2。
先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
○:傷が見えない。
○△:弱い傷が見える。
△:中程度の傷が見える。
△×〜×:一目見ただけで分かる傷がある。
○:傷が見えない。
○△:弱い傷が見える。
△:中程度の傷が見える。
△×〜×:一目見ただけで分かる傷がある。
(3)鉛筆硬度評価
耐傷性の指標としてJIS K 5400に記載の鉛筆硬度評価を行った。防眩フィルムを温度25℃、湿度60%RHで2時間調湿した後、JIS S 6006に規定する2H〜5Hの試験用鉛筆を用いて、4.9Nの荷重にて、以下のとおりの判定で評価し、OKとなる最も高い硬度を評価値とした。
n=5の評価において傷なし〜傷1つ :OK
n=5の評価において傷が3つ以上 :NG
耐傷性の指標としてJIS K 5400に記載の鉛筆硬度評価を行った。防眩フィルムを温度25℃、湿度60%RHで2時間調湿した後、JIS S 6006に規定する2H〜5Hの試験用鉛筆を用いて、4.9Nの荷重にて、以下のとおりの判定で評価し、OKとなる最も高い硬度を評価値とした。
n=5の評価において傷なし〜傷1つ :OK
n=5の評価において傷が3つ以上 :NG
(4)マジック拭き取り性
防眩フィルム試料をガラス面上に粘着剤で固定し、25℃60RH%の条件下で黒マジック「マッキー極細(商品名:ゼブラ(株)製)」のペン先(細)にて直径5mmの円形を3周書き込み、5秒後に10枚重ねに折り束ねたベンコット(商品名、旭化成(株)製)でベンコットの束がへこむ程度の荷重で20往復拭き取る。マジック痕が拭き取りで消えなくなるまで前記の書き込みと拭き取りを前記条件で繰り返し、拭き取りできた回数を求めた。上記テストを4回繰り返し、平均して下記4段階で評価した。
○:10回以上拭き取り可能。マジック痕がやや取れにくい。
△:数回〜10回未満拭き取れる。
×:1回だけ拭き取れる
××:1回も拭き取れない。
防眩フィルム試料をガラス面上に粘着剤で固定し、25℃60RH%の条件下で黒マジック「マッキー極細(商品名:ゼブラ(株)製)」のペン先(細)にて直径5mmの円形を3周書き込み、5秒後に10枚重ねに折り束ねたベンコット(商品名、旭化成(株)製)でベンコットの束がへこむ程度の荷重で20往復拭き取る。マジック痕が拭き取りで消えなくなるまで前記の書き込みと拭き取りを前記条件で繰り返し、拭き取りできた回数を求めた。上記テストを4回繰り返し、平均して下記4段階で評価した。
○:10回以上拭き取り可能。マジック痕がやや取れにくい。
△:数回〜10回未満拭き取れる。
×:1回だけ拭き取れる
××:1回も拭き取れない。
(5)接触角
接触角計[“CA−X”型接触角計、協和界面科学(株)製]を用い、乾燥状態(
20℃/65%RH)で、液体として純水を使用して直径1.0mmの液滴を針先に作り、これをフィルムの表面に接触させてフィルム上に液滴を作った。フィルムと液体とが接する点における、液体表面に対する接線とフィルム表面がなす角で、液体を含む側の角度を接触角とする。
接触角計[“CA−X”型接触角計、協和界面科学(株)製]を用い、乾燥状態(
20℃/65%RH)で、液体として純水を使用して直径1.0mmの液滴を針先に作り、これをフィルムの表面に接触させてフィルム上に液滴を作った。フィルムと液体とが接する点における、液体表面に対する接線とフィルム表面がなす角で、液体を含む側の角度を接触角とする。
(6)ヘイズ
以下の測定により、得られたフィルムの全ヘイズ(H)、内部ヘイズ(Hi)、表面ヘイズ(Hs)を測定した。
1.JIS−K7136に準じて得られたフィルムの全ヘイズ(H)を測定する。
2.得られたフィルムの光拡散層の表面及び裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を2枚用いて表裏より挟んで、2枚のガラス板と得られたフィルムを完全に光学的に密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを内部ヘイズ(Hi)として算出した。
3.上記1で測定した全ヘイズ(H)から上記2で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出した。
以下の測定により、得られたフィルムの全ヘイズ(H)、内部ヘイズ(Hi)、表面ヘイズ(Hs)を測定した。
1.JIS−K7136に準じて得られたフィルムの全ヘイズ(H)を測定する。
2.得られたフィルムの光拡散層の表面及び裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を2枚用いて表裏より挟んで、2枚のガラス板と得られたフィルムを完全に光学的に密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを内部ヘイズ(Hi)として算出した。
3.上記1で測定した全ヘイズ(H)から上記2で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出した。
[光学補償フィルムの作製]
<第2の光学異方性層(T1)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
<第2の光学異方性層(T1)の作製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
──────────────────────────────────
セルロースアセテート溶液組成
──────────────────────────────────
酢化度60.9%のセルロースアセテート
(重合度300、Mn/Mw=1.5) 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール(第3溶媒) 11質量部
──────────────────────────────────
セルロースアセテート溶液組成
──────────────────────────────────
酢化度60.9%のセルロースアセテート
