JP2007183400A - マイクロミラー、及び、マイクロミラーデバイス - Google Patents

マイクロミラー、及び、マイクロミラーデバイス Download PDF

Info

Publication number
JP2007183400A
JP2007183400A JP2006001331A JP2006001331A JP2007183400A JP 2007183400 A JP2007183400 A JP 2007183400A JP 2006001331 A JP2006001331 A JP 2006001331A JP 2006001331 A JP2006001331 A JP 2006001331A JP 2007183400 A JP2007183400 A JP 2007183400A
Authority
JP
Japan
Prior art keywords
torsion bar
comb teeth
mirror
micromirror
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006001331A
Other languages
English (en)
Other versions
JP4437320B2 (ja
Inventor
Masaki Esashi
正喜 江刺
Naoki Kikuchi
直樹 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Pentax Corp
Original Assignee
Tohoku University NUC
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Pentax Corp filed Critical Tohoku University NUC
Priority to JP2006001331A priority Critical patent/JP4437320B2/ja
Priority to US11/616,433 priority patent/US7271946B2/en
Priority to DE200610061763 priority patent/DE102006061763A1/de
Publication of JP2007183400A publication Critical patent/JP2007183400A/ja
Application granted granted Critical
Publication of JP4437320B2 publication Critical patent/JP4437320B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0062Devices moving in two or more dimensions, i.e. having special features which allow movement in more than one dimension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/058Rotation out of a plane parallel to the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】トーションバー上にパターンを形成する必要のない二軸走査可能なマイクロミラーを提供する。
【解決手段】反射ミラーから突出するよう形成された第一のトーションバー対と、第一のトーションバー対を介して反射ミラーを第一軸周りに揺動可能に支持する第一の支持枠と、第一の支持枠から突出し、第一のトーションバー対と直交するよう形成された第二のトーションバー対と、第二のトーションバー対を介して第一の支持枠を該第一軸と直交する第二軸周りに揺動可能に支持する第二の支持枠とを備え、第二のトーションバー対の各々を、互いに絶縁された第一及び第二の信号伝送部材から構成したマイクロミラーを提供する。
【選択図】図3

Description

この発明は、近接する各電極間に静電引力を発生させてミラーを微少に傾けるマイクロミラーに関する。またこのようなマイクロミラーを備えたマイクロミラーデバイスに関する。
近年、MEMS(Micro Electro Mechanical Systems)技術の発展に伴って様々なマイクロデバイスが開発されて実用に供されている。このようなマイクロデバイスの一つに例えばマイクロミラーが挙げられる。マイクロミラーは例えば光スキャナとして利用され、バーコードリーダやレーザプリンタ等の種々の機器に実装されている。例えば下記特許文献1にはマイクロミラーの幾つかの形態が示されている。この文献に示されているマイクロミラーは電極間で発生する静電引力を用いてミラーを微少に傾ける所謂静電駆動タイプである。
特開2000−310743号公報
上記特許文献1にはマイクロミラーの一形態として、反射ミラーを二軸周りに傾斜させることにより被走査対象物に対する二次元走査を可能としたものが示されている。このマイクロミラーでは、反射ミラーが一対の第一のトーションバーに揺動可能に支持されている。また、これら第一のトーションバーは反射ミラーの外形状に沿って形成された第一のジンバル部により支持され、この第一のジンバル部は第一のトーションバーと直交するよう形成された一対の第二のトーションバーに揺動可能に支持されている。更に、これら第二のトーションバーは第一のジンバル部の外形状に沿って形成された第二のジンバル部により支持されている。また反射ミラー上には二つの電極が設置され、第一のジンバル部上にも二つの電極が設置されている。各電極の対向位置には別の電極が近接して配置されている。
ここで、反射ミラー上の電極とそれに対向する電極との間に電圧が印加されると静電引力が発生し、第一のトーションバーが捻れる。これにより反射ミラーが第一の軸周りに揺動する。また第一のジンバル部上の電極とそれに対向する電極との間に電圧が印加されると静電引力が発生し、第二のトーションバーが捻れる。これにより反射ミラーが第一の軸と直交する第二の軸周りに揺動する。すなわちこのように各電極間に電圧を印加すると反射ミラーが二軸周りに揺動する。このように揺動した反射ミラーにビームを入射させると、それによって反射されたビームの進行方向が二次元に振れる。この反射ビームを被走査対象物に照射することにより二次元走査が実現される。
上記特許文献1に記載のマイクロミラーでは、反射ミラー上の電極を第二のジンバル部上の電極パッドに接続するために第一及び第二のトーションバー上にパターンが形成されている。また第一のジンバル部上の電極を第二のジンバル部上の電極パッドに接続するために第二のトーションバー上にパターンが形成されている。なお本明細書において「パターン」とは例えば薄い銅箔等から成り、基板上に形成される導体部分を意味する。
ここで、マイクロミラー自体非常に微細に形成されており、その中でもトーションバーは特に細く形成されている。また一般に、設計時においてパターン幅は製造誤差が加味されて決定される。すなわちパターン幅はトーションバー幅よりも狭い。従って上記特許文献1に記載のマイクロミラーではトーションバー上のパターンは極めて細いものとなる。更に、第二のトーションバー上では二本のパターンを通す必要があるため、そのパターン幅が第一のトーションバー上のものよりも狭く形成されている。
しかし、半導体基板上に微細なパターンを形成するためには非常に高精度な微細電気配線技術が必要とされる。また、要求される精度が高くなり許容誤差範囲も狭まるため歩留まりが低下する可能性がある。歩留まりの低下は、例えば生産効率の低下や生産管理費のコスト増等に繋がるため望ましくない。
またマイクロミラーが駆動している期間、トーションバーには負荷が常に掛かっている。このため上記の如くパターンが細い場合、選択した材料(例えば脆性材料)によっては上記負荷に耐えられずマイクロミラー駆動中に破断する可能性もある。すなわち形成すべきパターンを細くする場合、その材料の選択範囲が限定される。
また上述の如くパターン幅を狭く(すなわちパターンの断面積を狭く)した場合、当該パターンの内部抵抗が上昇する。このため各電極に印加すべき駆動電圧のレベルを高く設定する必要性が生じ得る。
ここで、例えば一次元走査用のマイクロミラーにおいてトーションバーを含む基台を導体で構成したものがある。この場合、基台そのものがパターンとして作用する。このためパターンが不要となる。従ってこのようなマイクロミラーでは高精度な微細電気配線技術が不要となる。またトーションバー上にパターンを形成したことに起因する上記問題も考慮する必要がなくなる。
しかし二次元走査用のマイクロミラーでは、外部(ここでは駆動電圧を供給する手段)に引き出されるべき信号の系統数が一次元走査用のものに比べて多い。具体的には、二次元走査用のマイクロミラーでは上記系統数が上記第二のトーションバーの本数(すなわち二本)よりも多い。基台そのものをパターンとして作用させるようマイクロミラーを構成するためには、上記系統数が最も外側のトーションバー(二軸の例では第二のトーションバー)の本数以下であることが前提である。すなわち物理的な信号伝送路の数が上記系統数以下であることが前提である。従って二次元走査用のマイクロミラーにおいて、上記の如き一次元走査用のマイクロミラーの構成をそのまま採用することはできなかった。
そこで、本発明は上記の事情に鑑みて、二軸走査可能なマイクロミラーにおいてトーションバー上にパターンを形成する必要のないマイクロミラー、及び、そのようなマイクロミラーを備えたマイクロミラーデバイスを提供することを課題としている。
上記の課題を解決する本発明の一態様に係るマイクロミラーは、近接する各電極間に静電引力を発生させて二軸周りにおいて正転及び逆転方向に反射ミラーを微少に傾けるものである。このマイクロミラーは、反射ミラーから突出するよう形成された第一のトーションバー対と、第一のトーションバー対を介して反射ミラーを第一軸周りに揺動可能に支持する第一の支持枠と、第一の支持枠から突出し、第一のトーションバー対と直交するよう形成された第二のトーションバー対と、第二のトーションバー対を介して第一の支持枠を該第一軸と直交する第二軸周りに揺動可能に支持する第二の支持枠とを備え、第二のトーションバー対の各々を、互いに絶縁された第一及び第二の信号伝送部材から構成したことを特徴としたものである。
すなわち上記マイクロミラーによれば、第二のトーションバー対の各々の第一及び第二の信号伝送部材、すなわち計四本の信号伝送路部材を用いることにより、第二のトーションバーの本数を上回る数の系統の信号を外部機器に引き出すことが可能となる。従って二軸走査可能なマイクロミラーであってもトーションバー上にパターンを形成する必要がなくなる。
なお上記マイクロミラーにおいて第一及び第二の信号伝送部材の各々が導電層であり、第二のトーションバー対の各々が、二枚の導電層の間に絶縁層を介在させた三層構造であっても良い。
また上記の課題を解決する本発明の一態様に係るマイクロミラーデバイスは、上記マイクロミラーであって、反射ミラー及び第一の支持枠において互いに対向するよう形成された、反射ミラーを該第一軸周りに正転方向に傾けるための正転用電極対、及び、反射ミラーを該第一軸周りに逆転方向に傾けるための逆転用電極対とを更に備えたマイクロミラーと、正転及び逆転用電極対に電圧を印加する電圧印加手段とを備えたものである。このマイクロミラーデバイスは、正転用電極対において電位差が与えられるよう、第二のトーションバー対の各々の第一、第二の信号伝送部材のうちの二つを用いて正転用電極対の各々と電圧印加手段とを接続し、残りの二つの信号伝送部材を用いて、逆転用電極対において電位差が与えられるよう逆転用電極対の各々と電圧印加手段とを接続したことを特徴としたものである。
すなわち上記マイクロミラーデバイスによれば、第二のトーションバー対の各々の第一及び第二の信号伝送部材、すなわち計四本の信号伝送路部材を用いることにより、第二のトーションバーの本数を上回る数の系統の信号を電圧印加手段に引き出すことが可能となる。従って二軸走査可能なマイクロミラーであってもトーションバー上にパターンを形成する必要がなくなる。
また上記の課題を解決する本発明の別の態様に係るマイクロミラーは、反射ミラーと、反射ミラーから突出するよう形成された可動電極群と、可動電極群と異なる方向において反射ミラーから突出するよう形成された第一のトーションバー対と、第一のトーションバー対を介して反射ミラーを第一軸周りに揺動可能に支持する第一の支持枠と、第一の支持枠から突出するよう形成され、可動電極群と近接して配置された固定電極群と、第一の支持枠から突出し、第一のトーションバー対と直交するよう形成された第二のトーションバー対と、第二のトーションバー対を介して第一の支持枠を該第一軸と直交する第二軸周りに揺動可能に支持する第二の支持枠とを備えたものである。このマイクロミラーは、第二のトーションバー対の各々を互いに絶縁された第一及び第二の信号伝送部材から構成し、反射ミラーが正転方向に傾くように可動電極群と固定電極群との間に電圧が印加されるよう、第二のトーションバー対の各々の第一、第二の信号伝送部材のうちの二つを用いて可動電極群と固定電極群のそれぞれを外部機器と接続し、残りの二つの信号伝送部材を用い、反射ミラーが逆転方向に傾くように可動電極群と固定電極群との間に電圧が印加されるよう、可動電極群と固定電極群のそれぞれを外部機器と接続したことを特徴としたものである。
すなわち上記マイクロミラーによれば、第二のトーションバー対の各々の第一及び第二の信号伝送部材、すなわち計四本の信号伝送路部材を用いることにより、第二のトーションバーの本数を上回る数の系統の信号を外部機器に引き出すことが可能となる。従って二軸走査可能なマイクロミラーであってもトーションバー上にパターンを形成する必要がなくなる。
本発明に係るマイクロミラー及びマイクロミラーデバイスによれば、二軸走査可能なマイクロミラーにおいてトーションバー上にパターンを形成する必要がない。従って高精度な微細電気配線技術が不要となる。この結果、歩留まりが改善して生産効率の向上や生産管理費のコスト軽減等が実現可能となる。
また変形部分に低強度の部材(すなわちトーションバー上に細いパターン)を形成する必要がなくなるため、マイクロミラーの耐久性が改善される。
また更に、断面積の狭いパターンでなく、断面積の広いトーションバーそのものを信号伝送路として作用させることができるため、例えば電圧印加手段等の外部機器と各電極との間の内部抵抗を従来に比べて低減させられる。この結果、省電力化が実現される。
以下、図面を参照して、本発明の実施例のマイクロミラーの構成及び作用について説明する。
図1は、本発明の実施例のマイクロミラー100の構成を示した上面図である。図2(a)は図1のA−A断面を示した図である。図2(b)は図1のB−B断面を示した図である。図2(c)は図1のC−C断面を示した図である。マイクロミラー100は、例えばバーコードリーダやレーザプリンタ等の種々の機器に実装され得るものであり、そのような機器内部の支持基板(不図示)上に支持されている。なお説明の便宜上、各図に互いに直交するX、Y、Z軸を付す。
マイクロミラー100はミラー1、複数の可動櫛歯2a、2b、3a、3b、12a、12b、13a、13b、トーションバー4a、4b、14a、14b、ジンバル部5、15、固定櫛歯6a、6b、7a、7b、16a、16b、17a、及び、17bを有している。なお図1において一部の可動櫛歯及び一部の固定櫛歯を斜線で示しているがこれは説明の便宜上示されたものであり、形状やサイズ、色等を特徴付けるものではない。
マイクロミラー100の構造体は周知の半導体プロセスにより、例えば三層構造を有した単一のシリコン基板を基に形成されている。つまり上記構造体の各構成要素は例えば図2(a)に示されるように三層構造を有している。また各構成要素は一体に形成されている。上記三層構造は導電層、絶縁層、導電層の順に積層したものから成る。各層の材料は設計者が適宜選択して決定されるものである。ここでは導電層は例えば導電性シリコンから成り、絶縁層は例えばSiOから成る。なお説明の便宜上、マイクロミラー100上面側の導電層を「上面導電層」、下面側の導電層を「下面導電層」と記す。
ミラー1表面(XY平面上の面であり、以下、この面を「反射面」と記す)には金属膜が蒸着されており、被走査物上を走査するためのビームが入射される。上記反射面に入射されたビームは実質的に減衰されることなく所定の方向に反射される。この所定の方向すなわち上記反射面で反射されたビームの進行方向はミラー1の傾き角に依存して変化する。なお図1に示されるようにミラー1の反射面は矩形状であるが、他の形状(例えば円状や楕円状等)であってもその機能は十分に果たされる。
複数の可動櫛歯2a、2b、3a、3bはミラー1のY軸沿いの側面から突出するよう形成されている。可動櫛歯2aと3aはミラー1の回転軸Oを挟んで反対側に位置している。また可動櫛歯2bと3bも回転軸Oを挟んで反対側に位置している。なお回転軸Oは、ミラー1の各側面に平行な又は直交した仮想的な直線であり、当該ミラー1の中心を通る。
上記の可動櫛歯について説明を加える。これらの可動櫛歯は所定のピッチで配列されている。また各々の形状及びサイズが全て同一である。可動櫛歯を上述の如く構成した理由として、例えば正転方向にミラー1を回転させて傾けたときにおける傾き特性と、逆転方向にミラー1を回転させて傾けたときにおける傾き特性とを実質的に同一とすることが挙げられる。なおここでいう傾き特性とは、マイクロミラー100への印加電圧量とミラー1の傾き角との関係(具体的には式やグラフ等)で表される特性である。「傾き特性が正転及び逆転方向において同一」の場合、印加電圧の周波数及び振幅が一定であるという条件下において、非印加時のミラー1の位置(すなわち図1の状態)を基準として当該ミラー1が正転及び逆転の両方向に略対称に傾く。なお傾き特性の対称性を特に必要としない場合には、各可動櫛歯間のピッチ、各可動櫛歯の形状やサイズ等をそれぞれ異なるものにしても良い。
トーションバー4a、4bはY軸沿いに長手方向を有し、ミラー1のX軸沿いの側面であって、互いに異なる側面から突出するよう形成されている。またトーションバー4a、4bは回転軸Oを中心とした丸棒の形状を有している。またトーションバー4a、4bは力の作用を受けたときに比較的容易に捻れる。トーションバー4a、4bが捻れたとき、ミラー1はXZ平面において傾く。その傾き角はトーションバー4a、4bの捻れ量(又はトーションバー4a、4bが受けた外力)に依存する。トーションバー4a、4bの他端はそれぞれ、ジンバル部5と一体に繋がっている。
ジンバル部5はミラー1側面の全周を覆うよう形成されている。ミラー1、可動櫛歯2a、2b、3a、3bはトーションバー4a、4bによりジンバル部5a、5bに対して揺動するよう支持されている。
複数の固定櫛歯6a、6bはジンバル部5のY軸沿いの側面から突出するよう形成されている。これらの固定櫛歯は、近接配置された可動櫛歯(すなわち可動櫛歯2a、2b)のピッチと同一のピッチで配列されている。
複数の固定櫛歯7a、7bも固定櫛歯6a、6bと同様に、ジンバル部5のY軸沿いの側面から突出するよう形成されている。またこれらの固定櫛歯7a、7bは回転軸Oを挟んで固定櫛歯6a、6bと対向するよう配置され、且つ、可動櫛歯3a、3bに近接して配置されている。
各固定櫛歯6a、6b、7a、7bはその形状及びサイズが全て同一である。また各固定櫛歯は上面図(すなわち図1)において各固定櫛歯間で単一の可動櫛歯を挟むよう(又は隣接する一対の可動櫛歯に挟まれるよう)配列されている。結果、最も近接する可動櫛歯と固定櫛歯のエアギャップの各々は全て実質的に同一となる。またミラー1が揺動した際の可動櫛歯と固定櫛歯の対向面積も全て実質的に同一となる。
ここで、可動櫛歯2a、2b、3a、3bはミラー1から突出して形成されている。また、固定櫛歯6a、6b、7a、7bはジンバル部5から突出して形成されている。従ってミラー1がジンバル部5に対して揺動したとき、各可動櫛歯が各固定櫛歯に対して動く。
複数の可動櫛歯12a、12b、13a、13bはジンバル部5のX軸沿いの側面から突出するよう形成されている。可動櫛歯12aと13aはミラー1の回転軸Oを挟んで互いに反対側に位置している。また可動櫛歯12bと13bも回転軸Oを挟んで互いに反対側に位置している。なお回転軸Oはミラー1の各側面に平行な又は直交し、当該ミラー1の中心を通る仮想的な直線であり、回転軸Oと直交する。可動櫛歯12a、12b、13a、13bも上述した各櫛歯の場合と同一の理由によりピッチ、形状、サイズ、位置が設定されている。
トーションバー14a、14bはX軸沿いに長手方向を有し、ジンバル部5のX軸沿いの側面であって、互いに異なる側面から突出するよう形成されている。またトーションバー14a、14bは回転軸Oを中心とした丸棒の形状を有している。トーションバー14c、14dはトーションバー4a、4bと同様の性状を有し、力の作用を受けたときに比較的容易に捻れる。トーションバー14c、14dが捻れたとき、ミラー1はYZ平面において傾く。トーションバー14a、14bの他端はジンバル部15と一体に繋がっている。
ジンバル部15はジンバル部5側面の全周を覆うよう形成されており、上記支持基板上に支持されている。すなわちジンバル部15は実装機器のハウジング等に相対的に固定されている。ジンバル部15に囲まれたジンバル部5等の各構成要素は、トーションバー14a、14bによりジンバル部15に対して揺動するよう支持されている。
複数の固定櫛歯16a、16bはジンバル部15のX軸沿いの側面から突出するよう形成されている。これらの固定櫛歯は、近接配置された可動櫛歯(すなわち可動櫛歯12a、12b)のピッチと同一のピッチで配列されている。
複数の固定櫛歯17a、17bも固定櫛歯16a、16bと同様に、ジンバル部15のX軸沿いの側面から突出するよう形成されている。またこれらの固定櫛歯17a、17bは回転軸Oを挟んで固定櫛歯16a、16bと対向するよう配置され、且つ、可動櫛歯13a、13bに近接して配置されている。
各固定櫛歯16a、16b、17a、17bはその形状及びサイズが全て同一である。また各固定櫛歯は上面図(すなわち図1)において各固定櫛歯間で単一の可動櫛歯を挟むよう(又は隣接する一対の可動櫛歯に挟まれるよう)配列されている。結果、最も近接する可動櫛歯と固定櫛歯のエアギャップの各々は全て実質的に同一となる。またミラー1が揺動した際の可動櫛歯と固定櫛歯の対向面積も全て実質的に同一となる。
なお固定櫛歯6a、6b、7a、7b、16a、16b、17a、17bは、可動櫛歯の場合と同一の理由で形状やサイズ等が設定されている。従って傾き特性の対称性を特に必要としない場合には、それらのパラメータをそれぞれ異なるものにしても良い。
ここで、マイクロミラー100の構成について説明を加える。マイクロミラー100は電極パッドEGND、E、E、E、Eを更に有している。これらの電極パッドは例えば上面導電層上に蒸着された金属膜部から成る。これらの電極パッドは、それぞれ所定の櫛歯に接続されている。また図示しない駆動電圧供給手段にも接続されている。すなわち各櫛歯は電極パッドを介して駆動電圧供給手段に接続されている。
図3(a)に上面導電層、図3(b)に下面導電層の構成を示す。また図3(c)に、図3(a)及び(b)のD−D断面を示す。
図3(a)〜(c)に示されるように、上面導電層の種々の箇所に当該上面導電層を複数の領域に分断する絶縁用溝21が形成されている。また下面導電層の種々の箇所に当該下面導電層を複数の領域に分断する絶縁用溝31が形成されている。絶縁用溝21及び31は、例えば半導体プロセスの周知のドライエッチング等により形成された溝である。上面導電層及び下面導電層はそれぞれ、絶縁用溝21、31により、隣接する同一層と物理的に分断された状態で絶縁層上に積層されている。従って絶縁用溝21、31により分断された各領域は互いに絶縁された状態にある。
また上面導電層の種々の箇所に下面導電層との導通を果たす導通用溝22が形成されている。また下面導電層の種々の箇所に上面導電層との導通を果たす導通用溝32が形成されている。これらの導通用溝22及び32は、ドライエッチング等により形成された溝に金属膜を蒸着させたものである。すなわち上面導電層と下面導電層は導通用溝22及び32により導通して、その他の部分では絶縁層により互いに絶縁状態にある。
図3(a)〜(c)に示されるように上面及び下面導電層に絶縁用溝21、31、導通用溝22、32を形成することにより、各櫛歯は、駆動電圧供給手段によって駆動電圧を供給されたときにそれぞれ所定の電位となるよう、各電極パッドに1:1の関係で接続される。具体的には、可動櫛歯2a、2b、3a、3b、12a、12b、13a、13bが電極パッドEGND、固定櫛歯6a、7aが電極パッドE、固定櫛歯6b、7bが電極パッドE、固定櫛歯16a、17aが電極パッドE、固定櫛歯16b、17bが電極パッドEにそれぞれ接続されている。
なお本実施例のマイクロミラー100は、上記の如く、対向する各可動及び固定櫛歯の何れか一方が電極パッドEGNDに接続されるよう構成されている。これにより、トーションバー14a、14bを介してジンバル部15(更には上記駆動電圧供給手段)に引き出されるべき信号の系統数が最小限(ここでは三系統であり、電極パッドEGNDと各櫛歯との間、電極パッドEと各櫛歯との間、電極パッドEと各櫛歯との間に流れる高周波信号)に抑えられている。
本実施例では、絶縁層を挟んで導電層を二層積層させたことにより、上記三系統の信号をトーションバー14a、14bを介してジンバル部15に引き出すことを可能としている。すなわちトーションバー14a、14bを互いに絶縁された導電層を有する構成とすることにより、一本のトーションバーにおいて二系統の信号を引き出すことを可能としている。従って本実施例では信号を引き出し可能な導体(すなわちトーションバー14a、14b)の本数よりも引き出されるべき信号の系統数(すなわち三系統)が多い場合であっても、それら全ての系統の信号がジンバル部15に引き出される。なお本実施例では、トーションバー14a、14bの各々において上面及び下面導電層を用いることにより、最大で四系統の信号をジンバル部15に引き出すことができる。
本実施例の如く導電層を複数積層することにより、マイクロミラーの最も外側のトーションバー(本実施例におけるトーションバー14a、14b)において、その倍の数の信号を駆動電圧供給手段に引き出すことが可能となる。従って、多軸走査可能なマイクロミラー(すなわち信号の系統が多いマイクロミラー)においてもパターンを不要としたものが実現され得る。これに伴って、高精度な微細電気配線技術も不要となる。この結果、歩留まりが改善して生産効率の向上や生産管理費のコスト軽減等が実現可能となる。
また基台そのものを用いて駆動電圧を供給しているため、駆動電圧供給手段と各櫛歯との間の信号伝送路(すなわち従来で言うところのパターンであり、本実施例において上面及び下面導電層、導通用溝22及び32から成る導電部分)の幅や断面積を広く確保することが可能となる。例えばトーションバーにおいて、細いパターンを形成することなくそれよりも幅及び断面積が広いトーションバーそのものが信号伝送路となる。変形部分に低強度の部材(すなわちトーションバー上に細いパターン)を形成する必要がなくなるため、マイクロミラー100の耐久性が改善される。また断面積が広くなる観点から、上記信号伝送路の内部抵抗が従来に比べて低減する。従って省電力化も実現され得る。
次に、可動櫛歯と固定櫛歯の位置関係について説明を加える。ここでは、この位置関係に基づいてマイクロミラー100を領域R、R、R、R、R'、R'、R'、R'に便宜上区別する。
領域R及びR'では可動櫛歯2aと固定櫛歯6a、可動櫛歯3aと固定櫛歯7aがそれぞれ近接配置されている。図2(b)に示されるように、可動櫛歯2a及び固定櫛歯7aは下面導電層の一部から成る。これに対して可動櫛歯3a及び固定櫛歯6aは上面導電層の一部から成る。従ってミラー1の一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯2aが固定櫛歯6a)の下方に位置し、もう一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯3aが固定櫛歯7a)の上方に位置する。
領域R及びR'では可動櫛歯2bと固定櫛歯6b、可動櫛歯3bと固定櫛歯7bがそれぞれ近接配置されている。図2(c)に示されるように、可動櫛歯2b及び固定櫛歯7bは上面導電層の一部から成る。これに対して可動櫛歯3b及び固定櫛歯6bは下面導電層の一部から成る。従ってミラー1の一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯2bが固定櫛歯6b)の上方に位置し、もう一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯3bが固定櫛歯7b)の下方に位置する。
領域R及びR'では可動櫛歯12aと固定櫛歯16a、可動櫛歯13aと固定櫛歯17aがそれぞれ近接配置されている。領域R及びR'では可動櫛歯12a及び固定櫛歯17aが下面導電層の一部から成る。これに対して可動櫛歯13a及び固定櫛歯16aが上面導電層の一部から成る。従ってミラー1の一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯12aが固定櫛歯16a)の下方に位置し、もう一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯13aが固定櫛歯17a)の上方に位置する。
領域R及びR'では可動櫛歯12bと固定櫛歯16b、可動櫛歯13bと固定櫛歯17bがそれぞれ近接配置されている。領域R及びR'では可動櫛歯12b及び固定櫛歯17bが下面導電層の一部から成る。これに対して可動櫛歯13b及び固定櫛歯16bが上面導電層の一部から成る。従ってミラー1の一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯12bが固定櫛歯16b)の下方に位置し、もう一端側では可動櫛歯が固定櫛歯(すなわち可動櫛歯13bが固定櫛歯17b)の上方に位置する。
マイクロミラー100では、各可動櫛歯2b、3a、12b、13a、各固定櫛歯6a、7b、16a、17b(図において斜線で示されていない櫛歯)が全て同一平面上(すなわち同一高さ位置)に形成されている。また各可動櫛歯2a、3b、12a、13b、各固定櫛歯6b、7a、16b、17a(図において斜線で示されている櫛歯)が全て同一平面上に形成されている。これにより、ミラー1、ジンバル部5、15を全て同一平面上に配置してマイクロミラー100全体の厚みを薄型化させている。
またマイクロミラー100では、ミラー1及び各ジンバル部が同一の厚みのシリコン基板を基に形成されている。このため各櫛歯の高さ位置を上述の如く揃えることにより、マイクロミラー100全体の厚みとミラー1の厚みを同等とすることを可能としている。
次に、マイクロミラー100の動作について説明する。図4(a)に、ミラー1が回転軸O周りに逆転方向に傾いたときのB−B断面を示す。また図4(b)に、ミラー1が回転軸O周りに正転方向に傾いたときのC−C断面を示す。
マイクロミラー100は上記駆動電圧供給手段と共に一つの回路を構成している。例えば図4(a)に示されるようにミラー1を回転軸O周りに逆転方向に傾ける場合、駆動電圧供給手段により可動櫛歯2aと固定櫛歯6aとの間に所定の電圧が印加される。またそれと同時に可動櫛歯3aと固定櫛歯7aとの間にも電圧が印加される。可動櫛歯2a及び3aは共に電極パッドEGNDに接続されているためグランド電位となり、可動櫛歯6a及び7aは共に電極パッドEに接続されているため電位Vとなる。これにより可動櫛歯2aと固定櫛歯6aとの間、及び、可動櫛歯3aと固定櫛歯7aとの間に静電引力が発生する。このような静電引力の作用により可動櫛歯2aは上方に位置する固定櫛歯6aに引き寄せられる。また可動櫛歯3aは下方に位置する固定櫛歯7aに引き寄せられる。すなわちミラー1は一端側(可動櫛歯2a側)では上方、もう一端側(可動櫛歯3a側)では下方に動くよう作用を受ける。ここで、上述したようにミラー1はトーションバー4a、4bにより回転自在に支持されている。ミラー1が受けた上記作用はトーションバー4a、4bを捻る。トーションバー4a、4bが捻れることにより、上記作用はミラー1の回転運動に変換される。この結果、ミラー1は回転軸Oを中心にXZ平面において逆転方向に傾く。
