JP2007128928A - コイル素子 - Google Patents

コイル素子 Download PDF

Info

Publication number
JP2007128928A
JP2007128928A JP2005317764A JP2005317764A JP2007128928A JP 2007128928 A JP2007128928 A JP 2007128928A JP 2005317764 A JP2005317764 A JP 2005317764A JP 2005317764 A JP2005317764 A JP 2005317764A JP 2007128928 A JP2007128928 A JP 2007128928A
Authority
JP
Japan
Prior art keywords
coil
cross
peripheral side
spiral
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005317764A
Other languages
English (en)
Inventor
Toshiyasu Fujiwara
俊康 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005317764A priority Critical patent/JP2007128928A/ja
Publication of JP2007128928A publication Critical patent/JP2007128928A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】低周波領域においてQ値を改善することが可能なコイル素子を提供する。
【解決手段】スパイラルコイル14の中間巻回領域R2におけるコイル断面積MDが、外周側巻回領域R3におけるコイル断面積ME〜MGよりも小さくなっている。導体長の長いコイルターン14E〜14Gのコイル断面積ME〜MGを十分に大きくなるように設定すれば、コイル断面積MDが小さい場合においても、スパイラルコイル14全体の直流抵抗が十分に低くなる。しかも、中間巻回領域2において自己インダクタンスが増加するため、スパイラルコイル14全体のインダクタンスが増加する。これにより、低周波領域においてQ値が向上する。
【選択図】図3

Description

本発明は、スパイラルコイルを備えたコイル素子に関する。
近年、各種用途のデバイス分野において、スパイラルコイルを備えたコイル素子が広く利用されている。このコイル素子の応用例としては、薄膜インダクタや薄膜トランスなどが挙げられる。
コイル素子に関しては、低抵抗、高インダクタンスおよび高共振周波数などの電気特性が望まれている。この共振周波数は、LC共振であり、寄生容量が小さくなるほど高くなる。なお、コイル素子に関しては、素子サイズの小型化も望まれている。
このコイル素子に関しては、既にいくつかの構成例が提案されている。具体的には、2つの磁性膜によりスパイラルコイルが挟まれている場合に、そのスパイラルコイルのアスペクト比(コイルターンの厚さ/幅)を1以上とする技術が知られている(例えば、特許文献1参照。)。この場合には、コイル断面積の確保により直流抵抗が低くなるため、Q値が向上する。このQ値とは、コイルの性能の良さを定量的に表す数値であり、一般に、Q=ωL/R(ω:角速度,L:インダクタンス,R:抵抗)という定義式で表される。しかしながら、このコイル素子では、アスペクト比の増加(コイルターンの厚さの増加)により素子サイズの大型化(厚型化)および製造プロセスの困難化を招くと共に、コイルターン間の対向面積の増加により共振周波数の低下を招く。
特開2001−102235号公報
また、スパイラルコイルのコイル幅を内周側および外周側において他の領域よりも狭くする技術が知られている(例えば、特許文献2参照。)。この場合には、コイルターンを鎖交する渡り磁束の密度分布の適正化により銅損が低減するため、高周波領域においてQ値が向上する。しかしながら、このコイル素子では、導体長の長い外周側におけるコイル断面積の減少により直流抵抗が増加するため、特に低周波領域においてQ値が低下する。
特開平11−040438号公報
コイル素子に関しては、特に低周波領域においてQ値が低下することを防止しなければならない。このためには、直流抵抗を十分に低くしつつ、インダクタンスを可能な限り増加させる必要がある。
本発明はかかる問題点に鑑みてなされたもので、その目的は、低周波領域においてQ値を改善することが可能なコイル素子を提供することにある。
本発明の第1のコイル素子は、基体と、この基体によって支持されたスパイラルコイルとを備え、スパイラルコイルの内周側と外周側との間の中間におけるコイル断面積が外周側におけるコイル断面積よりも小さいものである。このコイル素子では、外周側におけるコイル断面積を十分に大きくすることにより、スパイラルコイル全体の直流抵抗が十分に低くなる。しかも、スパイラルコイルの中間において各コイルターンで生じる磁界同士が著しく強め合うため、中間におけるコイル断面積が外周側におけるコイル断面積と同等またはそれよりも大きい場合と比較して、その中間において自己インダクタンスが増加する。これにより、低周波領域においてQ値が向上する。
本発明の第2のコイル素子は、基体と、この基体によって支持されたスパイラルコイルとを備え、スパイラルコイルの内周側と外周側との間の中間におけるコイル間隔が外周側におけるコイル間隔よりも狭いものである。このコイル素子では、上記した第1のコイル素子と同様に、スパイラルコイル全体の直流抵抗が十分に低くなる。しかも、スパイラルコイルの中間において各コイルターンで生じる磁界同士が著しく強め合うため、中間におけるコイル間隔が外周側におけるコイル間隔と同等またはそれよりも広い場合と比較して、その中間において相互インダクタンスが増加する。これにより、低周波領域においてQ値が向上する。
本発明の第3のコイル素子は、基体と、この基体によって支持されたスパイラルコイルとを備え、スパイラルコイルの内周側と外周側との間の中間におけるコイル断面積が外周側におけるコイル断面積よりも小さく、かつ、中間におけるコイル間隔が外周側におけるコイル間隔よりも狭いものである。このコイル素子では、上記した第1および第2のコイル素子の構成が組み合わされているため、スパイラルコイル全体の直流抵抗が十分に低くなると共に、中間において自己インダクタンスおよび相互インダクタンスが増加する。これにより、低周波領域においてQ値がより向上する。
本発明のコイル素子では、第1に、外周側から中間に近づくにしたがってコイル断面積が次第に小さくなっていてもよい。第2に、中間におけるコイル幅が外周側におけるコイル幅よりも狭くなっていてもよい。この場合には、外周側から中間に近づくにしたがってコイル幅が次第に狭くなるようにしてもよい。第3に、内周側におけるコイル断面積が外周側におけるコイル断面積よりも小さくなっていてもよい。この場合には、内周側におけるコイル幅が外周側におけるコイル幅よりも狭くなるようにしてもよい。第4に、外周側から中間に近づくにしたがってコイル間隔が次第に狭くなっていてもよい。この場合には、内周側におけるコイル間隔が外周側におけるコイル間隔よりも狭くなるようにしてもよい。第5に、さらに、スパイラルコイルの少なくとも一方の面の側に磁性膜を備えていてもよい。
ここで、スパイラルコイルの内周側と外周側との間の中間におけるコイルターンの数は、1つ以上の範囲において任意に設定可能である。すなわち、スパイラルコイルの中間には、内周側および外周側よりも断面積の大きなコイルターンが少なくとも1つあればよい。このことは、コイル幅およびコイル間隔についても同様である。
本発明の第1のコイル素子によれば、スパイラルコイルの内周側と外周側との間の中間におけるコイル断面積が外周側におけるコイル断面積よりも小さいので、中間におけるコイル断面積が外周側におけるコイル断面積と同等またはそれよりも大きい場合と比較して、低周波領域においてQ値を改善することができる。
本発明の第2のコイル素子によれば、スパイラルコイルの内周側と外周側との間の中間におけるコイル間隔が外周側におけるコイル間隔よりも狭いので、中間におけるコイル間隔が外周側におけるコイル間隔と同等またはそれよりも広い場合と比較して、低周波領域においてQ値を改善することができる。
本発明の第3のコイル素子によれば、スパイラルコイルの内周側と外周側との間の中間におけるコイル断面積が外周側におけるコイル断面積よりも小さく、かつ、中間におけるコイル間隔が外周側におけるコイル間隔よりも狭いので、低周波領域においてQ値をより改善することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
まず、本発明の第1の実施の形態に係るコイル素子の構成について説明する。図1はコイル素子の平面構成を表し、図2は図1に示したII−II線に沿った断面構成を表し、図3は図1に示したIII−III線に沿った断面構成を示している。
このコイル素子は、各種用途のデバイス分野において利用されるものであり、例えば、薄膜インダクタ、薄膜トランス、薄膜センサ、薄膜アクチュエータ、薄膜磁気ヘッドまたはMEMS(micro electro mechanical systems)などに応用されるものである。
具体的には、コイル素子は、例えば、図1および図2に示したように、基体11の一面に、下部磁性膜12と、絶縁膜13により埋設されたスパイラルコイル14と、上部磁性膜15とがこの順に積層された構成を有している。
基体11は、コイル素子全体を支持するものである。この基体11は、例えば、各種基板であってもよいし、あるいは各種基板に各種機能膜が設けられたものであってもよい。
下部磁性膜12および上部磁性膜15は、それぞれスパイラルコイル14の一方の面(下面)の側および他方の面(上面)の側に設けられており、各種合金またはフェライトなどの磁性材料により構成されている。なお、下部磁性膜12および上部磁性膜15の平面サイズ(図1に示した外形サイズ、すなわち縦寸法×横寸法)は、スパイラルコイル14の平面サイズよりも大きい限りにおいて、任意に設定可能である。
絶縁膜13は、スパイラルコイル14を周辺から電気的に分離するものであり、各種酸化物などの絶縁性材料により構成されている。なお、図2では、絶縁膜13を1パーツとして示しているが、その絶縁膜13は複数のパーツに分かれていてもよい。
スパイラルコイル14は、例えば、1本のコイル線が1つの巻回中心C(図2および図3参照)の周囲を巻回することにより構成されたシングルスパイラルコイルであり、各種金属などの導電性材料により構成されている。なお、図1〜図3では、スパイラルコイル14の巻数(ターン数)=7ターンの場合を示しており、図3では、スパイラルコイル14のみを拡大して示している。ただし、スパイラルコイル14のターン数は、任意に設定可能である。
このスパイラルコイル14は、図3に示したように、巻回中心Cから離れる方向(内周側から外周側)に向かって順に、7つのコイルターン14A〜14Gを含んでいる。これらのコイルターン14A〜14Gは、それぞれコイル断面積MA〜MGおよびコイル幅WA〜WGを有しており、それらのコイルターン14A〜14Gの間には、それぞれコイル間隔SAB〜SFGが設けられている。ここでは、例えば、コイル間隔SAB〜SFGが互いに等しくなっていると共に、コイルターン14A〜14Gが互いに等しいコイル厚さTを有している。なお、スパイラルコイル14の平面サイズは、コイル断面積MA〜MG、コイル幅WA〜WG、コイル間隔SAB〜SFGおよびターン数に応じて任意に設定可能である。
スパイラルコイル14を3つの区域に区分すると、巻回中心Cに近い側に位置する内周側(内周側巻回領域R1)と、その巻回中心Cから遠い側に位置する外周側(外周側巻回領域R3)と、それらの内周側と外周側との間に位置する中間(中間巻回領域R2)とに区分される。ここでは、例えば、内周側巻回領域R1がコイルターン14A〜14Cおよびコイル間隔SAB,SBCを含み、中間巻回領域R2がコイルターン14Dおよびコイル間隔SCD,SDEを含み、外周側巻回領域R3がコイルターン14E〜14Gおよびコイル間隔SEF,SFGを含んでいる。なお、内周側巻回領域R1、中間巻回領域R2および外周側巻回領域R3にそれぞれ含まれるコイルターンおよびコイル間隔の種類は、任意に設定可能である。
このスパイラルコイル14では、中間巻回領域R2におけるコイル幅WDが外周側巻回領域R3におけるコイル幅WE〜WGよりも狭くなることにより、中間巻回領域R2におけるコイル断面積MDが外周側巻回領域R3におけるコイル断面積ME〜MGよりも小さくなっている。
コイル断面積ME〜MGおよびコイル幅WE〜WGは、それぞれコイル断面積MDおよびコイル幅WDよりも大きく(広く)なっている限りにおいて、互いに等しくなっていてもよいし、あるいは互いに異なっていてもよい。ここでは、例えば、コイル断面積ME〜MGおよびコイル幅WE〜WGがそれぞれ互いに等しくなっている。
なお、内周側巻回領域R1におけるコイル断面積MA〜MCおよびコイル幅WA〜WCは、それぞれコイル断面積MD〜MGおよびコイル幅WD〜WGに応じて任意に設定可能である。ここでは、例えば、コイル断面積MA〜MCおよびコイル幅WA〜WCがそれぞれコイル断面積ME〜MGおよびコイル幅WE〜WGに等しくなっている。
本実施の形態に係るコイル素子では、スパイラルコイル14の中間巻回領域R2におけるコイル断面積MDが外周側巻回領域R3におけるコイル断面積ME〜MGよりも小さくなっているので、以下の理由により、低周波領域においてQ値を改善することができる。
図4および図5は、それぞれ本実施の形態のコイル素子に対する第1および第2の比較例のコイル素子の構成(図3に対応する断面構成)を表している。第1の比較例のコイル素子は、スパイラルコイル14(コイルターン14A〜14G)に代えてスパイラルコイル114(コイルターン114A〜114G)を備え、中間巻回領域R2におけるコイル断面積MDが外周側巻回領域R3におけるコイル断面積ME〜MGに等しくなっている点を除き、本実施の形態のコイル素子と同様の構成を有している。第2の比較例のコイル素子は、スパイラルコイル14に代えてスパイラルコイル214(コイルターン214A〜214G)を備え、中間巻回領域R2におけるコイル断面積MDが外周側巻回領域R3におけるコイル断面積ME〜MGよりも大きくなっている点を除き、本実施の形態のコイル素子と同様の構成を有している。
また、図6は、下部磁性膜12および上部磁性膜15における磁束密度分布の一例を表しており、横軸は巻回中心Cからの距離D(μm)を示し、縦軸は磁束密度B(T)を示している。この図6には、距離Dに沿って内周側巻回領域R1、中間巻回領域R2および外周側巻回領域R3の範囲を示している。図6中に示した「6A,6B,6C」は、それぞれ第2の比較例、第1の比較例および本実施の形態の磁束密度分布を表している。なお、図6では、簡略化するために磁束密度分布を滑らかな曲線で示しているが、実際の磁束密度分布には、コイル線の配列パターン等の影響によるディップ(窪み)が含まれる場合がある。
第1の比較例のコイル素子(図4参照)では、コイル断面積MDがコイル断面積ME〜MGに等しくなっているため、単位長さ当たりの直流抵抗はコイルターン114D〜114G間において等しくなる。この場合には、コイル断面積MD〜MGを十分に大きくなるように設定することにより、スパイラルコイル114全体の直流抵抗が十分に低くなる。しかしながら、コイル断面積MDがコイル断面積ME〜MGに等しくなっていると、中間巻回領域R2において各コイルターン114A〜114Gで生じる磁界同士が強め合いにくくなる。具体的には、図6(6B)に示したように、中間巻回領域R2において磁束密度Bが最大となるものの、ほぼ一定になるため、スパイラルコイル114に流れる電流によって生じる磁界の磁束密度分布は中間巻回領域R2において平坦化されてしまう。この場合には、中間巻回領域R2において自己インダクタンスが増加しにくくなる。これらのことから、第1の比較例では、Q値が向上しにくいため、低周波領域においてQ値を改善することが困難である。
また、第2の比較例のコイル素子(図5参照)では、コイル断面積MDがコイル断面積ME〜MGよりも大きくなっているため、単位長さ当たりの直流抵抗はコイルターン114E〜114Gよりもコイルターン114Dにおいて低くなる。この場合には、第1の比較例の場合と比較して、スパイラルコイル214全体の直流抵抗がより低くなる。しかしながら、コイル断面積MDがコイル断面積ME〜MGよりも大きくなっていると、中間巻回領域R2において各コイルターン214A〜214Gで生じる磁界同士がより強め合いにくくなる。具体的には、図6(6A)に示したように、中間巻回領域R2において磁束密度Bが局所的に落ち込むように低下するため、スパイラルコイル214に流れる電流によって生じる磁界の磁束密度分布は中間巻回領域R2において窪んでしまう。この場合には、第1の比較例のコイル素子と比較して、中間巻回領域2において自己インダクタンスがより増加しにくくなる。これらのことから、第2の比較例では、Q値がより向上しにくいため、やはり低周波領域においてQ値を改善することが困難である。
これに対して、本実施の形態のコイル素子(図3参照)では、コイル断面積MDがコイル断面積ME〜MGよりも小さくなっているため、単位長さ当たりの直流抵抗はコイルターン14E〜14Gよりもコイルターン14Dにおいて高くなる。この場合には、導体長の長いコイルターン14E〜14Gの直流抵抗がスパイラルコイル14全体の直流抵抗に大きく寄与することから、コイル断面積ME〜MGを十分に大きくなるように設定すれば、コイル断面積MDが小さい場合においても、スパイラルコイル14全体の直流抵抗が十分に低くなる。しかも、コイル断面積MDがコイル断面積ME〜MGよりも小さくなっていると、中間巻回領域R2において各コイルターン14A〜14Gで生じる磁界同士が著しく強め合いやすくなる。具体的には、図6(6C)に示したように、中間巻回領域R2において磁束密度Bが最大を示し、かつ極大を示すように増加するため、スパイラルコイル214に流れる電流によって生じる磁界の磁束密度分布は中間巻回領域R2において突出する。この場合には、第1および第2の比較例と比較して、中間巻回領域R2において自己インダクタンスが増加するため、スパイラルコイル14全体においてインダクタンスが増加する。これらのことから、本実施の形態では、Q値が向上するため、低周波領域においてQ値を改善することができるのである。
特に、本実施の形態では、スパイラルコイル14のアスペクト比(コイルターンの厚さ/幅)を1以上にすることなくQ値を改善することが可能であるため、アスペクト比の増加(コイルターンの厚さの増加)による素子サイズの大型化(厚型化)および製造プロセスの困難化を回避すると共に、コイルターン間の対向面積の増加による共振周波数の低下を防止することができる。
なお、本実施の形態では、図3に示したように、外周側巻回領域R3におけるコイル断面積ME〜MGが互いに等しくなるようにしたが、必ずしもこれに限られるものではない。一例を挙げれば、図3に対応する図7に示したように、コイル幅WD〜WGが外周側巻回領域R3から中間巻回領域R2に近づくにしたがって次第に狭くなることにより、コイル断面積MD〜MGが外周側巻回領域R3から中間巻回領域R2に近づくにしたがって次第に小さくなるようにしてもよい。この場合には、図3に示した場合と比較して、外周側巻回領域R3においてコイルターン14E〜14Gの単位長さ当たりの直流抵抗をより低くすることが可能であるため、低周波領域においてQ値をより改善することができる。なお、図7に示したスパイラルコイル14に関する上記以外の構成は、図3に示した場合と同様である。
また、本実施の形態では、図3に示したように、内周側巻回領域R1におけるコイル断面積MA〜MCが外周側巻回領域R3におけるコイル断面積ME〜MGに等しくなるようにしたが、必ずしもこれに限られるものではない。具体的には、コイル幅WA〜WCがコイル幅WE〜WGよりも狭くなることにより、コイル断面積MA〜MCがコイル断面積ME〜MGよりも小さくなるようにしてもよい。一例を挙げれば、図3に対応する図8に示したように、コイル幅WA〜WCがコイル幅WDに等しくなることにより、コイル断面積MA〜MCがコイル断面積MDに等しくなるようにしてもよい。この場合には、図3に示した場合と比較して、中間巻回領域R2に加えて内周側巻回領域R1においても自己インダクタンスが増加するため、低周波領域においてQ値をより向上させることができる。なお、図8に示したスパイラルコイル14に関する上記以外の構成は、図3に示した場合と同様である。
また、本実施の形態では、図7および図8に対応する図9に示したように、図7および図8に示した変形例を組み合わせるようにしてもよい。この場合には、図7および図8に示した場合と同様の効果を得ることができる。なお、図9に示したスパイラルコイル14に関する上記以外の構成は、図7および図8に示した場合と同様である。
また、本実施の形態では、図1および図2に示したように、下部磁性膜12および上部磁性膜15の双方を備えるようにしたが、必ずしもこれに限られるものではなく、下部磁性膜12または上部磁性膜15のいずれか一方のみを備えるようにしてもよい。具体的な一例を挙げれば、基体11が高抵抗のフェライト基板である場合には、上部磁性膜15のみを備え、下部磁性膜12を備えないようしてもよい。この場合においても、低周波領域においてQ値を改善することができる。
また、本実施の形態では、図1および図2に示したように、絶縁膜13を備えるようにしたが、必ずしもこれに限られるものではなく、例えば、上部磁性膜15がフェライトなどの高抵抗材料により構成された場合には、絶縁膜13を備えないようにしてもよい。この場合においても、Q値を改善することができる。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。
図10は、第2の実施の形態に係るコイル素子の構成を表しており、図3に対応する断面構成を示している。なお、図10では、上記第1の実施の形態において図3を参照して説明した符号(R1〜R3,WA〜WG,SAB〜SFG,MA〜MG)を付している。
このコイル素子は、スパイラルコイル14(コイルターン14A〜14G)に代えてスパイラルコイル24(コイルターン24A〜24G)を備える点を除き、上記第1の実施の形態のコイル素子と同様の構成を有している(図1〜図3参照)。このスパイラルコイル24は、コイル間隔SAB〜SFGに差異が設けられずにコイル断面積MA〜MG(コイル幅WA〜WG)に差異が設けられていた上記第1の実施の形態(スパイラルコイル14)とは異なり、コイル断面積MA〜MGに差異が設けられずにコイル間隔SAB〜SFGに差異が設けられたものである。ここでは、例えば、コイル幅WA〜WGが互いに等しくなっていると共に、コイル断面積MA〜MGが互いに等しくなっている。
このスパイラルコイル24では、中間巻回領域R2におけるコイル間隔SCD,SDEが外周側巻回領域R3におけるコイル間隔SEF,SFGよりも狭くなっている。コイル間隔SEF,SFGは、コイル間隔SCD,SDEよりも広くなっている限りにおいて、互いに等しくなっていてもよいし、あるいは互いに異なっていてもよい。ここでは、例えば、コイル間隔SEF,SFGが互いに等しくなっている。
なお、内周側巻回領域R1におけるコイル間隔SAB,SBCは、コイル間隔SCD〜SFGに応じて任意に設定可能である。ここでは、例えば、コイル間隔SAB,SBCがコイル間隔SEF,SFGに等しくなっている。このスパイラルコイル24に関する上記以外の構成は、スパイラルコイル14と同様である。
本実施の形態に係るコイル素子では、スパイラルコイル24の中間巻回領域R2におけるコイル間隔SCD,SDEが外周側巻回領域R3におけるコイル間隔SEF,SFGよりも狭くなっているので、以下の理由により、低周波領域においてQ値を改善することができる。
図11は、本実施の形態のコイル素子に対する比較例のコイル素子の構成(図10に対応する断面構成)を表している。この比較例のコイル素子は、スパイラルコイル14(コイルターン14A〜14G)に代えてスパイラルコイル314(コイルターン314A〜314G)を備え、中間巻回領域R2におけるコイル間隔SCD,SDEが外周側巻回領域R3におけるコイル間隔SEF,SFGよりも広くなっている点を除き、本実施の形態のコイル素子と同様の構成を有している。
この比較例のコイル素子(図11参照)では、コイル間隔SCD,SDEがコイル間隔SEF,SFGよりも広くなっているため、上記第1の実施の形態において説明した2つの比較例のコイル素子(図4および図5参照)と同様に、スパイラルコイル314全体の直流抵抗が十分に低くなる。しかしながら、コイル間隔SCD,SDEがコイル間隔SEF,SFGよりも広いと、中間巻回領域R2においてコイルターン314A〜314Gで生じる磁界同士が強め合いにくくなるため、その中間巻回領域R2において相互インダクタンスが増加しにくくなる。これにより、Q値が向上しにくいため、低周波領域においてQ値を改善することが困難である。
これに対して、本実施の形態のコイル素子(図10参照)では、コイル間隔SCD,SDEがコイル間隔SEF,SFGよりも狭くなっているため、上記第1の実施の形態のコイル素子(図3参照)と同様に、スパイラルコイル24全体の直流抵抗が十分に低くなる。しかも、コイル間隔SCD,SDEがコイル間隔SEF,SFGよりも狭いと、中間巻回領域R2において磁界同士が強め合いやすくなるため、その中間巻回領域R2において相互インダクタンスが増加する。したがって、Q値が向上するため、低周波領域においてQ値を改善することができるのである。このQ値の改善は、低周波用途におけるコイル素子の性能向上に関して極めて有効である。
なお、本実施の形態では、図10に示したように、外周側巻回領域R3におけるコイル間隔SEF,SFGが互いに等しくなるようにしたが、必ずしもこれに限られるものではない。一例を挙げれば、図10に対応する図12に示したように、コイル間隔SDE〜SFGが外周側巻回領域R3から中間巻回領域R2に近づくにしたがって次第に狭まるようにしてもよい。この場合には、図10に示した場合と比較して、中間巻回領域R2に加えて外周側巻回領域R3においてもより効果的に相互インダクタンスを増加させることが可能であるため、低周波領域においてQ値をより向上させることができる。このQ値の改善は、低周波用途におけるコイル素子の性能向上に関して極めて有効である。なお、図12に示したスパイラルコイル24に関する上記以外の構成は、図10に示した場合と同様である。
また、本実施の形態では、図10に示したように、内周側巻回領域R1におけるコイル間隔SAB,SBCが外周側巻回領域R3におけるコイル間隔SEF,SFGに等しくなるようにしたが、必ずしもこれに限られるものではなく、コイル間隔SAB,SBCがコイル間隔SEF,SFGよりも狭くなるようにしてもよい。一例を挙げれば、図10に対応する図13に示したように、コイル間隔SAB,SBCがコイル間隔SCD,SDEに等しくなるようにしてもよい。この場合には、図10に示した場合と比較して、中間巻回領域R2に加えて内周側巻回領域R1においても相互インダクタンスをより効果的に増加させることが可能であるため、低周波領域においてQ値をより向上させることができる。このQ値の改善は、低周波用途におけるコイル素子の性能向上に関して極めて有効である。なお、図13に示したスパイラルコイル24に関する上記以外の構成は、図10に示した場合と同様である。
また、本実施の形態では、図12および図13に対応する図14に示したように、図12および図13に示した変形例を組み合わせるようにしてもよい。この場合には、図12および図13に示した場合と同様の効果を得ることができる。なお、図14に示したスパイラルコイル24に関する上記以外の構成は、図12および図13に示した場合と同様である。
本実施の形態のコイル素子に関する上記以外の構成、作用および他の変形は、上記第1の実施の形態と同様である。
[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。
図15は、第3の実施の形態に係るコイル素子の構成を表しており、図3に対応する断面構成を示している。なお、図15では、上記第1の実施の形態において図3を参照して説明した符号(R1〜R3,WA〜WG,SAB〜SFG,MA〜MG)を付している。
このコイル素子は、スパイラルコイル14(コイルターン14A〜14G)に代えてスパイラルコイル34(コイルターン34A〜34G)を備える点を除き、上記第1の実施の形態のコイル素子と同様の構成を有している(図1〜図3参照)。このスパイラルコイル34は、コイル断面積MA〜MG(コイル幅WA〜WG)またはコイル間隔SAB〜SFGのいずれか一方のみに差異が設けられていた上記第1および第2の実施の形態(スパイラルコイル14,24)とは異なり、コイル断面積MA〜MGおよびコイル間隔SAB〜SFGの双方に差異が設けられたものである。
このスパイラルコイル34では、中間巻回領域R2におけるコイル断面積MDが外周側巻回領域R3におけるコイル断面積ME〜MGよりも小さくなっていると共に、中間巻回領域R2におけるコイル間隔SCD,SDEが外周側巻回領域R3におけるコイル間隔SEF,SFGよりも狭くなっている。ここでは、例えば、コイル断面積ME〜MGが互いに等しくなっていると共に、コイル間隔SEF,SFGが互いに等しくなっている。
なお、内周側巻回領域R1におけるコイル断面積MA〜MCおよびコイル間隔SAB,SBCは、コイル断面積MD〜MGおよびコイル間隔SCD〜SFGに応じて任意に設定可能である。ここでは、例えば、コイル断面積MA〜MCがコイル断面積ME〜MGに等しくなっていると共に、コイル間隔SAB,SBCがコイル間隔SEF,SFGに等しくなっている。このスパイラルコイル34に関する上記以外の構成は、上記第1の実施の形態(スパイラルコイル14)と同様である。
本実施の形態に係るコイル素子では、スパイラルコイル34の中間巻回領域R2におけるコイル断面積MDが外周側巻回領域R3におけるコイル断面積ME〜MGよりも小さくなっているので、上記第1の実施の形態(スパイラルコイル14)と同様の作用により、スパイラルコイル34全体の直流抵抗が十分に低くなると共に、中間巻回領域R2において自己インダクタンスが増加する。しかも、中間巻回領域R2におけるコイル間隔SCD,SDEが外周側巻回領域R3におけるコイル間隔SEF,SFGよりも狭くなっているので、上記第2の実施の形態(スパイラルコイル24)と同様の作用により、中間巻回領域R2において相互インダクタンスが増加する。したがって、上記第1および第2の実施の形態よりもQ値が向上するため、低周波領域においてQ値をより向上させることができる。
なお、本実施の形態では、上記第1および第2の実施の形態において説明したスパイラルコイル14,24に関する変形例をスパイラルコイル34に適用することが可能である。これらの場合には、各変形例と同様の効果を得ることができる。
具体的には、例えば、図7に示したコイル断面積ME〜MG(コイル幅WE〜WG)に関する変形例を適用することにより、図15に対応する図16に示したように、コイル幅WD〜WGが外周側巻回領域R3から中間巻回領域R2に近づくにしたがって次第に狭くなることにより、コイル断面積MG,MF,ME,MDが外周側巻回領域R3から中間巻回領域R2に近づくにしたがって次第に小さくなるようにしてもよい。
また、例えば、図8に示したコイル断面積MA〜MC(コイル幅WA〜WC)に関する変形例を適用することにより、図15に対応する図17に示したように、コイル幅WA〜WCがコイル幅WDに等しくなることより、コイル断面積MA〜MCがコイル断面積MDに等しくなるようにしてもよい。
また、例えば、図16および図17に対応する図18に示したように、図16および図17に示した変形例を組み合わせるようにしてもよい。
また、例えば、図12に示したコイル間隔SEF,SFGに関する変形例を適用することにより、図15に対応する図19に示したように、コイル間隔SDE〜SFGが外周側巻回領域R3〜中間巻回領域R2に近づくにしたがって次第に狭まるようにしてもよい。
また、例えば、図13に示したコイル間隔SAB,SBCに関する変形例を適用することにより、図15に対応する図20に示したように、コイル間隔SAB,SBCがコイル間隔SCD,SDEに等しくなるようにしてもよい。
また、例えば、図19および図20に対応する図21に示したように、図19および図20に示した変形例を組み合わせるようにしてもよい。
なお、図16〜図21に示したスパイラルコイル34に関する上記以外の構成は、図15に示した場合と同様である。
本実施の形態のコイル素子に関する上記以外の構成、作用および他の変形は、上記第1の実施の形態と同様である。
次に、本発明のコイル素子の応用例について説明する。図22はコイル素子を応用した薄膜インダクタの断面構成を表し、図23は図22に示したXXIII−XXIII線に沿った断面構成を表している。なお、以下の説明では、薄膜インダクタの構成を説明する際に、上記したコイル素子(図1〜図3、図7〜図10および図12〜図21参照)の構成要素を随時引用する。
この薄膜インダクタは、基板101の一面に、下部磁性膜102と、絶縁膜110により埋設されたスパイラルコイル106と、上部磁性膜107とがこの順に積層されたものである。
基板101は、基体11に対応するものであり、例えば、ガラス、シリコン(Si)、フェライト、酸化アルミニウム(Al2 3 ;いわゆるアルミナ)、セラミックス、半導体または樹脂などにより構成されている。
下部磁性膜102および上部磁性膜107は、それぞれ下部磁性膜12および上部磁性膜15に対応するものであり、ここではインダクタンスを高めるために使用されている。これらの下部磁性膜102および上部磁性膜107は、例えば、コバルト(Co)系のアモルファス金属などの磁性材料により構成されている。この種の磁性材料としては、例えば、(CoFe)SiBなどのコバルト鉄系合金や、コバルトジルコニウムニオブ合金(CoZrNb)や、コバルトジルコニウムタンタル合金(CoZrTa)などが挙げられる。なお、下部磁性膜102および上部磁性膜107の構成材料は、透磁率が高いものであれば特に限定されず、例えば、フェライトであってもよい。
絶縁膜110は、絶縁膜13に対応するものであり、例えば、基板101とスパイラルコイル106との間に設けられた下部絶縁膜103と、スパイラルコイル106のコイル線間およびその周囲に設けられた中間絶縁膜104、スパイラルコイル106と上部絶縁膜107との間に設けられた上部絶縁膜105とを含んでいる。下部絶縁膜103および上部絶縁膜105は、例えば、二酸化ケイ素(SiO2 )またはアルミナなどの無機絶縁性材料により構成されている。なお、下部絶縁膜102は、例えば、基板101上に別途形成された膜であってもよいし、あるいは基板101がシリコン基板などである場合に、その基板101の表層が酸化されることにより形成された酸化膜であってもよい。中間絶縁膜104は、例えば、ポリイミド、フェノール樹脂、エポキシ樹脂またはフォトレジストなどの有機絶縁性材料により構成されている。
スパイラルコイル106は、スパイラルコイル14,24,34に対応するものであり、ここではインダクタンスを発生させるものである。このスパイラルコイル106は、例えば、銅(Cu)、ニッケル(Ni)または銀(Ag)などの金属に代表される導電性材料により構成されている。ここでは、スパイラルコイル106は、例えば、図3に示したスパイラルコイル14と同様の構成を有している。
この薄膜インダクタでは、スパイラルコイル14に対応するスパイラルコイル106を備えているので、上記したコイル素子と同様の作用により、スパイラルコイル106全体の直流抵抗が十分に低くなると共に、インダクタンスが増加する。したがって、低周波領域においてQ値を向上させることができる。
なお、図22および図23に示した薄膜インダクタでは、図3に示したスパイラルコイル14と同様の構成を有するようにスパイラルコイル106を構成したが、必ずしもこれに限られるものではない。具体的には、図3に代えて、図7〜図9に示したスパイラルコイル14、図10および図12〜図14に示したスパイラルコイル24、ならびに図15〜図21に示したスパイラルコイル34と同様の構成を有するようにスパイラルコイル106を構成してもよい。この場合においても、低周波領域においてQ値を向上させることができる。
次に、本発明の実施例について説明する。
コイル素子の性能を調べるために、以下の一連のコイル素子をシミュレーション上において設計した。
(実施例1)
上記第1の実施の形態において図3に示したスパイラルコイル14を備えたコイル素子を設計した。この場合には、スパイラルコイル14の構成として、図3に対応する図24に示したように、ターン数を7ターンから5ターン(コイルターン14A〜14E)に変更したと共に、材質=銅、コイル厚さT=10μm、コイル幅WA,WB,WD,WE=400μm,WC=300μm、コイル断面積MA,MB,MD,ME=4000μm2 ,MC=3000μm2 、コイル間隔SAB〜SDE=20μmとした。また、下部磁性膜および上部磁性膜の構成として、材質=コバルトジルコニウムタンタル合金、平面サイズ=6.5mm×6.5mm、厚さ=5μm、抵抗率=100μΩcm、比透磁率=600、飽和磁束密度Bs=1.2T、ギャップ(下部磁性膜と上部磁性膜との間の距離)=3μmとした。
(実施例2)
上記第2の実施の形態において図10に示したスパイラルコイル24を備えたコイル素子を設計した。この場合には、スパイラルコイル24の構成として、図10に対応する図25に示したように、ターン数を7ターンから5ターン(コイルターン24A〜24E)に変更したと共に、コイル幅WA〜WE=400μm、コイル断面積MA〜ME=4000μm2 、コイル間隔SAB,SDE=20μm,SBC,SCD=10μmとした。なお、スパイラルコイル24に関する上記以外の構成、ならびに下部磁性膜および上部磁性膜の構成は、実施例1と同様である。
(比較例1)
図4に示したスパイラルコイル114を備えたコイル素子を設計した。この場合には、スパイラルコイル114の構成として、図4に対応する図26に示したように、ターン数を7ターンから5ターン(コイルターン114A〜114E)に変更したと共に、平面サイズ=6mm×6mm角、コイル幅WA〜WE=400μm、コイル断面積MA〜ME=4000μm2 、コイル間隔SAB〜SDE=20μm、抵抗率=1.8μΩcmとした。なお、スパイラルコイル114に関する上記以外の構成、ならびに下部磁性膜および上部磁性膜の構成は、実施例1と同様である。
(比較例2)
図5に示したスパイラルコイル214を備えたコイル素子を設計した。この場合には、スパイラルコイル214の構成として、図5に対応する図27に示したように、ターン数を7ターンから5ターン(コイルターン214A〜214E)に変更したと共に、コイル幅WA,WB,WD,WE=400μm,WC=500μm、コイル断面積MA,MB,MD,ME=4000μm2 ,MC=5000μm2 、コイル間隔SAB〜SEF=20μmとした。なお、スパイラルコイル214に関する上記以外の構成、ならびに下部磁性膜および上部磁性膜の構成は、実施例1と同様である。
(比較例3)
図11に示したスパイラルコイル314を備えたコイル素子を設計した。この場合には、スパイラルコイル314の構成として、図11に対応する図28に示したように、ターン数を7ターンから5ターン(コイルターン314A〜314E)に変更したと共に、コイル幅WA〜WE=400μm、コイル断面積MA〜ME=4000μm2 、コイル間隔SAB,SDE=20μm,SBC,SCD=30μmとした。なお、スパイラルコイル214に関する上記以外の構成、ならびに下部磁性膜および上部磁性膜の構成は、実施例1と同様である。
(比較例4)
コイル間隔SBC,SCD=50μmとした点を除き、実施例3と同様の構成となるようにコイル素子を設計した。
なお、表1は、上記した実施例1,2および比較例1〜4のコイル素子の主要な構成条件(コイル厚さT,コイル幅WA〜WE,コイル断面積MA〜ME,コイル間隔SAB〜SDE)の一覧を示している。
Figure 2007128928
まず、実施例1および比較例1,2のコイル素子の性能を調べた。
磁束密度分布に対するコイル幅の影響を調べたところ、図29に示した結果が得られた。図29は、磁束密度分布のコイル幅依存性を表しており、図6に対応する磁束密度分布を示している。この場合には、有限要素法を利用した電磁界解析を使用したと共に、印加電流(直流重畳電流)=500mAとした。図29中に示した「29A(破線),29B(一点鎖線),29C(実線)」は、それぞれ比較例2、比較例1および実施例1の磁束密度分布を表している。なお、実施例1および比較例1,2のいずれにおいても、スパイラルコイル(5つのコイルターン)の配設範囲は距離D=約1100μm〜3000μmの範囲であり、内周側巻回領域R1,中間巻回領域R2および外周側巻回領域R3はそれぞれ距離D=約1100μm〜1900μm、約1900μm〜2400μmおよび約2400μm〜3000μmの範囲である。
図29に示した結果から判るように、磁束密度Bは、比較例2(29A)、比較例1(29B)および実施例1(29C)のいずれにおいても、ほぼ上向き凸型の曲線を描くように分布した。この曲線中には、5つのコイルターンの配列パターン等の影響によるディップが見られた。
しかしながら、一連の磁束密度分布では、コイル幅WCが狭くなるにしたがって中間巻回領域R2における磁束密度Bが上昇した。すなわち、中間巻回領域R2における磁束密度分布は、比較例2、比較例1および実施例1の順に突出した。この磁束密度分布の突出傾向は、コイル幅WCが狭くなるにしたがって、中間巻回領域R2において各コイルターンで生じる磁界同士が強め合う現象が高まることを表している。このことから、本発明のコイル素子では、中間巻回領域R2におけるコイル幅WCを外周側巻回領域R3におけるコイル幅WD,WEよりも狭めることにより、磁束密度分布が中間巻回領域R2において突出することが確認された。
また、インダクタンスに対するコイル幅の影響を調べたところ、図30に示した結果が得られた。図30は、インダクタンスのコイル幅依存性を表しており、横軸はコイル幅WC(μm)を示し、縦軸はインダクタンスL(μH)を示している。この場合には、コイル幅WC=300μm(実施例1),400μm(比較例1),500μm(比較例2)とし、印加電流(直流電流)=500mAとした。
図30に示した結果から判るように、インダクタンスLは、比較例2、比較例1および実施例1の順に増加した。具体的には、インダクタンスLは、比較例2において0.551μH、比較例1において0.597μH、実施例1において0.649μHであった。このことから、本発明のコイル素子では、コイル構造を改良することにより従来よりもインダクタンスが向上することが確認された。
次に、実施例2および比較例1,3,4のコイル素子の性能を調べた。
磁束密度分布に対するコイル間隔の影響を調べたところ、図31に示した結果が得られた。図31は、磁束密度分布のコイル間隔依存性を表しており、図6に対応する磁束密度分布を示している。図31中に示した「31A(破線),31B(一点鎖線),31C(二点鎖線),31D(実線)」は、それぞれ比較例4、比較例3、比較例1および実施例2の磁束密度分布を表している。なお、磁束密度分布の解析方法および印加電流は、図29に関して説明した場合と同様である。
図31に示した結果から判るように、一連の磁束密度分布では、コイル間隔SBC,SCDが狭くなるにしたがって中間巻回領域R2における磁束密度Bが上昇した。すなわち、中間巻回領域R2における磁束密度分布は、比較例4、比較例3、比較例1および実施例2の順に突出した。この磁束密度分布の突出傾向は、コイル間隔SBC,SCDが狭くなるにしたがって、中間巻回領域R2において各コイルターンで生じる磁界同士が強め合う現象が高まることを表している。このことから、本発明のコイル素子では、中間巻回領域R2におけるコイル間隔SBC,SCDを外周側巻回領域R3におけるコイル間隔SDEよりも狭めることにより、磁束密度分布が中間巻回領域R2において突出することが確認された。
また、インダクタンスに対するコイル間隔の影響を調べたところ、図32に示した結果が得られた。図32は、インダクタンスのコイル間隔依存性を表しており、横軸はコイル間隔SBC,SCD(μm)を示し、縦軸はインダクタンスL(μH)を示している。この場合には、コイル間隔SBC,SCD=10μm(実施例2),20μm(比較例1),30μm(比較例3),50μm(比較例4)とした。なお、印加電流は、図3に関して説明した場合と同様である。
図32に示した結果から判るように、インダクタンスLは、比較例4、比較例3、比較例1および実施例2の順に増加した。具体的には、インダクタンスLは、比較例4において0.569μH、比較例3において0.587μH、比較例1において0.597μH、実施例2において0.606μHであった。このことから、本発明のコイル素子では、コイル構造を改良することにより従来よりもインダクタンスが向上することが確認された。
以上、いくつかの実施の形態および実施例を挙げて本発明を説明したが、本発明は上記した各実施の形態および実施例に限定されず、種々の変形が可能である。具体的には、上記各実施の形態および実施例では、スパイラルコイルがシングルスパイラルコイルである場合について説明したが、必ずしもこれに限られるものではなく、スパイラルコイルがダブルスパイラルコイルまたはマルチスパイラルコイルなどの他のスパイラルコイルであってもよい。このマルチスパイラルコイルとは、1本のコイル線が3つ以上の巻回中心の周囲を巻回することにより構成されたものである。これらの場合においても、上記各実施の形態および実施例と同様の効果を得ることができる。
本発明に係るコイル素子は、薄膜インダクタなどに応用することが可能である。
本発明の第1の実施の形態に係るコイル素子の平面構成を表す平面図である。 図1に示したコイル素子のII−II線に沿った断面構成を表す断面図である。 図1に示したコイル素子のIII−III線に沿った断面構成を表す断面図である。 本発明の第1の実施の形態に係るコイル素子に対する第1の比較例のコイル素子の断面構成を表す断面図である。 本発明の第1の実施の形態に係るコイル素子に対する第2の比較例のコイル素子の断面構成を表す断面図である。 下部磁性膜および上部磁性膜における磁束密度分布の一例を表す図である。 図3に示したスパイラルコイルの構成に関する変形例を表す断面図である。 図3に示したスパイラルコイルの構成に関する他の変形例を表す断面図である。 図3に示したスパイラルコイルの構成に関するさらに他の変形例を表す断面図である。 本発明の第2の実施の形態に係るコイル素子のうちのスパイラルコイルの断面構成を表す断面図である。 本発明の第2の実施の形態に係るコイル素子に対する比較例のコイル素子の断面構成を表す断面図である。 図10に示したスパイラルコイルの構成に関する変形例を表す断面図である。 図10に示したスパイラルコイルの構成に関する他の変形例を表す断面図である。 図10に示したスパイラルコイルの構成に関するさらに他の変形例を表す断面図である。 本発明の第3の実施の形態に係るコイル素子のうちのスパイラルコイルの断面構成を表す断面図である。 図15に示したスパイラルコイルの構成に関する変形例を表す断面図である。 図15に示したスパイラルコイルの構成に関する他の変形例を表す断面図である。 図15に示したスパイラルコイルの構成に関するさらに他の変形例を表す断面図である。 図15に示したスパイラルコイルの構成に関するさらに他の変形例を表す断面図である。 図15に示したスパイラルコイルの構成に関するさらに他の変形例を表す断面図である。 図15に示したスパイラルコイルの構成に関するさらに他の変形例を表す断面図である。 本発明のコイル素子を応用した薄膜インダクタの平面構成を表す平面図である。 図23に示した薄膜インダクタのXXIII−XXIII線に沿った断面構成を表す断面図である。 実施例1のコイル素子の構成を説明するための断面図である。 実施例2のコイル素子の構成を説明するための断面図である。 比較例1のコイル素子の構成を説明するための断面図である。 比較例2のコイル素子の構成を説明するための断面図である。 比較例3,4のコイル素子の構成を説明するための断面図である。 実施例1および比較例1,2のコイル素子に関する磁束密度分布のコイル幅依存性を表す図である。 実施例1および比較例1,2のコイル素子に関するインダクタンスのコイル幅依存性を表す図である。 実施例2および比較例1,3,4のコイル素子に関する磁束密度分布のコイル間隔依存性を表す図である。 実施例2および比較例1,3,4のコイル素子に関するインダクタンスのコイル間隔依存性を表す図である。
符号の説明
11…基体、12,102…下部磁性膜、13,110…絶縁膜、14,24,34,106…スパイラルコイル、14A〜14G,24A〜24G,34A〜34G…コイルターン、15,107…上部磁性膜、101…基板、103…下部絶縁膜、104…中間絶縁膜、105…上部絶縁膜、C…巻回中心、MA〜MG…コイル断面積、R1…内周側巻回領域、R2…中間巻回領域、R3…外周側巻回領域、SAB〜SFG…コイル間隔、T…コイル厚さ、WA〜WG…コイル幅。

Claims (18)

  1. 基体と、
    この基体によって支持されたスパイラルコイルと
    を備え、
    前記スパイラルコイルの内周側と外周側との間の中間におけるコイル断面積が、前記外周側におけるコイル断面積よりも小さい
    ことを特徴とするコイル素子。
  2. 前記外周側から前記中間に近づくにしたがってコイル断面積が次第に小さくなっている
    ことを特徴とする請求項1記載のコイル素子。
  3. 前記中間におけるコイル幅が、前記外周側におけるコイル幅よりも狭い
    ことを特徴とする請求項1または請求項2に記載のコイル素子。
  4. 前記外周側から前記中間に近づくにしたがってコイル幅が次第に狭くなっている
    ことを特徴とする請求項3記載のコイル素子。
  5. 前記内周側におけるコイル断面積が、前記外周側におけるコイル断面積よりも小さい
    ことを特徴とする請求項1ないし請求項4のいずれか1項に記載のコイル素子。
  6. 前記内周側におけるコイル幅が、前記外周側におけるコイル幅よりも狭い
    ことを特徴とする請求項5記載のコイル素子。
  7. 基体と、
    この基体によって支持されたスパイラルコイルと
    を備え、
    前記スパイラルコイルの内周側と外周側との間の中間におけるコイル間隔が、前記外周側におけるコイル間隔よりも狭い
    ことを特徴とするコイル素子。
  8. 前記外周側から前記中間に近づくにしたがってコイル間隔が次第に狭くなっている
    ことを特徴とする請求項7記載のコイル素子。
  9. 前記内周側におけるコイル間隔が、前記外周側におけるコイル間隔よりも狭い
    ことを特徴とする請求項7または請求項8に記載のコイル素子。
  10. 基体と、
    この基体によって支持されたスパイラルコイルと
    を備え、
    前記スパイラルコイルの内周側と外周側との間の中間におけるコイル断面積が、前記外周側におけるコイル断面積よりも小さく、かつ、
    前記中間におけるコイル間隔が、前記外周側におけるコイル間隔よりも狭い
    ことを特徴とするコイル素子。
  11. 前記外周側から前記中間に近づくにしたがってコイル断面積が次第に小さくなっている
    ことを特徴とする請求項10記載のコイル素子。
  12. 前記中間におけるコイル幅が、前記外周側におけるコイル幅よりも狭い
    ことを特徴とする請求項10または請求項11に記載のコイル素子。
  13. 前記外周側から前記中間に近づくにしたがってコイル幅が次第に狭くなっている
    ことを特徴とする請求項12記載のコイル素子。
  14. 前記内周側におけるコイル断面積が、前記外周側におけるコイル断面積よりも小さい
    ことを特徴とする請求項10ないし請求項13のいずれか1項に記載のコイル素子。
  15. 前記内周側におけるコイル幅が、前記外周側におけるコイル幅よりも狭い
    ことを特徴とする請求項14記載のコイル素子。
  16. 前記外周側から前記中間に近づくにしたがってコイル間隔が次第に狭くなっている
    ことを特徴とする請求項10ないし請求項15のいずれか1項に記載のコイル素子。
  17. 前記内周側におけるコイル間隔が、前記外周側におけるコイル間隔よりも狭い
    ことを特徴とする請求項10ないし請求項16のいずれか1項に記載のコイル素子。
  18. さらに、前記スパイラルコイルの少なくとも一方の面の側に磁性膜を備えた
    ことを特徴とする請求項1ないし請求項17のいずれか1項に記載のコイル素子。
JP2005317764A 2005-10-31 2005-10-31 コイル素子 Withdrawn JP2007128928A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317764A JP2007128928A (ja) 2005-10-31 2005-10-31 コイル素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317764A JP2007128928A (ja) 2005-10-31 2005-10-31 コイル素子

Publications (1)

Publication Number Publication Date
JP2007128928A true JP2007128928A (ja) 2007-05-24

Family

ID=38151345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317764A Withdrawn JP2007128928A (ja) 2005-10-31 2005-10-31 コイル素子

Country Status (1)

Country Link
JP (1) JP2007128928A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049335A (ja) * 2007-08-23 2009-03-05 Sony Corp インダクタおよびインダクタの製造方法
JP2010272625A (ja) * 2009-05-20 2010-12-02 Yazaki Corp スパイラルインダクタ
JP2017139368A (ja) * 2016-02-04 2017-08-10 パナソニックIpマネジメント株式会社 コイル部品
JP2019041273A (ja) * 2017-08-25 2019-03-14 株式会社村田製作所 コイルアンテナ及び電子機器
JP2019508905A (ja) * 2016-03-17 2019-03-28 モダ−イノチップス シーオー エルティディー コイルパターン及びその形成方法、並びにこれを備えるチップ素子
JP2019508906A (ja) * 2016-03-31 2019-03-28 モダ−イノチップス シーオー エルティディー コイルパターン及びその形成方法、並びにこれを備えるチップ素子
JP2020047614A (ja) * 2018-09-14 2020-03-26 国立大学法人信州大学 ワイヤレス電力伝送コイルユニット

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049335A (ja) * 2007-08-23 2009-03-05 Sony Corp インダクタおよびインダクタの製造方法
JP2010272625A (ja) * 2009-05-20 2010-12-02 Yazaki Corp スパイラルインダクタ
JP2017139368A (ja) * 2016-02-04 2017-08-10 パナソニックIpマネジメント株式会社 コイル部品
JP2019508905A (ja) * 2016-03-17 2019-03-28 モダ−イノチップス シーオー エルティディー コイルパターン及びその形成方法、並びにこれを備えるチップ素子
US11056271B2 (en) 2016-03-17 2021-07-06 Moda-Innochips Co., Ltd. Coil pattern and formation method therefor, and chip element having same
JP2019508906A (ja) * 2016-03-31 2019-03-28 モダ−イノチップス シーオー エルティディー コイルパターン及びその形成方法、並びにこれを備えるチップ素子
US11069472B2 (en) 2016-03-31 2021-07-20 Moda-Innochips Co., Ltd. Coil pattern, method for forming same, and chip device including same
JP2019041273A (ja) * 2017-08-25 2019-03-14 株式会社村田製作所 コイルアンテナ及び電子機器
JP2020047614A (ja) * 2018-09-14 2020-03-26 国立大学法人信州大学 ワイヤレス電力伝送コイルユニット
JP7131815B2 (ja) 2018-09-14 2022-09-06 国立大学法人信州大学 ワイヤレス電力伝送コイルユニット

Similar Documents

Publication Publication Date Title
JP4012526B2 (ja) 薄膜コイルおよびその製造方法、ならびにコイル構造体およびその製造方法
US7250842B1 (en) MEMS inductor with very low resistance
EP3346476B1 (en) Thin film inductor and power conversion circuit
US7791837B2 (en) Thin film device having thin film coil wound on magnetic film
US6822548B2 (en) Magnetic thin film inductors
JP2007128928A (ja) コイル素子
US10535459B2 (en) Coil component
US9047890B1 (en) Inductor with non-uniform lamination thicknesses
JP2006286931A (ja) 薄膜デバイス
CN110400680A (zh) 线圈部件及其制造方法
JP2007266105A (ja) 薄膜デバイス
US20190362886A1 (en) Coil electronic component
JP2007273802A (ja) 薄膜デバイス
JP4706927B2 (ja) 薄膜デバイス
JP7107285B2 (ja) 磁性構造体および磁性構造体の製造方法
JP2005116666A (ja) 磁性素子
JP6060368B2 (ja) 積層インダクタ
JP2007128927A (ja) コイル素子
JP2007227566A (ja) コイル部品
JP4736902B2 (ja) 薄膜デバイス
JP4645178B2 (ja) 磁気素子およびインダクタ
JP2008258403A (ja) インダクタンス部品
JP2002050520A (ja) マイクロインダクタあるいはマイクロトランスタイプのマイクロ要素
JP4893366B2 (ja) 薄膜磁気デバイス
JP2002093624A (ja) 微小インダクタや微小変圧器といったタイプの微小素子

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106