(重合度300、Mn/Mw=1.5) 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール(第3溶媒) 11質量部
──────────────────────────────────
別のミキシングタンクに、上記のレタデーション上昇剤Aを16質量部、下記のレタデーション上昇剤Bを8質量部、二酸化珪素微粒子(平均粒径:0.1μm)0.28質量部、メチレンクロライド80質量部及びメタノール20質量部を投入し、加熱しながら攪拌して、レタデーション上昇剤溶液(かつ微粒子分散液)を調製した。セルロースアセテート溶液474質量部に該レタデーション上昇剤溶液45質量部を混合し、充分に攪拌してドープを調製した。
レタデーション上昇剤(A)
レタデーション上昇剤B
得られたドープを、幅2mで長さ65mの長さのバンドを有する流延機を用いて流延した。残留溶剤量が15質量%のフィルムを、130℃の条件で、テンターを用いて20%の延伸倍率で横延伸し、延伸後の幅のまま50℃で30秒間保持した後クリップを外してセルロースアセテートフィルムを作製した。延伸終了時の残留溶媒量は5質量%であり、さらに乾燥して残留溶媒量を0.1質量%未満としてセルロースアセテートフィルム(T1)を作製した。なお、使用したセルロースアシレートのTgは140℃である。
得られたセルロースアセテートフィルム(T1)の幅は1340mmであり、厚さは88μmであった。また、面内レタデーション(Re)は60nm、厚み方向のレタデーション(Rth)は190nmであった。
得られたセルロースアセテートフィルム(T1)の幅は1340mmであり、厚さは88μmであった。また、面内レタデーション(Re)は60nm、厚み方向のレタデーション(Rth)は190nmであった。
<第2の光学異方性層(T2)の作製>
セルロースアセテートフィルム(T1)作製に用いたと同様のドープを、幅2mで長さ65mの長さのバンドを有する流延機を用いて流延した。残留溶剤量が15質量%のフィルムを、130℃の条件で、テンターを用いて横方向を抑えながら、20%の延伸倍率で縦延伸し、延伸後の幅のまま50℃で30秒間保持した後クリップを外してセルロースアセテートフィルムを作製した。延伸終了時の残留溶媒量は5質量%であり、さらに乾燥して残留溶媒量を0.1質量%未満としてセルロースアセテートフィルム(T2)を作製した。なお、使用したセルロースアシレートのTgは140℃である。
得られたセルロースアセテートフィルム(T2)の幅は1340mmであり、厚さは88μmであった。また、面内レタデーション(Re)は60nm、厚み方向のレタデーション(Rth)は190nmであった。
セルロースアセテートフィルム(T1)作製に用いたと同様のドープを、幅2mで長さ65mの長さのバンドを有する流延機を用いて流延した。残留溶剤量が15質量%のフィルムを、130℃の条件で、テンターを用いて横方向を抑えながら、20%の延伸倍率で縦延伸し、延伸後の幅のまま50℃で30秒間保持した後クリップを外してセルロースアセテートフィルムを作製した。延伸終了時の残留溶媒量は5質量%であり、さらに乾燥して残留溶媒量を0.1質量%未満としてセルロースアセテートフィルム(T2)を作製した。なお、使用したセルロースアシレートのTgは140℃である。
得られたセルロースアセテートフィルム(T2)の幅は1340mmであり、厚さは88μmであった。また、面内レタデーション(Re)は60nm、厚み方向のレタデーション(Rth)は190nmであった。
<第1の光学異方性層(B1)の形成>
上記作製した長尺状のセルロースアセテートフィルム(T1)の一方の面に、下記の組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。
配向膜塗布液の組成
――――――――――――――――――――――――――
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
――――――――――――――――――――――――――
上記作製した長尺状のセルロースアセテートフィルム(T1)の一方の面に、下記の組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。
配向膜塗布液の組成
――――――――――――――――――――――――――
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
――――――――――――――――――――――――――
変性ポリビニルアルコール
下記の組成の棒状液晶化合物を含む塗布液を、上記作製した配向膜上に#5.0のワイヤーバーで連続的に塗布した。フィルムの搬送速度は20m/minとした。室温から80℃に連続的に加温する工程で溶媒を乾燥させ、その後、80℃の乾燥ゾーンで90秒間加熱し、棒状液晶性化合物を配向させた。続いて、フィルムの温度を60℃に保持して、UV照射により液晶化合物の配向を固定化し、第1の光学異方性層(B1)を形成し、光学補償フィルム(F1)を得た。
位相差フィルム(F1)に対し、セルロースアセテートフィルム(T1)をセルロースアセテートフィルム(T2)に変更し、光学補償フィルム(F2)を作製した。
上記で作製した光学補償フィルム(F1)及び(F2)のRe(40)/Reはそれぞれ0.98及び0.97だった。
上記で作製した光学補償フィルム(F1)及び(F2)のRe(40)/Reはそれぞれ0.98及び0.97だった。
棒状液晶化合物を含む塗布液(S1)の組成
――――――――――――――――――――――――――――――――――――
下記の棒状液晶性化合物(I) 100質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のフッ素系ポリマー 0.4質量部
下記のピリジニム塩 1質量部
メチルエチルケトン 172質量部
――――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――――
下記の棒状液晶性化合物(I) 100質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のフッ素系ポリマー 0.4質量部
下記のピリジニム塩 1質量部
メチルエチルケトン 172質量部
――――――――――――――――――――――――――――――――――――
棒状液晶化合物(I)
フッ素系ポリマー
ピリジニウム塩
作製したフィルムから棒状液晶性化合物を含む光学異方性層B1のみを剥離し、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて光学特性を測定した。波長590nmで測定した光学異方性層のみのReは0nmであり、Rthは−260nmであった。また、棒状液晶分子がフィルム面に対して実質的に垂直に配向している光学異方性層が形成されたことが確認できた。
<偏光板(P10)の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。上記作製した光学補償フィルム(F1)の第1の光学異方性層が形成されていない面(即ち、第2の光学異方性層T1の裏面)を、他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、長尺の偏光板(P10)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、かつ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は90°であった。
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。上記作製した光学補償フィルム(F1)の第1の光学異方性層が形成されていない面(即ち、第2の光学異方性層T1の裏面)を、他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、長尺の偏光板(P10)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、かつ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は90°であった。
[実施例1]
<偏光板(P11)〜(P17)の作製>
上記で作製した偏光板(P10)に対して表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を防眩フィルムAGF−1〜7に代えて偏光板(P11)〜(P17)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、かつ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は90°であった。
<偏光板(P11)〜(P17)の作製>
上記で作製した偏光板(P10)に対して表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を防眩フィルムAGF−1〜7に代えて偏光板(P11)〜(P17)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、かつ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は90°であった。
<セルロースアセテートフィルム(T0)の作製>
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Aを調製した。
セルロースアセテート溶液Aの組成
―――――――――――――――――――――――――――――――――――
アセチル置換度2.94のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
―――――――――――――――――――――――――――――――――――
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Aを調製した。
セルロースアセテート溶液Aの組成
―――――――――――――――――――――――――――――――――――
アセチル置換度2.94のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
―――――――――――――――――――――――――――――――――――
(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
マット剤溶液組成
―――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液A 10.3質量部
―――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
マット剤溶液組成
―――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液A 10.3質量部
―――――――――――――――――――――――――――――――――
(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
添加剤溶液組成
――――――――――――――――――――――――――――――
下記の光学的異方性低下剤 49.3質量部
下記の波長分散調整剤 4.9質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液A 12.8質量部
――――――――――――――――――――――――――――――
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
添加剤溶液組成
――――――――――――――――――――――――――――――
下記の光学的異方性低下剤 49.3質量部
下記の波長分散調整剤 4.9質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液A 12.8質量部
――――――――――――――――――――――――――――――
光学的異方性低下剤
波長分散調整剤
(セルロースアセテートフィルムの作製)
