JP2007107945A - Inspection device of substrate - Google Patents

Inspection device of substrate Download PDF

Info

Publication number
JP2007107945A
JP2007107945A JP2005297291A JP2005297291A JP2007107945A JP 2007107945 A JP2007107945 A JP 2007107945A JP 2005297291 A JP2005297291 A JP 2005297291A JP 2005297291 A JP2005297291 A JP 2005297291A JP 2007107945 A JP2007107945 A JP 2007107945A
Authority
JP
Japan
Prior art keywords
substrate
inspection
unit
micro
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297291A
Other languages
Japanese (ja)
Other versions
JP2007107945A5 (en
Inventor
Masaru Matsumoto
勝 松本
Osamu Nagami
理 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005297291A priority Critical patent/JP2007107945A/en
Priority to TW095135536A priority patent/TWI333544B/en
Priority to KR1020060098486A priority patent/KR101305262B1/en
Priority to CNA200610132214XA priority patent/CN1948955A/en
Publication of JP2007107945A publication Critical patent/JP2007107945A/en
Publication of JP2007107945A5 publication Critical patent/JP2007107945A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an inspection device of a substrate, which performs macro-inspection and micro-inspection continuously, from becoming large-scaled to enhance inspection efficiency. <P>SOLUTION: The inspection device 1 of the substrate is constituted so that a flotation stage 4 for floating the substrate W by air is laid on a base main body 3, and an automatic macro-inspection part 21 and an automatic micro-inspection part 22 are successively arranged to the area from one end part of the base main body 3 to the other end part thereof. The automatic macro-inspection part 21 has an illumination part 24 for irradiating the substrate W with linear illumination light and the reflected light of the illumination light is folded back by a reflecting part 25 to be thrown on an imaging part 26. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶ディスプレイのフラットパネルディスプレイ等の基板の検査に用いられる基板検査装置に関する。   The present invention relates to a substrate inspection apparatus used for inspecting a substrate such as a flat panel display of a liquid crystal display.

液晶ディスプレイ(LCD)等のフラットパネルディスプレイ(FPD)の製造工程では、基板の外観を検査する工程に、基板検査装置が使用されている。基板検査装置には、一軸ステージに沿って、欠陥検出部と、欠陥レビュー部とを配置したものがある(例えば、特許文献1参照)。欠陥検出部は、検出カメラと、透過照明とから構成され、欠陥レビュー部は、カラーカメラと、透過照明とから構成されている。   In a manufacturing process of a flat panel display (FPD) such as a liquid crystal display (LCD), a substrate inspection apparatus is used in a process of inspecting the appearance of the substrate. Some substrate inspection apparatuses include a defect detection unit and a defect review unit arranged along a uniaxial stage (see, for example, Patent Document 1). The defect detection unit includes a detection camera and transmitted illumination, and the defect review unit includes a color camera and transmitted illumination.

さらに、基板検査装置には、基板全体を巨視的に目視観察するマクロ検査と、顕微鏡を用いて比較的に小さい欠陥等の有無を検査するミクロ検査とを併用して外観検査する基板検査装置がある。このような外観検査装置は、マクロ検査部に配置され、搬送ロボットにより搬入されたガラス基板を目視観察に適した角度に設定するマクロ検査用の揺動ホルダと、この揺動ホルダからガラス基板を受け取りミクロ検査領域に移送するXYステージとを有し、マクロ検査部のマクロ照明領域から外れた位置にミクロ検査用の顕微鏡を設けたものが知られている(例えば、特許文献2参照)。
特開2000−9661号公報 特開2001−305064号公報
Further, the substrate inspection apparatus includes a substrate inspection apparatus that performs an appearance inspection using a macro inspection that macroscopically observes the entire substrate macroscopically and a micro inspection that inspects for the presence or absence of relatively small defects using a microscope. is there. Such an appearance inspection apparatus is arranged in a macro inspection unit, and a rocking holder for macro inspection that sets a glass substrate carried by a transfer robot at an angle suitable for visual observation, and a glass substrate from the rocking holder. It is known to have an XY stage that transfers to a receiving micro-inspection area, and is provided with a micro-inspection microscope at a position outside the macro illumination area of the macro-inspection section (see, for example, Patent Document 2).
JP 2000-9661 A JP 2001-305064 A

しかしながら、特許文献1に開示されているような基板検査装置では、検査対象であるガラス基板が大型化すると、目視による検査が困難になり、検査者にかかる負担が大きくなる。また、基板が大型化すると、欠陥等の位置を登録する際に、ジョイスティックなどの操作部を操作し、ポインタを発見した欠陥の上に移動させる距離が大きくなるので、検査時間が長くなる。さらに、大型の基板を揺動させるためには、大きなスペースと、頑丈な揺動機構を設ける必要があるので、装置が大型化してしまう。
この発明は、このような事情に鑑みてなされたものであり、その目的としては、マクロ検査とミクロ検査と連続して行える基板検査装置の大型化を防ぎ、検査効率を向上させることである。
However, in the substrate inspection apparatus disclosed in Patent Document 1, when the glass substrate to be inspected is enlarged, visual inspection becomes difficult, and the burden on the inspector increases. Further, when the substrate is enlarged, when registering the position of a defect or the like, an operation unit such as a joystick is operated to move a pointer over the detected defect, so that the inspection time becomes longer. Furthermore, in order to swing a large substrate, it is necessary to provide a large space and a sturdy swing mechanism, which increases the size of the apparatus.
The present invention has been made in view of such circumstances, and an object of the present invention is to prevent an increase in the size of a substrate inspection apparatus that can perform macro inspection and micro inspection continuously, and to improve inspection efficiency.

上記の課題を解決する本発明は、フラットパネルディスプレイ用基板を搬送するステージと、前記基板の一辺を保持して前記ステージの搬送方向に搬送する搬送手段と、前記ステージの上流側に配置され、前記搬送方向と交差する方向に延びるライン状照明光を出射するライン照明用光源と、前記ライン状照明光により照射される観察領域を撮像する撮像部を有するミクロ検査部と、前記ステージの搬送方向に配置され、前記搬送方向と直交する方向に移動する対物レンズを有するミクロ検査部と、前記ミクロ検査部にて検出された欠陥の座標を演算する欠陥座標演算部と、前記欠陥座標演算部の各欠陥の座標データに基づき、前記欠陥のX座標が前記対物レンズの走査ラインに一致する位置に前記基板を移動させ、前記基板を停止させた状態で前記ミクロ検査部の前記対物レンズを前記欠陥のY座標に一致する位置まで移動させる制御部と、前記対物レンズの走査ラインに対応する検査領域に配置され、前記基板を高精度に浮上させる精密浮上ブロックとを備え、前記基板を浮上させた状態で前記ミクロ検査部により前記基板をミクロ検査することを特徴とする基板検査装置とした。   The present invention for solving the above problems is arranged on the upstream side of the stage, a stage for transporting the flat panel display substrate, transport means for holding one side of the substrate and transporting it in the transport direction of the stage, A light source for line illumination that emits line-shaped illumination light extending in a direction that intersects the transport direction, a micro inspection unit that has an imaging unit that captures an observation region irradiated by the line-shaped illumination light, and a transport direction of the stage A micro inspection unit having an objective lens that moves in a direction perpendicular to the transport direction, a defect coordinate calculation unit that calculates coordinates of defects detected by the micro inspection unit, and a defect coordinate calculation unit Based on the coordinate data of each defect, the substrate is moved to a position where the X coordinate of the defect coincides with the scanning line of the objective lens, and the substrate is stopped. And a control unit that moves the objective lens of the micro inspection unit to a position that coincides with the Y coordinate of the defect, and a precision that is arranged in the inspection region corresponding to the scanning line of the objective lens and that causes the substrate to float with high accuracy. A substrate inspection apparatus comprising a floating block, wherein the substrate is floated and the substrate is micro-inspected by the micro-inspection unit.

