JP2007123469A - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
JP2007123469A
JP2007123469A JP2005312389A JP2005312389A JP2007123469A JP 2007123469 A JP2007123469 A JP 2007123469A JP 2005312389 A JP2005312389 A JP 2005312389A JP 2005312389 A JP2005312389 A JP 2005312389A JP 2007123469 A JP2007123469 A JP 2007123469A
Authority
JP
Japan
Prior art keywords
region
semiconductor
type
impurity
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005312389A
Other languages
English (en)
Inventor
Takahide Sugiyama
隆英 杉山
Tomoyuki Yoshida
友幸 吉田
Koji Hotta
幸司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2005312389A priority Critical patent/JP2007123469A/ja
Publication of JP2007123469A publication Critical patent/JP2007123469A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

【課題】 不純物を含む半導体領域を備えている半導体装置において、その半導体領域の格子定数の変動を抑える技術を提供する。
【解決手段】 IGBT(Insulated Gate Bipolar Transistor)であり、ボロンを高濃度に含むコレクタ領域29の第1部分22と、ボロンとガリウムを合計で高濃度に含むコレクタ領域29の第2部分23と、リンを含むベース領域24を順に備えている。第2部分23には、シリコンの共有結合半径よりも小さい共有結合半径のボロンと、シリコンの共有結合半径よりも大きい共有結合半径のガリウムが混在していることを特徴としている。
【選択図】 図1

Description

本発明は、導電性不純物(アクセプタ又はドナーになる不純物をいう)を含む複数の半導体領域を備えている半導体装置と、その製造方法に関する。特に、IGBT(Insulated Gate Bipolar Transistor)、MISFET(Metal Insulator Semiconductor Field Effect Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のスイッチング素子に関する。
一般的に、スイッチング素子として利用される半導体装置は、導電性不純物を含む複数の半導体領域によって構成されている。このため、半導体装置は、半導体領域と、その半導体領域とは導電性不純物の種類又は導電性不純物の濃度が異なる半導体領域が界面を形成するように接触する部分(以下、接触部分という)を備えている。例えば、ノンパンチスルー型のIGBTは、ボロンを高濃度に含むp型のコレクタ領域と、リンを低濃度に含むn型のベース領域の接触部分を備えている。コレクタ領域とベース領域の間にn型のバッファ領域を備えたパンチスルー型のIGBTも知られている。この場合も同様に、コレクタ領域とバッファ領域の間に、導電性不純物の導電型が異なる接触部分が形成されている。あるいは、MOSFETの場合、n型の導電性不純物を高濃度に含むn型のドレイン領域と、n型の導電性不純物を低濃度に含むn型のドリフト領域を備えている。この場合には、ドレイン領域とドリフト領域の間に導電性不純物の濃度が異なる接触部分が形成されている。
例えば、シリコンを母材とするIGBTの場合、コレクタ領域にボロンが高濃度に導入されている。ボロンの共有結合半径は、母材であるシリコンの共有結合半径よりも小さい。このため、ボロンが高濃度に導入されたコレクタ領域の格子定数は、導電性不純物を含まないシリコンの格子定数よりも小さい値に変動する。一方、ベース領域(あるいはバッファ領域)の導電性不純物にはリンが用いられている。リンを含むベース領域(あるいはバッファ領域)の格子定数は、導電性不純物を含まないシリコンの格子定数からあまり変動しない。このため、コレクタ領域上にベース領域(あるいはバッファ領域)を形成すると、コレクタ領域とベース領域(あるいはバッファ領域)の間の格子不整合に基づいて格子歪みが増大し、ミスフィット転移が発生してしまう。
ボロンを高濃度に含む半導体領域とボロンを低濃度に含む半導体領域の間にも同種の問題が存在し、界面における格子不整合に基づいて、ミスフィット転移が発生してしまう。
特許文献1には、ボロンが高濃度に導入されたシリコン単結晶ウェハの表面に、ボロンが低濃度に導入されたシリコン単結晶をエピタキシャル成長するのに先立って、ボロンが高濃度に導入されたシリコン単結晶ウェハの表面にゲルマニウムを含むシリコン単結晶をエピタキシャル成長する技術が開示されている。ゲルマニウムの共有結合半径は、シリコンの共有結合半径よりも大きい。
この技術によると、ボロンが高濃度に導入されたシリコン単結晶ウェハの表面に、ゲルマニウムを含むシリコン単結晶を形成し、その後に熱拡散することによって、ゲルマニウムを含むシリコン単結晶にボロンが拡散し、ボロンを高濃度に含む半導体表面を得ることができる。必要に応じて、ゲルマニウムとボロンの両者を含むシリコン単結晶をエピタキシャル成長する実施例も開示されている。こうして得られる半導体表面には、格子定数を短くするボロンと、格子定数を長くするゲルマニウムが混在している。このため、ボロンによる格子定数の短縮分をゲルマニウムによる格子定数の拡張分によって補償することができる。両者の濃度を調整することによって、ボロンを高濃度に含む半導体表面の格子定数を、導電性不純物を含まないシリコン単結晶の格子定数に近づけることができる。ゲルマニウムを利用して格子定数が調整された半導体表面を形成することによって、その半導体表面上にボロンが低濃度に導入されたシリコン単結晶を形成する際に、界面に生じる格子不整合の程度を緩和することができる。
特開2003−209059号公報
特許文献1の技術を利用すれば、ボロンが高濃度に導入された半導体領域の格子定数を導電性不純物を含まない半導体領域の格子定数に近づけることができ、それに隣接して形成する半導体領域(例えばボロンを低濃度に含む半導体領域、あるいはn型の不純物を含む半導体領域)との間の格子不整合の程度を緩和することができる。
半導体装置の特性を向上させるために、導電性不純物が導入されている半導体領域の界面近傍の局所的な領域における不純物濃度を、残部の不純物濃度よりも濃く調整したいことがある。例えばIGBTのコレクタ領域では、ベース領域(あるいはバッファ領域)との界面近傍において残部の不純物濃度よりも濃く調整することによって、オン電圧を減少させられる。このような局所的な領域を形成する場合でも、格子定数の変動を抑えることが重要である。このような要求に対して特許文献1の技術を利用する場合、界面近傍の局所的な領域にボロンをさらに高濃度に導入しなければならない。界面近傍においてボロンがさらに高濃度に導入されると、格子定数の短縮分もさらに大きくなる。このため、この格子定数の短縮分を補償するために、界面近傍の局所的な領域に対してゲルマニウムもさらに高濃度に導入しなければならない。
しかしながら、ボロンとゲルマニウムの質量は異なっており、半導体領域内における両者の拡散速度も異なっている。ボロンの拡散速度は、ゲルマニウムの拡散係数よりも大きい。このため、半導体領域の表面において、ボロンによる格子定数の短縮分がゲルマニウムによる格子定数の拡張分によって補償されるように両者の濃度を調整した場合、半導体領域の表面から深さ方向に観測したときに、半導体領域の深部ではボロンがゲルマニウムに対して過度に導入された状態が形成されてしまう。これにより、半導体領域内において格子定数の差が大きくなり、この部分からミスフィット転移が発生してしまう。半導体装置の特性を向上させるために半導体領域の界面近傍の局所的な領域にボロンを濃く導入する場合、特許文献1の技術では、ボロンとゲルマニウムの濃度差が大きくなる深さが発生し、格子定数の差がむしろ増大することもある。特許文献1の技術では、界面近傍を深さ方向に観察した場合、格子定数が大きく変動してしまう。
本発明では、半導体装置の特性を向上させるために半導体領域の界面近傍の局所的な領域における導電性不純物濃度を濃くする場合に、深さ方向において格子定数が滑らかに変動し、格子定数が大きく変動することを抑制する技術を提供する。
なお、前記した課題は、母材がシリコンであり、導電性不純物がボロンの場合にのみ生じるものではない。この種の課題は、母材の半導体材料の共有結合半径と導電性不純物の共有結合半径が異なる場合に、一般的に存在している。本発明の技術は、これらの母材の共有結合半径と導電性不純物の共有結合半径が異なる組合せに対して、広く利用することができる。
本発明は、母材の半導体材料の共有結合半径に対して、その共有結合半径よりも大きい共有結合半径を有する導電性不純物と、小さい共有結合半径を有する導電性不純物を共存させることによって、格子定数の変動を抑えることを特徴としている。さらに、共有結合半径が大きい導電性不純物と小さい導電性不純物が、同一導電型であることを特徴としている。共有結合半径が大きい導電性不純物と小さい導電性不純物は、それぞれが複数種類の導電性不純物の組合せであることもある。
本発明は、特許文献1のように、母材の半導体材料と同価の原子(従って非導電性の不純物)を利用して格子定数の変動を抑えるものではない。本発明は、導電性不純物と導電性不純物を利用して格子定数の変動を抑える点において、特許文献1の技術と大きく異なるものである。導電性不純物と導電性不純物を利用すれば、導電性不純物濃度を濃く調整する場合でも、個々の導電性不純物の濃度を極端に濃くすることなく、両者の合計の不純物濃度を濃くすることができる。また、本発明では、一方の導電性不純物を深さ方向に一様に分布させ、他方の導電性不純物を深さ方向に変化させる。これにより、ある深さにおいて、一方の導電性不純物による格子定数の短縮分を他方の導電性不純物による格子定数の拡張分によって補償されるように濃度調整すれば、残部の領域では格子定数の変動が緩やかになる。
本発明は、一方の導電性不純物を深さ方向において一様に分布させ、他方の導電性不純物を局所的に分布させることによって、不純物濃度が濃く調整された局所的な領域を得るとともに、格子定数の変動を緩やかにすることができる。
本発明の半導体装置は、第1半導体領域と、その第1半導体領域との間に界面を形成するように接している第2半導体領域を備えている半導体装置に具現化することができる。第1半導体領域には、前記界面から深さ方向に観測したときに、第1種類の第1導電型の導電性不純物が高濃度に一様に分布しており、第2種類の第1導電型の導電性不純物が前記界面近傍に局所的に分布している。第2半導体領域は、第1導電型の導電性不純物を低濃度に含むか、又は第2導電型の導電性不純物を含んでいる。第2半導体領域の第1導電型の導電性不純物は、第1種類の導電性不純物であることもあれば、それ以外の種類の導電性不純物のこともある。第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴としている。
本発明の第1半導体領域は、第1種類の第1導電型の導電性不純物のみが存在している第1部分と、第1種類と第2種類の第1導電型の導電性不純物が混在している第2部分に区分することができる。第2部分は、第1半導体領域の界面近傍の局所的領域に形成されている。
本発明の半導体装置は、第1半導体領域の第1部分と第2半導体領域の間に、第2部分が形成されていると観念することもできる。仮に、第2部分(第1種類と第2種類の導電性不純物が混在している部分)が形成されていないとすると、第1半導体領域の第1部分に含まれている第1種類の導電性不純物と、第2半導体領域に含まれている導電性不純物の種類又は導電性不純物の濃度が異なるので、両者の間に格子不整合に基づく格子歪みが増大し、ミスフィット転移が発生してしまう。
本発明の半導体装置では、第1半導体領域の第1部分と第2半導体領域の間に、第2部分が形成されている。第1半導体領域の第2部分では、第1種類の導電性不純物と第2種類の導電性不純物が混在している。このため、個々の導電性不純物の濃度を極端に濃くすることなく、両者の合計の不純物濃度を濃くすることができる。また、第1種類の導電性不純物と第2種類の導電性不純物が混在していることによって、一方の導電性不純物によって生じ得る格子定数の短縮分を、他方の導電性不純物によって生じ得る格子定数の拡張分によって補償することができる。第1半導体領域の第1部分と第2半導体領域の間に第1半導体領域の第2部分が形成されていることによって、第1半導体領域の第1部分から第2半導体領域への急峻な格子定数の変動を緩和することができ、格子不整合に基づく格子歪みの発生を抑えることができる。
また、第1種類の導電性不純物は、界面から深さ方向に観測したときに、第1半導体領域において一様に分布している。このため、第1半導体領域の第2部分の表面において、一方の導電性不純物による格子定数の短縮分を他方の導電性不純物による格子定数の拡張分によって補償されるように濃度調整すれば、第1半導体領域の第2部分における格子定数の変動は深さ方向に向けて緩やかになる。
本発明の半導体装置によれば、一方の導電性不純物を深さ方向において一様に分布させ、他方の導電性不純物を局所的に分布させることによって、不純物濃度が濃く調整された局所的な領域を得るとともに、急峻な格子定数の変動を緩和することができる。
半導体装置はIGBT(Insulated Gate Bipolar Transistor)であるのが好ましい。この場合、第1半導体領域は第1導電型の導電性不純物を含むコレクタ領域であり、第2半導体領域は第2導電型の不純物を含むベース領域である。
本発明によれば、コレクタ領域の界面近傍に、第1種類の導電性不純物と第2種類の導電性不純物が混在している領域が形成されている。これにより、コレクタ領域とベース領域の間の格子不整合に基づく格子歪みが低減されており、優れた特性を有するIGBTを得ることができる。
さらに、コレクタ領域の界面近傍に形成されている領域では、第1種類の導電性不純物と第2種類の導電性不純物の合計の不純物濃度が、コレクタ領域の第1種類の不純物濃度よりも濃い。このため、前記領域からのキャリアの供給が増大し、オン電圧を低減することができる。
コレクタ領域とベース領域の間に、第2導電型の不純物を含むバッファ領域をさらに備えていてもよい。そのバッファ領域の不純物濃度は、ベース領域の不純物濃度よりも濃いことを特徴としている。
この態様はパンチスルー型のIGBTである。本発明は、パンチスルー型のIGBTにも有用である。ただし、本発明の有用性はパンチスルー型のIGBTに限られておらず、ノンパンチスルー型のIGBTの場合にも有用である。
上記半導体装置の半導体材料にはシリコンを用いることができる。この場合、第1種類の導電性不純物にはボロンが用いられており、第2種類の導電性不純物にはガリウム、アルミニウム、又はインジウムの少なくとも1つが用いられていることが好ましい。
半導体装置において一般的に利用される半導体材料と不純物の組合せに対して、本発明を利用することができる。
本発明で創作された半導体装置の製造方法は、第1種類の第1導電型の導電性不純物が高濃度に深さ方向に一様に分布している第1半導体領域の表面部に、第2種類の第1導電型の導電性不純物を導入する工程を備えている。さらに、本発明の製造方法は、その第1半導体領域の表面から結晶成長し、第1導電型の導電性不純物を低濃度に含むか、又は第2導電型の導電性不純物を含む第2半導体領域を形成する工程を備えている。第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴としている。
本製造方法によれば、第1半導体領域の界面近傍に、第1種類の第1導電型の導電性不純物と第2種類の第1導電型の導電性不純物が混在する領域を形成することによって、第1半導体領域から第2半導体領域への急峻な格子定数の変動が緩和された状態を得ることができる。
本発明は、IGBT(Insulated Gate Bipolar Transistor)の製造方法に具現化することができる。本発明の製造方法は、第1種類の第1導電型の導電性不純物が高濃度に深さ方向に一様に分布しているコレクタ領域の表面部に、第2種類の第1導電型の導電性不純物を導入する工程を備えている。本発明の製造方法は、そのコレクタ領域の表面から結晶成長し、第2導電型の導電性不純物を含むベース領域を形成する工程を備えている。第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴としている。
本発明の製造方法によれば、コレクタ領域の界面近傍に、第1種類の第1導電型の導電性不純物と第2種類の第1導電型の導電性不純物が混在する領域を形成することによって、コレクタ領域からベース領域への急峻な格子定数の変動が緩和された状態を得ることができる。
ベース領域を形成する工程に先立って、コレクタ領域とベース領域の間に第2導電型の導電性不純物を含むバッファ領域を結晶成長する工程をさらに備えていてもよい。この場合、そのバッファ領域の不純物濃度は、ベース領域の不純物濃度よりも濃いことを特徴としている。
この製造方法を利用すると、パンチスルー型のIGBTを得ることができる。
上記の製造方法で用いられる半導体材料にはシリコンを用いることができる。この場合、第1種類の導電性不純物にはボロンが用いられており、第2種類の導電性不純物にはガリウム、アルミニウム、又はインジウムの少なくとも1つが用いられていることが好ましい。
半導体装置において一般的に利用される半導体材料と導電性不純物の組合せに対して、本発明の製造方法を利用することができる。
本発明は、母材の半導体材料の共有結合半径に対して、その共有結合半径よりも大きな共有結合半径を有する導電性不純物と、小さな共有結合半径を有する導電性不純物を共存させることによって、格子定数の変動を抑えることができる。本発明は、導電型を等しくする2種類以上の導電性不純物を利用することによって、格子定数の変動を抑えることができる。
下記に説明する実施例の主要な特徴を記載する。
(第1形態)
パンチスルー型のIGBT(Insulated Gate Bipolar Transistor)であり、
コレクタ電極と、
そのコレクタ電極上に形成されており、第1導電型の導電性不純物を含むコレクタ領域と、
そのコレクタ領域上に形成されており、第2導電型の導電性不純物を高濃度に含むバッファ領域と、
そのバッファ領域上に形成されており、第2導電型の導電性不純物を低濃度に含むベース領域と、
そのベース領域上に形成されており、第1導電型の導電性不純物を含むボディ領域と、
そのボディ領域によってベース領域から隔てられており、第2導電型の導電性不純物を高濃度に含むエミッタ領域と、
ベース領域とエミッタ領域の間に存在する部分のボディ領域にゲート絶縁膜を介して対向しているゲート電極と、
エミッタ領域に接するエミッタ電極を備えており、
前記コレクタ領域には、前記バッファ領域との界面から深さ方向に観測したときに、第1種類の第1導電型の導電性不純物が一様に分布しており、第2種類の第1導電型の導電性不純物がその界面近傍において局所的に分布しており、
第1種類の導電性不純物と第2種類の導電性不純物は、一方の不純物が半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴とするIGBT。
(第2形態)
ノンパンチスルー型のIGBT(Insulated Gate Bipolar Transistor)であり、
コレクタ電極と、
そのコレクタ電極上に形成されており、第1導電型の導電性不純物を含むコレクタ領域と、
そのコレクタ領域上に形成されており、第2導電型の導電性不純物を低濃度に含むベース領域と、
そのベース領域上に形成されており、第1導電型の導電性不純物を含むボディ領域と、
そのボディ領域によってベース領域から隔てられており、第2導電型の導電性不純物を高濃度に含むエミッタ領域と、
ベース領域とエミッタ領域の間に存在する部分のボディ領域にゲート絶縁膜を介して対向しているゲート電極と、
エミッタ領域に接するエミッタ電極を備えており、
前記コレクタ領域には、前記ベース領域との界面から深さ方向に観測したときに、第1種類の第1導電型の導電性不純物が一様に分布しており、第2種類の第1導電型の導電性不純物がその界面近傍において局所的に分布しており、
第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴とするIGBT。
(第3形態)
MOSFETであり、
ドレイン電極と、
そのドレイン電極上に形成されており、第1導電型の導電性不純物を高濃度に含むドレイン領域と、
そのドレイン領域上に形成されており、第1導電型の導電性不純物を低濃度に含むドリフト領域と、
そのドリフト領域上に形成されており、第2導電型の導電性不純物を含むボディ領域と、
そのボディ領域によってドリフト領域から隔てられており、第1導電型の導電性不純物を高濃度に含むソース領域と、
ドリフト領域とソース領域の間に存在する部分のボディ領域にゲート絶縁膜を介して対向しているゲート電極と、
ソース領域に接するソース電極を備えており、
前記ドレイン領域には、前記ドリフト領域との界面から深さ方向に観測したときに、第1種類の第1導電型の導電性不純物が一様に分布しており、第2種類の第1導電型の導電性不純物がその界面近傍において局所的に分布しており、
第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴とするMOSFET。
(第1実施例)
図1に、半導体装置10の要部断面図を模式的に示す。半導体装置10は、ノンパンチスルー型のIGBTである。半導体装置10の半導体材料には、シリコン単結晶が用いられている。
半導体装置10は、裏面側から順に、コレクタ電極21と、p型の第1部分22とp++型の第2部分23を有するコレクタ領域29(第1半導体領域の一例)と、n型のバッファ領域24と、n型のベース領域25(第2半導体領域の一例)と、p型のボディ領域26を備えている。p型のボディ領域26の表面部には、n型のエミッタ領域27とp型のボディコンタクト領域28が選択的に形成されている。ベース領域25とエミッタ領域27は、ボディ領域26によって隔てられている。ベース領域25とエミッタ領域27の間に存在する部分のボディ領域26に、ゲート絶縁膜33を介してゲート電極34が対向している。ゲート電極34はトレンチタイプであり、ボディ領域26を貫通してベース領域25にまで達している。半導体装置10の表面に、エミッタ電極32が形成されている。エミッタ領域27及びボディコンタクト領域28は、エミッタ電極32に電気的に接続されている。
コレクタ領域29の第1部分22の導電性不純物には、ボロン(アクセプタである)が利用されている。コレクタ領域29の第2部分23の導電性不純物には、ボロンとガリウム(いずれもアクセプタである)が利用されている。バッファ領域24及びベース領域25の導電性不純物には、リン(ドナーである)が利用されている。ボディ領域26及びボディコンタクト領域28の導電性不純物には、ボロン(アクセプタである)が利用されている。エミッタ領域27の導電性不純物には、砒素(ドナーである)が利用されている。
次に、半導体装置10の特徴を説明する。
半導体装置10は、一般的なパンチスルー型のIGBTと比較して、コレクタ領域29のうちのバッファ領域24との界面近傍の局所的な領域に、第2部分23を備えている点に特徴がある。コレクタ領域29の第2部分23は、後述するように、コレクタ領域29の局所的な領域に、ガリウムをイオン注入することによって形成することができる。第2部分23は、コレクタ領域29とバッファ領域24の界面の全体に形成されており、コレクタ領域23の深さ方向の厚みは概ね0.1〜10μmである。
半導体装置10は、コレクタ領域29の第1部分22とバッファ領域24の間に、コレクタ領域29の第2部分23が形成されていると観念することもできる。仮に、第2部分23が形成されていないとすると、コレクタ領域29の第1部分22とバッファ領域24は直接的に接触している。コレクタ領域29の第1部分22に不純物として含まれているボロンの共有結合半径は、シリコンの共有結合半径よりも小さい。具体的には、ボロンの共有結合半径は0.80Åであるのに対し、シリコンの共有結合半径は1.17Åである。このため、ボロンが高濃度に導入されたコレクタ領域29の第1部分22の格子定数は、不純物を含まないシリコン単結晶の格子定数から大きく短縮する。一方、バッファ領域24に含まれているリンの共有結合半径は1.06Åであり、シリコンの共有結合半径に近い大きさである。このため、リンが導入されているバッファ領域24の格子定数は、シリコン単結晶の格子定数に近い値になる。したがって、コレクタ領域29の第1部分22上にバッファ領域24を積層すると、両者間の格子不整合に基づいて格子歪みが増大し、ひいてはミスフィット転移が発生してしまう。
図2に、コレクタ領域29の第1部分22に導入されるボロン濃度と、コレクタ領域29の第1部分22の格子歪み率の関係を示す。図2に示す結果は、第2部分23が形成されていない場合の結果である。この比較例では、バッファ領域24のリンの不純物濃度が3×1017cm−3であり、バッファ領域24の厚みが15μmを想定している。ただし、バッファ領域24のリンの不純物濃度及びバッファ領域24の厚みを変えても、ほぼ同様の結果が得られる。特に、ボロン濃度がリン濃度に比べ1桁高い値で導入されていれば、リンによる格子変動は無視できるので、ほぼ同様の結果が得られる。
図2に示すように、コレクタ領域29の第1部分22に導入されるボロンの濃度が増加すると、コレクタ領域29の第1部分22の格子歪み率も増加する。一般的に、パンチスルー型のIGBTのコレクタ領域の不純物濃度は、1×1018[cm−3]〜1×1019[cm−3]の範囲にすることが多い。図2に示すように、コレクタ領域29の第1部分22が上記濃度範囲の場合、第1部分22には6×10−6〜6×10−5[a.u.]の格子の歪みが発生してしまう。
半導体装置10では、コレクタ領域29の第1部分22とバッファ領域24の間に、第2部分23が形成されている。第2部分23には、ボロンとガリウムが含有している。ガリウムの共有結合半径は1.25Åであり、シリコンの共有結合半径よりも大きい。なお、ガリウムに代えて、アルミニウム(1.25Å)、インジウム(1.50Å)を利用してもよい。第2部分23には、シリコンの共有結合半径に対して、その共有結合半径よりも小さい共有結合半径を有するボロンと、大きい共有結合半径を有するガリウムが混在している。これにより、ボロンによって生じ得る格子定数の短縮分を、ガリウムによって生じ得る格子定数の拡張分によって補償することができる。コレクタ領域29の第1部分22とバッファ領域24の間に、第2部分23が形成されていることによって、第1部分22からバッファ領域24への急峻な格子定数の変動を緩和することができ、格子不整合に基づく格子歪みの発生を抑えることができる。
図3に、コレクタ領域29の第2部分23に導入するガリウムと、第2部分23の格子歪み率の関係を示す。図3の結果は、第2部分23のボロンの不純物濃度が5×1018cm−3であり、バッファ領域24のリンの不純物濃度が3×1017cm−3であり、バッファ領域24の厚みが15μmの場合である。ただし、バッファ領域24のリンの不純物濃度及びバッファ領域24の厚みを変えても、ほぼ同様の結果が得られる。
図3に示すように、コレクタ領域29の第2部分23に含まれるガリウムの濃度が増加すると、第2部分23の格子歪み率が低下する。ただし、ガリウムの濃度が2×1019cm−3を超えると、ガリウムが過剰な状態になり、バッファ領域24に加わる応力が圧縮応力から膨張応力に変化し、第2部分23の格子歪み率が負に増加する。
図3に示すように、第2部分23に含まれるガリウムの濃度を2×1019cm−3〜3×1019cm−3の範囲に調整すると、初期状態(ボロンのみが導入されている状態)の格子歪み率に対して1桁以上の低減効果を得ることができる。
半導体装置10によれば、コレクタ領域29の第1部分22とバッファ領域24の間に、第2部分23が形成されていることによって、コレクタ領域29の第1部分22とバッファ領域24の間の格子不整合に基づく格子歪みが低減され、優れた特性を有するIGBTを得ることができる。
また、後述の製造方法で説明するように、コレクタ領域29の第2部分23は、コレクタ領域29の表面部に、ガリウムをイオン注入することによって形成することができる。このため、コレクタ領域29の第1部分22と第2部分23の不純物濃度分布の様子は異なっている。
図4(a)に、コレクタ領域29の第1部分22と第2部分23の不純物濃度分布を示す。図4(a)は、コレクタ領域29とバッファ層24の界面から深さ方向に観測したときの不純物濃度分布である。縦軸の符号は、半導体装置10の各半導体領域に対応している。
図4(a)に示すように、コレクタ領域29には、ボロン(B)とガリウム(Ga)が混在している。ボロン(B)は、コレクタ領域29内を深さ方向に一様に分布している。ガリウム(Ga)は、コレクタ領域29とバッファ領域24の界面近傍において局所的に分布している。また、ガリウム(Ga)は、コレクタ領域29の深部から界面に近づくにつれて濃度が濃くなっている。ボロン(B)のみが存在している部分が第1部分22であり、ボロン(B)とガリウム(Ga)が混在している部分が第2部分23である。このため、第2部分23の実質的な導電性不純物濃度は、一様に分布しているボロン(B)の濃度に、ガリウム(Ga)の濃度を加えた大きさに調整される。したがって、図4(b)に示すように、半導体装置10のキャリア濃度は、コレクタ領域29の表面部の局所的な領域において濃く調整される。
キャリア濃度が濃く調整された第2部分23が設けられていることによって、第2部分23からのホールの供給が増大し、半導体装置10のオン電圧を低減することができる。なお、コレクタ領域29の全体のキャリア濃度が濃いと、飽和電流値が上昇し、耐量が低下するという問題がある。したがって、半導体装置10では、コレクタ領域29の全体の不純物濃度を適値に維持しながらも、界面近傍の局所的な領域に第2部分23を形成することによって、耐量の低下を回避しながらも、オン電圧を低減することができる。
図4(c)に、各半導体領域における格子定数の大きさを示す。図4(d)に、各半導体領域における格子歪みの大きさを示す。図中の10の実線は、半導体装置10の結果であり、図中の12の破線は、ガリウムが混在していない場合(即ち、第2部分23の領域にも第1部分22が形成されている場合)の比較例の結果である。
図4(c)に示すように、比較例12では、コレクタ領域とバッファ領域の間の格子定数の差が大きく、両者が接触しているために、格子定数の変動が急峻である。このため、図4(d)に示すように、比較例12では、コレクタ領域とバッファ領域の間に、大きな格子歪みが発生している。
一方、図4(c)に示すように、半導体装置10では、第2部分23が設けられていることによって、コレクタ領域29の第1部分22からバッファ領域24への急峻な格子定数の変動を緩和することができる。半導体装置10では、コレクタ領域29とバッファ領域24の界面から深さ方向に観測したときに、ボロンがコレクタ領域29内において一様に分布している。ガリウムは、コレクタ領域29とバッファ領域24の界面においてボロンによる格子定数の短縮分を補償できるように濃度調整されている。ガリウムは、コレクタ領域29とバッファ領域24の界面から深さ方向に向けて濃度が減少している。これにより、第2部分23の格子定数は、バッファ領域24の界面においてバッファ領域24に一致し、その界面から深さ方向に向けて緩やかに変動する。格子定数の変動が緩やかになることによって、図4(d)に示すように、比較例12の場合に比して、発生する格子歪みの大きさを低減することができる。
(半導体装置10の製造方法)
図5〜7を参照して、半導体装置10の主要な製造工程を説明する。
まず、図5に示すように、ボロンが高濃度に導入されたコレクタ領域29を準備する。コレクタ領域29内のボロンは、深さ方向に一様に分布している。次に、イオン注入技術を利用して、コレクタ領域29の表面に向けてガリウムイオン42を注入する。ガリウムイオン42は、コレクタ領域29の表面近傍の局所的な領域に導入される。
図6に示すように、熱拡散処理を実施すると、コレクタ領域29の表面近傍の局所的な領域に第2部分23が形成され、残部は第1部分22になる。第2部分23にはボロンとガリウムが混在している。したがって、ボロンによって生じ得る格子定数の短縮分を、ガリウムによって生じ得る格子定数の拡張分によって補償することができ、第2部分23の格子定数はシリコン単結晶の格子定数に近い値になっている。
次に、図7に示すように、エピタキシャル成長技術を利用して、コレクタ領域29の第2部分23の表面に、バッファ領域24及びベース領域25を形成する。このとき、コレクタ領域29の第2部分23とバッファ領域24の間の格子不整合は小さいので、両者間の格子歪みは小さい値に維持される。したがって、コレクタ領域29の第2部分23の表面にバッファ領域24及びベース領域25を形成したとしても、ミスフィット転移の発生は顕著に抑制される。
この後の表面構造の製造方法は、既知の製造方法を利用すればよい。簡単に説明すると、イオン注入技術及び熱拡散処理を利用して、ベース領域25の表面部にボディ領域25を形成し、そのボディ領域26の表面部にエミッタ領域27及びボディコンタクト領域28を選択的に形成する。さらに、エッチング技術を利用して、エミッタ領域27の表面からボディ領域25にまで達するトレンチを形成した後に、そのトレンチの側壁をゲート絶縁膜で被覆し、その内部にポリシリコンのゲート電極を形成する。次に、エミッタ領域27及びボディコンタクト領域28に電気的に接続されるエミッタ電極32を形成し、コレクタ領域29の第1部分22の裏面にコレクタ電極21を形成する。これらの工程を経て、図1に示す半導体装置10を得ることができる。
(第2実施例)
図8に、半導体装置100の要部断面図を模式的に示す。半導体装置100は、ノンパンチスルー型のIGBTである。半導体装置100の半導体材料には、シリコン単結晶が用いられている。
半導体装置100は、裏面側から順に、コレクタ電極121と、p型の第1部分22とp++型の第2部分123を有するコレクタ領域122(第1半導体領域の一例)と、n型のベース領域125(第2半導体領域の一例)と、p型のボディ領域126を備えている。p型のボディ領域126の表面部には、n型のエミッタ領域127とp型のボディコンタクト領域128が選択的に形成されている。ベース領域125とエミッタ領域127は、ボディ領域126によって隔てられている。ベース領域125とエミッタ領域127の間に存在する部分のボディ領域126に、ゲート絶縁膜133を介してゲート電極134が対向している。ゲート電極134はトレンチタイプであり、ボディ領域126を貫通してベース領域125にまで達している。半導体装置100の表面にエミッタ電極132が形成されている。エミッタ領域127及びボディコンタクト領域128は、エミッタ電極132に電気的に接続されている。
ノンパンチスルー型のIGBTでは、ベース領域125とボディ領域125の界面からベース領域125内に向けて伸びる空乏層が、コレクタ領域129にまで達するのを防止するために、ベース領域125の厚みが大きく形成されている。一方、コレクタ領域129の厚みは薄く形成されていることが多い。
コレクタ領域129の第1部分122の導電性不純物には、ボロン(アクセプタである)が利用されている。コレクタ領域129の第2部分123の導電性不純物には、ボロンとアルミニウム(いずれもアクセプタである)が利用されている。ベース領域125の導電性不純物には、リン(ドナーである)が利用されている。ボディ領域126及びボディコンタクト領域128の導電性不純物には、ボロン(アクセプタである)が利用されている。エミッタ領域127の導電性不純物には、砒素(ドナーである)が利用されている。
半導体装置100の場合も実施例1の半導体装置10の場合と同様に、コレクタ領域129の第1部分122とベース領域125の間に、第2部分123が設けられていることによって、コレクタ領域129の第1部分122からベース領域125の間に生じる格子定数の変動を緩和することができ、格子不整合に基づく格子歪みの発生を抑えることができる。
また、不純物濃度が濃く調整された第2部分123が設けられていることによって、第2部分123からのホールの供給が増大し、半導体装置100のオン電圧を低減することができる。
(半導体装置100の製造方法)
図9及び10を参照して、半導体装置100の主要な製造工程を説明する。
まず、図9に示すように、n型の半導体基板の表面部に表面構造を作り込む。表面構造の製造方法は、既知の製造方法を利用すればよい。具体的には、第1実施例の半導体装置10の製造方法を採用することができる。
次に、イオン注入技術を利用して、n型の半導体基板の裏面からボロンイオン144及びアルミニウムイオン146を注入する。このとき、ボロンイオン144を低エネルギーで注入し、アルミニウムイオン146を高エネルギーで注入する。これにより、ベース領域125の裏面から浅い位置にボロンイオン144のみが存在する領域が形成され、ベース領域125の裏面から深い位置にボロンイオン144とアルミニウムイオン146が混在する領域が形成される。
次に図10に示すように、熱拡散処理を実施すると、n型の半導体基板の裏面部に、第1部分122と第2部分123の組合せのコレクタ領域129が形成される。第2部分123にはボロンとアルミニウムが混在している。したがって、ボロンによって生じ得る格子定数の短縮分を、アルミニウムによって生じ得る格子定数の拡張分によって補償することができ、第2部分123の格子定数はシリコン単結晶の格子定数に近い値になっている。n型の半導体基板の中間部は、n型のベース領域125として残る。
一般的なノンパチンスルー型のIGBTでは、イオン注入及び熱拡散処理を実施して、ボロンを高濃度に含むコレクタ領域129を形成すると、コレクタ領域129とベース領域125の間の格子不整合に基づく格子歪みが増大し、クラック等の原因となることが多い。一方、本実施例の製造方法を採用すると、コレクタ領域129の第1部分122とベース領域125の間に第2部分123が形成されるので、コレクタ領域129の第1部分122とベース領域125の間の格子不整合が低減され、クラック等の発生が抑制される。
なお、上記の製造方法に代えて、第1実施例の製造方法のように、コレクタ領域となる基板を準備し、その表面部にアルミニウムをイオン注入して第2部分123を形成してもよい。その後に、その半導体領域の表面からベース領域125を結晶成長し、半導体装置100を得ることもできる。
(第3実施例)
図11に、半導体装置200の要部断面図を模式的に示す。半導体装置200は、MOSFETである。半導体装置200の半導体材料には、シリコン単結晶が用いられている。
半導体装置200は、裏面側から順に、ドレイン電極221と、n型の第1部分222とn++型の第2部分223を有するドレイン領域229(第1半導体領域の一例)と、n型のドリフト領域225(第2半導体領域の一例)と、p型のボディ領域226を備えている。ボディ領域226の表面部には、n型のソース領域227とp型のボディコンタクト領域228が選択的に形成されている。ドリフト領域225とソース領域227は、ボディ領域226によって隔てられている。ドリフト領域225とソース領域227の間に存在する部分のボディ領域226に、ゲート絶縁膜233を介してゲート電極234が対向している。ゲート電極234はトレンチタイプであり、ボディ領域226を貫通してドリフト領域225にまで達している。半導体装置200の表面にソース電極232が形成されている。ソース領域227及びボディコンタクト領域228は、ソース電極232に電気的に接続されている。
ドレイン領域229の第1部分222の導電性不純物には、砒素が利用されている。ドレイン領域229の第2部分223の導電性不純物には、砒素とリンが利用されている。ドリフト領域225の導電性不純物には、リンが利用されている。ボディ領域226及びボディコンタクト領域228の導電性不純物には、ボロンが利用されている。ソース領域227の導電性不純物には、砒素が利用されている。
半導体装置200は、ドレイン領域229の第1部分222とドリフト領域224の間に、第2部分223が形成されていると観念することもできる。仮に、第2部分223が形成されていないとすると、ドレイン領域229の第1部分222とドリフト領域224は直接的に接触している。ドレイン領域229の第1部分222に不純物として含まれている砒素の共有結合半径は、シリコンの共有結合半径よりも大きい。具体的には、砒素の共有結合半径は1.21Åであるのに対し、シリコンの共有結合半径は1.17Åである。このため、砒素が高濃度に導入されたドレイン領域229の第1部分222の格子定数は、不純物を含まないシリコン単結晶の格子定数(共有結合半径)から増大する。
ドレイン領域229の第2部分223には、砒素とリンが含有している。リンの共有結合半径は1.10Åであり、シリコンの共有結合半径よりも小さい。したがって、第2部分223には、シリコンの共有結合半径に対して、その共有結合半径よりも大きい共有結合半径を有する砒素と、小さい共有結合半径を有するリンが混在している。これにより、砒素によって生じ得る格子定数の拡張分を、リンによって生じ得る格子定数の短縮分によって補償することができる。ドレイン領域229の第1部分222とドリフト領域225の間に、第2部分223が形成されていることによって、ドレイン領域229の第1部分222からドリフト領域225への急峻な格子定数の変動を緩和することができ、格子不整合に基づく格子歪みの発生を抑えることができる。
なお、半導体装置200は、第1実施例の製造方法のように、ドレイン領域229となる基板を準備し、その表面部にリンをイオン注入して第2部分223を形成する方法を採用することができる。その半導体基板の表面からドリフト領域225を結晶成長し、さらに表面構造を作り込むことによって、半導体装置200を得ることができる。
また、本技術思想は、pチャネル型のMOSFETにも適用できる。この場合、ドレイン領域の導電性不純物にボロンが利用されており、第2部分の導電性不純物にボロンとガリウムが利用される。同様な作用効果を得ることができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、上記の各実施例ではトレンチタイプのゲート電極を例に挙げたが、その例に代えて、プレーナータイプのゲート電極や、その他のゲート電極構造であってもよい。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
第1実施例の半導体装置の要部断面図を模式的に示す。 ボロン濃度と格子歪み率の関係を示す。 ガリウム濃度と格子歪み率の関係を示す。 (a)各半導体領域の不純物濃度分布を示す。(b)各半導体領域のキャリア濃度分布を示す。(c)各半導体領域の格子定数の変動を示す。(d)各半導体領域の格子歪みを示す。 第1実施例の半導体装置の製造工程を示す(1)。 第1実施例の半導体装置の製造工程を示す(2)。 第1実施例の半導体装置の製造工程を示す(3)。 第2実施例の半導体装置の要部断面図を模式的に示す。 第2実施例の半導体装置の製造工程を示す(1)。 第2実施例の半導体装置の製造工程を示す(2)。 第3実施例の半導体装置の要部断面図を模式的に示す。
符号の説明
21、121:コレクタ電極
22、122、222:第1部分
23、123、223:第2部分
24:バッファ領域
25、125:ベース領域
26、126:ボディ領域
27、127:エミッタ領域
28、128:ボディコンタクト領域
29、129:コレクタ領域
32、132:エミッタ電極
33、133:ゲート絶縁膜
34、134:ゲート電極
221:ドレイン電極
225:ドリフト領域
226:ボディ領域
227:ソース領域
228:ボディコンタクト領域
229:ドレイン領域
232:ソース電極
233:ゲート絶縁膜
234:ゲート電極

Claims (8)

  1. 第1半導体領域と、その第1半導体領域との間に界面を形成するように接している第2半導体領域を備えている半導体装置であり、
    その第1半導体領域には、前記界面から深さ方向に観測したときに、第1種類の第1導電型の導電性不純物が高濃度に一様に分布しており、第2種類の第1導電型の導電性不純物が前記界面近傍に局所的に分布しており、
    その第2半導体領域は、第1導電型の導電性不純物を低濃度に含むか、又は第2導電型の導電性不純物を含んでおり、
    第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴とする半導体装置。
  2. 半導体装置はIGBT(Insulated Gate Bipolar Transistor)であり、
    第1半導体領域は第1導電型の導電性不純物を含むコレクタ領域であり、
    第2半導体領域は第2導電型の導電性不純物を含むベース領域であることを特徴とする請求項1の半導体装置。
  3. コレクタ領域とベース領域の間に、第2導電型の導電性不純物を含むバッファ領域をさらに備えており、
    そのバッファ領域の不純物濃度は、ベース領域の不純物濃度よりも濃いことを特徴とする請求項2の半導体装置。
  4. 半導体材料にはシリコンが用いられており、
    第1種類の導電性不純物にはボロンが用いられており、
    第2種類の導電性不純物にはガリウム、アルミニウム、又はインジウムの少なくとも1つが用いられていることを特徴とする請求項1〜3のいずれかの半導体装置。
  5. 半導体装置の製造方法であり、
    第1種類の第1導電型の導電性不純物が高濃度に深さ方向に一様に分布している第1半導体領域の表面部に、第2種類の第1導電型の導電性不純物を導入する工程と、
    その第1半導体領域の表面から結晶成長し、第1導電型の導電性不純物を低濃度に含むか、又は第2導電型の導電性不純物を含む第2半導体領域を形成する工程を備えており、
    第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が各半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴とする半導体装置の製造方法。
  6. IGBT(Insulated Gate Bipolar Transistor)の製造方法であり、
    第1種類の第1導電型の導電性不純物が高濃度に深さ方向に一様に分布しているコレクタ領域の表面部に、第2種類の第1導電型の導電性不純物を導入する工程と、
    そのコレクタ領域の表面から結晶成長し、第2導電型の導電性不純物を含むベース領域を形成する工程を備えており、
    第1種類の導電性不純物と第2種類の導電性不純物は、一方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも小さく、他方の導電性不純物が半導体領域を構成する半導体材料の共有結合半径よりも大きいことを特徴とするIGBTの製造方法。
  7. ベース領域を形成する工程に先立って、コレクタ領域とベース領域の間に第2導電型の導電性不純物を含むバッファ領域を結晶成長する工程をさらに備えており、
    そのバッファ領域の不純物濃度は、ベース領域の不純物濃度よりも濃いことを特徴とする請求項6の製造方法。
  8. 半導体材料にはシリコンが用いられており、
    第1種類の導電性不純物にはボロンが用いられており、
    第2種類の導電性不純物にはガリウム、アルミニウム、又はインジウムの少なくとも1つが用いられていることを特徴とする請求項5〜7のいずれかの製造方法。
JP2005312389A 2005-10-27 2005-10-27 半導体装置とその製造方法 Pending JP2007123469A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312389A JP2007123469A (ja) 2005-10-27 2005-10-27 半導体装置とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312389A JP2007123469A (ja) 2005-10-27 2005-10-27 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
JP2007123469A true JP2007123469A (ja) 2007-05-17

Family

ID=38147000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312389A Pending JP2007123469A (ja) 2005-10-27 2005-10-27 半導体装置とその製造方法

Country Status (1)

Country Link
JP (1) JP2007123469A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156207A (ja) * 2011-01-24 2012-08-16 Mitsubishi Electric Corp 半導体装置と半導体装置の製造方法
JP2017041626A (ja) * 2015-08-18 2017-02-23 富士電機株式会社 半導体装置及びその製造方法
CN107910368A (zh) * 2017-11-13 2018-04-13 广东美的制冷设备有限公司 绝缘栅双极晶体管及其制作方法、ipm模块、以及空调器
WO2023157330A1 (ja) * 2022-02-17 2023-08-24 富士電機株式会社 半導体装置およびその製造方法
JP7479315B2 (ja) 2021-03-08 2024-05-08 三菱電機株式会社 半導体装置および半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139821A (ja) * 1990-10-01 1992-05-13 Nec Corp 半導体装置の製造方法
JPH04180679A (ja) * 1990-02-23 1992-06-26 Fuji Electric Co Ltd 導電変調型mosfet
JP2003209059A (ja) * 2002-01-16 2003-07-25 Sumitomo Mitsubishi Silicon Corp エピタキシャルシリコン単結晶ウェーハ並びにその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180679A (ja) * 1990-02-23 1992-06-26 Fuji Electric Co Ltd 導電変調型mosfet
JPH04139821A (ja) * 1990-10-01 1992-05-13 Nec Corp 半導体装置の製造方法
JP2003209059A (ja) * 2002-01-16 2003-07-25 Sumitomo Mitsubishi Silicon Corp エピタキシャルシリコン単結晶ウェーハ並びにその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156207A (ja) * 2011-01-24 2012-08-16 Mitsubishi Electric Corp 半導体装置と半導体装置の製造方法
JP2017041626A (ja) * 2015-08-18 2017-02-23 富士電機株式会社 半導体装置及びその製造方法
CN107910368A (zh) * 2017-11-13 2018-04-13 广东美的制冷设备有限公司 绝缘栅双极晶体管及其制作方法、ipm模块、以及空调器
JP7479315B2 (ja) 2021-03-08 2024-05-08 三菱電機株式会社 半導体装置および半導体装置の製造方法
US12009413B2 (en) 2021-03-08 2024-06-11 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing the same
WO2023157330A1 (ja) * 2022-02-17 2023-08-24 富士電機株式会社 半導体装置およびその製造方法

Similar Documents

Publication Publication Date Title
US10707321B2 (en) Power device with multiple field stop layers
US7645659B2 (en) Power semiconductor device using silicon substrate as field stop layer and method of manufacturing the same
US8222681B2 (en) Bipolar semiconductor device and manufacturing method
KR101053133B1 (ko) 탄성 에지 이완을 갖는 변형 실리콘
US9166000B2 (en) Power semiconductor device with an edge termination region
US9373686B2 (en) Semiconductor device and method for manufacturing same and semiconductor substrate
CN101019236A (zh) 金属源极功率晶体管及其制造方法
US9773883B2 (en) Method for manufacturing insulated gate type switching device having low-density body region and high-density body region
US20140306284A1 (en) Semiconductor Device and Method for Producing the Same
US8614448B2 (en) Semiconductor device and method for manufacturing a semiconductor device having a maximal carrier concentration at multiple carrier concentration peak positions
JP2007123469A (ja) 半導体装置とその製造方法
JP6961088B2 (ja) 半導体装置及び半導体装置の製造方法
JP2020155581A (ja) 半導体装置
JP6125568B2 (ja) 半導体用の最適化層
KR20130119873A (ko) 파워 소자 및 그 제조방법
JP7404703B2 (ja) 窒化物半導体装置の製造方法及び窒化物半導体装置
JP2006228961A (ja) 半導体装置
JPH0350771A (ja) 半導体装置
JP2008103392A (ja) 半導体装置および半導体装置の製造方法
JP7438080B2 (ja) 半導体装置
US20230049926A1 (en) Epitaxial field stop region for semiconductor devices
Schustereder Challenges for ion implantation in power device processing
JP2005101278A (ja) 半導体装置およびその製造方法
JPS63142677A (ja) 絶縁ゲート電界効果トランジスタの製造方法
JPH0346338A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Effective date: 20111102

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313