上記セルロースアセテート溶液Aを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物及び波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.2%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、厚さ80μmの長尺状のセルロースアセテートフィルムT0を製造した。得られたフィルムの面内レタデーション(Re)は1nm(遅相軸はフィルム長手方向と垂直な方向)、厚み方向のレタデーション(Rth)は−1nmであった。
上記セルロースアセテート溶液Aを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物及び波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.2%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、厚さ80μmの長尺状のセルロースアセテートフィルムT0を製造した。得られたフィルムの面内レタデーション(Re)は1nm(遅相軸はフィルム長手方向と垂直な方向)、厚み方向のレタデーション(Rth)は−1nmであった。
<偏光板(P0)の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に、上記で作製したセルロースアセテートフィルム(T0)を鹸化処理し、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、長尺の偏光板(P0)を作製した。
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に、上記で作製したセルロースアセテートフィルム(T0)を鹸化処理し、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、長尺の偏光板(P0)を作製した。
<偏光板(P1)〜(P4)の作製>
上記で作製した偏光板(P0)に対して表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を防眩フィルムAGF−1〜4に代えて偏光板(P1)〜(P4)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
上記で作製した偏光板(P0)に対して表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を防眩フィルムAGF−1〜4に代えて偏光板(P1)〜(P4)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
<偏光板(P20)の作製>
上記で作製した偏光板(P0)に対して表面を鹸化処理したセルローストリアセテートフィルム(T0)を、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)に代えて偏光板(P20)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
上記で作製した偏光板(P0)に対して表面を鹸化処理したセルローストリアセテートフィルム(T0)を、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)に代えて偏光板(P20)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
<偏光板(P23)の作製>
上記で作製した偏光板(P0)に対して表面を鹸化処理したセルローストリアセテートフィルム(T0)を防眩フィルムAGF−3に代えて偏光板(P23)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
上記で作製した偏光板(P0)に対して表面を鹸化処理したセルローストリアセテートフィルム(T0)を防眩フィルムAGF−3に代えて偏光板(P23)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
<偏光板(P30)の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせた。続いて、ポリエステル系ウレタン(三井武田ケミカル社製、タケラックXW−74−C154)10部及びイソシアネート系架橋剤(三井武田ケミカル社製、タケネートWD−725)1部を、水に溶解し、固形分を20%に調整した溶液を調製した。これを接着剤として用いて、偏光膜とゼオノアフィルムZF16(日本ゼオン(株)製)を連続的に貼り合せ、40℃のオーブンで72時間乾燥キュアして、偏光板を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせた。続いて、ポリエステル系ウレタン(三井武田ケミカル社製、タケラックXW−74−C154)10部及びイソシアネート系架橋剤(三井武田ケミカル社製、タケネートWD−725)1部を、水に溶解し、固形分を20%に調整した溶液を調製した。これを接着剤として用いて、偏光膜とゼオノアフィルムZF16(日本ゼオン(株)製)を連続的に貼り合せ、40℃のオーブンで72時間乾燥キュアして、偏光板を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
<偏光板(P33)の作製>
上記で作製した偏光板(P30)に対して表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を防眩フィルムAGF−3に代えて偏光板(P33)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
上記で作製した偏光板(P30)に対して表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を防眩フィルムAGF−3に代えて偏光板(P33)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であった。
<偏光板(P43)の作製>
上記で作製した偏光板(P23)のセルロースアセテートフィルム(T0)側面と、光学補償フィルム(F2)の第1の光学異方性層が形成されている面を、光学的に等方性のアクリル系粘着剤を用いて連続的に貼り合わせ、長尺偏光板(P43)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、且つ、偏光膜の吸収軸と第2の光学異方性層の遅相軸のなす角は0°であった。
上記で作製した偏光板(P23)のセルロースアセテートフィルム(T0)側面と、光学補償フィルム(F2)の第1の光学異方性層が形成されている面を、光学的に等方性のアクリル系粘着剤を用いて連続的に貼り合わせ、長尺偏光板(P43)を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、且つ、偏光膜の吸収軸と第2の光学異方性層の遅相軸のなす角は0°であった。
[実施例2]
<液晶表示装置(L1)の作製>
液晶テレビTH-32LX500(松下電器産業(株)社製)から、液晶セルを取り出し、視認者側及びバックライト側に貼られてあった偏光板及び光学フィルムを剥した。この液晶セルは、電圧無印加状態及び黒表示時では液晶分子はガラス基板間で実質的に平行配向しており、その遅相軸方向は画面に対して水平方向であった。
<液晶表示装置(L1)の作製>
液晶テレビTH-32LX500(松下電器産業(株)社製)から、液晶セルを取り出し、視認者側及びバックライト側に貼られてあった偏光板及び光学フィルムを剥した。この液晶セルは、電圧無印加状態及び黒表示時では液晶分子はガラス基板間で実質的に平行配向しており、その遅相軸方向は画面に対して水平方向であった。
上記の平行配向セルの上下のガラス基板に、上記作製した偏光板(P0)及び(P1)を、粘着剤を用いて貼り合わせた。このとき、バックライト側の偏光板に(P0)を配置し、視認者側に(P1)を配置し、偏光板(P0)及び(P1)に含まれるセルロースアセテートフィルム(T0)がガラス基板に接するように貼り合わせた。また、偏光板(P0)の吸収軸と液晶セルの遅相軸が直交するようにし、偏光板(P0)と偏光板(P0)の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込んだ。このようにして液晶表示装置(L1)を作製した。
<液晶表示装置(L0)、(L2)〜(L4)の作製>
上記液晶表示装置(L1)に対し、視認者側の偏光板(P1)を、それぞれ偏光板(P0)、(P2)〜(P4)、に変更し、液晶表示装置(L0)、(L2)〜(L4)を作製した。
上記液晶表示装置(L1)に対し、視認者側の偏光板(P1)を、それぞれ偏光板(P0)、(P2)〜(P4)、に変更し、液晶表示装置(L0)、(L2)〜(L4)を作製した。
<液晶表示装置(L101)の作製>
液晶表示装置(L1)に対し、バックライト側の偏光板(P0)を(P10)に変更し、偏光板(P10)に含まれる第1の光学異方性層が視認者側のガラス基板に接するように貼り合わせた。また、偏光板(P10)の吸収軸と液晶セルの遅相軸が90°となるようにし、偏光板(P10)と偏光板(P1)の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込んだ。このようにして液晶表示装置(L101)を作製した。
液晶表示装置(L1)に対し、バックライト側の偏光板(P0)を(P10)に変更し、偏光板(P10)に含まれる第1の光学異方性層が視認者側のガラス基板に接するように貼り合わせた。また、偏光板(P10)の吸収軸と液晶セルの遅相軸が90°となるようにし、偏光板(P10)と偏光板(P1)の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込んだ。このようにして液晶表示装置(L101)を作製した。
<液晶表示装置(L100)、(L102)〜(L104)、(L123)及び(L133)の作製>
上記の液晶表示装置(L101)に対し、視認者側の偏光板(P1)を、それぞれ偏光板(P0)、(P2)〜(P4)、(P23)、(P33)に変更し、液晶表示装置(L101)、(L102)〜(L104)、(L123)、(L133)を作製した。
上記の液晶表示装置(L101)に対し、視認者側の偏光板(P1)を、それぞれ偏光板(P0)、(P2)〜(P4)、(P23)、(P33)に変更し、液晶表示装置(L101)、(L102)〜(L104)、(L123)、(L133)を作製した。
[実施例3]
<液晶表示装置(L11)の作製>
上記実施例2と同様にして、平行配向セルを用意した。この平行配向セルの上下のガラス基板に、上記作製した偏光板(P11)及び(P0)を、粘着剤を用いて貼り合わせた。このとき、バックライト側の偏光板に(P0)を配置し、視認者側に(P11)を配置し、偏光板(P11)に含まれる第1の光学異方性層が視認者側のガラス基板に接するように、また、偏光板(P0)に含まれるセルロースアセテートフィルム(T0)がバックライト側のガラス基板に接するように貼り合わせた。また、偏光板(P0)の吸収軸と液晶セルの遅相軸が平行となるようにし、偏光板(P0)と偏光板(P11)の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込んだ。このようにして液晶表示装置(L21)を作製した。
<液晶表示装置(L11)の作製>
上記実施例2と同様にして、平行配向セルを用意した。この平行配向セルの上下のガラス基板に、上記作製した偏光板(P11)及び(P0)を、粘着剤を用いて貼り合わせた。このとき、バックライト側の偏光板に(P0)を配置し、視認者側に(P11)を配置し、偏光板(P11)に含まれる第1の光学異方性層が視認者側のガラス基板に接するように、また、偏光板(P0)に含まれるセルロースアセテートフィルム(T0)がバックライト側のガラス基板に接するように貼り合わせた。また、偏光板(P0)の吸収軸と液晶セルの遅相軸が平行となるようにし、偏光板(P0)と偏光板(P11)の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込んだ。このようにして液晶表示装置(L21)を作製した。
<液晶表示装置(L10)、(L12)〜(L17)、(L43)の作製>
上記の(L11)の偏光板(P11)を、それぞれ偏光板(P10)、(P12)〜(P17)に変更し、液晶表示装置(L10)、(L12)〜(L17)、(L43)を作製した。
上記の(L11)の偏光板(P11)を、それぞれ偏光板(P10)、(P12)〜(P17)に変更し、液晶表示装置(L10)、(L12)〜(L17)、(L43)を作製した。
<液晶表示装置(L213)、(L313)の作製>
上記の(L13)の偏光板(P0)を、それぞれ偏光板(P20)、(P30)に変更し、液晶表示装置(L213)、(L313)を作製した。
上記の(L13)の偏光板(P0)を、それぞれ偏光板(P20)、(P30)に変更し、液晶表示装置(L213)、(L313)を作製した。
(斜め光漏れ評価)
上記で作製した偏光板を貼り合せた液晶パネルを、バックライトを点灯させ、左斜め方向60°から光漏れを観察し下記のように2段階評価を行った。結果を表3に示す。
○:光漏れが見え難い
×:明らかに光漏れがある
上記で作製した偏光板を貼り合せた液晶パネルを、バックライトを点灯させ、左斜め方向60°から光漏れを観察し下記のように2段階評価を行った。結果を表3に示す。
○:光漏れが見え難い
×:明らかに光漏れがある
(正面コントラスト比の測定)
上記で作製した偏光板を貼り合せた液晶パネルに電圧を印加し、測定機(EZ-Contrast 160D, ELDIM社製)を用い、透過率の比(白表示/黒表示)であるコントラスト比を測定した。結果を表3に示す。
上記で作製した偏光板を貼り合せた液晶パネルに電圧を印加し、測定機(EZ-Contrast 160D, ELDIM社製)を用い、透過率の比(白表示/黒表示)であるコントラスト比を測定した。結果を表3に示す。
表3の結果から以下のことが明らかである。
IPS液晶表示装置の表示部表面に偏光板の漏れ光を補償する光学補償フィルムのない状態でも防眩フィルムを搭載することで像の映り込みを防止することができる(L0に対しL1〜L4)が、副作用として正面コントラストの低下が起きる。これに対し、光学補償フィルムIを搭載することで正面コントラストを高めることができる。特に、防眩フィルムの防眩層中の光拡散性粒子の粒径を4〜15μmとし、更に表面ヘイズを3%以下としたものでは正面コントラストの上昇効果は極めて顕著である(例えば、L1〜L4に対しL101〜L104及びL11〜L14)
また、更に本発明の液晶表示装置であるL123、L133、L15〜L17、L213及びL313も表3に示したように像の写りこみ防止性、斜め漏れ光防止性、正面コントラストに優れていた。
IPS液晶表示装置の表示部表面に偏光板の漏れ光を補償する光学補償フィルムのない状態でも防眩フィルムを搭載することで像の映り込みを防止することができる(L0に対しL1〜L4)が、副作用として正面コントラストの低下が起きる。これに対し、光学補償フィルムIを搭載することで正面コントラストを高めることができる。特に、防眩フィルムの防眩層中の光拡散性粒子の粒径を4〜15μmとし、更に表面ヘイズを3%以下としたものでは正面コントラストの上昇効果は極めて顕著である(例えば、L1〜L4に対しL101〜L104及びL11〜L14)
また、更に本発明の液晶表示装置であるL123、L133、L15〜L17、L213及びL313も表3に示したように像の写りこみ防止性、斜め漏れ光防止性、正面コントラストに優れていた。
また、光学補償フィルム(F1)又は(F2)と防眩フィルムAGF−2〜4を搭載したL102〜L104、L123、L133、L11〜L17、L43、L213及びL313、光学補償フィルム(F1)と防眩フィルムAGF−5〜7を搭載したL15〜L17は、4Hの鉛筆で表面を擦っても傷が付かず、前記のスチールウールで擦っても傷が付き難く、前記の黒マジック「マッキー極細(商品名:ゼブラ(株)製)」での書き込みも簡単に拭き取り落とすことができ、物理性能も良好だった。
本発明の液晶表示装置は、像の映り込みが少なく、光漏れがなく、正面コントラストも高く良好だった。
1 フィルム(防眩性反射防止フィルム)
2 透明支持体
3 防眩層
4 低屈折率層
5 透光性微粒子
2 透明支持体
3 防眩層
4 低屈折率層
5 透光性微粒子
Claims (16)
- 偏光層と、該偏光層の一方の表面上に下記の光学補償フィルムI、及び前記偏光層の他方の表面上に下記の防眩フィルムIIを有する偏光板:
(光学補償フィルムI)
垂直入射した光に対するレタデーションをRe、フィルム面の法線と40°をなす角度で入射した光に対するレタデーションをRe(40)としたとき下記数式(1)
数式(1) 0.92≦Re(40)/Re≦1.08
を満足する光学補償フィルム;
(防眩フィルムII)
少なくとも透明支持体と防眩層とを含み、該防眩層が少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有し、該光拡散性粒子の平均粒子径が4〜15μmである防眩フィルム。 - 前記防眩フィルムIIの防眩層の膜厚が、8〜40μmである請求項1に記載の偏光板。
- 前記防眩フィルムIIの防眩層側表面のヘイズが、1〜5%である請求項1又は2に記載の偏光板。
- 前記防眩フィルムIIの防眩層側表面の水の接触角が、90度以上である請求項1〜3のいずれか1項に記載の偏光板。
- 前記防眩フィルムIIが、前記偏光層の保護フィルムである請求項1〜4のいずれか1項に記載の偏光板。
- 前記光学補償フィルムIが、少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層の面内のレタデーションが0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmである請求項1〜5のいずれか1項に記載の偏光板。
- 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、前記第1の光学異方性層中、該棒状液晶化合物の分子が層平面に対して実質的に垂直に配向した状態に固定されている請求項6に記載の偏光板。
- 前記第1の光学異方性層と前記偏光層との間には、実質的に等方的な接着剤層、及び/又は実質的に等方的な保護フィルムのみが含まれる請求項7又は8に記載の偏光板。
- 前記透明保護フィルムがセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである請求項8に記載の偏光板。
- 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に直交している請求項6〜9のいずれか1項に記載の偏光板。
- 前記第2の光学異方性層、前記第1の光学異方性層、及び前記偏光層が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光層の吸収軸の方向とが、実質的に平行である請求項6〜9のいずれか1項に記載の偏光板。
- 対向して配置されている一対の偏光板と、該一対の偏光板の間に配置され、基板面に平行な電界により配向方位が変化する液晶層と、前記一対の偏光板の一方(第一の偏光板)と液晶層との間に配置された請求項1中に記載の光学補償フィルムIと、視認性側の偏光板の表面に配置された請求項1中に記載の防眩フィルムIIとを有する横電界方式の液晶表示装置。
- 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び請求項10に記載の偏光板を有し、該一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
- 一対の基板と、該一対の基板に狭持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び請求項11に記載の偏光板を有し、該一対の基板の一方の基板の外側に該基板側から、第2の光学異方性層、第1の光学異方性層、及び偏光層がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側にさらに第2の偏光層を有し、双方の偏光層の吸収軸が互いに直交している液晶表示装置。
- 前記第2の偏光層と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれる請求項13又は14に記載の液晶表示装置。
- 前記透明保護フィルムがセルロースアシレート又は環状ポリオレフィンを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである請求項15に記載の液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006010138A JP2007193017A (ja) | 2006-01-18 | 2006-01-18 | 偏光板及び液晶表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006010138A JP2007193017A (ja) | 2006-01-18 | 2006-01-18 | 偏光板及び液晶表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007193017A true JP2007193017A (ja) | 2007-08-02 |
Family
ID=38448773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006010138A Pending JP2007193017A (ja) | 2006-01-18 | 2006-01-18 | 偏光板及び液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007193017A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009107634A1 (ja) * | 2008-02-29 | 2009-09-03 | 住友化学株式会社 | 防眩性偏光板およびそれを用いた画像表示装置 |
WO2010035761A1 (ja) * | 2008-09-25 | 2010-04-01 | 凸版印刷株式会社 | 防眩フィルム、防眩性偏光板及びその製造方法並びに透過型液晶ディスプレイ |
JP2011069913A (ja) * | 2009-09-24 | 2011-04-07 | Fujifilm Corp | 防眩フィルム、偏光板、及び画像表示装置 |
JP2011209537A (ja) * | 2010-03-30 | 2011-10-20 | Dic Corp | 光学素子及びそれを用いた液晶パネル |
CN102681038A (zh) * | 2011-03-18 | 2012-09-19 | 住友化学株式会社 | 起偏器保护膜 |
WO2013002353A1 (ja) * | 2011-06-29 | 2013-01-03 | 日東電工株式会社 | 防眩性フィルム、偏光板、画像表示装置および防眩性フィルムの製造方法 |
JP2013178573A (ja) * | 2008-03-31 | 2013-09-09 | Nitto Denko Corp | 画像表示装置用防眩性ハードコートフィルムの製造方法 |
JP5505309B2 (ja) * | 2008-11-11 | 2014-05-28 | 大日本印刷株式会社 | 光学シート |
JP2015025947A (ja) * | 2013-07-26 | 2015-02-05 | 大日本印刷株式会社 | 光学フィルム、画像表示装置、光学フィルム用転写体、光学フィルムの製造方法及び光学フィルム用転写体の製造方法 |
CN108822760A (zh) * | 2018-05-30 | 2018-11-16 | 业成科技(成都)有限公司 | 异方性导电胶以及利用异方性导电胶接合的基板结构 |
-
2006
- 2006-01-18 JP JP2006010138A patent/JP2007193017A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009107634A1 (ja) * | 2008-02-29 | 2009-09-03 | 住友化学株式会社 | 防眩性偏光板およびそれを用いた画像表示装置 |
JP2013178573A (ja) * | 2008-03-31 | 2013-09-09 | Nitto Denko Corp | 画像表示装置用防眩性ハードコートフィルムの製造方法 |
WO2010035761A1 (ja) * | 2008-09-25 | 2010-04-01 | 凸版印刷株式会社 | 防眩フィルム、防眩性偏光板及びその製造方法並びに透過型液晶ディスプレイ |
US8345202B2 (en) | 2008-09-25 | 2013-01-01 | Toppan Printing Co., Ltd. | Antiglare film, manufacturing method thereof, and transmissive liquid crystal display |
JP5434923B2 (ja) * | 2008-09-25 | 2014-03-05 | 凸版印刷株式会社 | 防眩フィルム、防眩性偏光板及びその製造方法並びに透過型液晶ディスプレイ |
JP5505309B2 (ja) * | 2008-11-11 | 2014-05-28 | 大日本印刷株式会社 | 光学シート |
JP2011069913A (ja) * | 2009-09-24 | 2011-04-07 | Fujifilm Corp | 防眩フィルム、偏光板、及び画像表示装置 |
JP2011209537A (ja) * | 2010-03-30 | 2011-10-20 | Dic Corp | 光学素子及びそれを用いた液晶パネル |
CN102681038A (zh) * | 2011-03-18 | 2012-09-19 | 住友化学株式会社 | 起偏器保护膜 |
CN102681038B (zh) * | 2011-03-18 | 2016-09-07 | 住友化学株式会社 | 起偏器保护膜 |
JP2013033240A (ja) * | 2011-06-29 | 2013-02-14 | Nitto Denko Corp | 防眩性フィルム、偏光板、画像表示装置および防眩性フィルムの製造方法 |
WO2013002353A1 (ja) * | 2011-06-29 | 2013-01-03 | 日東電工株式会社 | 防眩性フィルム、偏光板、画像表示装置および防眩性フィルムの製造方法 |
JP2015025947A (ja) * | 2013-07-26 | 2015-02-05 | 大日本印刷株式会社 | 光学フィルム、画像表示装置、光学フィルム用転写体、光学フィルムの製造方法及び光学フィルム用転写体の製造方法 |
CN108822760A (zh) * | 2018-05-30 | 2018-11-16 | 业成科技(成都)有限公司 | 异方性导电胶以及利用异方性导电胶接合的基板结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7502088B2 (en) | Liquid crystal display device having an antiglare layer | |
JP5703187B2 (ja) | 光学フィルム、偏光板、及び画像表示装置 | |
JP5380029B2 (ja) | 液晶表示装置 | |
JP6097619B2 (ja) | 光学フィルム、偏光板及びこれを用いた画像表示装置 | |
JP2007193017A (ja) | 偏光板及び液晶表示装置 | |
JP5759859B2 (ja) | 光学フィルムの製造方法、及びその製造方法で製造された光学フィルム、並びにそれを有する偏光板、及び画像表示装置 | |
JP5038745B2 (ja) | 透明保護フィルム、光学補償フィルム、偏光板、及び液晶表示装置 | |
WO2011155616A1 (ja) | 光学フィルム、偏光板、及び画像表示装置 | |
JP5871615B2 (ja) | 立体表示装置 | |
JP2007041514A (ja) | 液晶表示装置 | |
JP4759324B2 (ja) | 偏光板および液晶表示装置 | |
US20060233972A1 (en) | Optical functional film, production method thereof, and polarizing plate and image display device using the same | |
JP2007108725A (ja) | 光学フィルム、反射防止フィルム、それを用いた偏光板およびディスプレイ装置 | |
US20070058250A1 (en) | Optical film, antireflection film, polarizing plate using the same and display device | |
JP2006276839A (ja) | 光学機能フィルム、その製造方法、並びにそれを用いた偏光板及び画像表示装置 | |
JP2007133384A (ja) | 防眩フィルム、偏光板、および画像表示装置 | |
JP2007188070A (ja) | 光学フィルム、及びそれを用いた偏光板、画像表示装置並びに液晶表示装置 | |
JP2007256844A (ja) | 光学フィルム、反射防止フィルム、光学フィルムの製造方法、それを用いた偏光板およびディスプレイ装置 | |
JP2012127982A (ja) | 光学フィルム、偏光板、液晶表示装置用表面フィルム、及び画像表示装置 | |
JP2007256346A (ja) | 反射防止フィルム、偏光板及び画像表示装置、液晶表示装置 | |
JP4759401B2 (ja) | 光学フィルム、反射防止フィルム、およびそれを用いた偏光板、ディスプレイ装置 | |
JP2007233014A (ja) | 光学異方性層及び光拡散層を用いた液晶表示装置 | |
JP2006268031A (ja) | 反射防止フィルム、偏光板、及び画像表示装置 | |
JP2007041495A (ja) | 防眩性反射防止フィルム、該防眩性反射防止フィルムを用いた偏光板、該偏光板を用いた液晶表示装置 | |
JP5211087B2 (ja) | セルロースアシレートフィルム、それを用いた偏光板、及びそれらを用いた画像表示装置 |