また例えば図4(b)に示されるようにミラー1を回転軸O周りに正転方向に傾ける場合、上記駆動電圧供給手段により可動櫛歯2bと固定櫛歯6bとの間に所定の電圧が印加される。またそれと同時に可動櫛歯3bと固定櫛歯7bとの間にも電圧が印加される。可動櫛歯2b及び3bは共に電極パッドEGNDに接続されているためグランド電位となり、可動櫛歯6b及び7bは共に電極パッドEに接続されているため電位Vとなる。これにより可動櫛歯2bと固定櫛歯6bとの間、及び、可動櫛歯3bと固定櫛歯7bとの間に静電引力が発生する。このような静電引力の作用により可動櫛歯2bは下方に位置する固定櫛歯6bに引き寄せられる。また可動櫛歯3bは上方に位置する固定櫛歯7bに引き寄せられる。すなわちミラー1は一端側(可動櫛歯2b側)では下方、もう一端側(可動櫛歯3b側)では上方に動くよう作用を受ける。この作用は先と同様にミラー1の回転運動に変換される。この結果、ミラー1は回転軸Oを中心にXZ平面において正転方向に傾く。
また例えばミラー1を回転軸O周りに正転方向に傾ける場合、上記駆動電圧供給手段により可動櫛歯12aと固定櫛歯16aとの間に所定の電圧が印加される。またそれと同時に可動櫛歯13aと固定櫛歯17aとの間にも電圧が印加される。可動櫛歯12a及び13aは共に電極パッドEGNDに接続されているためグランド電位となり、可動櫛歯16a及び17aは共に電極パッドEに接続されているため電位Vとなる。これにより可動櫛歯12aと固定櫛歯16aとの間、及び、可動櫛歯13aと固定櫛歯17aとの間に静電引力が発生する。このような静電引力の作用により可動櫛歯12aは上方に位置する固定櫛歯16aに引き寄せられる。また可動櫛歯13aは下方に位置する固定櫛歯17aに引き寄せられる。すなわちミラー1は一端側(可動櫛歯12a側)では上方、もう一端側(可動櫛歯13a側)では下方に動くよう作用を受ける。この作用は先と同様にミラー1の回転運動に変換される。この結果、ミラー1は回転軸Oを中心にYZ平面において正転方向に傾く。
また例えばミラー1を回転軸O周りに逆転方向に傾ける場合、上記駆動電圧供給手段により可動櫛歯12bと固定櫛歯16bとの間に所定の電圧が印加される。またそれと同時に可動櫛歯13bと固定櫛歯17bとの間にも電圧が印加される。可動櫛歯12b及び13bは共に電極パッドEGNDに接続されているためグランド電位となり、可動櫛歯16b及び17bは共に電極パッドEに接続されているため電位Vとなる。これにより可動櫛歯12bと固定櫛歯16bとの間、及び、可動櫛歯13bと固定櫛歯17bとの間に静電引力が発生する。このような静電引力の作用により可動櫛歯12bは下方に位置する固定櫛歯16bに引き寄せられる。また可動櫛歯13bは上方に位置する固定櫛歯17bに引き寄せられる。すなわちミラー1は一端側(可動櫛歯12b側)では下方、もう一端側(可動櫛歯13b側)では上方に動くよう作用を受ける。この作用は先と同様にミラー1の回転運動に変換される。この結果、ミラー1は回転軸Oを中心にYZ平面において逆転方向に傾く。
図4(a)に示された例では、可動櫛歯2a側でミラー1を上方に動かす静電引力と、可動櫛歯3a側でミラー1を下方に動かす静電引力が共に当該ミラー1をXZ平面において逆転方向に傾ける力として作用する。また図4(b)に示された例では、可動櫛歯2b側でミラー1を下方に動かす静電引力と、可動櫛歯3b側でミラー1を上方に動かす静電引力が共に当該ミラー1をXZ平面において正転方向に傾ける力として作用する。また更に、領域R及びR'では可動櫛歯12a側でミラー1を上方に動かす静電引力と、可動櫛歯13a側でミラー1を下方に動かす静電引力が共に当該ミラー1をYZ平面において正転方向に傾ける力として作用する。領域R及びR'では可動櫛歯12b側でミラー1を下方に動かす静電引力と、可動櫛歯13b側でミラー1を上方に動かす静電引力が共に当該ミラー1をYZ平面において逆転方向に傾ける力として作用する。
すなわち上記駆動電圧供給手段により各櫛歯間に電圧が選択的に印加されることにより、ミラー1はXZ及びYZ平面の少なくとも一方において傾く。すなわちマイクロミラー100においてミラー1は二軸に傾斜可能である。このためマイクロミラー100を用いたビームの二軸走査が実現される。
またマイクロミラー100では、XZ及びYZ平面に関して、ミラー1の両端側で同一方向に当該ミラー1を傾ける作用が働く。このためミラー1は大きな駆動力で傾けられる。駆動力を十分に確保できたとき、ミラー1の回転動作の安定性や応答速度等が向上する。また各櫛歯間に静電引力が発生したときに、回転軸Oを挟んで対称となる箇所において対称性のあるベクトル(スカラー量が同等で且つその作用方向が互いに逆)を持つ作用が働く。このためマイクロミラー100の構造体(特にトーションバー4a、4b)に対してアンバランスな負荷が掛からない(若しくは低減する)。すなわちマイクロミラー100の構造体に対して本来意図しない方向に歪ませるような作用が低減する。この結果、マイクロミラー100の耐久性を向上させることが可能となる。またエネルギー損失も低減する。すなわち静電引力がより効率良くミラー1の回転運動に変換される。従って駆動電圧のレベルを下げて省電力化を図ることも可能となる。
また上述したように、マイクロミラー100では非印加時のミラー1の位置(すなわち図1の状態)を基準として当該ミラー1をXZ及びYZ平面に関して正転及び逆転の両方向に傾けることができる。このため傾き角を十分に確保することができる。また傾き特性を正転及び逆転方向において同一とする(すなわち傾き特性に対称性を持たせる)こともできる。この場合、例えばマイクロミラー100を実装する機器に備えられる他の光学系に対する設計容易性が向上する。すなわち上記基準を境に傾き特性に対称性があるため、例えば上記基準を境界としてミラー1で反射されたビームの走査範囲に対称性を持たせるよう光学系を設計することが容易である。
以上が本発明の実施の形態である。本発明はこれらの実施の形態に限定されるものではなく様々な範囲で変形が可能である。例えば各櫛歯の数は本実施例のものに限定されず、設計に応じて適宜変更可能である。
本発明の実施例のマイクロミラーの構成を示した上面図である。 図1のA−A断面、B−B断面、及び、C−C断面を示した図である。 本発明の実施例のマイクロミラーの上面導電層、下面導電層の構成、及び、図3(a)及び(b)のD−D断面を示した図である。 本発明の実施例のミラーが逆転方向に傾いたときのB−B断面、及び、ミラーが正転方向に傾いたときのC−C断面を示した図である。
符号の説明
1 ミラー
2a、2b、3a、3b、12a、12b、13a、13b 可動櫛歯
4a、4b、14a、14b トーションバー
5、15 ジンバル部
6a、6b、7a、7b、16a、16b、17a、17b 固定櫛歯
100 マイクロミラー

Claims (4)

  1. 近接する各電極間に静電引力を発生させて二軸周りにおいて正転及び逆転方向に反射ミラーを微少に傾けるマイクロミラーにおいて、
    前記反射ミラーから突出するよう形成された第一のトーションバー対と、
    前記第一のトーションバー対を介して前記反射ミラーを第一軸周りに揺動可能に支持する第一の支持枠と、
    前記第一の支持枠から突出し、前記第一のトーションバー対と直交するよう形成された第二のトーションバー対と、
    前記第二のトーションバー対を介して前記第一の支持枠を該第一軸と直交する第二軸周りに揺動可能に支持する第二の支持枠と、を備え、
    前記第二のトーションバー対の各々を、互いに絶縁された第一及び第二の信号伝送部材から構成したこと、を特徴とするマイクロミラー。
  2. 前記第一及び第二の信号伝送部材の各々が導電層であり、前記第二のトーションバー対の各々が、二枚の前記導電層の間に絶縁層を介在させた三層構造であること、を特徴とする請求項1に記載のマイクロミラー。
  3. 請求項1又は請求項2の何れかに記載のマイクロミラーであって、前記反射ミラー及び前記第一の支持枠において互いに対向するよう形成された、前記反射ミラーを該第一軸周りに正転方向に傾けるための正転用電極対、及び、前記反射ミラーを該第一軸周りに逆転方向に傾けるための逆転用電極対と、を更に備えたマイクロミラーと、
    前記正転及び逆転用電極対に電圧を印加する電圧印加手段と、を備えたマイクロミラーデバイスにおいて、
    前記正転用電極対において電位差が与えられるよう、前記第二のトーションバー対の各々の前記第一、第二の信号伝送部材のうちの二つを用いて前記正転用電極対の各々と前記電圧印加手段とを接続し、
    残りの二つの信号伝送部材を用いて、前記逆転用電極対において電位差が与えられるよう前記逆転用電極対の各々と前記電圧印加手段とを接続したこと、を特徴とするマイクロミラーデバイス。
  4. 反射ミラーと、
    前記反射ミラーから突出するよう形成された可動電極群と、
    前記可動電極群と異なる方向において前記反射ミラーから突出するよう形成された第一のトーションバー対と、
    前記第一のトーションバー対を介して前記反射ミラーを第一軸周りに揺動可能に支持する第一の支持枠と、
    前記第一の支持枠から突出するよう形成され、前記可動電極群と近接して配置された固定電極群と、
    前記第一の支持枠から突出し、前記第一のトーションバー対と直交するよう形成された第二のトーションバー対と、
    前記第二のトーションバー対を介して前記第一の支持枠を該第一軸と直交する第二軸周りに揺動可能に支持する第二の支持枠と、を備え、
    前記第二のトーションバー対の各々を、互いに絶縁された第一及び第二の信号伝送部材から構成し、
    前記反射ミラーが正転方向に傾くように前記可動電極群と前記固定電極群との間に電圧が印加されるよう、前記第二のトーションバー対の各々の前記第一、第二の信号伝送部材のうちの二つを用いて前記可動電極群と前記固定電極群のそれぞれを外部機器と接続し、
    残りの二つの信号伝送部材を用い、前記反射ミラーが逆転方向に傾くように前記可動電極群と前記固定電極群との間に電圧が印加されるよう、前記可動電極群と前記固定電極群のそれぞれを外部機器と接続したこと、を特徴とするマイクロミラー。
JP2006001331A 2005-12-28 2006-01-06 マイクロミラー、及び、マイクロミラーデバイス Expired - Fee Related JP4437320B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006001331A JP4437320B2 (ja) 2006-01-06 2006-01-06 マイクロミラー、及び、マイクロミラーデバイス
US11/616,433 US7271946B2 (en) 2006-01-06 2006-12-27 Micromirror and micromirror device
DE200610061763 DE102006061763A1 (de) 2005-12-28 2006-12-28 Mikrospiegel und Mikrospiegelvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001331A JP4437320B2 (ja) 2006-01-06 2006-01-06 マイクロミラー、及び、マイクロミラーデバイス

Publications (2)

Publication Number Publication Date
JP2007183400A true JP2007183400A (ja) 2007-07-19
JP4437320B2 JP4437320B2 (ja) 2010-03-24

Family

ID=38285239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001331A Expired - Fee Related JP4437320B2 (ja) 2005-12-28 2006-01-06 マイクロミラー、及び、マイクロミラーデバイス

Country Status (2)

Country Link
US (1) US7271946B2 (ja)
JP (1) JP4437320B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536041A (ja) * 2007-08-10 2010-11-25 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 前方結像型光干渉断層(oct)システムおよびプローブ
JP2012528343A (ja) * 2009-05-27 2012-11-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング マイクロマシニング型の構成素子及び該マイクロマシニング型の構成素子の製造方法
JP2019159331A (ja) * 2017-07-06 2019-09-19 浜松ホトニクス株式会社 光学デバイス
US20210132368A1 (en) 2017-07-06 2021-05-06 Hamamatsu Photonics K.K. Optical device
US11635613B2 (en) 2017-07-06 2023-04-25 Hamamatsu Photonics K.K. Optical device
US11681121B2 (en) 2017-07-06 2023-06-20 Hamamatsu Photonics K.K. Optical device
US11693230B2 (en) 2017-11-15 2023-07-04 Hamamatsu Photonics K.K. Optical device
US11733509B2 (en) 2017-07-06 2023-08-22 Hamamatsu Photonics K.K. Optical device
US12031863B2 (en) 2017-07-06 2024-07-09 Hamamatsu Photonics K.K. Optical device including movable mirror and first light passage
US12136893B2 (en) 2017-07-06 2024-11-05 Hamamatsu Photonics K.K. Optical device having fixed and movable comb electrodes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546995B2 (en) * 2009-11-06 2013-10-01 Opus Microsystems Corporation Two-dimensional micromechanical actuator with multiple-plane comb electrodes
JP2013003560A (ja) * 2011-06-22 2013-01-07 Hitachi Media Electoronics Co Ltd ミラーデバイス
US11543650B2 (en) * 2021-04-22 2023-01-03 Beijing Voyager Technology Co., Ltd. Scanning mirror assembly with a scanning mirror elevated above a MEMS actuator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011144B2 (ja) * 1997-07-31 2000-02-21 日本電気株式会社 光スキャナとその駆動方法
US6057952A (en) * 1999-01-14 2000-05-02 Olympus Optical Co., Ltd. Light scanning device and confocal optical device using the same
US6330102B1 (en) * 2000-03-24 2001-12-11 Onix Microsystems Apparatus and method for 2-dimensional steered-beam NxM optical switch using single-axis mirror arrays and relay optics
KR100486716B1 (ko) * 2002-10-18 2005-05-03 삼성전자주식회사 2-d 액튜에이터 및 그 제조방법
JP3934578B2 (ja) * 2003-06-09 2007-06-20 ペンタックス株式会社 走査ミラー、ビーム走査型プローブ
JP2005088188A (ja) * 2003-08-12 2005-04-07 Fujitsu Ltd マイクロ揺動素子およびマイクロ揺動素子駆動方法
JP4360923B2 (ja) * 2004-01-20 2009-11-11 Hoya株式会社 マイクロミラー装置
JP4227531B2 (ja) * 2004-01-27 2009-02-18 Hoya株式会社 ヒンジ構造
JP2006053396A (ja) * 2004-08-12 2006-02-23 Tohoku Univ 駆動機構、および該機構を備えたマイクロミラー装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536041A (ja) * 2007-08-10 2010-11-25 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 前方結像型光干渉断層(oct)システムおよびプローブ
JP2012528343A (ja) * 2009-05-27 2012-11-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング マイクロマシニング型の構成素子及び該マイクロマシニング型の構成素子の製造方法
US11681121B2 (en) 2017-07-06 2023-06-20 Hamamatsu Photonics K.K. Optical device
US20210132368A1 (en) 2017-07-06 2021-05-06 Hamamatsu Photonics K.K. Optical device
JP7125913B2 (ja) 2017-07-06 2022-08-25 浜松ホトニクス株式会社 光学デバイス
US11635613B2 (en) 2017-07-06 2023-04-25 Hamamatsu Photonics K.K. Optical device
JP2019159331A (ja) * 2017-07-06 2019-09-19 浜松ホトニクス株式会社 光学デバイス
US11733509B2 (en) 2017-07-06 2023-08-22 Hamamatsu Photonics K.K. Optical device
US11740452B2 (en) 2017-07-06 2023-08-29 Hamamatsu Photonics K.K. Optical device
US12031863B2 (en) 2017-07-06 2024-07-09 Hamamatsu Photonics K.K. Optical device including movable mirror and first light passage
US12136893B2 (en) 2017-07-06 2024-11-05 Hamamatsu Photonics K.K. Optical device having fixed and movable comb electrodes
US11693230B2 (en) 2017-11-15 2023-07-04 Hamamatsu Photonics K.K. Optical device
US11906727B2 (en) 2017-11-15 2024-02-20 Hamamatsu Photonics K.K. Optical device production method
US11953675B2 (en) 2017-11-15 2024-04-09 Hamamatsu Photonics K.K. Optical device production method

Also Published As

Publication number Publication date
US20070171501A1 (en) 2007-07-26
US7271946B2 (en) 2007-09-18
JP4437320B2 (ja) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4437320B2 (ja) マイクロミラー、及び、マイクロミラーデバイス
JP5646456B2 (ja) 2つの回転軸での独立的な回転を行うmemsデバイス
KR100702019B1 (ko) 마이크로 미러 소자
US7751108B2 (en) Micro-actuation element provided with torsion bars
KR100811703B1 (ko) 마이크로 요동 소자
US7002730B2 (en) Mirror device, optical switch, thin film elastic structure, and thin elastic structure producing method
JPWO2007110928A1 (ja) 可動素子
JP2000314842A (ja) 光超小型機械及び光ビームの制御方法
JP3970066B2 (ja) 光偏向器及び電磁型アクチュエータ
JP2007248731A (ja) マイクロミラー並びにそれを用いた光部品および光スイッチ
US7006721B2 (en) Optical switch and beam direction module
US7088494B2 (en) Hinge structure of micromirror device
JP4475421B2 (ja) マイクロミラー、及び、マイクロミラーデバイス
JP4036643B2 (ja) 光偏向器及び光偏向器アレイ
JP2007286172A (ja) マイクロミラー、及び、電極形成方法
JP2006201520A (ja) Memsミラースキャナ
JP5293676B2 (ja) マイクロミラー素子
KR101916939B1 (ko) 마이크로 스캐너, 및 마이크로 스캐너의 제조방법
JP2010249905A (ja) 光学装置およびその製造方法
JP4336123B2 (ja) Mems素子および光デバイス
JP2006039066A (ja) ヒンジ構造
KR100710791B1 (ko) 토션 바아를 구비하는 마이크로 요동 소자 및 마이크로 미러 소자
JP2003222818A (ja) 光偏向器の製造方法
JP2010122569A (ja) マイクロミラーデバイス
JP5416184B2 (ja) マイクロミラー素子

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees