JP2007138286A - アークイオンプレーティング装置 - Google Patents

アークイオンプレーティング装置 Download PDF

Info

Publication number
JP2007138286A
JP2007138286A JP2006255145A JP2006255145A JP2007138286A JP 2007138286 A JP2007138286 A JP 2007138286A JP 2006255145 A JP2006255145 A JP 2006255145A JP 2006255145 A JP2006255145 A JP 2006255145A JP 2007138286 A JP2007138286 A JP 2007138286A
Authority
JP
Japan
Prior art keywords
evaporation
evaporation source
bombardment
vacuum chamber
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255145A
Other languages
English (en)
Other versions
JP4693002B2 (ja
Inventor
Hiroshi Tamagaki
浩 玉垣
Hirobumi Fujii
博文 藤井
Ryoji Miyamoto
僚次 宮本
Tadao Okimoto
忠雄 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006255145A priority Critical patent/JP4693002B2/ja
Publication of JP2007138286A publication Critical patent/JP2007138286A/ja
Application granted granted Critical
Publication of JP4693002B2 publication Critical patent/JP4693002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ボンバードの際に、基材に過昇温や異常放電が生じ難く、ひいてはプロセス制御性の良好なアークイオンプレーティング装置を提供する。
【解決手段】真空チャンバー1と、基材を真空チャンバー内でその高さ方向に対して垂直方向に移動させる回転テーブル2と、前記基材の表面を金属イオンでクリーニングするボンバード用蒸発源9Aと、金属イオンを前記基材の表面に成膜する複数の成膜用蒸発源7Aを備える。前記ボンバード用蒸発源9Aは、その蒸発面の縦幅あるいは蒸発面面積が前記成膜用蒸発源7Aよりも大きく形成される。
【選択図】図1

Description

本発明は、メタルイオンボンバードの安定性を改善したアークイオンプレーティング装置に関する。
近年、切削工具の耐磨耗性の向上や、機械部品の摺動面の摺動特性の向上を目的として、基材(成膜対象物)に対して、PVD法による硬質皮膜(TiN、TiAlN,CrN等)の成膜が行われている。このような硬質皮膜成膜に多用される工業的手法は、真空アーク放電により皮膜材料を蒸発させて基材表面に皮膜を形成するアークイオンプレーティング法(以下、「AIP法」という場合がある。)であり、このような成膜を行う装置はアークイオンプレーティング装置(以下、「AIP装置」という場合がある。)と呼ばれている。
AIP装置は、図10に示すように、真空チャンバー1を備え、真空チャンバー1の底部にテーブル上面が水平に配置された回転テーブル2が設けられている。この回転テーブル2は回転軸3によって回転されると共に回転テーブル3内に設けられた遊星歯車機構によって回転テーブル2の上面の突出した複数の遊星軸4が自転するようになっている。各遊星軸4には、基材を保持する基材ホルダー5が着脱自在に取り付けられている。このため、回転テーブル2の回転によって各基材ホルダー5は水平方向に移動すると共に自転し、前記基材ホルダー5に保持された工具、機械部品等の基材は、回転テーブル2の回転によって公転しながら、基材ホルダー5の回転によって自転する。前記回転テーブル2は、バイアス電源(図示省略)によって負の電圧が印加され、この負電圧は、基材ホルダー5を介して、これに搭載された基材に印加される。
前記真空チャンバー1の側壁内面側には、真空チャンバー1の高さ方向にほぼ一定間隔で並べて配置された3台の蒸発源7Aからなる成膜用蒸発源群7が設けられており、前記蒸発源7Aは、それぞれアーク電源8の負極に接続され、正極は真空チャンバー1に接続される。なお、図10(B)中、21は真空チャンバー内面に開口した排気ポート、22は窒素、酸素等の成膜用ガスを供給するガス供給管であり(同図(A)では記載省略)、23は真空チャンバーの開閉扉である。
前記AIP装置を用いて、基材の表面に機能性皮膜を成膜する要領を簡単に説明する。まず、基材を基材ホルダー5に搭載し、これを回転テーブル2にセットし、真空チャンバー1内を真空排気し、真空チャンバー1内に設けたヒータ(図示省略)により基材を加熱した後、成膜する皮膜の密着性を向上させるためメタルイオンボンバード(以下、単に「ボンバード」という場合がある。)を行う。ボンバードは、蒸発源7Aから蒸発させた金属イオンを数100V以上(通常600〜1000V)のマイナスの電圧を印加した基材に照射し、高エネルギーのイオン照射により基材の表面層をエッチングしたり、表面層に照射イオンと基材の混合層を形成する工程である。
ボンバード終了後、蒸発源7Aから金属イオンの蒸気を発生させ、基材に照射すると共に、基材に印加する電圧を0〜−300V程度に設定することにより、成膜を開始する。通常AIP法で形成する皮膜は、TiN,TiCN,CrN,TiAlN,TiC,CrON等の金属と窒素、炭素、酸素等の化合物であるので、成膜中に真空チャンバー1内に窒素、酸素、炭化水素等の成膜用ガスを単独あるいは混合して導入する。例えば、Tiを蒸発させながら窒素を導入することによりTiN(窒化チタン)が成膜される。
前記ボンバード、皮膜の成膜の際、基材ホルダー5に搭載された基材は、回転テーブル2の回転により、公転と自転とを行うので、基材全体に均一なイオン照射が行われる。
成膜後、冷却して、真空チャンバー1を解放して、成膜された基材を基材ホルダー5ごと取り出し、成膜済みの基材を回収する。
上記AIP装置は、成膜用蒸発源群7を用いて、ボンバードと機能性皮膜の成膜とを行うものであるが、特許文献1(特開平4−276062号公報)には、真空チャンバー内に成膜用蒸発源と、これと同形のボンバード用蒸発源とを設けたAIP装置が開示されている。この装置によると、成膜用蒸発源の蒸発材料として低融点金属(例えば、TiAl合金)を用いた場合でも、ボンバード用蒸発源の蒸発材料として高融点金属、高質量金属を用いることができるため、低融点金属はイオン化率が低くなることから効果的なボンバード処理を行うことができず、ドロップレットが基材表面に付着するという問題を解消することができるという。
特開平4−276062号公報
成膜用蒸発源及びボンバード用蒸発源を安定動作させるには、蒸発面の大きさに拘わらず、ある一定の電流値以上でなけらばならないことが知られている。この下限の電流値は蒸発源に設けたターゲット(蒸発材料)とガス雰囲気によるが、硬質皮膜成膜に使う、Ti,TiAl合金等の材料を蒸発材料とする場合、ガスをほとんど導入しない環境下、つまりボンバードを行う環境下では、通常、少なくとも80A程度は必要で、これより小さい電流値ではアーク放電が不安定になる。ボンバード工程では、基材に数百V以上の負の電圧(通常は−600〜−1000V程度)を印加した状態で、蒸発源から金属イオンを発生させるが、上記のとおり、安定操業を行うには蒸発源へのアーク電流に下限が存在するため、金属イオンの照射量も不可避的にある程度の量に達する。
このため、ボンバードの際には、以下のような問題がある。アーク放電を安定的に行う場合、最少の電流値でも基材へのエネルギー投入量が大きくなり、特に小径のドリルなど熱容量の小さな基材の場合、基材温度が急激に上昇する。かかる過昇温を防止するには、ボンバード時間を短時間に設定し、冷却しながらボンバードを繰り返すなど、プロセスの制御条件を短時間単位で行う必要があり、制御性が悪く、ひいては生産性が低下する。
また、通常、蒸発源は、平面的には直径50〜180mm程度、代表的には直径100〜150mm程度の比較的小形の蒸発面を備えたものが複数用いられる場合が多い。多数の蒸発源を一斉に動作させると、大容量のバイアス電源が必要となる上、多量の金属イオンが一気に照射されるため、基材の過昇温の問題に加えて、基材で異常放電が多発するという問題がある。異常放電が発生するとバイアス電源は一時的に出力を止めるため、短時間のボンバード中に異常放電が多発すると、正確なボンバードプロセスが実行できなくなる。
本発明はかかる問題に鑑みなされたもので、ボンバードの際に、基材に過昇温や異常放電が生じ難く、ひいてはプロセス制御性の良好なAIP装置を提供することを目的とする。
本発明のAIP装置は、真空チャンバーと、前記真空チャンバー内に設けられ、前記真空チャンバー内で基材を真空チャンバーの高さ方向に対して垂直方向に移動させる移動部材と、アーク放電により蒸発した金属イオンを前記基材の表面に衝突させてクリーニングするボンバード用蒸発源群と、アーク放電により蒸発した金属イオンを前記基材の表面に成膜する成膜用蒸発源群とを備え、前記成膜用蒸発源群は、前記移動部材に設置した基材に対向し、前記真空チャンバーの高さ方向に重なり合うことなく配置された複数の成膜用蒸発源で構成され、前記ボンバード用蒸発源群は、前記基材に対向し、前記真空チャンバーの高さ方向に重なり合うことなく配置された一又は複数のボンバード用蒸発源で構成され、前記高さ方向における前記ボンバード用蒸発源の縦幅が前記成膜用蒸発源の縦幅よりも長く形成されたものである。
また、本発明のAIP装置は、真空チャンバーと、前記真空チャンバー内に設けられ、前記真空チャンバー内で基材を真空チャンバーの高さ方向に対して垂直方向に移動させる移動部材と、アーク放電により蒸発した金属イオンを前記基材の表面に衝突させてクリーニングする少なくとも1つのボンバード用蒸発源と、アーク放電により蒸発した金属イオンを前記基材の表面に成膜する複数の成膜用蒸発源とを備える。前記ボンバード用蒸発源は、その蒸発面の真空チャンバーの高さ方向の縦幅が前記複数の成膜用蒸発源の蒸発面の縦幅のうち最大の縦幅よりも大きく形成される。あるいは、前記ボンバード用蒸発源は、ボンバード用蒸発源の蒸発面面積が前記複数の成膜用蒸発源の蒸発面面積のうち最大の蒸発面面積よりも大きく形成される。
これらのAIP装置によれば、ボンバード用蒸発源は、その蒸発面の縦幅が、あるいはその蒸発面面積が成膜用蒸発源に比して大きく形成されるため、アーク放電の安定化のために要する最低限の電流値に対して、成膜用蒸発源の蒸発面の縦幅の単位長さ当たり、あるいは成膜用蒸発源の蒸発面面積の単位面積当たりの平均の金属イオン照射量に比して、ボンバード用蒸発源の同イオン照射量を減少させることができる。このため、ボンバードの際に、基材への入熱量を抑制することができ、ひいては基材に過昇温や異常放電を抑制することができ、プロセス制御性が向上する。
また、前記ボンバード用蒸発源は、真空チャンバーの高さ方向に重なり合うことなく配置することが好ましい。これにより、移動部材に搭載された基材に対して効率よくボンバードを行うことができる。
また、前記ボンバード用蒸発源はそれぞれ略同等の寸法とし、前記成膜用蒸発源はそれぞれ略同等の寸法とすることができる。これにより、ボンバード用蒸発源あるいは成膜用蒸発源の各々において、蒸発源同士が互換性を有するようになり、蒸発源取り付け部材や予備として保管すべき蒸発源の種類を低減することができる。
また、前記ボンバード用蒸発源は、その蒸発面の縦幅が0.5〜2.0mとすることが好ましい。1台のボンバード用蒸発源で処理する空間の長さを400mm以上、より好ましくは500mm以上とすることがボンバード中の加熱を防ぐのに有効であることが本発明者らによって見い出された。これを蒸発源の縦幅にすると0.5m以上、好ましくは0.6m以上とすることが望ましい。一方、蒸発源の蒸発面の縦幅が2m以下を超えるようになると、蒸発材料(ターゲット)の製造が困難になるので、蒸発源の縦幅は2m以下に止めることが好ましい。
また、前記ボンバード用蒸発源は、蒸発材料で形成されたターゲットを有し、前記ターゲットの裏面に縦幅方向に長く形成された電磁コイルを付設したものが好ましい。このような電磁コイルを設けることにより、アークスポットを蒸発面の縦幅方向に長いレーストラック状に走査させることができ、ボンバードの際に蒸発面の全面から金属イオンを均一に基材に供給することができる。また、ターゲットの蒸発面を均一に消耗させることができ、経済的である。
また、前記AIP装置において、複数の成膜用蒸発源が真空チャンバーの高さ方向に重なり合うことなく設けられた成膜用蒸発源群を複数備え、この複数の成膜用蒸発源群を前記真空チャンバー内に並列に設けることができる。これにより、これらの成膜用蒸発源群を構成する蒸発源の蒸発材料を同材料とすることにより、皮膜の成膜速度を上げることができ、またこれらの蒸発源の蒸発材料を異種材料とすることにより、異種の皮膜を基材に被覆することができる。
本発明のAIP装置によれば、アーク放電の安定化のために要する最低限の電流値に対して、ボンバード用蒸発源からのイオン照射量を減少させることができ、ひいては基材への入熱量を抑制することができる。このため、ボンバードの際に、基材の過昇温や異常放電を抑制することができ、プロセス制御性が向上する。
以下、本発明のAIP装置の実施形態を図面を参照して説明する。
図1は第1実施形態に係るAIP装置を示しており、図10に示した従来のAIP装置と同部材は同符号が付されている。
このAIP装置は、真空チャンバー1を備え、真空チャンバー1の底部にテーブル上面が水平に配置された回転テーブル2(本発明の「移動部材」に対応)が設けられている。この回転テーブル2は、真空チャンバー1の高さ方向(「縦方向」という場合がある。)に沿ってその中心軸が配置された回転軸3によって回転されると共に回転テーブル2内に設けられた遊星歯車機構によって回転テーブル2の上面の突出した遊星軸4が自転するようになっている。前記遊星軸4の各々には、基材を保持する基材ホルダー5が着脱自在に取り付けられている。このため、回転テーブル2の回転によって各基材ホルダー5は、縦方向対して垂直方向(「横方向」という場合がある。)に回転軸3を中心として円周方向に水平移動すると共に自転する。このため、前記基材ホルダー5に保持された基材は、回転テーブル2の回転によって公転しながら、自転する。前記回転テーブル2は、バイアス電源(図示省略)によって負の電圧が印加され、この負電圧は、基材ホルダー5を介してこれに搭載された基材に印加される。また、真空チャンバー1の側壁内面側には、後述する成膜用蒸発源群7と干渉しない部位に輻射ヒーター(図示省略)が設けられている。なお、前記回転テーブル2は、遊星歯車機構を備えず、基材ホルダーを自転しないようにすることができる。
前記真空チャンバー1の側壁内面側には、真空チャンバー1の高さ方向に成膜用蒸発源群7として複数(図例では3台)の蒸発源7Aがほぼ一定間隔で並べて配置されている。一方、成膜用蒸発源群7の反対側の側壁内面側には、ボンバード用蒸発源群9として、平面視が長方形の蒸発源9Aが1台配置されている。それぞれの蒸発源7A,9Aは、アーク電源8,10の負極に接続され、正極は真空チャンバー1に接続される。なお、蒸発源7A,9Aの近傍に正極部材を設け、これにアーク電源の正極を接続するようにしてもよい。
前記成膜用蒸発源7Aは、代表的には円形の蒸発面を持ち、その直径は、φ50〜180mm程度であり、一般的にはφ100〜150mm程度である。蒸発源から蒸発した金属イオン蒸気がやや広がることを考慮して、通常、蒸発源7Aは蒸発面直径の1.5倍〜2.5倍程度の間隔で配置される。蒸発源7Aには、通常50A〜300A、より一般的には80A〜150A程度のアーク電流、15V〜40V程度のアーク電圧で真空アーク放電を発生させて、蒸発源7Aに取り付けたターゲット(蒸発材料)を蒸発させ、金属イオンを基材に照射して成膜を行う。
一方、前記ボンバード用蒸発源9Aは、図6に示すように、長辺が縦方向に向き、短辺が横方向に配置された平面視長方形をしており、蒸発材料であるターゲットTの蒸発面も平面視長方形をしている。前記成膜用蒸発源7Aを含めて、蒸発源及びその蒸発面について、縦方向の長さを縦幅、横方向の長さを横幅という。また、特に断らない場合、「蒸発源の蒸発面の縦幅(横幅)」を単に「蒸発源の縦幅(横幅)」という。なお、蒸発面が円形の場合、その外径は縦幅、横幅を与えるものとする。
前記ボンバード用蒸発源9Aは、成膜用蒸発源群7の3台の蒸発源7Aによって縦方向に金属イオンを照射することができる照射領域の縦幅(以下、単に「照射幅」という。)と同等の照射幅を有する照射領域を1台の蒸発源で形成する。前記ボンバード用蒸発源9Aは、真空チャンバー1内の基材に対向して配置され、その蒸発面の上端位置および下端位置は、成膜用蒸発源群7の最上段の蒸発源7Aの上端位置と最下段の蒸発源7Aの下端位置にほぼ対応するよう配置されている。
前記ボンバード用蒸発源9Aを動作させるアーク電流域は成膜用蒸発源群7の各蒸発源7Aと同等のレンジとされる。このため、成膜用蒸発源7Aでボンバードする場合に比して、ボンバード用蒸発源9Aの蒸発面から基材に照射される金属イオン量を単位面積あたり約1/3に低減することができ、ボンバードの際の基材表面への単位時間・単位面積あたりの入熱を約1/3に抑制することができる。
ボンバード中のアーク放電電流は、ボンバード時の均一性を確保する目的で、ターゲット表面に発生するアークスポットが主として1個になるような設定することが好ましく、通常150A以下、より好ましくは120A以下に保持するのがよい。一方で、アーク放電の安定性からボンバード中にアークの失火が発生するのは好ましくないので、アーク電流としてはアーク放電が安定化する80A以上とするのがよい。
前記実施形態のAIP装置は、前記ボンバード用蒸発源9Aを用いてボンバードを実施する他は、従来と同様の要領で使用される。すなわち、基材を搭載した基材ホルダー5を回転テーブル2にセットし、真空チャンバー1内を真空排気し、真空チャンバー1内に設けたヒータにより基材を加熱した後、ボンバード用蒸発源9Aを用いてボンバードを行い、次に成膜用蒸発源群7を用いて基材表面に機能性皮膜を成膜する。
前記実施形態のAIP装置では、ボンバード用蒸発源9Aの縦幅が成膜用蒸発源7Aの縦幅よりも大きく形成され、あるいはボンバード用蒸発源9Aの蒸発面面積が成膜用蒸発源7Aの蒸発面面積より大きく形成されているので、ボンバードの際の急激な基材温度の上昇が抑制される。このため、従来問題であった、特に熱容量の小さい基材での過熱等の問題を解消することができる。また、1台の蒸発源9Aでボンバード処理が可能であるので、バイアス電源の容量も小さくて済む。さらに、基材付近のイオン密度の低下により異常放電発生の頻度が減少する。また、同じボンバード効果を得るのに必要なボンバード時間が数倍に延長されるため、条件設定の時間が延び、制御性が改善されると共に異常放電時におけるバイアス電圧の遮断期間の影響を相対的に減少させることができる。
前記実施形態のように、1台のボンバード用蒸発源で処理をする金属イオンの照射領域幅は400mm以上、より好ましくは、500mm以上とすることが、ボンバード中の基材の過熱を防止するのに有効である。これは、発明者らの経験的知見に基づくものであるが、次のような考察とも一致する。すなわち、成膜中のバイアス電圧は−300Vまでの値に設定されるが、その理由の一つは、基材の過熱を防ぐためである。φ100mmの蒸発源での成膜中のアーク電流値は100〜200Aで代表的には150Aである。すなわち、−300Vのバイアス電圧、150Aのアーク電流で運転し、蒸発源3台で照射幅500mmの照射領域を照射する。ボンバード工程では、アーク電流の下限を考慮して80〜120A、代表的には100Aのアーク電流で蒸発源を動作させ、−600〜−1000Vのバイアス電圧を基材に印加する。成膜時と同じく最大のバイアス電圧(−1000V)をかける場合、メタルボンバードでは、代表的には100Aのアーク電流で運転される。
ここで、(アーク電流)×(蒸発源の台数)×(バイアス電圧)÷(照射幅)
を瞬間的な入熱量と考えると、この値の成膜時の最大値(150A×3台×300V/500mm)がボンバードの際に等しくなるようにボンバードの照射幅を計算すると370mmとなる。すなわち、ボンバードの処理領域幅をこの照射幅以上に広げると過熱の危険が下がることになり、大まかな検討であるが、前記の経験的な知見と合致する。
上記の場合、ボンバード用蒸発源9Aとしては、その縦幅が0.5m以上、より好ましくは0.6m以上のものが好適である。一方、蒸発源は、その縦幅をターゲットが製造できる範囲内にする必要であるため、蒸発源の縦幅の最大長さとしては2m程度以下にすることが妥当である。なお、照射幅が大きくなり過ぎると、ボンバード処理時間が長くなるため、ボンバード用蒸発源群の照射領域幅としては、1.2m程度以下とすることが好ましい。これよれ長い照射領域幅が必要な場合には、ボンバード用蒸発源を縦方向に重なることなく複数台並設するようにすればよい。
次に、本発明の第2実施形態にかかるAIP装置を図2を参照して簡単に説明する。なお、第2実施形態のほか、以下で説明する他の実施形態において、第1実施形態のAIP装置と同部材は同符号が付されている。
このAIP装置は、第1実施形態に係るAIP装置に対して、上下方向に並設した3台の蒸発源7Aからなる第1成膜用蒸発源群71と、同構成の第2成膜用蒸発源群72を備え、これら2列の成膜用蒸発源群71,72が真空チャンバー1の周方向に90°を隔てて並列に設けられている。この実施形態では、成膜の際には、2列の成膜用蒸発源群71,72で成膜を行なうので、成膜用蒸発源7Aの蒸発材料が同じものであれば、第1実施形態の装置に比べて2倍の成膜速度が実現できる。もっとも、ボンバードは第1実施形態と同様、1台の長方形蒸発源9Aで行なうため、ボンバード工程での過熱等の問題は発生しない。また、成膜用蒸発源群71の蒸発源7Aの蒸発材料と成膜用蒸発源群72の蒸発源7Aの蒸発材料を異種材料とすることにより、2種類の皮膜からなる多層構造膜の成膜を行なうことができる。
また、本発明の第3実施形態にかかるAIP装置を図3を参照して簡単に説明する。上記第1実施形態に係るAIP装置は、成膜用蒸発源群7の蒸発源7Aは縦方向に1列に並べて配置したが、蒸発源7Aは必ずしも1列に並べる必要はなく、このAIP装置のように、真空チャンバー1の周方向に、かつ縦方向の位置が重ならないように段階的にずらして配置するようにしてもよい。このような成膜用蒸発源群7の配置によっても、真空チャンバー1の中で回転テーブル2の回転、基材ホルダー5の自転により、基材表面への均一な被覆を実現することができる。
また、本発明の第4実施形態にかかるAIP装置を図4を参照して簡単に説明する。このAIP装置は、第2実施形態のAIP装置と同様、縦方向3段の蒸発源7Aからなる第1成膜用蒸発源群71と第2成膜用蒸発源群72をチャンバー周方向に備えるが、一方の蒸発源群71の蒸発源7Aは、他方の蒸発源群72の蒸発源7Aに対して縦方向の設置位置が蒸発源7Aの取り付け間隔の1/2倍程度ずれて配置されている。これにより、より均一性の高い被覆を成膜することができる。
また、本発明の第5実施形態にかかるAIP装置を図5を参照して簡単に説明する。このAIP装置は、成膜用蒸発源群7、ボンバード用蒸発源群9の真空チャンバー周方向の配置は第1実施形態のAIP装置と同様であるが、成膜用蒸発源群7は6台の蒸発源7Aで構成され、ボンバード用蒸発源群9は2台の蒸発源9Aで構成されている。また、成膜用蒸発源群7、ボンバード用蒸発源群9はそれぞれ同等の照射幅を形成するように、前記蒸発源7A,9Aは縦方向に等間隔に重なり合うことなく配置されている。この第5実施形態では、多量処理が可能であり、しかもボンバード中の基材への熱負荷は従来の場合の1/3程度にすることができる。
また、図5に示すように、最上段のボンバード用蒸発源の上端位置(ボンバード用蒸発源群の上端位置)を最上段の成膜用蒸発源の上端位置(成膜用蒸発源群の上端位置)に対応させ、最下段のボンバード用蒸発源の下端位置(ボンバード用蒸発源群の下端位置)を最下段の成膜用蒸発源の下端位置(成膜用蒸発源群の下端位置)に対応させるように、複数のボンバード用蒸発源及び成膜用蒸発源を配置することが好ましい。このように配置することにより、複数の成膜用蒸発源と複数のボンバード用蒸発源がそれぞれ形成する照射幅をそれぞれ同等の大きさで、縦方向の同部位に成膜領域を形成することができる。もっとも、ボンバード用蒸発源群の上端位置を成膜用蒸発源群の上端位置より上方に設定してもよく、ボンバード用蒸発源群の下端位置を成膜用蒸発源群の下端位置より下方に設定してもよい。
なお、ボンバード用の蒸発源のターゲットの材料としては、第1から第5の実施形態を通して各種の合金を含む金属を使うことが出来き、好適な材料としては、例えばTi,Crを用いることができる。
上記の各実施形態において、ボンバード用蒸発源群9の各蒸発源9Aは、図6に示す長方形の蒸発源(第1形態蒸発源)を用いたが、本発明におけるボンバード用蒸発源はこれに限るものでなく、例えば、図7に示すように、蒸発源9Bの外形やターゲットTの蒸発面を平面視レーストラック状としてもよい。この蒸発源9Bもその縦幅が縦方向に沿うように設置される。さらに、図8に示すように、ボンバード用の蒸発源9Cとして、ターゲットTの裏側にレーストラック状の電磁コイルCを配置したものを用いることができる。このコイルCによって磁場を発生させることで、蒸発面に発生するアークスポットをターゲットの蒸発面上でレーストラック状に誘導することができる。これにより、ボンバード用蒸発源から基材に照射する蒸気をより均一化することが出来る。
さらに、他の形態のボンバード用の蒸発源9Dとして、図9に示すように、ターゲットTを円筒状とし、その両端部をアーク閉じ込め部材12によって閉塞し、同図(2) に示すように、円筒状ターゲットTの内側にレーストラック状の電磁コイルCを配置したものを用いることができる。この蒸発源9Dでは、前記電磁コイルCにより、レーストラック状の磁場を発生させ、アークスポットをレーストラック状に走査させることができ、基材に蒸気を均一に照射することができる。さらに、前記レーストラック状に配置したコイルCに対応したアークスポット走査軌道を基材に対向する位置に保持した状態で、円筒状のターゲットを回転自在とすることが好ましい。これにより、ターゲットを均一に消耗させることができる。なお、電磁コイルを用いる蒸発源(例えば上記蒸発源9C、9D)の場合、電磁コイルに替えて、ターゲット表面に相当形状の磁場を形成する永久磁石を配するようにしてもよい。
さらにまた、ボンバード用の蒸発源として、中実丸棒状のターゲットを縦方向に配置して用いることができる。この場合、上端部あるいは下端部に別のアーク電源の負極を接続すると共にそれぞれのアーク電源の正極を真空チャンバーに接続して、蒸発源に供給するアーク電流を上端部又は下端部から交互に供給することが好ましい。ターゲット上で蒸気が発生するアークスポットはアーク電流を供給する側の端に向かって走る傾向があるため、蒸発源にアーク電流を交互に上端部又は下端部から供給することで、アークスポットを円筒状ターゲットの蒸発面の全面に渡ってより広く走査させることができるようになり、均一に基材に金属イオン蒸気を供給することができる。
ここで、成膜される基材としては、種々のものを用いることができる。例えば、ドリルを基材とすることができ、その長さ方向が真空チャンバーの高さ方向になるように移動部材に搭載することができる。これによって、ボンバードの際の過昇温によるドリルの刃先の軟化を防止して、刃先に所期の硬質皮膜を成膜することができる。このため、成膜されたドリルは、刃先の軟化が原因と思われる切削不良が生じず、良好な切削性能を得ることができる。
また、基材の回転テーブルへの搭載に際して、基材ホルダーを必ずしも用いる必要はなく、回転テーブルに金型などの被成膜部品を直接載置してもよい。また、回転テーブルを取り付けるための回転軸に保持シャフトを設け、これに大形円板部品を縦方向に一定間隔を置いて保持するようにしてもよい。
次に、上記第1実施形態のAIP装置を用いた基材の成膜例を具体的に説明するが、本発明はかかる成膜例により限定的に解釈されるものではない。
直径100mmの蒸発面を有する成膜用蒸発源7Aを縦方向に等間隔に3台並べて配置した。一方、前記3台の成膜用蒸発源7Aに対向するように、縦幅(長辺)600mm、横幅(短辺)100mmの1台のボンバード用蒸発源9Aを長辺が縦方向になるように真空チャンバー1の側壁内面側に設置した。前記3台の成膜用蒸発源7Aによって、また1台のボンバード用蒸発源9Aによって、それぞれ基材ホルダー5に向かって、照射幅が500mmの金属イオンの照射領域が縦方向の同位置に形成された。基材として、ハイス製のテストピース(寸法12mm×12mm×5mm)と直径3mmのハイス製ドリルを、回転テーブル2の遊星軸4に付設した基材ホルダー5に搭載した。各蒸発源7A,9AにはTiのターゲットを取り付けた。ボンバード及び成膜の際の回転テーブルの回転数は2rpmとした。
先ず、従来法による成膜例(従来例)として、ボンバード用蒸発源を使わず、成膜用蒸発源群のみを用いて、下記の要領でボンバード処理を行なうと共にTiN皮膜を成膜した。
(1) 真空チャンバー内を真空に排気し、真空チャンバー内に設置した輻射ヒータ(図示省略)により基材温度を400℃にまで加熱した。
(2) 各成膜用蒸発源を、アーク電流100Aで動作させ、バイアス電圧−1000Vで5分間メタルボンバード処理を実施した。
(3) ボンバード処理後、各成膜用蒸発源をアーク電流150Aで動作させ、バイアス電圧−50V、窒素ガスを3.9Paの圧力で導入しながら約3μmのTiN膜を形成した後、30分間冷却して処理済みの基材を取出した。
上記従来例では、3μmのTiNの成膜所要時間は90分間で、真空引き開始から取出しまでのトータルサイクルタイムは、3時間15分であった。
次に、比較法による成膜例(比較例)として、ボンバード用蒸発源のみを用いて、以下の要領でボンバード処理及び成膜処理を行った。
(1) 従来例の(1) と同様。
(2) ボンバード用蒸発源をアーク電流100Aで動作させ、バイアス電圧−1000で15分間メタルボンバード処理を実施した。
(3) ボンバード処理後、ボンバード用蒸発源をアーク電流150Aで動作させ、バイアス電圧−50V、窒素ガスを3.9Paの圧力で導入しながら約3μmのTiN膜を形成したのち、30分間冷却して取出した。
上記比較例では、3μmのTiNの成膜所要時間は約5時間で、真空引き開始から取出しまでのトータルサイクルタイムは、7時間であった。
次に、実施形態のAIP装置の本来の使用法による成膜例(実施例)として、以下の要領で、ボンバード用蒸発源を用いてボンバード処理を行い、成膜用蒸発源を用いて成膜処理を行った。
(1) 従来例の(1) と同様。
(2) ボンバード用蒸発源をアーク電流100Aで動作させ、バイアス電圧−1000Vで15分間メタルボンバード処理を実施した。
(3) ボンバード処理後、各成膜用蒸発源をアーク電流150Aで動作させ、バイアス電圧−50V、窒素ガスを3.9Paの圧力で導入しながら、約3μmのTiN膜を形成したのち、30分間冷却して取出した。
上記実施例では、3μmのTiNの成膜所要時間は90分間で、真空引き開始から取出しまでのトータルサイクルタイムは、3時間25分であった。
また、明らかに生産性に劣る比較例を除き、従来例と実施例の成膜について、表1の各項目について評価を行なった。その結果を表1に併せて示す。
Figure 2007138286
表1より、いずれの成膜でもテストピース上の皮膜では、皮膜の外観及び密着性について、大きな特性の差異は認められないが、小径のドリルの切削試験では、従来例では部分的に刃先の軟化が原因と思われる切削不良が認められたのに対して、実施例ではこのような問題は発生しなかった。
また、バイアス電流は当然実施例では減少しており、より小さな容量のバイアス電源でボンバード処理が可能となった。特に、バイアス電源が感知する異常放電について、従来例ではボンバード処理(全処理時間5分)の前段3分間に渡り異常放電が発生し、異常放電無しで電圧が印加できたのは後段の2分間のみであった。バイアス電源は異常放電を感知すると一旦出力を遮断、休止後に再度印加するため、異常放電の発生期間中は正規のバイアス電圧が印加されていない状態となる。一方、実施例の場合は、異常放電の回数が減少傾向にあることに加えて、ボンバードの処理時間が約3倍となっているため、相対的に正常な電圧が印加された時間が伸びており、成膜プロセスの再現性がより高まった。
さらに、テストピース上の皮膜を顕微鏡で観察した所、皮膜に混入したマクロパーティクルが実施例では減少していた。これはボンバード用の蒸発源の面積が拡大したことにより、単位面積あたりの熱負荷が減少したため、ボンバード中に発生するマクロパーティクル量が減少したものと考えられる。
第1実施形態に係るAIP装置を示す模式図であり、(A)は真空チャンバーを縦断面した側面図、(B)は(A)図のA矢視から見た平面図である。 第2実施形態に係るAIP装置を示す模式図であり、(A)は真空チャンバーを縦断面した側面図、(B)は(A)図のA矢視から見た平面図である。 第3実施形態に係るAIP装置を示す模式図であり、(A)は真空チャンバーを縦断面した側面図、(B)は(A)図のA矢視から見た平面図である。 第4実施形態に係るAIP装置を示す模式図であり、(A)は真空チャンバーを縦断面した側面図、(B)は(A)図のA矢視から見た平面図である。 第5実施形態に係るAIP装置を示す模式図であり、真空チャンバーを縦断面した側面図である。 平面視長方形状をしたボンバード用蒸発源の斜視図である。 平面視レーストラック形状をしたボンバード用蒸発源の斜視図である。 電磁コイルを備えたボンバード用蒸発源を示し、(A)は正面図、(B)は(A)図のA−A線断面図である。 電磁コイル、筒状ターゲットを備えたボンバード用蒸発源を示し、(A)は正面図、(B)は(A)図のA−A線断面図である。 従来のAIP装置を示す模式図であり、(A)は真空チャンバーを縦断面した側面図、(B)は(A)図のA矢視から見た平面図である。
符号の説明
1 真空チャンバー
2 回転テーブル(移動部材)
7,71,72 成膜用蒸発源群
7A 成膜用蒸発源
9 ボンバード用蒸発源群
9A ボンバード用蒸発源
T ターゲット
C 電磁コイル

Claims (8)

  1. 真空チャンバーと、前記真空チャンバー内に設けられ、前記真空チャンバー内で基材を真空チャンバーの高さ方向に対して垂直方向に移動させる移動部材と、アーク放電により蒸発した金属イオンを前記基材の表面に衝突させてクリーニングするボンバード用蒸発源群と、アーク放電により蒸発した金属イオンを前記基材の表面に成膜する成膜用蒸発源群とを備えたアークイオンプレーティング装置であって、
    前記成膜用蒸発源群は、前記移動部材に設置した基材に対向し、前記真空チャンバーの高さ方向に重なり合うことなく配置された複数の成膜用蒸発源で構成され、前記ボンバード用蒸発源群は、前記基材に対向し、前記真空チャンバーの高さ方向に重なり合うことなく配置された一又は複数のボンバード用蒸発源で構成され、前記高さ方向における前記ボンバード用蒸発源の縦幅が前記成膜用蒸発源の縦幅よりも長く形成された、アークイオンプレーティング装置。
  2. 真空チャンバーと、前記真空チャンバー内に設けられ、前記真空チャンバー内で基材を真空チャンバーの高さ方向に対して垂直方向に移動させる移動部材と、アーク放電により蒸発した金属イオンを前記基材の表面に衝突させてクリーニングする少なくとも1つのボンバード用蒸発源と、アーク放電により蒸発した金属イオンを前記基材の表面に成膜する複数の成膜用蒸発源とを備えたアークイオンプレーティング装置であって、
    前記ボンバード用蒸発源は、その蒸発面の真空チャンバーの高さ方向の縦幅が前記複数の成膜用蒸発源の蒸発面の縦幅のうち最大の縦幅よりも大きく形成された、アークイオンプレーティング装置。
  3. 真空チャンバーと、前記真空チャンバー内に設けられ、前記真空チャンバー内で基材を真空チャンバーの高さ方向に対して垂直方向に移動させる移動部材と、アーク放電により蒸発した金属イオンを前記基材の表面に衝突させてクリーニングする少なくとも1つのボンバード用蒸発源と、アーク放電により蒸発した金属イオンを前記基材の表面に成膜する複数の成膜用蒸発源とを備えたアークイオンプレーティング装置であって、
    前記ボンバード用蒸発源は、ボンバード用蒸発源の蒸発面面積が前記複数の成膜用蒸発源の蒸発面面積のうち最大の蒸発面面積よりも大きく形成された、アークイオンプレーティング装置。
  4. 前記ボンバード用蒸発源は、真空チャンバーの高さ方向に重なり合うことなく配置された、請求項2又は3に記載されたアークイオンプレーティング装置。
  5. 前記ボンバード用蒸発源はそれぞれ略同等の寸法を有し、前記成膜用蒸発源はそれぞれ略同等の寸法を有する、請求項1から4のいずれか1項に記載されたアークイオンプレーティング装置。
  6. 前記ボンバード用蒸発源は、その蒸発面の縦幅が0.5〜2.0mとされた、請求項1から5のいずれか1項に記載されたアークイオンプレーティング装置。
  7. 前記ボンバード用蒸発源は、蒸発材料で形成されたターゲットを有し、前記ターゲットの裏面に縦幅方向に長く形成された電磁コイルが付設された、請求項1から6のいずれか1項に記載されたアークイオンプレーティング装置。
  8. 複数の成膜用蒸発源が真空チャンバーの高さ方向に重なり合うことなく設けられた成膜用蒸発源群を複数備え、当該複数の成膜用蒸発源群が前記真空チャンバー内に並列に設けられた、請求項1から7のいずれか1項に記載されたアークイオンプレーティング装置。
JP2006255145A 2005-10-17 2006-09-21 アークイオンプレーティング装置 Active JP4693002B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255145A JP4693002B2 (ja) 2005-10-17 2006-09-21 アークイオンプレーティング装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005301433 2005-10-17
JP2005301433 2005-10-17
JP2006255145A JP4693002B2 (ja) 2005-10-17 2006-09-21 アークイオンプレーティング装置

Publications (2)

Publication Number Publication Date
JP2007138286A true JP2007138286A (ja) 2007-06-07
JP4693002B2 JP4693002B2 (ja) 2011-06-01

Family

ID=38201513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255145A Active JP4693002B2 (ja) 2005-10-17 2006-09-21 アークイオンプレーティング装置

Country Status (1)

Country Link
JP (1) JP4693002B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925408B1 (ko) * 2007-09-06 2009-11-06 (주)테라플라즈마 물리적 증착 기법을 이용한 3차원 코팅용 장치
JP2011524602A (ja) * 2008-04-22 2011-09-01 エーリコン・トレイディング・アーゲー・トリューバッハ イオンエッチングされた面を有する加工物の製造方法
JP2012224878A (ja) * 2011-04-15 2012-11-15 Nissan Motor Co Ltd 蒸着装置用ワーク移動機構とこれを用いた蒸着方法
WO2014076947A1 (ja) * 2012-11-14 2014-05-22 株式会社神戸製鋼所 成膜装置
WO2014122876A1 (ja) * 2013-02-07 2014-08-14 株式会社神戸製鋼所 イオンボンバードメント装置及びこの装置を用いた基材の表面のクリーニング方法
JP2015110259A (ja) * 2013-11-05 2015-06-18 日立金属株式会社 被覆切削工具
JP2016078131A (ja) * 2014-10-10 2016-05-16 日立金属株式会社 被覆切削工具
JP2018024947A (ja) * 2017-11-15 2018-02-15 有限会社ファームファクトリー 真空蒸着装置
US9966234B2 (en) 2014-07-11 2018-05-08 Toyota Jidosha Kabushiki Kaisha Film forming device
US10378097B2 (en) 2016-08-10 2019-08-13 Toyota Jidosha Kabushiki Kaisha Film forming apparatus
CN116438326A (zh) * 2020-11-06 2023-07-14 饭塚贵嗣 成膜装置、成膜单元和成膜方法
CN117305800A (zh) * 2023-11-29 2023-12-29 长沙正圆动力科技有限责任公司 一种具有多维旋转架的活塞环镀膜机
CN116438326B (zh) * 2020-11-06 2024-04-12 饭塚贵嗣 成膜装置、成膜单元和成膜方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452274A (ja) * 1990-06-20 1992-02-20 Nissin Electric Co Ltd 工具への薄膜被覆方法
JPH04276062A (ja) * 1991-03-05 1992-10-01 Kobe Steel Ltd アーク蒸着装置
JPH05217166A (ja) * 1992-01-31 1993-08-27 Sony Corp 磁気記録媒体の製造方法
JP2000080466A (ja) * 1998-09-01 2000-03-21 Kobe Steel Ltd 真空アーク蒸着装置
JP2001095165A (ja) * 1999-09-20 2001-04-06 Honda Motor Co Ltd ハイブリッド発電装置
JP2004225065A (ja) * 2003-01-20 2004-08-12 Mitsubishi Materials Kobe Tools Corp 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452274A (ja) * 1990-06-20 1992-02-20 Nissin Electric Co Ltd 工具への薄膜被覆方法
JPH04276062A (ja) * 1991-03-05 1992-10-01 Kobe Steel Ltd アーク蒸着装置
JPH05217166A (ja) * 1992-01-31 1993-08-27 Sony Corp 磁気記録媒体の製造方法
JP2000080466A (ja) * 1998-09-01 2000-03-21 Kobe Steel Ltd 真空アーク蒸着装置
JP2001095165A (ja) * 1999-09-20 2001-04-06 Honda Motor Co Ltd ハイブリッド発電装置
JP2004225065A (ja) * 2003-01-20 2004-08-12 Mitsubishi Materials Kobe Tools Corp 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925408B1 (ko) * 2007-09-06 2009-11-06 (주)테라플라즈마 물리적 증착 기법을 이용한 3차원 코팅용 장치
JP2011524602A (ja) * 2008-04-22 2011-09-01 エーリコン・トレイディング・アーゲー・トリューバッハ イオンエッチングされた面を有する加工物の製造方法
JP2012224878A (ja) * 2011-04-15 2012-11-15 Nissan Motor Co Ltd 蒸着装置用ワーク移動機構とこれを用いた蒸着方法
WO2014076947A1 (ja) * 2012-11-14 2014-05-22 株式会社神戸製鋼所 成膜装置
WO2014122876A1 (ja) * 2013-02-07 2014-08-14 株式会社神戸製鋼所 イオンボンバードメント装置及びこの装置を用いた基材の表面のクリーニング方法
JP2014152356A (ja) * 2013-02-07 2014-08-25 Kobe Steel Ltd イオンボンバードメント装置及びこの装置を用いた基材の表面のクリーニング方法
KR101935090B1 (ko) 2013-02-07 2019-01-03 가부시키가이샤 고베 세이코쇼 이온 봄바드먼트 장치 및 이 장치를 사용한 기재의 표면의 클리닝 방법
JP2015110259A (ja) * 2013-11-05 2015-06-18 日立金属株式会社 被覆切削工具
US9966234B2 (en) 2014-07-11 2018-05-08 Toyota Jidosha Kabushiki Kaisha Film forming device
JP2016078131A (ja) * 2014-10-10 2016-05-16 日立金属株式会社 被覆切削工具
US10378097B2 (en) 2016-08-10 2019-08-13 Toyota Jidosha Kabushiki Kaisha Film forming apparatus
JP2018024947A (ja) * 2017-11-15 2018-02-15 有限会社ファームファクトリー 真空蒸着装置
CN116438326A (zh) * 2020-11-06 2023-07-14 饭塚贵嗣 成膜装置、成膜单元和成膜方法
CN116438326B (zh) * 2020-11-06 2024-04-12 饭塚贵嗣 成膜装置、成膜单元和成膜方法
CN117305800A (zh) * 2023-11-29 2023-12-29 长沙正圆动力科技有限责任公司 一种具有多维旋转架的活塞环镀膜机
CN117305800B (zh) * 2023-11-29 2024-02-13 长沙正圆动力科技有限责任公司 一种具有多维旋转架的活塞环镀膜机

Also Published As

Publication number Publication date
JP4693002B2 (ja) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4693002B2 (ja) アークイオンプレーティング装置
KR100800223B1 (ko) 아크 이온 도금장치
JP2007035623A (ja) プラズマ活性を向上させる装置
JPH11124668A (ja) 低電圧アーク放電からのイオンを用いて基体を処理するための方法および装置
JP6935897B2 (ja) マグネトロンスパッタ法による反応膜の形成装置および形成方法
JP6577804B2 (ja) マグネトロンスパッタ法による成膜装置および成膜方法
JP6170039B2 (ja) 横回転アーク陰極を備えるグロー放電装置及び方法
JP4307304B2 (ja) ピアス式電子銃、これを備えた真空蒸着装置およびピアス式電子銃の異常放電防止方法
EP2182087B1 (en) A vacuum vapor coating device for coating a substrate
JP2017020056A (ja) 合金窒化物膜形成装置および合金窒化物膜形成方法
JP5644676B2 (ja) アークイオンプレーティング装置および成膜方法
JP2010229552A (ja) 非晶質炭素被覆部材の製造方法
JP6832572B2 (ja) マグネトロンスパッタ法による装飾被膜の形成方法
JP2006169589A (ja) 表面処理装置
KR102332902B1 (ko) 성막 방법
JP2006022368A (ja) 表面処理装置および表面処理方法
JP4767509B2 (ja) 成膜装置および成膜方法
JP2018070977A (ja) 窒化炭素膜の形成方法
JP2007113044A (ja) 成膜装置および成膜方法
JP6569900B2 (ja) スパッタリング装置および成膜方法
JP2010159439A (ja) 成膜装置
JPH1068069A (ja) 金属ホウ化物膜の形成方法
CN117280072A (zh) 在衬底上沉积致密铬的方法
JP5644675B2 (ja) アークイオンプレーティング装置および成膜方法
JP2010159498A (ja) 皮膜形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150