この基板検査装置では、マクロ検査部は、基板に対してライン状の照明光を照射し、その反射光から基板表面の巨視的な画像(マクロ画像)を取得する。この際に、移動手段が基板を移動させながら画像を取得すると基板表面の画像が自動的に得られる。また、ミクロ検査部は、基板と、対物レンズとをそれぞれ移動させることによって、基板の所定位置の拡大像(ミクロ画像)を取得する。   In this substrate inspection apparatus, the macro inspection unit irradiates the substrate with linear illumination light, and acquires a macroscopic image (macro image) of the substrate surface from the reflected light. At this time, if the moving means acquires an image while moving the substrate, an image of the substrate surface is automatically obtained. The micro inspection unit acquires an enlarged image (micro image) at a predetermined position of the substrate by moving the substrate and the objective lens, respectively.

本発明によれば、基板の移動経路に沿ってマクロ検査部と、ミクロ検査部とを設け、基板を移動させながらマクロ検査部で基板表面からの反射光を取り込んで巨視的な画像を自動的に取得し、ミクロ検査部で基板の拡大画像を取得するようにしたので、基板サイズによらずに外観検査を速やかに行うことが可能になる。マクロ検査部で取得した画像から欠陥等の有無を自動的に検出するようにすると、人手で検査を行う場合に比べて、迅速、かつ正確な結果が得られる。また、欠陥の位置を登録し、この位置に合わせてミクロ検査部を移動させるようにすると、必要な場所の拡大像が得られ、検査の精度が向上する。   According to the present invention, the macro inspection unit and the micro inspection unit are provided along the movement path of the substrate, and the macro inspection unit captures the reflected light from the substrate surface while moving the substrate, and automatically generates a macroscopic image. Since the enlarged image of the substrate is acquired by the micro inspection unit, the appearance inspection can be quickly performed regardless of the substrate size. If the presence or absence of a defect or the like is automatically detected from an image acquired by the macro inspection unit, a quicker and more accurate result can be obtained as compared with a case where inspection is performed manually. Further, if the position of the defect is registered and the micro inspection part is moved in accordance with this position, an enlarged image of a necessary place is obtained, and the inspection accuracy is improved.

本発明を実施するための最良の形態について以下に説明する。
(第1の実施の形態)
図1及び図2に示すように、基板検査装置1は、床面に除振装置2を介して設置されるベース本体3を備え、ベース本体3上には、基板搬送手段としてエアーを吹き出してFPD用ガラス基板(ガラス基板W)を浮上させる浮上ステージ4が敷設されている。浮上ステージ4は、ベース本体3の長手方向(X方向)の一端部側から、ガラス基板Wの搬送方向(長手方向)に沿って細長の浮上ブロック(搬送用浮上ブロック)5,6が所定の間隔をおいて複数配設されており、この浮上ステージ4の中間に浮上ブロック5,6の長手方向に直交する幅方向(Y方向)にガラス基板Wの浮上高さを高精度に制御可能な精密浮上ブロック(検査用浮上ブロック)7,9が所定の隙間8をおいて配置されている。これら浮上ブロック5,6と、精密浮上ブロック7,9には、その上面に開口するエアー吹き出し孔10(図1には一部のみ図示されている)が、等間隔に複数配設されている。これらエアー吹き出し孔10は、エアコンプレッサなどの流体供給源11に接続されている。
The best mode for carrying out the present invention will be described below.
(First embodiment)
As shown in FIGS. 1 and 2, the board inspection apparatus 1 includes a base body 3 installed on a floor via a vibration isolation device 2, and air is blown out on the base body 3 as a board transfer means. A levitation stage 4 for levitation of the FPD glass substrate (glass substrate W) is laid. The levitation stage 4 has elongated levitation blocks (conveyance levitation blocks) 5 and 6 along a conveyance direction (longitudinal direction) of the glass substrate W from one end side in the longitudinal direction (X direction) of the base body 3. A plurality of intervals are provided, and the flying height of the glass substrate W can be controlled with high accuracy in the width direction (Y direction) perpendicular to the longitudinal direction of the flying blocks 5 and 6 in the middle of the flying stage 4. Precision levitation blocks (inspection levitation blocks) 7 and 9 are arranged with a predetermined gap 8 therebetween. These floating blocks 5 and 6 and precision floating blocks 7 and 9 are provided with a plurality of air blowing holes 10 (only part of which are shown in FIG. 1) opened at the upper surface thereof at equal intervals. . These air blowing holes 10 are connected to a fluid supply source 11 such as an air compressor.

精密浮上ブロック7,9は、浮上ブロック5,6に比べてエアー吹き出し孔10が密に配置されたものや、エアー吹き出し孔10の他にエアー排出孔を設け、エアー吐出力(正圧)と、エアー吸引力(負圧)とによりガラス基板Wの浮上高さを高精度に制御するものであれば良い。   The precision levitation blocks 7 and 9 have air discharge holes 10 arranged more densely than the levitation blocks 5 and 6, or air discharge holes in addition to the air discharge holes 10, and air discharge force (positive pressure) Any method may be used as long as the flying height of the glass substrate W is controlled with high accuracy by the air suction force (negative pressure).

さらに、ベース本体3上で、長手方向に平行な一方の側縁部には、ガイドレール12が浮上ステージ4と平行に敷設されており、このガイドレール12には、基板吸着テーブル13が移動自在に取り付けられている。基板吸着テーブル13は、ガイドレール12に沿って自走可能なリニアモータなどのスライド部14に、ガラス基板Wを吸着する吸着部15が上下移動可能に支持されている。吸着部15は、ベース本体3の長手方向に沿って等間隔に複数配設されている。各吸着部15の先端には、樹脂性の吸着パッドが設けられ、この吸着パッドには上下に貫通する貫通孔が形成されており、この貫通孔は吸引ポンプ17に接続されている。さらに、ベース本体3のガラス基板Wの搬入領域には、ガラス基板Wを挟むように、位置決め機構である基準ピン18と押し付けピン19が複数配設されている。基準ピン18は、浮上ステージ4の上面に対して出没可能に上下移動自在になっており、押し付けピン19は、ガラス基板方向に移動自在になっている。なお、ベース本体3のガラス基板Wの搬入領域の浮上ステージ4の下方には、基板Wをリフトアップして、搬送用ロボットによる基板交換を可能にする基板リフト部が設けられている。基板リフト部は、上下移動するリフトピン20が搬送用ロボットのロボットハンドと干渉しないように複数配置されている。   Further, a guide rail 12 is laid in parallel with the levitation stage 4 on one side edge parallel to the longitudinal direction on the base body 3, and a substrate suction table 13 is movable on the guide rail 12. Is attached. In the substrate suction table 13, a suction portion 15 that sucks the glass substrate W is supported on a slide portion 14 such as a linear motor capable of self-running along the guide rail 12 so as to be movable up and down. A plurality of suction portions 15 are arranged at equal intervals along the longitudinal direction of the base body 3. A resinous suction pad is provided at the tip of each suction portion 15, and a through-hole penetrating vertically is formed in the suction pad. This through-hole is connected to a suction pump 17. Further, a plurality of reference pins 18 and pressing pins 19 that are positioning mechanisms are disposed in the carry-in area of the glass substrate W of the base body 3 so as to sandwich the glass substrate W. The reference pin 18 is movable up and down so that it can protrude and retract with respect to the upper surface of the levitation stage 4, and the pressing pin 19 is movable in the direction of the glass substrate. A substrate lift unit that lifts up the substrate W and allows the substrate to be replaced by the transfer robot is provided below the floating stage 4 in the glass substrate W loading area of the base body 3. A plurality of substrate lift portions are arranged so that the lift pins 20 that move up and down do not interfere with the robot hand of the transfer robot.

ここで、ベース本体3には、その一端部から他端部に至るまでの間に、第1の検査部である自動マクロ検査部21と、第2の検査部であるミクロ検査部22とが浮上ステージ4の基板搬送方向に沿って上流側から下流側に順番に配設されている。自動マクロ検査部21は、浮上ステージ4をY方向に平行に跨ぐようにベース本体3に取り付けられた門型フレーム23を有し、門型フレーム23の水平フレーム部の一方の側面に沿って照明部24が取り付けられており、門型フレーム23の水平フレーム部の上面には照明部24よりも高い位置に反射部25と、撮像部26が取り付けられている。照明部24は、Y方向に平行な細長の照明光を基板表面に向かって照射するライン照明用光源27を有している。ライン照明用光源27としては、例えば、棒状のロッドレンズの端面に光源を配したものがあげられる。反射部25は、照明光の反射光の光路上に配置されており、反射光を撮像部26に向かって折り返すミラー28を備えている。撮像部26は、カメラレンズ29と、カメラレンズ29よりも他端部側に配置されたラインセンサカメラ30とを備えている。照明部24と、反射部25と、撮像部26との配置は、基板Wの観察領域で反射した光が収束しつつ像を結ぶように設定されており、基板W表面の干渉像、及び回折像を取得するために、任意の入射角度に設定できるようにライン照明用光源27が回動可能に設けられている。このような自動マクロ検査部21は、マクロ用制御部31に接続されている。マクロ用制御部31は、ライン照明用光源27の発光制御と、撮像部26からの画像データの取り込みとを行い、画像データを画像処理してマクロ画像を作成し、このマクロ画像と予め登録されている設計パターンとのパターンマッチングを行う画像処理部と、パターンマッチングの結果に応じて欠陥の有無を判定する判定部と、欠陥の重心位置から欠陥の位置を算出する欠陥座標演算部と、欠陥の位置を登録する登録手段であるメモリとを有している。   Here, the base main body 3 includes an automatic macro inspection unit 21 that is a first inspection unit and a micro inspection unit 22 that is a second inspection unit, from one end to the other end. Arranged in order from the upstream side to the downstream side along the substrate transport direction of the levitation stage 4. The automatic macro inspection unit 21 has a portal frame 23 attached to the base body 3 so as to straddle the floating stage 4 in parallel with the Y direction, and illuminates along one side surface of the horizontal frame portion of the portal frame 23. The reflection part 25 and the imaging part 26 are attached to the upper surface of the horizontal frame part of the portal frame 23 at a position higher than the illumination part 24. The illumination unit 24 includes a line illumination light source 27 that emits elongated illumination light parallel to the Y direction toward the substrate surface. Examples of the line illumination light source 27 include a light source disposed on the end face of a rod-shaped rod lens. The reflection unit 25 is disposed on the optical path of the reflected light of the illumination light, and includes a mirror 28 that folds the reflected light toward the imaging unit 26. The imaging unit 26 includes a camera lens 29 and a line sensor camera 30 disposed on the other end side of the camera lens 29. The arrangement of the illumination unit 24, the reflection unit 25, and the imaging unit 26 is set so that the light reflected from the observation region of the substrate W is converged to form an image, and an interference image and diffraction on the surface of the substrate W are formed. In order to acquire an image, a line illumination light source 27 is rotatably provided so that an arbitrary incident angle can be set. Such an automatic macro inspection unit 21 is connected to a macro control unit 31. The macro control unit 31 performs light emission control of the line illumination light source 27 and capture of image data from the imaging unit 26, and performs image processing on the image data to create a macro image, which is registered in advance as the macro image. An image processing unit that performs pattern matching with a design pattern, a determination unit that determines the presence or absence of a defect according to the result of pattern matching, a defect coordinate calculation unit that calculates the position of the defect from the center of gravity of the defect, and a defect And a memory which is a registration means for registering the position.

ミクロ検査部22は、浮上ステージ4をY方向に平行に跨ぐようにベース本体3に取り付けられた門型フレーム40と、門型フレーム40の水平フレーム部の一方の側面に沿って敷設されたガイドレール41と、ガイドレール41に沿って移動自在な自走式の検査ヘッド用ステージ42と、検査ヘッド用ステージ42に支持された顕微鏡43とを有する。この顕微鏡43は精密浮上ブロック7,9間に形成される隙間8の上方に配置されており、この隙間8の下方には、ガイドレール44に沿って顕微鏡43の移動に追従する照明部45が設けられている。顕微鏡43は、対物レンズと、CCD(固体撮像素子)とを有し、自動マクロ検査部21の撮像部26に干渉しないように、撮像部26よりも低い位置に設けられている。顕微鏡43のCCDの出力は、ミクロ用制御部46に接続されている。なお、ミクロ用制御部46には、ステージ42と、照明部45と、マクロ用制御部31とが接続されている。   The micro inspection unit 22 includes a portal frame 40 attached to the base body 3 so as to straddle the floating stage 4 in parallel with the Y direction, and a guide laid along one side surface of the horizontal frame portion of the portal frame 40. It has a rail 41, a self-propelled inspection head stage 42 that is movable along the guide rail 41, and a microscope 43 supported by the inspection head stage 42. The microscope 43 is disposed above a gap 8 formed between the precision levitation blocks 7 and 9, and an illumination unit 45 that follows the movement of the microscope 43 along the guide rail 44 is disposed below the gap 8. Is provided. The microscope 43 includes an objective lens and a CCD (solid-state imaging device), and is provided at a position lower than the imaging unit 26 so as not to interfere with the imaging unit 26 of the automatic macro inspection unit 21. The output of the CCD of the microscope 43 is connected to the micro control unit 46. The micro control unit 46 is connected to the stage 42, the illumination unit 45, and the macro control unit 31.

なお、基板検査装置1の全体の制御は、装置制御部50により統括して行われるようになっている。装置制御部50は、浮上ステージ4、基板吸着テーブル13、押し付けピン19、基板リフト部、マクロ用制御部31、及びミクロ用制御部46に接続されている。さらに、装置制御部50には、画像を表示したりするモニタ51と、観察者の操作を受け付ける操作部52とが接続されている。
また、基板Wは、ガラス製の平面基板が用いられ、この基板W上に配線や、フィルタなどのパターンが半導体技術を用いて作製される。基板Wの欠陥とは、パターンの一部が切れていたり、パターン同士が短絡したり、異物が付着している微視的なものと、フィルタの膜や、製造過程で一時的に塗布されるレジスト膜などのパターン自体に膜ムラが発生しているような巨視的なものとがあげられる。したがって、これらパターンが、この実施の形態における検査対象となる。
The overall control of the substrate inspection apparatus 1 is controlled by the apparatus control unit 50. The apparatus control unit 50 is connected to the levitation stage 4, the substrate suction table 13, the pressing pin 19, the substrate lift unit, the macro control unit 31, and the micro control unit 46. In addition, a monitor 51 that displays an image and an operation unit 52 that receives an observer's operation are connected to the apparatus control unit 50.
Further, a flat substrate made of glass is used as the substrate W, and patterns such as wirings and filters are produced on the substrate W by using semiconductor technology. The defect of the substrate W means that the pattern is partially cut, the patterns are short-circuited, or a microscopic object with foreign matter attached, a filter film, or a temporary coating in the manufacturing process. Macroscopic patterns in which unevenness in the pattern itself such as a resist film is generated can be mentioned. Therefore, these patterns are inspection targets in this embodiment.

次に、この実施の形態の作用について説明する。
まず、浮上ステージ4の各エアー吹き出し孔10からエアーを上向きに吹き出させ、搬送用ロボットによって搬送されるガラス基板Wを浮上ステージ4上に移載する。具体的には、各基準ピン18を浮上ステージ4の上面より突出させるように上昇させた後、基板リフト部を上方に移動させた状態で、リフトピン20により搬送用ロボットからガラス基板Wを受け取って、基板リフト部をリフトダウンする。その結果、ガラス基板Wがエアーによって浮上ステージ4上に浮上させられる。ガラス基板Wを浮上させた状態で、各押し付けピン19をX方向、又はY方向に移動させ、ガラス基板Wを各基準ピン18に当て付けて位置決めを行ってから、吸引ポンプ17を駆動させてガラス基板Wを基板吸着テーブル13の吸着パッド16で吸着保持する。
Next, the operation of this embodiment will be described.
First, air is blown upward from each air blowing hole 10 of the levitation stage 4, and the glass substrate W transferred by the transfer robot is transferred onto the levitation stage 4. Specifically, after each reference pin 18 is raised so as to protrude from the upper surface of the levitation stage 4, the glass substrate W is received from the transfer robot by the lift pins 20 with the substrate lift portion moved upward. The substrate lift is lifted down. As a result, the glass substrate W is levitated on the levitating stage 4 by air. In a state where the glass substrate W is floated, each pressing pin 19 is moved in the X direction or Y direction, the glass substrate W is applied to each reference pin 18 and positioning is performed, and then the suction pump 17 is driven. The glass substrate W is sucked and held by the suction pad 16 of the substrate suction table 13.

基板Wを位置決めして吸着保持したら、各基準ピン18を基板吸着テーブル13及びガラス基板Wと干渉しない退避位置に下降させた後、基板吸着テーブル13をガイドレール12に沿って他端部(X方向)に向かって等速度で移動させる。このガラス基板W上にライン照明用光源27からライン照明光が照射され、ガラス基板W表面での反射光が撮像部26により撮像される。この場合、基板吸着テーブル13をマクロ検査領域でガラス基板Wを往復移動させ、往路と復路でライン照明用光源27の入射角度を撮像部26で回折光又は干渉光が撮像される角度に変更し、回折画像と干渉画像とを撮像する。   After positioning and holding the substrate W, each reference pin 18 is lowered to a retracted position where it does not interfere with the substrate suction table 13 and the glass substrate W, and then the substrate suction table 13 is moved along the guide rail 12 to the other end (X Direction) at a constant speed. Line illumination light is irradiated onto the glass substrate W from the line illumination light source 27, and reflected light on the surface of the glass substrate W is imaged by the imaging unit 26. In this case, the substrate suction table 13 is moved back and forth in the macro inspection region, and the incident angle of the line illumination light source 27 is changed to an angle at which the diffracted light or interference light is imaged by the imaging unit 26 in the forward path and the backward path. The diffraction image and the interference image are captured.

マクロ用制御部31は、画像処理により形成される実際のパターンと、設計パターンとのパターンマッチングを行い、パターンと一致しない欠陥部分の重心位置を、予め設定されている基板Wの基準位置に対する座標として算出し、これをメモリに登録すると共に、欠陥座標のデータをミクロ用制御部46に受け渡す。なお、基板WがX方向に移動するタイミングと同期してマクロ用制御部31の画像処理部で1ラインずつデータを積み重ねることによって、基板W表面全体のマクロ画像を形成し、その各々についてパターンマッチングを行う。その結果、欠陥が複数存在すると判定された場合には、判定された全ての欠陥座標が順番に登録される。そして、基板Wのマクロ画像と、欠陥を示すマークとがモニタ51に出力される。検査者は、自動マクロ検査で判定された各欠陥に対してミクロ検査を行うが、この際に、操作部52を操作して、その欠陥位置を指定する。指定方法としては、例えば、マウスで画面上のマークをクリックして欠陥座標を取得したり、欠陥として登録されている座標を登録順又は距離の近い順に読み出す。   The macro control unit 31 performs pattern matching between the actual pattern formed by the image processing and the design pattern, and coordinates the center of gravity position of the defective portion that does not match the pattern with respect to the preset reference position of the substrate W. And is registered in the memory, and the defect coordinate data is transferred to the micro control unit 46. A macro image of the entire surface of the substrate W is formed by stacking data line by line in the image processing unit of the macro control unit 31 in synchronization with the timing at which the substrate W moves in the X direction. I do. As a result, when it is determined that there are a plurality of defects, all the determined defect coordinates are registered in order. Then, a macro image of the substrate W and a mark indicating a defect are output to the monitor 51. The inspector performs a micro inspection for each defect determined by the automatic macro inspection, and at this time, operates the operation unit 52 to designate the defect position. As a designation method, for example, a defect coordinate is acquired by clicking a mark on the screen with a mouse, or coordinates registered as a defect are read out in the order of registration or in order of distance.

そして、ミクロ検査部22は、検査者によって指定された欠陥のミクロ画像を取得する。すなわち、検査対象となる欠陥のX座標が顕微鏡43の対物レンズの走査ライン(隙間8)と一致する位置で基板吸着テーブル13を停止させると共に、顕微鏡43と、照明部45とを検査対象となる欠陥のY方向の座標に合わせる。このとき、ガラス基板Wは、精密浮上ブロック7,9により浮上高さが高精度に制御され、この状態でオートフォーカスが実行される。これによって、照明部45から出射した照明光が隙間8を通過し、基板Wを透過して顕微鏡43に入射され、顕微鏡43で取得したミクロ画像が、モニタ51に表示される。なお、ミクロ検査部22は、検査者の操作を待たずに、自動マクロ検査部21で欠陥と判定された位置のミクロ画像を自動的に取得するようにしても良い。   The micro inspection unit 22 acquires a micro image of the defect designated by the inspector. That is, the substrate suction table 13 is stopped at a position where the X coordinate of the defect to be inspected coincides with the scanning line (gap 8) of the objective lens of the microscope 43, and the microscope 43 and the illumination unit 45 are inspected. Align with the Y coordinate of the defect. At this time, the flying height of the glass substrate W is controlled with high precision by the precision flying blocks 7 and 9, and autofocus is executed in this state. Thereby, the illumination light emitted from the illumination unit 45 passes through the gap 8, passes through the substrate W and enters the microscope 43, and a micro image acquired by the microscope 43 is displayed on the monitor 51. Note that the micro inspection unit 22 may automatically acquire a micro image at a position determined as a defect by the automatic macro inspection unit 21 without waiting for the operation of the inspector.

自動マクロ検査部21と、ミクロ検査部22の間で搬送することにより検査が終了したら、基板吸着テーブル13を浮上ステージ4の一端部側の受け渡し位置(ガラス基板Wの搬入領域)まで搬送し、基板Wの吸着保持を解除してから、基板リフト部で基板Wをリフトアップする。この際、基板吸着テーブル13上に配置された各吸着部15の吸着パッドがガラス基板Wの裏面に接触し、この吸着パッドの摩擦力によりエアー浮上したガラス基板Wの移動力が規制される。これにより、ガラス基板Wは、位置決めされた状態でリフト部の各リフトピン20に受け渡される。他の基板Wの検査を行う場合には、ロボットによって基板Wが交換され、次の基板Wについて同様の検査を行う。   When the inspection is completed by transporting between the automatic macro inspection unit 21 and the micro inspection unit 22, the substrate suction table 13 is transported to the transfer position (the loading region of the glass substrate W) on one end of the levitation stage 4, After releasing the suction and holding of the substrate W, the substrate W is lifted up by the substrate lift unit. At this time, the suction pads of the suction portions 15 arranged on the substrate suction table 13 come into contact with the back surface of the glass substrate W, and the moving force of the glass substrate W floating on the air is regulated by the frictional force of the suction pads. Thereby, the glass substrate W is delivered to each lift pin 20 of a lift part in the positioned state. When inspecting another substrate W, the substrate W is replaced by the robot, and the same inspection is performed on the next substrate W.

この実施の形態によれば、ライン照明光下で基板WをX方向に移動させながら、回折光、干渉光を撮像部26により撮像するようにしたので、基板全体に対するマクロ検査を自動で行うことができる。したがって、大型の基板Wであっても速やかに効率良く検査することができる。また、基板Wを揺動させて起き上がらせる必要がなくなるので、大掛かりな揺動機構や、揺動のためのスペースを設ける必要がない。さらに、欠陥の判定をパターンマッチングによって自動的に行うことで、検査者による検査のバラツキを防止することができる。パターンマッチングを行ったときに、欠陥と判定された箇所の座標を登録することができるので、欠陥の情報を他の検査に利用しやすくなる。
また、同一装置内で、同一の基板吸着テーブル13により位置決めされたガラス基板Wを自動マクロ検査部21とミクロ検査部22との間に搬送することができるため、従来のように基板を載せ換えたり、アライメントのし直しを行う必要がなく、検査時間を短縮することができる。かつマクロ検査部21で抽出された各欠陥をミクロ検査部22に対して高い精度で位置合わせできる。この際に、自動マクロ検査部21から取得した座標の情報に基づいて、基板WのX方向の移動と、顕微鏡43のY方向の移動とを行うようにしたので、簡単な構成で大型基板のミクロ検査が可能になる。
さらに、自動マクロ検査部21の撮像部26の高さと、ミクロ検査部22の顕微鏡43の高さを異ならせることで、両検査部21,22の位置を近接させたので、基板検査装置1を小型化できる。
According to this embodiment, since the diffracted light and the interference light are imaged by the imaging unit 26 while moving the substrate W in the X direction under line illumination light, the macro inspection for the entire substrate is automatically performed. Can do. Therefore, even a large substrate W can be inspected quickly and efficiently. Further, since it is not necessary to swing the substrate W to get up, it is not necessary to provide a large swing mechanism or a space for swinging. Furthermore, by performing defect determination automatically by pattern matching, it is possible to prevent variations in inspection by an inspector. When the pattern matching is performed, the coordinates of the portion determined to be a defect can be registered, so that the defect information can be easily used for other inspections.
Further, since the glass substrate W positioned by the same substrate suction table 13 can be transported between the automatic macro inspection unit 21 and the micro inspection unit 22 in the same apparatus, the substrates are replaced as in the past. In addition, it is not necessary to perform realignment, and the inspection time can be shortened. In addition, each defect extracted by the macro inspection unit 21 can be aligned with the micro inspection unit 22 with high accuracy. At this time, the movement of the substrate W in the X direction and the movement of the microscope 43 in the Y direction are performed on the basis of the coordinate information acquired from the automatic macro inspection unit 21. Micro inspection is possible.
Furthermore, since the position of both inspection parts 21 and 22 was made close by making the height of the imaging part 26 of the automatic macro inspection part 21 and the height of the microscope 43 of the micro inspection part 22 different, the board | substrate inspection apparatus 1 is changed. Can be downsized.

(第2の実施の形態)
基板検査装置1の他の形態としては、以下のような装置構成があげられる。
自動マクロ検査部21の検査データを利用する第2の検査部としてミクロ検査部22の他に自動線幅測定部を設けても良い。自動線幅測定部は、線幅を測定する対象として予め登録されたパターンのミクロ画像を顕微鏡43で取得し、このミクロ画像を画像処理して、パターンの線幅を演算する。
また、顕微鏡43に、CCDの代わりに、又はCCDに加えて分光測定ユニットを取り付けても良い。分光測定ユニットは、可視光を分光する分光器であって、主にカラーフィルタの分光感度を測定するために取り付けられる。分光測定をする対象は、予め登録した位置に限定しても良いし、全てのカラーフィルタでも良い。
自動線幅測定部や、分光測定ユニットを備えることで、マクロ検査や、ミクロ検査の他にも、線幅測定や、分光感度測定が可能になる。さらに、パターンの良不良を判定するための線幅の閾値や、分光感度をミクロ用制御部46に登録しておき、測定結果と比較するように構成すると、検査者を介さずに自動的に検査を行わせることもできる。
(Second Embodiment)
Other forms of the substrate inspection apparatus 1 include the following apparatus configuration.
In addition to the micro inspection unit 22, an automatic line width measurement unit may be provided as a second inspection unit that uses the inspection data of the automatic macro inspection unit 21. The automatic line width measurement unit obtains a micro image of a pattern registered in advance as an object for measuring the line width with the microscope 43, performs image processing on the micro image, and calculates the line width of the pattern.
Further, a spectroscopic measurement unit may be attached to the microscope 43 instead of or in addition to the CCD. The spectroscopic measurement unit is a spectroscope that splits visible light, and is attached mainly for measuring the spectral sensitivity of the color filter. The target for the spectroscopic measurement may be limited to positions registered in advance, or all color filters may be used.
By providing an automatic line width measurement unit and a spectroscopic measurement unit, in addition to macro inspection and micro inspection, line width measurement and spectral sensitivity measurement can be performed. Furthermore, if the line width threshold value for determining whether the pattern is good or bad and the spectral sensitivity are registered in the micro control unit 46 and compared with the measurement result, it is automatically set without passing through the inspector. An inspection can also be performed.

(第3の実施の形態)
図3に示す基板検査装置1の自動マクロ検査部21の概念図のように、ライン照明用光源27が駆動機構60を介して門型フレーム23(図2参照)に角度変更可能に支持され、撮像部26は、レンズ29の前に干渉フィルタ61が光路上に挿抜自在に配置されている。この基板検査装置1では
、基板Wを自動マクロ検査部21で設定された検査条件に従って往復移動させ、例えば、往路で干渉像を取得し、復路で回折像を取得する。干渉像を取得するときには、駆動機構60を駆動させて、照明光の基板Wへの入射角度θ1が、基板Wからの反射光の撮像部26への入射角度θ2と同じ角度になるようにライン照明用光源27を門型フレーム22に対して回動させる。さらに、干渉フィルタ61をレンズ29の直前の光路上から挿入する。これによって、前記と同様に、基板Wの移動に伴って画像データが蓄積され、干渉像が取得される。また、回折像を取得するときには、入射角度θ1が、撮像部26への入射角度θ2とはn次光の回折角度になるようにライン照明用光源27の角度を設定し、干渉フィルタ61を光路上から退避させる。その結果、基板Wの移動に伴って回折画像データが蓄積され、回折像が取得される。
(Third embodiment)
As shown in the conceptual diagram of the automatic macro inspection unit 21 of the substrate inspection apparatus 1 shown in FIG. 3, the line illumination light source 27 is supported by the portal frame 23 (see FIG. 2) via the drive mechanism 60 so that the angle can be changed. In the imaging unit 26, an interference filter 61 is disposed in front of the lens 29 so as to be freely inserted into and removed from the optical path. In this substrate inspection apparatus 1, the substrate W is reciprocated according to the inspection conditions set by the automatic macro inspection unit 21, and for example, an interference image is acquired on the forward path and a diffraction image is acquired on the return path. When acquiring the interference image, the drive mechanism 60 is driven so that the incident angle θ1 of the illumination light to the substrate W is equal to the incident angle θ2 of the reflected light from the substrate W to the imaging unit 26. The illumination light source 27 is rotated with respect to the portal frame 22. Further, the interference filter 61 is inserted from the optical path immediately before the lens 29. Accordingly, as described above, image data is accumulated as the substrate W moves, and an interference image is acquired. Further, when acquiring the diffraction image, the angle of the line illumination light source 27 is set so that the incident angle θ1 becomes the diffraction angle of the nth-order light with respect to the incident angle θ2 to the image pickup unit 26, and the interference filter 61 is turned on. Evacuate from the street. As a result, as the substrate W moves, diffraction image data is accumulated and a diffraction image is acquired.

この実施の形態では、基板Wの往復移動が終了するのと略同時に干渉像、及び回折像が取得できる。そして、その後には、予め設定された条件に応じて、ミクロ検査に移行したり、基板Wの交換を実施する。なお、画像処理を行う場合には、干渉像の処理は、回折像を取得する復路中に行い、回折像の処理は、次の工程への移行前に行われる。この実施の形態によれば、干渉像から膜厚ムラの有無を検出することが可能になり、回折像から微細パターンの異常などを検出することができ、自動でマクロ検査を行う場合でも目視検査に近い精度を達成することができる。   In this embodiment, an interference image and a diffraction image can be acquired substantially simultaneously with the end of the reciprocation of the substrate W. After that, the micro inspection is performed or the substrate W is exchanged in accordance with preset conditions. When image processing is performed, the interference image processing is performed during the return path for acquiring the diffraction image, and the diffraction image processing is performed before the transition to the next step. According to this embodiment, it is possible to detect the presence or absence of film thickness unevenness from the interference image, and it is possible to detect abnormality of a fine pattern from the diffraction image, and even when performing macro inspection automatically, visual inspection An accuracy close to can be achieved.

なお、本発明は前記の各実施の形態に限定されずに広く応用することができる。
例えば、基板検査装置1は、浮上ステージ4の代わりに、フリーローラなどの公知のステージを備える構成にしても良い。また、基板吸着テーブル13は、一方の側縁部だけでなく、他方の側縁部にも設け、基板Wの両側縁を吸着保持させても良い。
The present invention is not limited to the above embodiments and can be widely applied.
For example, the substrate inspection apparatus 1 may include a known stage such as a free roller instead of the floating stage 4. Further, the substrate suction table 13 may be provided not only on one side edge portion but also on the other side edge portion to hold both side edges of the substrate W by suction.

本発明の実施の形態に係る基板検査装置の平面図である。It is a top view of the board | substrate inspection apparatus which concerns on embodiment of this invention. 基板検査装置の側面図である。It is a side view of a board | substrate inspection apparatus. 自動マクロ検査部の概念図である。It is a conceptual diagram of an automatic macro inspection part.

符号の説明Explanation of symbols

1 基板検査装置
3 ベース本体
4 浮上ステージ(ステージ、搬送手段)
5,6 搬送用浮上ブロック
7,9 精密浮上ブロック
10 エアー吹き出し孔
13 基板吸着テーブル(テーブル、搬送手段)
18 基準ピン
19 押し付けピン
21 自動マクロ検査部
22 ミクロ検査部
24 照明部
26 撮像部(撮像手段)
27 ライン照明用光源
31 マクロ用制御部
43 顕微鏡
45 照明部
46 ミクロ用制御部
60 駆動機構
61 干渉フィルタ
W ガラス基板(フラットパネルディスプレイ用基板)
θ1,θ2 入射角度

DESCRIPTION OF SYMBOLS 1 Board inspection apparatus 3 Base main body 4 Floating stage (stage, conveyance means)
5,6 Lifting block for transfer 7,9 Precision floating block 10 Air blowout hole 13 Substrate suction table (table, transfer means)
18 Reference Pin 19 Pressing Pin 21 Automatic Macro Inspection Unit 22 Micro Inspection Unit 24 Illumination Unit 26 Imaging Unit (Imaging Means)
27 Light Source for Line Illumination 31 Macro Control Unit 43 Microscope 45 Illumination Unit 46 Micro Control Unit 60 Drive Mechanism 61 Interference Filter W Glass Substrate (Flat Panel Display Substrate)
θ1, θ2 Incident angle

Claims (6)

フラットパネルディスプレイ用基板を搬送するステージと、
前記基板の一辺を保持して前記ステージの搬送方向に搬送する搬送手段と、
前記ステージの上流側に配置され、前記搬送方向と交差する方向に延びるライン状照明光を出射するライン照明用光源と、前記ライン状照明光により照射される観察領域を撮像する撮像部を有するミクロ検査部と、
前記ステージの搬送方向に配置され、前記搬送方向と直交する方向に移動する対物レンズを有するミクロ検査部と、
前記ミクロ検査部にて検出された欠陥の座標を演算する欠陥座標演算部と、
前記欠陥座標演算部の各欠陥の座標データに基づき、前記欠陥のX座標が前記対物レンズの走査ラインに一致する位置に前記基板を移動させ、前記基板を停止させた状態で前記ミクロ検査部の前記対物レンズを前記欠陥のY座標に一致する位置まで移動させる制御部と、
前記対物レンズの走査ラインに対応する検査領域に配置され、前記基板を高精度に浮上させる精密浮上ブロックとを備え、
前記基板を浮上させた状態で前記ミクロ検査部により前記基板をミクロ検査することを特徴とする基板検査装置。
A stage for carrying a flat panel display substrate;
Transport means for holding one side of the substrate and transporting the substrate in the transport direction of the stage;
A micro light source that is disposed upstream of the stage and that emits line illumination light that extends in a direction intersecting the transport direction, and an imaging unit that captures an observation region irradiated with the line illumination light. An inspection department;
A micro-inspection unit having an objective lens arranged in the transport direction of the stage and moving in a direction perpendicular to the transport direction;
A defect coordinate calculation unit that calculates the coordinates of the defect detected by the micro inspection unit;
Based on the coordinate data of each defect in the defect coordinate calculation unit, the substrate is moved to a position where the X coordinate of the defect coincides with the scanning line of the objective lens, and the micro inspection unit is in a state where the substrate is stopped. A control unit for moving the objective lens to a position coinciding with the Y coordinate of the defect;
A precision levitation block that is disposed in an inspection region corresponding to a scanning line of the objective lens and levitates the substrate with high accuracy;
A substrate inspection apparatus, wherein the substrate is micro-inspected by the micro-inspection unit in a state where the substrate is floated.
前記ステージは、前記精密浮上ステージを挟んで搬送方向に沿って細長い搬送用浮上ブロックを所定の間隔をおいて複数配置したことを特徴とする請求項1に記載の基板検査装置。   The substrate inspection apparatus according to claim 1, wherein the stage includes a plurality of elongate transfer floating blocks arranged at predetermined intervals along the transfer direction with the precision levitation stage interposed therebetween. 前記精密浮上ブロックは、エアー吹き出し孔とエアー排出孔を有し、前記基板を正圧と負圧とにより浮上高さを高精度に制御することを特徴とする請求項1又は請求項2に記載に基板検査装置。   The precision floating block has an air blowing hole and an air discharge hole, and the flying height of the substrate is controlled with high accuracy by positive pressure and negative pressure. Board inspection equipment. 前記ステージの基板搬入領域には、搬送された前記基板の4辺を挟むように複数の基準ピンと押し付けピンとからなる基板位置決め機構が配置され、前記基板を前記搬送用浮上ブロックにより浮上させた状態で前記基準ピンに前記基板を前記押し付けピンにより押し当てて位置決めすることを特徴とする請求項2に記載の基板検査装置。   A substrate positioning mechanism including a plurality of reference pins and pressing pins is disposed in the substrate carry-in area of the stage so as to sandwich the four sides of the conveyed substrate, and the substrate is floated by the floating block for conveyance. The substrate inspection apparatus according to claim 2, wherein the substrate is positioned by pressing the substrate against the reference pin with the pressing pin. 前記ライン照明用光源は、前記基板に対する入射角度をラインセンサカメラで干渉画像または回折画像が所得できる任意の角度に設定できるようにしたことを特徴とする請求項1に記載の基板検査装置。   The substrate inspection apparatus according to claim 1, wherein the line illumination light source can set an incident angle with respect to the substrate to an arbitrary angle at which an interference image or a diffraction image can be obtained by a line sensor camera. 前記ライン照明用光源は、前記基板に対する入射角度を任意に設定できるように回動可能に設けられ、前記搬送手段は、前記マクロ検査部のマクロ検査領域で前記基板を往復移動可能に設けられ、前記制御部により前記基板の往路又は復路で前記ライン照明用光源の入射角度を変更し、ラインカメラセンサにより前記往路又は前記復路で干渉画像又は回折画像を撮像することを特徴とする請求項1に記載の基板検査装置。

The line illumination light source is provided so as to be rotatable so that an incident angle with respect to the substrate can be arbitrarily set, and the transport means is provided so as to be able to reciprocate the substrate in a macro inspection region of the macro inspection unit, The control unit changes an incident angle of the light source for line illumination on the forward path or the return path of the substrate, and captures an interference image or a diffraction image on the forward path or the return path by a line camera sensor. The board | substrate inspection apparatus of description.

JP2005297291A 2005-10-12 2005-10-12 Inspection device of substrate Pending JP2007107945A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005297291A JP2007107945A (en) 2005-10-12 2005-10-12 Inspection device of substrate
TW095135536A TWI333544B (en) 2005-10-12 2006-09-26 Substrate inspection apparatus
KR1020060098486A KR101305262B1 (en) 2005-10-12 2006-10-10 Substrate inspection apparatus
CNA200610132214XA CN1948955A (en) 2005-10-12 2006-10-12 Substrate inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297291A JP2007107945A (en) 2005-10-12 2005-10-12 Inspection device of substrate

Publications (2)

Publication Number Publication Date
JP2007107945A true JP2007107945A (en) 2007-04-26
JP2007107945A5 JP2007107945A5 (en) 2008-11-27

Family

ID=38018533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297291A Pending JP2007107945A (en) 2005-10-12 2005-10-12 Inspection device of substrate

Country Status (4)

Country Link
JP (1) JP2007107945A (en)
KR (1) KR101305262B1 (en)
CN (1) CN1948955A (en)
TW (1) TWI333544B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932751B1 (en) * 2007-09-28 2009-12-17 주식회사 탑 엔지니어링 Array test device
JP2011148593A (en) * 2010-01-21 2011-08-04 Tokyo Electron Ltd Substrate carrying device and substrate carrying method
JP2012145336A (en) * 2011-01-06 2012-08-02 Olympus Corp Substrate inspection system
WO2014050609A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石エネルギー株式会社 Device for inspecting substrate having irregular rough surface and inspection method using same
JP2015152312A (en) * 2014-02-10 2015-08-24 Wit株式会社 External appearance examining apparatus, external appearance examining method, and program
CN109444157A (en) * 2018-12-25 2019-03-08 苏州凡目视觉科技有限公司 A kind of scratch detection apparatus and method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402497B (en) * 2008-04-22 2013-07-21 Shuz Tung Machinery Ind Co Ltd Image capturing apparatus with gantry
JP5223615B2 (en) * 2008-11-20 2013-06-26 株式会社Ihi Method and apparatus for detecting floating conveyance state of thin plate
CN101718828B (en) * 2008-12-24 2012-08-08 四川虹欧显示器件有限公司 Defect confirmation device for flat-panel display and operation method thereof
JP5524139B2 (en) * 2010-09-28 2014-06-18 東京エレクトロン株式会社 Substrate position detection apparatus, film forming apparatus including the same, and substrate position detection method
JP6004517B2 (en) * 2011-04-19 2016-10-12 芝浦メカトロニクス株式会社 Substrate inspection apparatus, substrate inspection method, and adjustment method of the substrate inspection apparatus
CN102778460A (en) * 2012-07-31 2012-11-14 法国圣戈班玻璃公司 Method for detecting internal flaw of substrate
CN103896006A (en) * 2012-12-27 2014-07-02 嘉兴市博宏新型建材有限公司 Feeding belt conveyor with baffle mechanism
CN106403854B (en) * 2016-11-16 2019-09-03 中国计量大学 A kind of friction-driving brake block flatness testing agency
CN109997049A (en) * 2016-11-29 2019-07-09 精工爱普生株式会社 Electronic component conveying device and electronic component inspection device
WO2018225664A1 (en) * 2017-06-07 2018-12-13 キヤノンマシナリー株式会社 Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
KR20190036007A (en) * 2017-09-26 2019-04-04 삼성전자주식회사 Grip apparatus and substrate inspecting system including the same
TWI654584B (en) * 2018-03-02 2019-03-21 由田新技股份有限公司 Apparatus and method for enhancing optical characteristics of workpieces, deep learning method for enhancing optical characteristics of workpieces, and non-transitory computer readable recording medium
CN110783223B (en) * 2018-07-24 2024-04-16 泰克元有限公司 Imaging device for electronic component processing equipment
CN109192673B (en) * 2018-08-27 2021-09-17 苏州精濑光电有限公司 Wafer detection method
CN109597231A (en) * 2019-01-29 2019-04-09 深圳市华星光电技术有限公司 Liquid crystal display panel shows exception analysis method
JP7368141B2 (en) * 2019-08-20 2023-10-24 東レエンジニアリング株式会社 Wafer appearance inspection device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009661A (en) * 1998-06-26 2000-01-14 Ntn Corp Flat panel inspection device
JP2001091474A (en) * 1999-09-22 2001-04-06 Olympus Optical Co Ltd Defect inspection system
JP2004239728A (en) * 2003-02-05 2004-08-26 Hitachi High-Technologies Corp Pattern inspection method and device
JP2004331265A (en) * 2003-05-01 2004-11-25 Olympus Corp Floating unit and substrate inspection device
JP2005077109A (en) * 2003-08-29 2005-03-24 Olympus Corp Flaw inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009661A (en) * 1998-06-26 2000-01-14 Ntn Corp Flat panel inspection device
JP2001091474A (en) * 1999-09-22 2001-04-06 Olympus Optical Co Ltd Defect inspection system
JP2004239728A (en) * 2003-02-05 2004-08-26 Hitachi High-Technologies Corp Pattern inspection method and device
JP2004331265A (en) * 2003-05-01 2004-11-25 Olympus Corp Floating unit and substrate inspection device
JP2005077109A (en) * 2003-08-29 2005-03-24 Olympus Corp Flaw inspection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932751B1 (en) * 2007-09-28 2009-12-17 주식회사 탑 엔지니어링 Array test device
JP2011148593A (en) * 2010-01-21 2011-08-04 Tokyo Electron Ltd Substrate carrying device and substrate carrying method
CN102157424A (en) * 2010-01-21 2011-08-17 东京毅力科创株式会社 Substrate conveying apparatus and substrate conveying method
CN102157424B (en) * 2010-01-21 2014-09-24 东京毅力科创株式会社 Substrate conveying apparatus and substrate conveying method
TWI479592B (en) * 2010-01-21 2015-04-01 Tokyo Electron Ltd Substrate transfer apparatus and substrate transfer method
JP2012145336A (en) * 2011-01-06 2012-08-02 Olympus Corp Substrate inspection system
WO2014050609A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石エネルギー株式会社 Device for inspecting substrate having irregular rough surface and inspection method using same
JP2015152312A (en) * 2014-02-10 2015-08-24 Wit株式会社 External appearance examining apparatus, external appearance examining method, and program
CN109444157A (en) * 2018-12-25 2019-03-08 苏州凡目视觉科技有限公司 A kind of scratch detection apparatus and method

Also Published As

Publication number Publication date
CN1948955A (en) 2007-04-18
TWI333544B (en) 2010-11-21
KR20070040722A (en) 2007-04-17
KR101305262B1 (en) 2013-09-09
TW200716970A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
JP2007107945A (en) Inspection device of substrate
KR101735403B1 (en) Inspection method, templet substrate and focus offset method
KR101697216B1 (en) Plate glass inspection unit and manufacturing facility
TW200909798A (en) Appearance inspecting device for substrate
JP2007107945A5 (en)
JP2006329714A (en) Lens inspection apparatus
JP4747602B2 (en) Glass substrate inspection apparatus and inspection method
JP2008064595A (en) Substrate inspecting device
JP2017116293A (en) Inspection device
JP4085538B2 (en) Inspection device
JP2002544524A (en) Micro via inspection system
JP4632564B2 (en) Surface defect inspection equipment
JP4704793B2 (en) Appearance inspection device
TWI391650B (en) Substrate quality tester
JP2003098122A (en) Visual examination device for glass board
JP4392557B2 (en) Inspection device
WO2020170389A1 (en) Foreign matter inspection device and foreign matter inspection method
JP2007184529A (en) Inspection apparatus for semiconductor wafer
JP2008021884A (en) Inspection apparatus
JP2020008383A (en) Dicing chip inspection device
JP5004530B2 (en) Board inspection equipment
TWI715662B (en) Check device
JP2008170254A (en) Substrate inspection system
JP4154816B2 (en) Inspection device
JP6875243B2 (en) Plate-shaped inspection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719