JP2007178712A - 集光状態検出装置、光走査装置、および画像形成装置 - Google Patents

集光状態検出装置、光走査装置、および画像形成装置 Download PDF

Info

Publication number
JP2007178712A
JP2007178712A JP2005377043A JP2005377043A JP2007178712A JP 2007178712 A JP2007178712 A JP 2007178712A JP 2005377043 A JP2005377043 A JP 2005377043A JP 2005377043 A JP2005377043 A JP 2005377043A JP 2007178712 A JP2007178712 A JP 2007178712A
Authority
JP
Japan
Prior art keywords
light
light receiving
detection device
scanned
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377043A
Other languages
English (en)
Other versions
JP4654910B2 (ja
Inventor
Toshio Naiki
俊夫 内貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005377043A priority Critical patent/JP4654910B2/ja
Publication of JP2007178712A publication Critical patent/JP2007178712A/ja
Application granted granted Critical
Publication of JP4654910B2 publication Critical patent/JP4654910B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】安価でありながら簡易かつ精度よく合焦ズレ(集光状態)を検出できる集光状態検出装置等を提供する。
【解決手段】集光状態検出装置19は、感光体31の表面上(被走査面上)に集光かつ走査する光を、走査開始に先立って受光する受光素子1a・1bを含む光センサ11と、受光素子1a・1bの光電変換により得た受光信号を利用して、感光体31の表面上における光の集光状態を判断する制御部12と、を有している。特に、光センサ11は、主走査方向の上流から下流に向けて順に複数の受光素子(第1受光素子1a・第2受光素子1b)を並べるようにして、受光素子1a・1bの並び方向を光の主走査方向に対して平行にしている。
【選択図】図1

Description

本発明は、被走査面上を走査する光線の集光状態を検出する集光状態検出装置、およびそれを備える光走査装置、さらには、かかる光走査装置を備える画像形成装置に関するものである。
通常、画像形成装置(レーザプリンタやコピー機等)における出力画像の画質は、感光体表面上の光束径(ビーム径)の影響をうけやすい。そのため、光走査装置は、光学系等を利用し、光線を感光体表面(被走査面)に対し精度よく照射させている。しかしながら、光走査装置内の光学系等は、温度変化の影響をうけて変形等しやい。したがって、温度変化の影響をうけた光学系等を通過する光線が感光体表面上で集光しない事態(合焦ズレ)が生じ得る。
かかるような事態は、出力画像の画質低下につながる。そのため、光走査装置は、適宜、光学系等を調整する必要がある。ただし、このような調整のためには、感光体面における光線の合焦ズレを逐次検出しておかなくてはならない。そこで、合焦ズレを検出する装置(集光状態検出装置)が種々開発されている。
例えば特許文献1の集光状態検出装置119は、図7に示すように、感光体131に入射する直前の偏向した光を受光する光センサ111と、受光の検出精度を高めるためのナイフエッジ141a・141bとを有している。そして、偏向光線による光センサ111への走査のときに、かかる光センサ111の出力する信号、特に、ナイフエッジ141aにより立ち上がる信号に基づく微分ピーク値と、ナイフエッジ141bにより立ち下がる信号に基づく微分ピーク値を用いて、特許文献1の集光状態検出装置119は、合焦ズレを検出するようになっている。
特開平04−155304号公報
また、単一の受光部を有する光センサへの走査のときに生じる出力信号波形の立ち上がり時間を、カウンタを含む回路で計測することにより、合焦ズレを検出するその他の集光状態検出装置も存在する。
しかしながら、特許文献1の集光状態検出装置119では、光センサ111の出力信号に対して、微分等のアナログ処理が複数段にわたって行われる。そのため、微分処理等を行う回路での回路定数の誤差に起因し、周波数特性が変化しやすい。すると、特許文献1の集光状態検出装置119では、周波数特性の変化に起因して、合焦ズレの検出精度が劣化しやすいといえる。
また、光線の走査速度が速い場合、上記したその他の集光状態検出装置では、カウンタを含む回路でのカウント用のクロック周波数が、数百MHz〜1GHzになってしまう。かかるような高い周波数を取り扱う回路は、技術的に難しいだけでなくコストアップの要因にもつながる。
本発明は、上記の問題点を解決するためになされたものであって、その目的は、安価でありながら簡易かつ精度よく合焦ズレ(集光状態)を検出できる集光状態検出装置等を提供することにある。
本発明の集光状態検出装置は、被走査面上に集光かつ走査する光を受光する受光素子を複数含む光センサと、受光素子の光電変換により得た受光信号を利用して、被走査面上における光の集光状態を判断する制御部と、を有している。そして、特に、光センサに配置される複数の受光素子が光の走査方向に沿って順に並ぶことで、受光素子の並び方向が光の走査方向に対して平行になっている。
また、本発明の焦点検出装置における制御部は、複数の受光素子に各々対応する複数の受光信号を比較することで、被走査面上における光の集光状態を判断していると望ましい。かかる判断処理の一例としては、制御部が、受光時間の経過を示す時間軸と受光信号の強度レベルを示すレベル軸とから成る2次元上で、複数の受光信号の信号波形を比較し、信号波形同士の交点を示すレベル軸上の値が所定閾値を下回ることをもって、被走査面上における光が合焦していると判断する例が挙げられる。
なお、複数の受光素子に各々対応する複数の受光信号の出力レベルが等しくなっていると望ましい。
また、本発明の集光状態検出装置では、受光素子同士の配置間隔が、光の光束径の2倍以下であると望ましい。
さらに、本発明には、上記した集光状態検出装置と、被走査面に到達する光の集光状態を調整する調整用光学素子と、調整用光学素子に動力を供給することで可動にさせる駆動源と、を含む光走査装置も含まれる。
そして、本発明の光走査装置では、光センサが、光の進行方向において、被走査面上よりも上流側または下流側に配置されている場合、光の進行方向において、光センサよりも上流側に、光を集光させる集光レンズが配置されていると望ましい。
なお、上記の光走査装置と、被走査面になる像担持体と、を有する画像形成装置も、本発明に含まれる。
本発明の集光状態検出装置によると、光センサを介して時間的差異のある複数の受光信号を得ることができ、さらに、制御部が、これらの複数の受光信号を利用して光の合焦度合い(合焦度)を判断できる。そして、特に、かかる判断を比較的単純な出力比較で行うことから、制御部の判断処理の負担が軽減する。よって、安価な制御部を使用しながらも、簡易かつ精度よく合焦ズレ(集光状態)を検出できる集光状態検出装置が実現する。
[実施の形態1]
《1.光走査装置の構成について》
図1は、画像形成装置の一例であるレーザプリンタ39の概略斜視図である。この図1に示すように、レーザプリンタ39は、感光体(像担持体)31に対して、光線を照射する光走査装置29を含んでいる。
光走査装置29は、レーザーダイオード20、コリメータレンズ21、フォーカシングレンズ22、第1シリンドリカルレンズ23、ポリゴンミラー24、f−θレンズ25a・25b・25c、第2シリンドリカルレンズ26、折り返しミラー27、および集光状態検出装置19を含んでいる。
レーザーダイオード20は光(レーザ光)を発する光源であり、コリメータレンズ21は進行してくるレーザ光を略平行光に変換させるものである。
フォーカシングレンズ(調整用光学素子)22は、光軸上を進退移動することにより、感光体31上のレーザ光の集光状態を変化させるものである。なお、光軸上を進退移動するために、フォーカシングレンズ22は、回動するピニオンギアPGに係合するラックRUを備えるベース台BPに取り付けられている。つまり、ピニオンギアPBを回動させるステッピングモータ(駆動源)SMの駆動力によって、フォーカシングレンズ22は、光軸上を進退移動するようになっている。
第1シリンドリカルレンズ23は、フォーカシングレンズ22から進行してくるレーザ光を通過させることで、ポリゴンミラー24近傍で主走査方向に沿って延びる線状に集光させるものである。ポリゴンミラー24は、具備する複数の反射面を回転させることで、集光されたレーザ光を偏向させるものである。なお、この偏向方向を主走査方向と称し、感光体31の回転方向を副走査方向と称す。
f-θレンズ25a・25b・25cは、レーザ光を感光体31上で集光し、かつ、レーザ光の等角速度運動を等速運動に変換するものである。第2シリンドリカルレンズ26は、第1シリンドリカルレンズ24と協同して、ポリゴンミラー24による面倒れ誤差を補正するものである。折り返しミラー27は、等速運動するレーザ光を反射させることで、感光体31に照射させるものである。
本発明でもある集光状態検出装置19は、光センサ11および制御部12を含んでいる。光センサ11は、光電変換素子から成る受光素子(第1受光素子1a・第2受光素子1b;図2参照)を複数含んでいる。そして、かかる光センサ11は、感光体31の主走査方向の上流側または下流側であり、かつ、感光体31外の位置(感光体31の表面と同一な仮想面上;感光体31と光学的に等価な位置)に配置されている。そのため光センサ11上での光の合焦度合い(合焦度)が判断できれば、感光体31表面の光の合焦度も判断できることになる。
制御部12は、受光素子1a・1bによって生成される信号(受光信号)を比較することで、感光体31上の光線の集光状態を判断するようになっている(詳細は後述)。また、制御部12は、かかる判断結果に応じて、ステッピングモータSMを制御し、フォーカシングレンズ22を適宜移動させるようにもなっている。そのため、かかる集光状態検出装置19を備える光走査装置29は、自動合焦機能(オートフォーカス機能)を有することになる。
《2.光センサによって検出される信号について》
ところで、図2に示すように、光センサ11は、光の主走査方向の上流から下流に向けて順に複数の受光素子(第1受光素子1a・第2受光素子1b)を並べるようにして、受光素子1a・1bの並び方向を光の主走査方向に対して平行にしている(なお、受光素子1a・1b同士の間に間隙Gが生じるようになっている)。そのため、受光素子1a・1bによる光を受光するタイミングはずれるようになる。つまり、主走査方向において上流側に位置する第1受光素子1aは、第2受光素子1bよりも先に光を受光する一方、主走査方向において下流側に位置する第2受光素子1bは、第1受光素子1aよりも後に(遅延して)光を受光するようになっている。
そこで、受光素子1a・1bによる光の受光時間を示す時間軸(T)と、光の光強度(すなわち受光信号の信号レベル)を示すレベル軸(L)とから成る2次元図において、第1受光素子1a・第2受光素子1bにより生成される第1受光信号S1・第2受光信号S2の波形(第1信号波形S1・第2信号波形S2とも称す)を示すと、図3(A)・図3(B)のようになる。
ただし、光(特にレーザー光)の強度分布はガウス分布になっている。そのため、実際は、図3(A)・図3(B)に示すように、矩形の信号波形にはならない。しかし、便宜上、光における光強度のピーク値を100%とした場合に、13.5%以上の光強度を有する光を光束径(ビーム径)Dとして説明していく。なお、第1受光素子1aと第2受光素子1bの受光感度は互いに等しくなっている。そのため、図3に示すように、信号波形S1・S2の光強度(縦軸)は同程度になっている。
上記したように、図3(A)は第1受光素子1aに対応する信号波形S1を示し、図3(B)は第2受光素子1baに対応する信号波形S2を示している。このように、信号波形S1・S2は同じ2次元図で示すことができることから、制御部12は、信号波形S1・S2を、同一の時間軸かつ同一のレベル軸において重畳させて比較できる。このような比較状態を示すと、図3(C)のようになる。この図3(C)に示すように、信号波形S1・S2の光強度{この強度をL(p)と称す}は同程度になるが、受光タイミングのずれ(遅延分)だけ時間軸(横軸)上に差異が生じるようになる。
なお、図3(C)に示すように第1受光素子1aの第1信号波形S1と第2受光素子1bの第2信号波形S2とが重なっている場合、光センサ11とビーム径Dとは図4に示すようになっている。つまり、受光素子1a・1bの両方によって、同時に光を受光する時間帯が生じるようになっている。
かかるような時間帯が生じるようになっていると、図3(C)に示すように、受光素子1aの信号波形S1と受光素子1bの信号波形S2との交わるポイントIPが生じる。そして、このポイントIPの光強度は、受光素子1a・1bに入射する光の合焦度(すなわち、感光体31上における光線の合焦度)に応じて変化する。
《3.ポイントIPについて》
そこで、光の合焦度に応じて、ポイントIPが変化していく状態を、図5を用いて説明する。図5(A)は光が合焦しているときの信号波形S1・S2を示し、かかる図でのポイントIPの光強度を「合焦閾値L(b)」とする。一方、図5(B)・図5(C)は光が合焦していないときの(デフォーカスのときの)信号波形S1・S2を示している。
なお、図5(C)は図5(B)よりもデフォーカスの度合いが大きくなっている。また、図5(B)および図5(C)でのポイントIPの光強度は、L(d1)・L(d2)と称する。そして、これらのL(d1)・L(d2)は、デフォーカスの度合いに起因して、「L(d1)<L(d2)」という関係になっている。
通常、感光体31表面に対し光の合焦度が合っていない場合、ビーム径Dは合焦時のビーム径Dよりも広がるようになる。そのため、各受光素子1a・1bによって測定される光強度の分布(光強度分布)は、裾野を有するようになる。
すると、主走査により、光強度分布上で最大の光強度を示す光束中心が第1受光素子1aに到達している場合であっても、光強度分布上で裾野に該当する光束周縁が第2受光素子1bに到達するようになる。つまり、光束中心が受光素子1a・1b間の間隙Gから比較的離間しているにもかかわらず、光束周縁が第2受光素子1bを照射するようになる。
かかるような主走査での信号波形S1・S2を示したものが図5(B)・図5(C)になる。これらの図に示すように、デフォーカスのためにビーム径Dの幅を増加させた光の信号波形S1・S2の立ち上がりおよび立ち下がりは、合焦時に比べて緩やかな傾斜になり、裾野を有するようになる。そのため、第1信号波形S1の立ち下がりと第2信号波形S2の立ち上がりとが、互いに緩やかな傾斜を有しつつ離間するようになる。その結果、ポイントIPの光強度{L(d1)・L(d2)}が、合焦時の合焦閾値L(b)に比べて増加する。
すると、合焦閾値L(b)が予め定められていれば、この合焦閾値L(b)を用いて、集光状態を把握することができる。例えば、制御部12が、予め記憶部(不図示)に合焦閾値L(b)を記憶しているとする。そして、制御部12が、記憶した合焦閾値L(b)とポイントIPの光強度とを比較させることで、感光体31の表面上の集光状態を判断できる。例えば、制御部12は、ポイントIPの光強度が合焦閾値L(b)を下回っていれば、感光体31の表面上における光が合焦していると判断できる。
《4.ポイントIPと受光素子同士の間隔との関係について》
ところで、デフォーカスの度合いによって生じるポイントIPの光強度の変動は、間隔Gと、ビーム径Dとの関係に依存する。なぜなら、定性的には間隔Gが、ビーム径Dよりも大きすぎると、デフォーカスによるビーム径Dの変化に対応するポイントIPの光強度の変動が小さくなるためである。
そこで、間隔Gとビーム径Dとの最適な関係について、図6を用いて説明する。この図6は、ポイントIPの光強度を縦軸(L)とし、ビーム径Dを横軸とするグラフである。そして、横軸上のGは、一定になった間隔Gを示している。
かかる図6に示すように、ビーム径Dが極めて小さいと(≒0)、ポイントIPは発生しない(すなわち、光強度のレベル軸上でも「0」になる)。しかしながら、ビーム径Dが大きくなるにつれて、徐々にポイントIPが発生するようになってくる。そして、ビーム径Dが一定以上の大きさになると、ポイントIPの光強度は収束する{かかる光強度の値をL(p)/2と称す。なぜなら、2個の受光素子1a・1bの場合、単一の受光素子に入射する最大の光強度(L(p))の半分の光強度(L(p)/2)を得ることができれば、ポイントIPが生じるためである}。
なお、この現象を、光強度の値が「0〜L(p)/2」に至るまでの変化の度合い(急峻度)で説明すると、ビーム径Dが「0〜G/2」においては急峻度に変化がほぼ生じないといえる。一方で、ビーム径Dが「G/2〜」になると急峻度は徐々に増加していき、ビーム径Dが「G〜∞」になると急峻度は比較的急激に増加するが、徐々に緩やかに増加し、やがて不変になるといえる。
すると、デフォーカスによりポイントIPに変動が生じるようにさせておくためには、「G/2≦D」の関係を満たすようにして、図6での急峻度が生じるようにしておけばよいといえる。なお、ビーム径D(特に、最も集光された光束径;ビームウエスト径)は、設計上、予め定められることが多い。そのため、間隔Gは、ビーム径Dの2倍以下(「G≦2D」)になっていればよいともいえる。
《5.本発明の種々の特徴の一例》
以上のように、本発明の集光状態検出装置19は、感光体31の表面上(被走査面上)に集光かつ走査する光を受光する受光素子1a・1bを含む光センサ11と、受光素子1a・1bの光電変換により得た受光信号を利用して、感光体31の表面上における光の集光状態を判断する制御部12と、を有している。特に、光センサ11は、光の主走査方向の上流から下流に向けて順に複数の受光素子(第1受光素子1a・第2受光素子1b)を並べるようにして、受光素子1a・1bの並び方向を光の主走査方向に対して平行にしている。
このような集光状態検出装置19であれば、一主走査(ワンスキャン)する光が第1受光素子1a、第2受光素子1bの順に入射する。そのため、第1受光素子1aの受光信号S1と第2受光素子1bの受光信号S2との間に、受光タイミングのずれ(位相遅れ)が生じることになる。つまり、制御部12は、光センサ11を介して時間的差異のある受光信号S1・S2を得ることができる。すると、本発明の集光状態検出装置19では、制御部12が、受光信号S1・S2を利用して光の合焦度合い(合焦度)を判断できる。
例えば、制御部12が、複数の受光素子1a・1bに各々対応する複数の受光信号S1・S2を比較することで、感光体31の表面上における光の集光状態を判断してもよい。詳説すると制御部12は、受光時間の経過を示す時間軸(T)と受光信号の強度レベル(光強度)を示すレベル軸(L)とから成る2次元上で、複数の受光信号の信号波形S1・S2を比較し、信号波形S1・S2同士の交点を示すレベル軸上の値(ポイントIP)が所定閾値{合焦閾値L(b)}を下回るか、または最小値となることをもって、感光体31の表面上における光が合焦していると判断すると望ましい。
このような場合、制御部12は、受光信号S1・S2に特段の処理を加えない生信号波形を用いて光の合焦度を判断している。そのため、受光信号S1・S2に対する複雑な回路処理が不要となり、制御部12の処理負担の軽減を図ることができる。したがって、本発明の集光状態検出装置19は、処理能力の比較的低い安価な制御部12を使用することができる。
また、本発明の集光状態検出装置19では、生信号波形のために、定数誤差や温度変化(外来ノイズ)に起因する信号波形の特性変化も起きにくい。そのため、特性変化に起因する検出精度の低下を防止した集光状態検出装置19が実現する。また、制御部12による判断においては、信号波形のクロックのカウントが不要になっている。したがって、受光信号S1・S2が比較的高い周波数を有している必要もない。
なお、複数の受光素子1a・1bに各々対応する複数の受光信号S1・S2の出力レベルは等しくなっていると望ましい。このようになっていれば、例えば、受光感度の等しい受光素子1a・1bを用いることができ、光センサ11のコストダウンを図れる。また、受光信号S1・S2への種々の処理も不要になるので、制御部12の処理負担の軽減が確実に図れるためである。
また、本発明の光センサ11における受光素子1a・1b同士の配置間隔(間隔G)は、光のビーム径Dの2倍以下であると望ましい。このような構成であれば、デフォーカスによりポイントIPに変動が生じるようになり、制御部12の判断処理の精度が増すためである。
[その他の実施の形態]
なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
例えば、上記したような集光状態検出装置と、感光体31表面に到達する光の集光状態を調整するフォーカシングレンズ22と、このフォーカシングレンズ22に動力を供給することで可動にさせるステッピングモータSMと、を含む光走査装置29も本発明といえる。
また、光センサ11が、光の進行方向において、感光体31表面上よりも上流側または下流側に配置されている場合、光の進行方向において、光センサ11の上流側に(光センサ11の直前に)、光を集光させる集光レンズが配置されるようになっていてもよい。このような構成であれば、集光レンズによる集光作用によって、光センサ11の受光素子1a・1bの感度レベルを過剰に高くする必要がなくなる。
ところで、本発明の集光状態検出装置19では、光センサ11の受光素子1a・1bが、隣り合うように並んで配置されている。そのため、受光素子1a・1bの受ける外来ノイズが互いに相殺しあう。すると、受光素子1a・1bによる受光信号S1・S2の検出が比較的安定して行える。
また、本発明では、複数の受光信号S1・S2の比較(出力比較)による判断処理が行われる。そのため、本発明での判断処理は、従来の判断処理に比べて、単一の受光信号の立ち上がりおよび立ち下がりの信号波形への依存度を低くしたといえる。その結果、本発明の集光状態検出装置19では、従来のように、立ち上がりおよび立ち下がりの信号波形の検出精度を高めるナイフエッジ等が不要になる。
なお、本発明の光走査装置29の利用は、種々考えられる。例えば、上述したようなレーザプリンタ39(画像形成装置)もその一例である。
本発明の集光状態検出装置および光走査装置を示すとともに、これらの装置を含む本発明の画像形成装置の概略斜視図である。 光センサの平面図である。 (A)は第1受光素子の信号波形であり、(B)は第2受光素子の信号波形であり、(C)は両信号波形を遅延させて重ね合わせた信号波形である。 光センサ上の第1受光素子・第2受光素子に光が照射している状態を示す平面図である。 (A)は合焦時の信号波形であり、(B)・(C)は非合焦時(デフォーカス時)の信号波形である。 受光素子間隔Gが一定の場合に、ビーム径Dの変化に対する交点(第1受光素子の信号波形と第2受光素子の信号波形との交点の光強度)のレベル変動を示す関係図である。 従来の集光状態検出装置を示す平面図である。
符号の説明
1a 第1受光素子
1b 第2受光素子
G 第1受光素子と第2受光素子との間隔
11 光センサ
12 制御部
19 集光状態検出装置
22 フォーカシングレンズ(調整用光学素子)
SM ステッピングモータ(駆動源)
24 ポリゴンミラー
29 光走査装置
39 レーザプリンタ(画像形成装置)
S1 第1受光素子の受光信号
S2 第2受光素子の受光信号
T 受光素子の受光時間の経過を示す時間軸
L 受光信号の光強度レベルを示すレベル軸

Claims (8)

  1. 被走査面上に集光かつ走査する光を受光する受光素子を複数含む光センサと、
    上記受光素子の光電変換により得た受光信号を利用して、被走査面上における光の集光状態を判断する制御部と、
    を有する集光状態検出装置であって、
    上記光センサに配置される複数の受光素子が光の走査方向に沿って順に並ぶことで、受光素子の並び方向が光の走査方向に対して平行になっていることを特徴とする集光状態検出装置。
  2. 上記制御部は、
    複数の上記受光素子に各々対応する複数の受光信号を比較することで、被走査面上における光の集光状態を判断していることを特徴とする請求項1に記載の集光状態検出装置。
  3. 上記制御部は、
    受光時間の経過を示す時間軸と受光信号の光強度レベルを示すレベル軸とから成る2次元上で、上記複数の受光信号の信号波形を比較し、
    上記信号波形同士の交点を示すレベル軸上の値が所定閾値を下回ることをもって、被走査面上における光が合焦していると判断することを特徴とする請求項1または2に記載の集光状態検出装置。
  4. 複数の上記受光素子に各々対応する複数の受光信号の出力レベルが等しくなっていることを特徴とする請求項1〜3のいずれか1項に記載の集光状態検出装置。
  5. 上記受光素子同士の配置間隔は、光の光束径の2倍以下であることを特徴とする請求項1〜4のいずれか1項に記載の集光状態検出装置。
  6. 請求項1〜5のいずれか1項に記載の集光状態検出装置と、
    上記被走査面に到達する光の集光状態を調整する調整用光学素子と、
    上記調整用光学素子に動力を供給することで可動にさせる駆動源と、
    を含む光走査装置。
  7. 上記光センサが、上記光の進行方向において、上記の被走査面上よりも上流側または下流側に配置されている場合、
    上記光の進行方向において、上記光センサよりも上流側に、光を集光させる集光レンズが配置されていることを特徴とする請求項6に記載の光走査装置。
  8. 請求項6または7の光走査装置と、
    上記の被走査面になる像担持体と、
    を有する画像形成装置。
JP2005377043A 2005-12-28 2005-12-28 集光状態検出装置、光走査装置、および画像形成装置 Expired - Fee Related JP4654910B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377043A JP4654910B2 (ja) 2005-12-28 2005-12-28 集光状態検出装置、光走査装置、および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377043A JP4654910B2 (ja) 2005-12-28 2005-12-28 集光状態検出装置、光走査装置、および画像形成装置

Publications (2)

Publication Number Publication Date
JP2007178712A true JP2007178712A (ja) 2007-07-12
JP4654910B2 JP4654910B2 (ja) 2011-03-23

Family

ID=38303963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377043A Expired - Fee Related JP4654910B2 (ja) 2005-12-28 2005-12-28 集光状態検出装置、光走査装置、および画像形成装置

Country Status (1)

Country Link
JP (1) JP4654910B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246744A1 (en) * 2016-05-20 2017-11-22 Ricoh Company, Ltd. Optical scanning device, optical scanning method, and synchronization signal acquisition method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188741A (ja) * 1992-01-10 1993-07-30 Canon Inc 走査光学装置
JPH1020225A (ja) * 1996-07-04 1998-01-23 Minolta Co Ltd レーザビーム走査光学装置
JP2000013570A (ja) * 1998-06-23 2000-01-14 Ricoh Co Ltd 書き込みユニットの調整方法及び調整装置
JP2001215438A (ja) * 2000-02-01 2001-08-10 Ricoh Co Ltd 光走査装置
JP2002062495A (ja) * 2000-08-21 2002-02-28 Ricoh Co Ltd 光走査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188741A (ja) * 1992-01-10 1993-07-30 Canon Inc 走査光学装置
JPH1020225A (ja) * 1996-07-04 1998-01-23 Minolta Co Ltd レーザビーム走査光学装置
JP2000013570A (ja) * 1998-06-23 2000-01-14 Ricoh Co Ltd 書き込みユニットの調整方法及び調整装置
JP2001215438A (ja) * 2000-02-01 2001-08-10 Ricoh Co Ltd 光走査装置
JP2002062495A (ja) * 2000-08-21 2002-02-28 Ricoh Co Ltd 光走査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246744A1 (en) * 2016-05-20 2017-11-22 Ricoh Company, Ltd. Optical scanning device, optical scanning method, and synchronization signal acquisition method

Also Published As

Publication number Publication date
JP4654910B2 (ja) 2011-03-23

Similar Documents

Publication Publication Date Title
KR100215690B1 (ko) 주사광학장치
JP3050102B2 (ja) 光ビーム焦点位置検出装置、光ビーム照射装置、および光ビーム記録装置
US8831420B2 (en) Focus detection device, imaging apparatus, and method of controlling focus detection device
JP2006259098A (ja) 光走査装置
JP2009229255A (ja) 走査式測距装置
JP2009236774A (ja) 三次元測距装置
JP2014071038A (ja) レーザレーダ装置
JP4654910B2 (ja) 集光状態検出装置、光走査装置、および画像形成装置
US9791802B2 (en) Scanning optical device and image forming apparatus
CN111948804B (zh) 光学扫描单元以及光学设备
US6118570A (en) Laser beam scanning optical apparatus
JP3554268B2 (ja) 光ビーム照射測定装置
JPH11101872A (ja) レーザ測距装置
JPH0995008A (ja) レーザビーム走査光学装置
WO2022196257A1 (ja) 受光素子、光検出装置及び測定装置
JP4385905B2 (ja) 光ビーム走査光学装置
JP3817232B2 (ja) 変位測定装置
JPS6120849B2 (ja)
JP2001324687A (ja) 光走査装置
JP2022142238A (ja) 受光素子、光検出装置及び測定装置
JPH01263610A (ja) 焦点合せ装置
JPH10142546A (ja) 焦点調節方法及びそれに使用する光ビーム光学装置及びそれを用いた画像形成装置
JP2022142237A (ja) 受光素子及び測定装置
JPH05322701A (ja) ジッター量測定装置
JPH09281383A (ja) 光ビーム検出装置、及び光ビーム記録装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees