WO2020170389A1 - Foreign matter inspection device and foreign matter inspection method - Google Patents

Foreign matter inspection device and foreign matter inspection method Download PDF

Info

Publication number
WO2020170389A1
WO2020170389A1 PCT/JP2019/006548 JP2019006548W WO2020170389A1 WO 2020170389 A1 WO2020170389 A1 WO 2020170389A1 JP 2019006548 W JP2019006548 W JP 2019006548W WO 2020170389 A1 WO2020170389 A1 WO 2020170389A1
Authority
WO
WIPO (PCT)
Prior art keywords
foreign matter
inspection target
inspection
light source
imaging
Prior art date
Application number
PCT/JP2019/006548
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 佐野
瑞樹 中村
Original Assignee
株式会社エフケー光学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフケー光学研究所 filed Critical 株式会社エフケー光学研究所
Priority to JP2020550189A priority Critical patent/JP7125576B2/en
Priority to PCT/JP2019/006548 priority patent/WO2020170389A1/en
Priority to CN201980061509.8A priority patent/CN113490844A/en
Publication of WO2020170389A1 publication Critical patent/WO2020170389A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the present invention relates to a foreign substance inspection device and a foreign substance inspection method for inspecting foreign substances attached to various substrates such as liquid crystal color filters.
  • Patent Document 1 discloses a foreign matter inspection device capable of highly accurately inspecting foreign matter attached to the front and back surfaces of a glass substrate.
  • This foreign matter inspection apparatus has a light projecting unit and a light receiving unit disposed above a glass substrate, and changes the relative position between the light projecting position and the light receiving position to detect foreign matter adhering to the surface of the glass substrate and It is possible to switch the detection of foreign matter attached to the back surface of the substrate.
  • the color filter to be inspected is usually installed on the base of the inspection device.
  • Various transportation means such as a belt conveyor is used for transportation to the pedestal.
  • the transfer means there is a type in which a color filter to be inspected is gripped by an arm or the like and installed on the pedestal from above the pedestal. In such a case, it is difficult to install various members to be inspected, such as the imaging unit, above the pedestal.
  • One of the objects of the present invention is to suppress the height of various components (imaging unit, light source) and the like for performing inspection in a foreign substance inspection device or a foreign substance inspection method.
  • Another object of the present invention is to improve the accuracy of foreign matter inspection in a foreign matter inspection device or a foreign matter inspection method.
  • the foreign matter inspection apparatus adopts the first configuration described below.
  • a foreign matter inspection device for inspecting foreign matter adhered to the surface of an inspection target, From a side of the inspection target, a light source unit for irradiating the surface of the inspection target with coherent light, An imaging unit for photographing the inspection target; A detection unit that detects a foreign object based on the image captured by the imaging unit, The imaging axis of the imaging unit forms an acute elevation angle with the surface of the inspection target on the side away from the light source unit when observed from the side of the inspection target, and when observed from above the inspection target. And is positioned so as to form an acute angle of inclination with the optical axis on the side away from the light source unit.
  • the foreign matter inspection device in the foreign matter inspection device (second configuration) according to the present invention, in the first configuration, The coherent light emitted from the light source unit illuminates the end of the inspection target.
  • the foreign matter inspection apparatus (third configuration) according to the present invention is the same as the first or second configuration,
  • the elevation angle is 5 degrees or more and 50 degrees or less.
  • the foreign matter inspection apparatus (fourth configuration) according to the present invention is the same as the foreign matter inspection apparatus according to any one of the first to third configurations,
  • the absolute value of the tilt angle is 10 degrees or more and 50 degrees or less.
  • the foreign matter inspection device (fifth configuration) is the configuration of any one of the first to fourth configurations,
  • the light source unit is arranged so as to have a view angle for inclining the coherent light toward the inspection target side.
  • the gaze angle is 10 degrees or less.
  • any one of the first to sixth configurations in any one of the first to sixth configurations, A fine pattern is formed on the inspection target.
  • the foreign matter inspection apparatus (eighth configuration) according to the present invention is the same as any one of the first to seventh configurations, A pedestal on which the inspection target is placed, A transport unit is provided to arrange the inspection target from above the pedestal.
  • the foreign matter inspection apparatus (9th structure) which concerns on this invention is a structure in any one of 1st-8th,
  • the light source unit and the imaging unit are fixed to the measurement unit.
  • the foreign matter inspection method according to the present invention employs the tenth configuration described below.
  • a foreign matter inspection method for inspecting a foreign matter adhered to a surface of an inspection target by imaging the foreign matter with an imaging unit From the side of the inspection target, irradiating the surface of the inspection target with coherent light from a light source unit, The imaging axis of the imaging unit forms an acute elevation angle with the surface of the inspection target on the side away from the light source unit when observed from the side of the inspection target, and when observed from above the inspection target. Is positioned so as to form an acute angle of inclination with the optical axis on the side away from the light source unit, A foreign substance is detected based on the image captured by the image capturing unit.
  • the height of various components for performing inspection can be kept low by irradiating the surface of the inspection target with coherent light from the side of the inspection target. It will be possible. Therefore, it can be easily used for a foreign matter inspection apparatus having a conveyance means for arranging an inspection target from above the pedestal. It should be noted that the foreign matter inspection device and the foreign matter inspection method according to the present invention can also be used for types other than the conveying means for arranging the inspection object from above the pedestal, for example, types using the conveying means using a belt conveyor. Is.
  • the elevation of the imaging axis of the imaging unit with respect to the inspection target and the inclination angle are set to acute angles to suppress the height of the configuration related to imaging and to prevent interference fringes in the captured image. It is possible to take an image in an appropriate state such as suppressing the occurrence, and to improve the detection accuracy of a foreign substance.
  • FIG. 3 is a diagram for explaining the operation of the transport unit according to the present embodiment.
  • a color wheel for explaining the relationship between the color of the illumination light used in this embodiment and the color resist color (surface color of the inspection object) Schematic diagram for explaining Mie scattering Image taken using a bead ball
  • Schematic diagram for explaining a mask used in the image processing of the present embodiment Flow chart showing the foreign substance inspection process of the present embodiment
  • FIG. 1 is a side view showing the configuration of the foreign matter inspection device 1 in the present embodiment
  • FIG. 2 is a top view showing the configuration of the foreign matter inspection device in the present embodiment.
  • FIG. 2 is a top view of the vicinity of the top surface of the pedestal, and the transfer unit 20 is omitted in the description.
  • the foreign matter inspection apparatus 1 of the present embodiment includes a laser light source 12 (corresponding to the “light source unit” of the present invention) that illuminates the inspection target 4 installed on the pedestal 30, and an image capturing the illuminated inspection target 4.
  • An information processing device (not shown, not shown) of the present invention, which performs image processing on the images captured by the units 11a and 11b and the image capturing units 11a and 11b to detect foreign substances attached to the surface of the inspection target 4. (Corresponding to "part").
  • the foreign matter inspection apparatus 1 includes a pedestal 30 on which the inspection target 4 to be inspected is installed, and a transfer unit 20 arranged on the upper surface of the pedestal 30.
  • the pedestal 30, the transport unit 20, and various components of the foreign matter inspection apparatus 1 are fixed to the frame 5.
  • the transport unit 20 transports the inspection target 4 onto the pedestal 30 and removes the inspection target 4 from the pedestal 30.
  • the transport unit 20 includes an elevating unit 21, a telescopic unit 22, and an arm 23.
  • the arm 23 is provided at the tip of the expansion/contraction part 22, and can hold the inspection target 4 by the expansion/contraction operation of the expansion/contraction part 22 (Y-axis direction in FIG. 1).
  • the expansion/contraction part 22 is fixed to the elevating part 21, and the inspection object 4 held by the arm 23 can be raised and lowered by performing an elevating operation (Z-axis direction).
  • the transport unit 20 in FIG. 1 is in a state where the inspection target 4 is held by the arm 23.
  • the inspection target 4 of the present embodiment is, for example, a transparent substrate (glass substrate or the like) coated with a surface color resist during the manufacturing process of the color filter.
  • the manufacturing process of the color filter will be described in detail later.
  • the foreign substance inspection device 1 is not limited to the inspection target 4 being a color filter in the manufacturing process, and can be used in various fields using a transparent substrate.
  • the imaging units 11 a and 11 b and the laser light source 12 are fixed to the measurement unit 10.
  • the laser light source 12 is a linear light source having a certain width (20 mm in this embodiment), and illuminates the inspection target 4 installed on the pedestal 30 with coherent light from the side surface.
  • the imaging units 11a and 11b photograph the surface of the illuminated inspection target 4 from the upper surface, as shown in FIG. Further, as shown in FIG. 2, the imaging axes 110a and 110b of the imaging units 11a and 11b are arranged at an inclination angle ⁇ 1 from the optical axis 12a of the laser light source 12.
  • the inclination angle ⁇ 1 is set in the range of 10 degrees or more and 50 degrees or less. It is more preferable that the inclination angle ⁇ 1 be in the range of 15 degrees or more and 25 degrees or less in order to improve the above-mentioned factors.
  • the measurement unit 10 to which the imaging units 11a and 11b and the laser light source 12 are fixed moves on the moving rail 32 in the X-axis direction at the time of inspection.
  • the moving object is inspected on the inspection object 4 by imaging the inspection object 4 installed on the pedestal 30 by the imaging units 11a and 11b during the movement. Since the imaging units 11a and 11b and the laser light source 12 are fixed to the measurement unit 10, the optical axis 12a of the laser light source 12 and the imaging axes 110a and 110b of the imaging units 11a and 11b appropriately maintain the same positional relationship. It will be.
  • FIG. 3 is a diagram for explaining the operation of the transport unit 20 in this embodiment.
  • the transport unit 20 arranges the inspection target 4 (in the present embodiment, a glass substrate) on the pedestal 30 and removes the inspection target 4 from the pedestal 30 after the inspection is completed.
  • the transport unit 20 of FIG. 1 is in a state of holding the inspection target 4 by the arm 23, and the transport unit 20 moves the inspection target 4 from outside the upper range of the pedestal 30 by moving in the X-axis direction, for example. It is conveyed within the range above 30 (position of the inspection object 4).
  • the plurality of support needles 31 are projected from the surface of the pedestal 30 to support the inspection object 4.
  • the arm 23 opens in the Y-axis direction so that the inspection target 4 can be lowered without being obstructed by the arm 23.
  • the plurality of support needles 31 are lowered, the support needles 31 are lowered, and the support needles 31 are accommodated in the pedestal, whereby the inspection target 4 is set on the pedestal 30.
  • the foreign matter inspection is performed by moving the measurement unit 10 and imaging the inspection target 4 illuminated by the laser light source 12 with the imaging units 11a and 11b.
  • the inspection target is removed from the pedestal 30 by performing a procedure opposite to the procedure of placing the inspection target 4 on the pedestal 30.
  • the foreign matter inspection device 1 of the present embodiment is configured to include the transfer unit 20 that transfers the inspection target 4 above the pedestal 30. Therefore, it is difficult to dispose various components (the measurement unit 10, the imaging units 11a and 11b, the laser light source 12, and the like) for inspecting the foreign matter above the pedestal 30 at a high position. Therefore, it is an object to suppress the height of various components for performing the foreign matter inspection and appropriately perform the foreign matter inspection even in the situation where the transport unit 20 is arranged.
  • FIG. 4 is a side view for explaining the imaging configuration of the foreign matter inspection device 1 of the present embodiment
  • FIG. 5 is a top view for explaining the imaging configuration of the foreign substance inspection device 1 of the present embodiment.
  • the laser light source 12 first illuminates the surface of the inspection target 4 from the side of the inspection target 4 in order to suppress the height of various components for performing the foreign matter inspection. Illuminating from the side of the inspection object 4 means that the illumination light lower end La of the illumination light L emitted from the laser light source 12 is positioned below the surface of the inspection object 4 as shown in FIG. It means that.
  • the illumination is performed from the position of the inspection object end portion 4a, and the height of the laser light source 12 can be suppressed. Therefore, even when the transport unit 20 is located above the inspection target 4 as in the present embodiment, it is possible to prevent the laser light source 12 from obstructing the transport. Further, when illuminated in this manner, it becomes possible to perform the foreign matter inspection up to the inspection object end portion 4a of the inspection object 4. Further, by performing such illumination, the end portion 4a to be inspected is observed as a bright line in the observed captured image. For example, when a foreign substance is found on the inspection target 4, it is possible to measure the position of the foreign substance on the inspection target 4 with the inspection target end 4a photographed as a bright line as a reference position.
  • the optical axis 12a of the laser light source 12 is provided in parallel with the inspection object 4 or provided with a slight looking-down angle inclined so as to look down toward the inspection object 4 side.
  • the optical axis 12a of the laser light source 12 is provided with a downward angle of 0.5 degrees toward the inspection target 4.
  • the looking down angle of the optical axis 12a is set in consideration of the range irradiated by the laser light source 12, the reach distance, and the like. It is preferable to provide this looking-down angle within a range of 10 degrees or less. More preferably, the gaze angle is in the range of 0.1 degrees or more and 3 degrees or less. As shown in the top view of FIG.
  • the illumination light L (coherent light) emitted from the laser light source 12 illuminates the surface of the inspection target 4 with a certain width (20 mm in this embodiment).
  • the illumination light width W1 on the side closer to the laser light source 12 becomes equal to the illumination light width W2 on the side farther from the laser light source 12.
  • the illumination light width W2 is smaller than the illumination light width W1.
  • the illumination light emitted from the laser light source 12 is coherent light (straight light).
  • two laser light sources 12 may be used to illuminate the inspection target from both side surfaces of the inspection target 4.
  • the image capturing unit 11 a captures an image of the inspection target 4 illuminated by the laser light source 12 from above the inspection target 4.
  • the imaging unit 11a has its imaging axis 110a between the surface of the inspection object 4 on the YZ plane in the drawing and the surface away from the laser light source 12. It is arranged to form an elevation angle ⁇ 2.
  • the surface of the inspection object 4 that is away from the laser light source 12 refers to the surface that is located away from the laser light source 12 with the intersection of the inspection object 4 and the imaging axis 110a as a boundary. .. Further, as shown in FIG.
  • the imaging unit 11a has an imaging axis 110a at an inclination angle between the imaging axis 110a and the axis of the optical axis 12a of the laser light source 12 away from the laser light source 12 in the XY plane in the drawing. It is arranged so as to form ⁇ 1.
  • the axis of the optical axis 12a of the laser light source 12 away from the laser light source 12 is the optical axis at a position away from the laser light source with the intersection of the optical axis 12a of the laser light source 12 and the imaging axis 110a as a boundary.
  • the range of the elevation angle ⁇ 2 is set to a range of an acute angle of 5 degrees or more and 50 degrees or less.
  • a hatched area from the upper right to the lower left is an illumination range A indicating the surface of the inspection target 4 illuminated with the illumination light L.
  • a hatched region from the upper left to the lower right is the imaging range B on the inspection target 4 by the imaging unit 11a. Therefore, in FIG. 5, the range where the illumination range A and the imaging range B overlap is the inspection range C on the inspection target 4.
  • the range indicated by the arrow also indicates this inspection range C.
  • the imaging unit 11a has a vertical angle of view ⁇ 3a as shown in FIG. 4 and a horizontal angle of view ⁇ 3b as shown in FIG.
  • the inclination angle ⁇ 1 is set in the range of an acute angle of 10 degrees or more and 50 degrees or less.
  • the tilt angle ⁇ 1 can be set at a negative angle. Therefore, the absolute value of the inclination angle ⁇ 1 is set in the acute angle range of 10 degrees or more and 50 degrees or less.
  • the absolute value of the inclination angle ⁇ 1 is more preferably 15 degrees or more and 25 degrees or less in order to improve various effects.
  • the elevation angle ⁇ 2 is set within a range of acute angles of 5 degrees or more and 50 degrees or less.
  • the first effect is that the height of the imaging unit 11a can be suppressed as in the case where the laser light source 12 is installed. By thus suppressing the height of the imaging unit 11a, it is possible to prevent the laser light source 12 from obstructing the transportation even when the transportation unit 20 is located above the inspection target 4.
  • the second effect is that the direct light from the laser light source 12 or the primary reflected light can be made incident, and it is possible to capture an image of a foreign object that diffusely reflects the illumination light L.
  • a third effect is that when either one of the tilt angle ⁇ 1 and the elevation angle ⁇ 2 is smaller than the specified angle range, the interference fringes generated by the fine pattern provided on the color filter are photographed. is there.
  • the tilt angle ⁇ 1 and the elevation angle ⁇ 2 are set to appropriate ranges where interference fringes are not observed.
  • the fourth effect is that the illumination light L is incident from the side of the inspection object 4 and the imaging unit 11a is arranged so as to be inclined, so that the hole provided in the inspection object 4 or the pedestal 30 is provided. It is possible to observe a hole formed on the surface, a structure, or a scratch generated on the surface of the pedestal 30 smaller than an actual object. Since such holes, structures, scratches, etc. are not foreign matter that adheres to the surface of the inspection target 4, it is necessary to mask the captured image (a portion that is not the inspection target) so as not to be mistaken for a foreign matter.
  • the size of the mask needs to be the same as the size of the holes, structures, scratches or the like, or larger than that with a margin.
  • the dead zone region not to be inspected becomes large, and if foreign matter adheres to the mask portion, it is possible that the inspection will be missed.
  • holes, structures, scratches, and the like are observed to be smaller than their actual size, so that the mask can be made smaller. Therefore, the size of the dead zone region can be suppressed and the inspection range can be expanded.
  • the inspection target 4 is a color filter used in a liquid crystal display device. Particularly, with respect to the color filter in the middle of the manufacturing process, the foreign matter attached to the surface is detected.
  • FIG. 6 is a diagram showing a manufacturing process of the color filter. As shown in FIG. 6A, a black matrix 42 is formed on a transparent substrate 41 such as a glass substrate. The formation of the black matrix 42 is performed by exposure and development as in the case of the color resist 43R described later, but the description thereof is omitted here. As shown in FIG. 6B, a red color resist 43R is applied on the transparent substrate 41 on which the black matrix 42 is formed. The foreign substance inspection device 1 of the present embodiment sets the state in which the color resist 43R is applied as the inspection target 4.
  • the photomask 44 is placed above and exposure is performed.
  • the mask 44 may be damaged. Since the photomask 44 is extremely expensive, the damage caused by damage is large. Further, if the color filter is continuously manufactured without noticing the damage of the photomask 44 due to the foreign matter, the color filter itself may be damaged. The loss of the color filter causes deterioration of the display image in the liquid crystal display device, for example.
  • FIG. 6D is a diagram showing the cured color resist 43R.
  • the cured color resist 43G is added as shown in FIG. 6E.
  • the cured color resist 43B is added as shown in FIG. 6E.
  • the foreign matter inspection apparatus 1 of the present embodiment also sets the green color resist 43G and the blue color resist 43B as the inspection targets 4, and inspects the foreign matter adhering to the surface.
  • the present embodiment it is possible to effectively detect a foreign substance by receiving scattered light from the foreign substance in the imaging units 11a and 11b.
  • the scattering of light due to foreign matter will be described. It is known that when light is incident on fine particles that are foreign matter, the form of scattering varies depending on the size of the fine particles. The scattering by the fine particles is roughly classified according to the relationship between the size of the fine particles and the wavelength of light, and when the size of the fine particles is 1/10 of the wavelength of light, Rayleigh scattering occurs, and It is known that Mie scattering occurs when the size is larger than that.
  • the foreign matter to be detected in the present embodiment is a piece of glass substrate or the like, and has a size that causes Mie scattering.
  • FIG. 7 is a schematic diagram for explaining Mie scattering, and is a schematic diagram showing a state of scattering when the illumination light L is incident on the spherical microparticles S.
  • FIG. 7(A) is a top view showing a state of scattered light
  • FIG. 7(B) is a side view thereof.
  • the surface of the inspection object 4 is the XY plane
  • the axis orthogonal to the surface of the inspection object is the Z axis
  • the traveling direction of the illumination light L is the negative direction of the Y axis.
  • the scattered light appears so as to draw an arc in each of the positive and negative directions of the Y axis.
  • the foreign matter inspection apparatus 1 of the present embodiment allows the illumination light L to enter from the side and has a large amplitude in Mie scattering (further, the direct light of the illumination light L or the primary light). By observing at a position where reflected light does not enter), it is possible to accurately detect the foreign matter.
  • FIG. 8 shows a captured image 25 (binarized) obtained by capturing scattered light due to Mie scattering.
  • two transparent spherical fine particles S1 and S2 small bead spheres
  • the circles shown by broken lines show the actual positions of the spherical microparticles S1 and S2, and are not actually shown in the captured image 25.
  • the picked-up image 25 is a binarized image of the spherical fine particles S1 and S2, which is obtained by shooting the illumination light L in the negative direction of the Y-axis in the same manner as in FIG.
  • the scattered light shown in black is imaged in the positive and negative directions of the Y-axis of the spherical microparticles S1 and S2. In this way, the scattered light from the spherical microparticles S1 and S2 is photographed larger than the actual size of the spherical microparticles S1 and S2, which is effective for inspecting foreign substances adhering to the surface of the inspection object 4.
  • spherical fine particles S are used as the foreign matter here, this is because it is the most difficult to observe scattered light in the spherical shape.
  • An actual foreign substance generally has a shape different from a spherical shape, such as a glass shard, and in such a shape, scattered light appears remarkably, and its observation is easier than that of a spherical fine particle.
  • FIG. 9 is a schematic diagram for explaining a mask used in the image processing of this embodiment.
  • the mask is used to specify a dead zone area in the captured image 25 that is not used for inspecting foreign matters.
  • the dead zone region is assigned to a position of a structure, a hole, a scratch, or the like which is known in advance in the inspection object 4, and the purpose thereof is not to erroneously detect these as foreign matter.
  • the structures such as the electrodes located on the back surface of the inspection object 4 and the inspection object 4 are provided in particular. It is possible to recognize (observe) a hole, a scratch on the surface of the pedestal 30 or the like smaller than the actual size. Therefore, it is possible to reduce the dead zone area in the mask or to eliminate the dead zone area, and to enlarge the area other than the dead zone area, that is, the area to be inspected for foreign matter.
  • FIG. 9A is a top view schematically showing the electrode 45b provided on the back surface of the inspection target 4 and the hole 45a penetrating the inspection target 4, and a cross-sectional view at the position of the hole 45a.
  • the coordinate system shown in FIG. 9 is the same as that in FIGS. 1 and 2, and the illumination light L is applied to the surface of the inspection target 4 from the Y-axis positive direction.
  • the electrode 45b is located on the back surface opposite to the side irradiated with the illumination light L.
  • the dead zone regions 61a and 61b in the mask 6a when white light is used have the same size as the holes 45a and the electrodes 45b in FIG. It is provided slightly larger.
  • the areas other than the dead zone areas 61a and 61b are used as the foreign matter inspection target. Therefore, if a foreign matter is attached to the dead zone regions 61a and 61b, the foreign matter cannot be detected.
  • the laser light source 12 and the image pickup unit 11a are arranged to reduce the transmission amount of the illumination light L to the inspection target.
  • the electrode 45b located on the back surface of the inspection object 4, the hole 45a provided in the inspection object 4, and the pedestal hole 30a provided in the pedestal 30 have a reflection amount (luminance) of substantially 0, or reduce the reflection amount. It becomes possible.
  • a threshold value is set for each pixel of the captured image and binarization is performed with a luminance equal to or higher than the threshold value.
  • the electrodes 45b located on the back surface of the inspection target 4 Regarding the holes 45a provided in the inspection object 4 and the pedestal holes 30a provided in the pedestal 30, the brightness of the whole area or a part of the area becomes less than or equal to a threshold value, and the whole area or a part of the area is recognized (observed). It will be excluded from the target.
  • the illumination light L is incident from the positive direction of the Y axis, but the incident illumination light L is reflected at the end portion of the electrode 45b (on the side where the value of X is large), It is conceivable that the brightness will be stronger than the other parts of the electrode 45b. Therefore, the end of the electrode 45b on the side where the illumination light is incident remains as a recognizable (observable) image even after binarization.
  • the mask 6b used in the foreign matter inspection apparatus 1 of the present embodiment is created based on the binarized captured image 25 shown in FIG. 9C, and has the form shown in FIG. 9D. ..
  • the dead zone area 61a for the hole 45a is not necessary.
  • the electrode 45b the dead zone region 61b' smaller than the actual size of the electrode 45b is sufficient. Therefore, as can be seen by comparing the mask 6a for white light of FIG. 9B with the mask 6b of the present embodiment of FIG. 9D, the dead zone region is suppressed to be small, and the remaining region, that is, the foreign matter inspection target. It is possible to expand the area to be. It is not always necessary to perform binarization on the captured image 25 as image processing when detecting a foreign substance, and n-value conversion (n ⁇ 3) may be performed instead of binarization.
  • the mask 6b used in the image processing of the foreign matter inspection apparatus 1 is created by taking an image of the inspection object 4 which is sufficiently confirmed that no foreign matter is attached, and using the captured image.
  • FIG. 10 is a flow chart showing a foreign substance inspection process in the foreign substance inspection device 1 of the present embodiment.
  • the color filter in the manufacturing process described with reference to FIG. In the foreign matter inspection process, first, the inspection target 4 is set on the pedestal 30 (S11). Then, the surface of the inspection target 4 is irradiated with the illumination light L (S12), and the regions irradiated by the image capturing units 11a and 11b are imaged (S13). In this embodiment, red light having a wavelength of 630 nm is used as the illumination light L. After the photographing, the measurement unit 10 is moved on the moving rail 32 (S14), and the image is taken again (S13). Alternatively, the measurement may be performed while moving the measurement unit 10.
  • the steps S13 to S15 are executed until the entire image of the inspection target 4 is captured and the entire captured image 25 is obtained (S15). After the completion, the obtained captured image 25 is binarized (S16), and then a mask corresponding to the surface color is applied (S17).
  • the presence/absence of foreign matter is inspected in the binarized captured image 25 in a region other than the dead zone region by the mask (S18).
  • the foreign matter is detected by observing scattered light generated by the foreign matter. When the intensity of the scattered light exceeds a threshold value, it is determined that there is a foreign matter.
  • the inspection target 4 is moved from the pedestal 30 using the transport unit 20 (S19), and when there is no foreign substance (S20: No), the inspection target 4 enters the next step (S21). ).
  • the inspection object 4 is subjected to a reprocessing step such as removing the applied color resist, or is an object of disposal processing (S22).
  • the inspection for the presence of foreign matter can be performed in various forms other than the form described above.
  • the coherent light is made incident on the surface of the inspection target 4 from the side of the inspection target 4 and the imaging units 11a and 11b perform imaging from a predetermined position, thereby reflecting light due to Mie scattering. It is possible to efficiently photograph the object and properly detect the foreign matter. Further, it is possible to suppress the height of various components necessary for the foreign material inspection such as the laser light source 12 and the imaging units 11a and 11b, and to use the transportation unit 20 that transports the inspection target 4 from above the pedestal 30. .. Furthermore, it is possible to reduce the dead zone area due to the electrode 45b located on the back surface of the test subject 4, the hole 45a provided in the test subject 4, the pedestal 30 or the like, or to eliminate the dead zone area. It is possible to improve the inspection accuracy by enlarging the area for inspecting foreign matters.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

[Problem] To restrain the heights of various configurations for performing an inspection when inspecting foreign matter adhered to an inspection target. [Solution] This foreign matter inspection device (1) inspecting foreign matter adhered to the surface of an inspection target (4) comprises a light source unit (12) that emits coherent light (L) onto the surface of the inspection target (4) from a side of the inspection target (4), imaging units (11a, 11b) that photograph the inspection target (4), and a detection unit that detects the foreign matter on the basis of images captured by the imaging units (11a, 11b), wherein the imaging axes of the imaging units (11a, 11b) are positioned so as to form an angle of elevation (θ2) that is acute relative to the surface of the inspection target (4) on a side away from the light source unit (12) when the inspection target (4) is observed from the side, and to form an angle of inclination (θ1) that is acute relative to an optical axis on the side away from the light source unit (12) when the inspection target (4) is observed from above.

Description

異物検査装置及び異物検査方法Foreign substance inspection device and foreign substance inspection method
 本発明は、液晶カラーフィルタ等、各種基板に付着した異物を検査する異物検査装置、及び、異物検査方法に関する。 The present invention relates to a foreign substance inspection device and a foreign substance inspection method for inspecting foreign substances attached to various substrates such as liquid crystal color filters.
 従来、半導体製造工程、あるいは、液晶表示装置等のフラットディスプレイの製造工程等では、製品の精度向上等を図ることを目的として、製造工程において、ガラス基板に付着する異物を検出することが行われている。 2. Description of the Related Art Conventionally, in a semiconductor manufacturing process or a manufacturing process of a flat display such as a liquid crystal display device, for the purpose of improving the accuracy of products, in the manufacturing process, foreign substances attached to a glass substrate are detected. ing.
 特許文献1には、ガラス基板の表面および裏面に付着した異物を高精度で検査しうる異物検査装置が開示されている。この異物検査装置は、ガラス基板の上方に投光部と、受光部を配置し、投光位置と受光位置の相対位置を変化させることで、ガラス基板の表面に付着した異物の検出と、ガラス基板の裏面に付着した異物の検出を切り替えることを可能としている。 Patent Document 1 discloses a foreign matter inspection device capable of highly accurately inspecting foreign matter attached to the front and back surfaces of a glass substrate. This foreign matter inspection apparatus has a light projecting unit and a light receiving unit disposed above a glass substrate, and changes the relative position between the light projecting position and the light receiving position to detect foreign matter adhering to the surface of the glass substrate and It is possible to switch the detection of foreign matter attached to the back surface of the substrate.
特開2016-133357号公報JP, 2016-133357, A
 液晶表示装置に実装されるカラーフィルタの製造工程では、レジストが塗布された状態で、塗布されたレジストに異物が付着していないか検査を行う必要がある。レジストに異物が付着している場合、その後の工程となる露光において、レジスト面に近接配置されるフォトマスクを破損させる、あるいは、カラーフィルタ自体の品質を損なうことになる。特に、フォトマスクは高価であるため、異物により破損が生じた場合、金銭的な被害は大きいものとなる。そのため、カラーフィルタにおける異物の検出は非常に重要である。 In the manufacturing process of the color filter to be mounted on the liquid crystal display device, it is necessary to inspect the applied resist for foreign substances in the applied state. When foreign matter adheres to the resist, it causes damage to the photomask arranged in the vicinity of the resist surface or damages the quality of the color filter itself in the subsequent exposure process. In particular, since photomasks are expensive, if they are damaged by foreign matter, financial damage will be great. Therefore, detection of foreign matter in the color filter is very important.
 ところで、カラーフィルタの製造工程では、検査対象となるカラーフィルタは、検査装置の台座上に設置されて行われることが通常である。台座への搬送には、ベルトコンベア等、各種搬送手段が用いられる。搬送手段には、検査対象となるカラーフィルタを、アーム等で掴み、台座の上方から台座上に設置するタイプのものがある。このような場合、台座の上方に、撮像部等、検査を行う各種部材を設置することは困難である。本発明の目的の1つは、異物検査装置あるいは異物検査方法において、検査を行うための各種構成(撮像部、光源)等の高さを低く抑えることである。また、本発明の目的の1つは、異物検査装置あるいは異物検査方法において、異物検査の精度向上を図ることである。 By the way, in the manufacturing process of a color filter, the color filter to be inspected is usually installed on the base of the inspection device. Various transportation means such as a belt conveyor is used for transportation to the pedestal. As the transfer means, there is a type in which a color filter to be inspected is gripped by an arm or the like and installed on the pedestal from above the pedestal. In such a case, it is difficult to install various members to be inspected, such as the imaging unit, above the pedestal. One of the objects of the present invention is to suppress the height of various components (imaging unit, light source) and the like for performing inspection in a foreign substance inspection device or a foreign substance inspection method. Another object of the present invention is to improve the accuracy of foreign matter inspection in a foreign matter inspection device or a foreign matter inspection method.
 そのため、本発明に係る異物検査装置は、以下に記載する第1の構成を採用するものである。
 検査対象の表面に付着した異物を検査する異物検査装置であって、
 前記検査対象の側方から、前記検査対象の表面にコヒーレント光を照射する光源部と、
 前記検査対象を撮影する撮像部と、
 前記撮像部で撮像された画像に基づいて異物を検出する検出部を備え、
 前記撮像部の撮像軸は、前記検査対象の側方から観察したときに、前記光源部から離れた側における前記検査対象の表面と鋭角の仰角を形成し、前記検査対象の上方から観察したときに、前記光源部から離れた側の光軸と鋭角の傾斜角を形成するように位置する。
Therefore, the foreign matter inspection apparatus according to the present invention adopts the first configuration described below.
A foreign matter inspection device for inspecting foreign matter adhered to the surface of an inspection target,
From a side of the inspection target, a light source unit for irradiating the surface of the inspection target with coherent light,
An imaging unit for photographing the inspection target;
A detection unit that detects a foreign object based on the image captured by the imaging unit,
The imaging axis of the imaging unit forms an acute elevation angle with the surface of the inspection target on the side away from the light source unit when observed from the side of the inspection target, and when observed from above the inspection target. And is positioned so as to form an acute angle of inclination with the optical axis on the side away from the light source unit.
 さらに本発明に係る異物検査装置(第2の構成)は、第1の構成において、
 前記光源部から照射されるコヒーレント光は、前記検査対象の端部を照明する。
Furthermore, in the foreign matter inspection device (second configuration) according to the present invention, in the first configuration,
The coherent light emitted from the light source unit illuminates the end of the inspection target.
 さらに本発明に係る異物検査装置(第3の構成)は、第1または第2の構成において、
 前記仰角は、5度以上、50度以下である。
Furthermore, the foreign matter inspection apparatus (third configuration) according to the present invention is the same as the first or second configuration,
The elevation angle is 5 degrees or more and 50 degrees or less.
 さらに本発明に係る異物検査装置(第4の構成)は、第1から第3の何れかの構成において、
 前記傾斜角の絶対値は、10度以上、50度以下である。
Furthermore, the foreign matter inspection apparatus (fourth configuration) according to the present invention is the same as the foreign matter inspection apparatus according to any one of the first to third configurations,
The absolute value of the tilt angle is 10 degrees or more and 50 degrees or less.
 さらに本発明に係る異物検査装置(第5の構成)は、第1から第4の何れかの構成において、
 前記光源部は、前記コヒーレント光を前記検査対象側に傾ける見下ろし角を有するように配置されている。
Furthermore, the foreign matter inspection device (fifth configuration) according to the present invention is the configuration of any one of the first to fourth configurations,
The light source unit is arranged so as to have a view angle for inclining the coherent light toward the inspection target side.
 さらに本発明に係る異物検査装置(第6の構成)は、第5の構成において、
 前記見下ろし角は、10度以下である。
Furthermore, in the foreign matter inspection device (sixth configuration) according to the present invention, in the fifth configuration,
The gaze angle is 10 degrees or less.
 さらに本発明に係る異物検査装置(第7の構成)は、第1から第6の何れかの構成において、
 前記検査対象には、微細パターンが形成されている。
Furthermore, in the foreign matter inspection device (seventh configuration) according to the present invention, in any one of the first to sixth configurations,
A fine pattern is formed on the inspection target.
 さらに本発明に係る異物検査装置(第8の構成)は、第1から第7の何れかの構成において、
 前記検査対象が配置される台座と、
 前記検査対象を前記台座の上方から、配置する搬送部を備える。
Furthermore, the foreign matter inspection apparatus (eighth configuration) according to the present invention is the same as any one of the first to seventh configurations,
A pedestal on which the inspection target is placed,
A transport unit is provided to arrange the inspection target from above the pedestal.
 さらに本発明に係る異物検査装置(第9の構成)は、第1から第8の何れかの構成において、
 前記光源部と、前記撮像部は、測定ユニットに固定されている。
Furthermore, the foreign matter inspection apparatus (9th structure) which concerns on this invention is a structure in any one of 1st-8th,
The light source unit and the imaging unit are fixed to the measurement unit.
 また、本発明に係る異物検査方法は、以下に記載する第10の構成を採用するものである。
 検査対象の表面に付着した異物を撮像部で撮像して検査する異物検査方法であって、
 前記検査対象の側方から、前記検査対象の表面に光源部からのコヒーレント光を照射し、
 前記撮像部の撮像軸は、前記検査対象の側方から観察したときに、前記光源部から離れた側における前記検査対象の表面と鋭角の仰角を形成し、前記検査対象の上方から観察したときに、前記光源部から離れた側の光軸と鋭角の傾斜角を形成するように位置し、
 前記撮像部で撮影された画像に基づいて異物を検出する。
Further, the foreign matter inspection method according to the present invention employs the tenth configuration described below.
A foreign matter inspection method for inspecting a foreign matter adhered to a surface of an inspection target by imaging the foreign matter with an imaging unit,
From the side of the inspection target, irradiating the surface of the inspection target with coherent light from a light source unit,
The imaging axis of the imaging unit forms an acute elevation angle with the surface of the inspection target on the side away from the light source unit when observed from the side of the inspection target, and when observed from above the inspection target. Is positioned so as to form an acute angle of inclination with the optical axis on the side away from the light source unit,
A foreign substance is detected based on the image captured by the image capturing unit.
 本発明に係る異物検査装置、異物検査方法によれば、検査対象の側方から、検査対象の表面にコヒーレント光を照射することで、検査を行うための各種構成の高さを低く抑えることが可能となる。そのため、台座の上方から検査対象を配置する搬送手段を有する異物検査装置にも容易に使用することが可能となる。なお、本発明に係る異物検査装置、異物検査方法は、台座の上方から検査対象を配置する搬送手段以外のタイプ、例えば、ベルトコンベアを使用する搬送手段を使用するタイプにも使用することが可能である。 According to the foreign matter inspection device and the foreign matter inspection method according to the present invention, the height of various components for performing inspection can be kept low by irradiating the surface of the inspection target with coherent light from the side of the inspection target. It will be possible. Therefore, it can be easily used for a foreign matter inspection apparatus having a conveyance means for arranging an inspection target from above the pedestal. It should be noted that the foreign matter inspection device and the foreign matter inspection method according to the present invention can also be used for types other than the conveying means for arranging the inspection object from above the pedestal, for example, types using the conveying means using a belt conveyor. Is.
 また、検査対象の側方からコヒーレント光を使用した場合、検査対象での干渉により、撮像画像に干渉縞が生じることがある。本発明に係る異物検査装置、異物検査方法では、検査対象に対する撮像部の撮像軸の仰角、傾斜角を鋭角とすることで、撮影に関する構成の高さを抑えるとともに、撮像画像での干渉縞の発生を抑制する等、適切な状態で撮影を可能とし、異物の検出精度向上を図ることが可能となっている。 Also, when coherent light is used from the side of the inspection target, interference fringes may occur in the captured image due to interference at the inspection target. In the foreign matter inspection apparatus and the foreign matter inspection method according to the present invention, the elevation of the imaging axis of the imaging unit with respect to the inspection target and the inclination angle are set to acute angles to suppress the height of the configuration related to imaging and to prevent interference fringes in the captured image. It is possible to take an image in an appropriate state such as suppressing the occurrence, and to improve the detection accuracy of a foreign substance.
本実施形態における異物検査装置の構成を示す側面図The side view which shows the structure of the foreign material inspection apparatus in this embodiment. 本実施形態における異物検査装置の構成を示す上面図The top view which shows the structure of the foreign material inspection apparatus in this embodiment. 本実施形態における搬送部の動作を説明するための図FIG. 3 is a diagram for explaining the operation of the transport unit according to the present embodiment. 本実施形態の異物検査装置の撮影構成を説明するための側面図A side view for explaining a photographing configuration of the foreign matter inspection apparatus according to the present embodiment. 本実施形態の異物検査装置の撮影構成を説明するための上面図The top view for demonstrating the imaging structure of the foreign material inspection apparatus of this embodiment. 本実施形態で使用する照明光の色とカラーレジスト色(検査対象の表面色)の関係を説明するための色相環A color wheel for explaining the relationship between the color of the illumination light used in this embodiment and the color resist color (surface color of the inspection object) ミー散乱を説明するための模式図Schematic diagram for explaining Mie scattering ビーズ球を使用して撮影した撮像画像Image taken using a bead ball 本実施形態の画像処理で使用するマスクを説明するための模式図Schematic diagram for explaining a mask used in the image processing of the present embodiment 本実施形態の異物検査工程を示すフロー図Flow chart showing the foreign substance inspection process of the present embodiment
 図1は、本実施形態における異物検査装置1の構成を示す側面図であり、図2は、本実施形態における異物検査装置の構成を示す上面図である。図2は、台座上面付近の上面図であって、搬送部20は省略して記載している。 FIG. 1 is a side view showing the configuration of the foreign matter inspection device 1 in the present embodiment, and FIG. 2 is a top view showing the configuration of the foreign matter inspection device in the present embodiment. FIG. 2 is a top view of the vicinity of the top surface of the pedestal, and the transfer unit 20 is omitted in the description.
 本実施形態の異物検査装置1は、台座30の上に設置された検査対象4を照明するレーザー光源12(本発明の「光源部」に相当する)、照明された検査対象4を撮影する撮像部11a、11b、そして、撮像部11a、11bで撮影された画像に対して画像処理を施し、検査対象4の表面に付着した異物を検出する情報処理装置(図示せず、本発明の「検出部」に相当する)を備えて構成されている。 The foreign matter inspection apparatus 1 of the present embodiment includes a laser light source 12 (corresponding to the “light source unit” of the present invention) that illuminates the inspection target 4 installed on the pedestal 30, and an image capturing the illuminated inspection target 4. An information processing device (not shown, not shown) of the present invention, which performs image processing on the images captured by the units 11a and 11b and the image capturing units 11a and 11b to detect foreign substances attached to the surface of the inspection target 4. (Corresponding to "part").
 また、異物検査装置1は、検査対象となる検査対象4が設置される台座30、台座30の上面に配置された搬送部20を備えている。台座30、搬送部20、異物検査装置1の各種構成は、フレーム5に固定されている。搬送部20は、台座30上への検査対象4の搬送、並びに、台座30から検査対象4の撤去を行う。搬送部20は、昇降部21、伸縮部22、アーム23を含んで構成されている。アーム23は、伸縮部22の先端に設けられ、伸縮部22の伸縮動作(図1ではY軸方向)によって検査対象4を抱えることが可能である。昇降部21には、伸縮部22が固定されており、昇降動作(Z軸方向)を行うことで、アーム23が抱える検査対象4を上げ下ろしすることが可能である。図1の搬送部20は、ちょうど、アーム23で検査対象4を抱えているときの状態である。 Further, the foreign matter inspection apparatus 1 includes a pedestal 30 on which the inspection target 4 to be inspected is installed, and a transfer unit 20 arranged on the upper surface of the pedestal 30. The pedestal 30, the transport unit 20, and various components of the foreign matter inspection apparatus 1 are fixed to the frame 5. The transport unit 20 transports the inspection target 4 onto the pedestal 30 and removes the inspection target 4 from the pedestal 30. The transport unit 20 includes an elevating unit 21, a telescopic unit 22, and an arm 23. The arm 23 is provided at the tip of the expansion/contraction part 22, and can hold the inspection target 4 by the expansion/contraction operation of the expansion/contraction part 22 (Y-axis direction in FIG. 1). The expansion/contraction part 22 is fixed to the elevating part 21, and the inspection object 4 held by the arm 23 can be raised and lowered by performing an elevating operation (Z-axis direction). The transport unit 20 in FIG. 1 is in a state where the inspection target 4 is held by the arm 23.
 本実施形態の検査対象4は、例えば、カラーフィルタの製造工程途中において、表面カラーレジストが塗布された透明基板(ガラス基板等)である。カラーフィルタの製造工程については、後で詳細に説明を行う。なお、異物検査装置1は、検査対象4を製造工程途中のカラーフィルタに限られるものではなく、透明基板を使用する各種分野において使用することが可能である。 The inspection target 4 of the present embodiment is, for example, a transparent substrate (glass substrate or the like) coated with a surface color resist during the manufacturing process of the color filter. The manufacturing process of the color filter will be described in detail later. The foreign substance inspection device 1 is not limited to the inspection target 4 being a color filter in the manufacturing process, and can be used in various fields using a transparent substrate.
 撮像部11a、11b、及び、レーザー光源12は、測定ユニット10に固定されている。レーザー光源12は、ある程度の幅(本実施形態では、20mm)を有した線光源であって、台座30上に設置された検査対象4を側面からコヒーレント光を照明する。一方、撮像部11a、11bは、図1に示されるように、照明された検査対象4の表面を上面から撮影する。また、図2に示されるように、撮像部11a、11bの撮像軸110a、110bは、レーザー光源12の光軸12aから傾斜角θ1傾斜して配置されている。傾斜角θ1を0度にすることで、撮像部11a、11bの撮像範囲を大きくすることは可能であるが、レーザー光源12の直接光が入射してしまうため、異物の検査を行うことができない。また、傾斜角θ1が小さい場合、レーザー光源12の一次反射光の入射、あるいは、検査対象4に形成されている微細パターンで生じる干渉縞により、異物の検査精度が悪化する場合がある。本実施形態では、このような要因を考慮し、傾斜角θ1を10度以上、50度以下の範囲としている。この傾斜角θ1は、15度以上、25度以下の範囲とすることが、上述する要因を改善する上で、更に好ましい。 The imaging units 11 a and 11 b and the laser light source 12 are fixed to the measurement unit 10. The laser light source 12 is a linear light source having a certain width (20 mm in this embodiment), and illuminates the inspection target 4 installed on the pedestal 30 with coherent light from the side surface. On the other hand, the imaging units 11a and 11b photograph the surface of the illuminated inspection target 4 from the upper surface, as shown in FIG. Further, as shown in FIG. 2, the imaging axes 110a and 110b of the imaging units 11a and 11b are arranged at an inclination angle θ1 from the optical axis 12a of the laser light source 12. Although it is possible to increase the imaging range of the imaging units 11a and 11b by setting the inclination angle θ1 to 0 degrees, the direct light of the laser light source 12 is incident, so that it is impossible to inspect the foreign matter. .. Further, when the inclination angle θ1 is small, the inspection accuracy of the foreign matter may be deteriorated due to the incidence of the primary reflected light of the laser light source 12 or the interference fringes generated in the fine pattern formed on the inspection target 4. In the present embodiment, in consideration of such factors, the inclination angle θ1 is set in the range of 10 degrees or more and 50 degrees or less. It is more preferable that the inclination angle θ1 be in the range of 15 degrees or more and 25 degrees or less in order to improve the above-mentioned factors.
 撮像部11a、11b、レーザー光源12が固定されている測定ユニット10は、検査時において、移動レール32上をX軸方向に移動する。移動中、撮像部11a、11bによって、台座30上に設置された検査対象4を撮像することで、検査対象4上の異物検査が行われる。撮像部11a、11b、レーザー光源12は、測定ユニット10に固定されているため、レーザー光源12の光軸12aと撮像部11a、11bの撮像軸110a、110bは、同じ位置関係を適切に維持することになる。 The measurement unit 10 to which the imaging units 11a and 11b and the laser light source 12 are fixed moves on the moving rail 32 in the X-axis direction at the time of inspection. The moving object is inspected on the inspection object 4 by imaging the inspection object 4 installed on the pedestal 30 by the imaging units 11a and 11b during the movement. Since the imaging units 11a and 11b and the laser light source 12 are fixed to the measurement unit 10, the optical axis 12a of the laser light source 12 and the imaging axes 110a and 110b of the imaging units 11a and 11b appropriately maintain the same positional relationship. It will be.
 図3は、本実施形態における搬送部20の動作を説明するための図である。搬送部20は、台座30上に検査対象4(本実施形態では、ガラス基板)を配置し、検査完了後、台座30上から検査対象4を撤去する。図1の搬送部20は、アーム23で検査対象4を保持した状態であり、搬送部20は、例えば、X軸方向に移動することで、検査対象4を台座30の上方範囲外から、台座30の上方の範囲内(検査対象4の配置位置)に搬送する。検査対象4が台座30の上方に位置すると、図3(A)に示されるように、台座30の表面から、複数の支持針31を突出させ、検査対象4を支持する。支持針31によって検査対象が支持されると、図3(B)に示されるように、アーム23がY軸方向に開くことで、検査対象4がアーム23に阻害されず下降できる配置となる。 FIG. 3 is a diagram for explaining the operation of the transport unit 20 in this embodiment. The transport unit 20 arranges the inspection target 4 (in the present embodiment, a glass substrate) on the pedestal 30 and removes the inspection target 4 from the pedestal 30 after the inspection is completed. The transport unit 20 of FIG. 1 is in a state of holding the inspection target 4 by the arm 23, and the transport unit 20 moves the inspection target 4 from outside the upper range of the pedestal 30 by moving in the X-axis direction, for example. It is conveyed within the range above 30 (position of the inspection object 4). When the inspection object 4 is located above the pedestal 30, as shown in FIG. 3A, the plurality of support needles 31 are projected from the surface of the pedestal 30 to support the inspection object 4. When the inspection target is supported by the support needle 31, as shown in FIG. 3B, the arm 23 opens in the Y-axis direction so that the inspection target 4 can be lowered without being obstructed by the arm 23.
 そして、図3(C)に示されるように、複数の支持針31を下降させ、支持針31を下降させ、台座内に収容することで、台座30上に検査対象4が設置される。その後、測定ユニット10を移動させつつ、レーザー光源12で照明された検査対象4を撮像部11a、11bで撮像することで異物検査が行われる。検査完了後は、検査対象4を台座30に載置した手順と反対の手順を踏むことで、台座30から検査対象が撤去される。 Then, as shown in FIG. 3C, the plurality of support needles 31 are lowered, the support needles 31 are lowered, and the support needles 31 are accommodated in the pedestal, whereby the inspection target 4 is set on the pedestal 30. After that, the foreign matter inspection is performed by moving the measurement unit 10 and imaging the inspection target 4 illuminated by the laser light source 12 with the imaging units 11a and 11b. After the inspection is completed, the inspection target is removed from the pedestal 30 by performing a procedure opposite to the procedure of placing the inspection target 4 on the pedestal 30.
 以上、説明したように、本実施形態の異物検査装置1は、台座30の上方に検査対象4の搬送を行う搬送部20を備えて構成されている。そのため、異物検査を行うための各種構成(測定ユニット10、撮像部11a、11b、レーザー光源12等)を、台座30の上方に高く配置することが困難な状況にある。そのため、異物検査を行うための各種構成の高さを抑え、搬送部20が配置された状況下においても、異物検査を適切に行うことを一つの目的としている。 As described above, the foreign matter inspection device 1 of the present embodiment is configured to include the transfer unit 20 that transfers the inspection target 4 above the pedestal 30. Therefore, it is difficult to dispose various components (the measurement unit 10, the imaging units 11a and 11b, the laser light source 12, and the like) for inspecting the foreign matter above the pedestal 30 at a high position. Therefore, it is an object to suppress the height of various components for performing the foreign matter inspection and appropriately perform the foreign matter inspection even in the situation where the transport unit 20 is arranged.
 図4は、本実施形態の異物検査装置1の撮影構成を説明するための側面図であり、図5は、本実施形態の異物検査装置1の撮影構成を説明するための上面図である。図1、図2では、2個の撮像部11a、11bが設けられているが、ここでは、1つの撮像部11aを例に取って説明を行う。本実施形態では、異物検査を行うための各種構成の高さを抑えるため、まず、レーザー光源12は、検査対象4の側方から検査対象4の表面を照明する。ここで、検査対象4の側方から照明するとは、図4に示されるように、レーザー光源12から照射される照明光Lの照明光下端Laは、検査対象4の表面よりも下方に位置させることを意味している。このように、検査対象4の側方から照明することで、検査対象端部4aの位置から照明することとなり、レーザー光源12の高さを抑えることが可能となる。したがって、本実施形態のように搬送部20が、検査対象4の上方に位置する形態であっても、レーザー光源12が搬送の障害となることを抑制することが可能となる。また、このように照明した場合、検査対象4における検査対象端部4aまで、異物検査を行うことが可能となる。更に、このような照明を行うことで、観察される撮影像では、検査対象端部4aが輝線となって観察されることになる。例えば、検査対象4上に異物が発見された場合、輝線として撮影された検査対象端部4aを基準位置として、検査対象4上の異物の位置を測定することが可能となる。 FIG. 4 is a side view for explaining the imaging configuration of the foreign matter inspection device 1 of the present embodiment, and FIG. 5 is a top view for explaining the imaging configuration of the foreign substance inspection device 1 of the present embodiment. Although two image capturing units 11a and 11b are provided in FIGS. 1 and 2, one image capturing unit 11a will be described as an example here. In this embodiment, the laser light source 12 first illuminates the surface of the inspection target 4 from the side of the inspection target 4 in order to suppress the height of various components for performing the foreign matter inspection. Illuminating from the side of the inspection object 4 means that the illumination light lower end La of the illumination light L emitted from the laser light source 12 is positioned below the surface of the inspection object 4 as shown in FIG. It means that. As described above, by illuminating the inspection object 4 from the side, the illumination is performed from the position of the inspection object end portion 4a, and the height of the laser light source 12 can be suppressed. Therefore, even when the transport unit 20 is located above the inspection target 4 as in the present embodiment, it is possible to prevent the laser light source 12 from obstructing the transport. Further, when illuminated in this manner, it becomes possible to perform the foreign matter inspection up to the inspection object end portion 4a of the inspection object 4. Further, by performing such illumination, the end portion 4a to be inspected is observed as a bright line in the observed captured image. For example, when a foreign substance is found on the inspection target 4, it is possible to measure the position of the foreign substance on the inspection target 4 with the inspection target end 4a photographed as a bright line as a reference position.
 レーザー光源12の光軸12aは、検査対象4と平行、あるいは、検査対象4側に向かって見下ろすように傾いた僅かな見下ろし角を設けることが好ましい。本実施形態では、レーザー光源12の光軸12aは、検査対象4に向かって0.5度の見下ろし角を設けている。この光軸12aの見下ろし角は、レーザー光源12により照射される範囲、到達距離等を考慮して設定される。この見下ろし角は、10度以下の範囲で設けることが好ましい。さらに好適には、見下ろし角は、0.1度以上、3度以下の範囲にすることが好ましい。図5の上面図に示されるように、レーザー光源12から照射される照明光L(コヒーレント光)は、ある程度の幅(本実施形態では、20mm)をもって検査対象4の表面を照明する。例えば、光軸12aを検査対象4と平行にした場合、レーザー光源12に近い側の照明光幅W1は、レーザー光源12から遠い側の照明光幅W2と等しくなる。一方、本実施形態のように、見下ろし角を設けた場合、照明光幅W2は、照明光幅W1よりも小さくなる。このように、レーザー光源12から出射される照明光は、コヒーレント光(直進光)であるため、光軸12aの見下ろし角が大きくなりすぎると、検査対象4を照明する範囲が狭くなり、1つのレーザー光源12で検査対象4をカバーすることが困難となる。その場合、2台のレーザー光源12を使用し、検査対象4の両側面から検査対象を照明することとしてもよい。 It is preferable that the optical axis 12a of the laser light source 12 is provided in parallel with the inspection object 4 or provided with a slight looking-down angle inclined so as to look down toward the inspection object 4 side. In the present embodiment, the optical axis 12a of the laser light source 12 is provided with a downward angle of 0.5 degrees toward the inspection target 4. The looking down angle of the optical axis 12a is set in consideration of the range irradiated by the laser light source 12, the reach distance, and the like. It is preferable to provide this looking-down angle within a range of 10 degrees or less. More preferably, the gaze angle is in the range of 0.1 degrees or more and 3 degrees or less. As shown in the top view of FIG. 5, the illumination light L (coherent light) emitted from the laser light source 12 illuminates the surface of the inspection target 4 with a certain width (20 mm in this embodiment). For example, when the optical axis 12a is parallel to the inspection target 4, the illumination light width W1 on the side closer to the laser light source 12 becomes equal to the illumination light width W2 on the side farther from the laser light source 12. On the other hand, when the look-down angle is provided as in the present embodiment, the illumination light width W2 is smaller than the illumination light width W1. As described above, the illumination light emitted from the laser light source 12 is coherent light (straight light). Therefore, if the gaze angle of the optical axis 12a becomes too large, the range to illuminate the inspection object 4 becomes narrow, and It becomes difficult to cover the inspection target 4 with the laser light source 12. In that case, two laser light sources 12 may be used to illuminate the inspection target from both side surfaces of the inspection target 4.
 図1、図2で説明したように、撮像部11aは、検査対象4の上方から、レーザー光源12によって照明された検査対象4の撮像を行う。ここで、撮像部11aは、図4に示されるように、その撮像軸110aが、図中YZ平面において、検査対象4の表面であって、レーザー光源12から離れた側の表面との間で仰角θ2を形成するように配置されている。なお、検査対象4の表面であって、レーザー光源12から離れた側の表面とは、検査対象4と撮像軸110aが交わる箇所を境として、レーザー光源12から離れた位置の表面のことをいう。また、撮像部11aは、図5に示されるように、その撮像軸110aが、図中XY平面において、レーザー光源12の光軸12aにおけるレーザー光源12から離れた側の軸との間で傾斜角θ1を形成するように配置されている。なお、レーザー光源12の光軸12aにおけるレーザー光源12から離れた側の軸とは、レーザー光源12の光軸12aと撮像軸110aが交わる箇所を境として、レーザー光源から離れた位置の光軸のことをいう。ここで、仰角θ2の範囲は、5度以上、50度以下の鋭角の範囲に設定される。図5中、右上から左下に向かう斜線で示す領域は、照明光Lで照明された検査対象4の表面を示す照明範囲Aである。また、図5中、左上から右下に向かう斜線で示す領域は、撮像部11aによる検査対象4上の撮像範囲Bである。したがって、図5中、照明範囲Aと撮像範囲Bが重なる範囲が、検査対象4上の検査範囲Cとなる。図4中、矢印で示された範囲もこの検査範囲Cを示している。また、撮像部11aは、図4に示すように上下画角θ3aを有し、図5に示すように左右画角θ3bを有する。 As described with reference to FIGS. 1 and 2, the image capturing unit 11 a captures an image of the inspection target 4 illuminated by the laser light source 12 from above the inspection target 4. Here, as shown in FIG. 4, the imaging unit 11a has its imaging axis 110a between the surface of the inspection object 4 on the YZ plane in the drawing and the surface away from the laser light source 12. It is arranged to form an elevation angle θ2. Note that the surface of the inspection object 4 that is away from the laser light source 12 refers to the surface that is located away from the laser light source 12 with the intersection of the inspection object 4 and the imaging axis 110a as a boundary. .. Further, as shown in FIG. 5, the imaging unit 11a has an imaging axis 110a at an inclination angle between the imaging axis 110a and the axis of the optical axis 12a of the laser light source 12 away from the laser light source 12 in the XY plane in the drawing. It is arranged so as to form θ1. The axis of the optical axis 12a of the laser light source 12 away from the laser light source 12 is the optical axis at a position away from the laser light source with the intersection of the optical axis 12a of the laser light source 12 and the imaging axis 110a as a boundary. Say that. Here, the range of the elevation angle θ2 is set to a range of an acute angle of 5 degrees or more and 50 degrees or less. In FIG. 5, a hatched area from the upper right to the lower left is an illumination range A indicating the surface of the inspection target 4 illuminated with the illumination light L. In addition, in FIG. 5, a hatched region from the upper left to the lower right is the imaging range B on the inspection target 4 by the imaging unit 11a. Therefore, in FIG. 5, the range where the illumination range A and the imaging range B overlap is the inspection range C on the inspection target 4. In FIG. 4, the range indicated by the arrow also indicates this inspection range C. The imaging unit 11a has a vertical angle of view θ3a as shown in FIG. 4 and a horizontal angle of view θ3b as shown in FIG.
 ここで、傾斜角θ1は、10度以上、50度以下の鋭角の範囲に設定される。なお、傾斜角θ1は、負の角度で設置することも可能である。したがって、傾斜角θ1の絶対値は、10度以上、50度以下の鋭角の範囲に設置される。傾斜角θ1の絶対値は、更に好適には、15度以上25度以下にすることが、各種効果の向上を図る上で好ましい。また、仰角θ2は、5度以上、50度以下の鋭角の範囲に設定される。傾斜角θ1、仰角θ2をこのような鋭角の範囲に設定することで、以下に説明する4つの効果を得られることができる。 Here, the inclination angle θ1 is set in the range of an acute angle of 10 degrees or more and 50 degrees or less. The tilt angle θ1 can be set at a negative angle. Therefore, the absolute value of the inclination angle θ1 is set in the acute angle range of 10 degrees or more and 50 degrees or less. The absolute value of the inclination angle θ1 is more preferably 15 degrees or more and 25 degrees or less in order to improve various effects. The elevation angle θ2 is set within a range of acute angles of 5 degrees or more and 50 degrees or less. By setting the inclination angle θ1 and the elevation angle θ2 in such an acute angle range, the following four effects can be obtained.
(1)第1の効果は、レーザー光源12の設置形態と同様、撮像部11aの高さを抑えることが可能になることである。このように、撮像部11aの高さを抑えることで、搬送部20が、検査対象4の上方に位置する形態であっても、レーザー光源12が搬送の障害となることを抑制することが可能となる。
(2)第2の効果は、レーザー光源12からの直接光、あるいは、一次反射光が入射することが可能となり、照明光Lを乱反射した異物を撮影することが可能となる。
(3)第3の効果は、傾斜角θ1、仰角θ2の何れか一方が、指定された角度の範囲よりも小さい場合、カラーフィルタに設けられた微細パターンにより生じる干渉縞が撮影されることがある。干渉縞が生じた状態では、異物を適切に観察することが困難となる。本実施形態では、傾斜角θ1、仰角θ2を、干渉縞が観察されない適切な範囲としている。
(4)第4の効果は、検査対象4の側方から照明光Lを入射させるとともに、撮像部11aを傾斜させて配置することで、検査対象4に設けられた孔、あるいは、台座30の表面に設けられた孔、構造物、あるいは、台座30の表面に生じた傷を実物よりも小さく観察することが可能となる。このような孔、構造物、傷等は、検査対象4の表面に付着する異物では無いため、異物と間違えないように、撮影した画像にマスク(検査対象としない部分とする)する必要がある。従来の観察法では、マスクの大きさは、孔、構造物、傷等と同じ大きさ、もしくは、余裕をみてそれ以上の大きさとする必要があった。マスクを設けることで、検査対象としない不感帯領域が大きくなり、マスク部分に異物が付着した場合、検査漏れとなることが考えられる。本実施形態では、孔、構造物、傷等が実際の大きさよりも小さく観察されるため、マスクを小さくすることが可能となる。したがって、不感帯領域の大きさを抑え、検査範囲を拡大することが可能となる。
(1) The first effect is that the height of the imaging unit 11a can be suppressed as in the case where the laser light source 12 is installed. By thus suppressing the height of the imaging unit 11a, it is possible to prevent the laser light source 12 from obstructing the transportation even when the transportation unit 20 is located above the inspection target 4. Becomes
(2) The second effect is that the direct light from the laser light source 12 or the primary reflected light can be made incident, and it is possible to capture an image of a foreign object that diffusely reflects the illumination light L.
(3) A third effect is that when either one of the tilt angle θ1 and the elevation angle θ2 is smaller than the specified angle range, the interference fringes generated by the fine pattern provided on the color filter are photographed. is there. When interference fringes occur, it becomes difficult to properly observe the foreign matter. In the present embodiment, the tilt angle θ1 and the elevation angle θ2 are set to appropriate ranges where interference fringes are not observed.
(4) The fourth effect is that the illumination light L is incident from the side of the inspection object 4 and the imaging unit 11a is arranged so as to be inclined, so that the hole provided in the inspection object 4 or the pedestal 30 is provided. It is possible to observe a hole formed on the surface, a structure, or a scratch generated on the surface of the pedestal 30 smaller than an actual object. Since such holes, structures, scratches, etc. are not foreign matter that adheres to the surface of the inspection target 4, it is necessary to mask the captured image (a portion that is not the inspection target) so as not to be mistaken for a foreign matter. .. In the conventional observation method, the size of the mask needs to be the same as the size of the holes, structures, scratches or the like, or larger than that with a margin. By providing the mask, the dead zone region not to be inspected becomes large, and if foreign matter adheres to the mask portion, it is possible that the inspection will be missed. In this embodiment, holes, structures, scratches, and the like are observed to be smaller than their actual size, so that the mask can be made smaller. Therefore, the size of the dead zone region can be suppressed and the inspection range can be expanded.
 以上、撮像部11a、レーザー光源12(光源部)、検査対象4の配置関係について説明したが、撮像部11bについても同様の配置関係が形成される。 The arrangement relationship among the image pickup unit 11a, the laser light source 12 (light source unit), and the inspection target 4 has been described above, but the same arrangement relation is formed for the image pickup unit 11b.
 本実施形態では、検査対象4として液晶表示装置に使用されるカラーフィルタとしている。特に、製造工程途中のカラーフィルタについて、表面に付着した異物の検出を行うこととしている。図6は、カラーフィルタの製造工程を示す図である。図6(A)に示すように、ガラス基板等の透明基板41上にブラックマトリックス42が形成される。ブラックマトリックス42の形成については、後で説明するカラーレジスト43Rと同様、露光、現像により行われることになるが、ここではその説明は省略する。図6(B)に示すように、ブラックマトリックス42が形成された透明基板41上に赤色のカラーレジスト43Rが塗布される。本実施形態の異物検査装置1は、このカラーレジスト43Rが塗布された状態を検査対象4としている。 In the present embodiment, the inspection target 4 is a color filter used in a liquid crystal display device. Particularly, with respect to the color filter in the middle of the manufacturing process, the foreign matter attached to the surface is detected. FIG. 6 is a diagram showing a manufacturing process of the color filter. As shown in FIG. 6A, a black matrix 42 is formed on a transparent substrate 41 such as a glass substrate. The formation of the black matrix 42 is performed by exposure and development as in the case of the color resist 43R described later, but the description thereof is omitted here. As shown in FIG. 6B, a red color resist 43R is applied on the transparent substrate 41 on which the black matrix 42 is formed. The foreign substance inspection device 1 of the present embodiment sets the state in which the color resist 43R is applied as the inspection target 4.
 図6(C)に示すように、カラーレジスト43Rが塗布された後、フォトマスク44を上方に配置して露光を行うことになるが、カラーレジスト43R上に異物が付着した場合、異物がフォトマスク44を破損させてしまうことがある。フォトマスク44は極めて高価であるため、破損による金銭的な被害は大きい。また、異物によるフォトマスク44の破損に気付かず、カラーフィルタの製造を続けた場合、カラーフィルタ自体に欠損を生じることになる。カラーフィルタの欠損は、例えば、液晶表示装置における表示画像の劣化を生じさせることになる。 As shown in FIG. 6C, after the color resist 43R is applied, the photomask 44 is placed above and exposure is performed. The mask 44 may be damaged. Since the photomask 44 is extremely expensive, the damage caused by damage is large. Further, if the color filter is continuously manufactured without noticing the damage of the photomask 44 due to the foreign matter, the color filter itself may be damaged. The loss of the color filter causes deterioration of the display image in the liquid crystal display device, for example.
 フォトマスク44に設けられた開口44aを介して紫外線を照射し、開口44aの位置におけるカラーレジスト43Rを不活性化させる。その後、現像液でカラーレジスト43Rの不要な部分を除去した後、残ったカラーレジスト43Rをベークして硬化させる。図6(D)は、硬化されたカラーレジスト43Rを示す図である。緑のカラーレジスト43Gについて、図6(B)、図6(C)の行程を行うことで、図6(E)のように、硬化されたカラーレジスト43Gが追加される。そして、青のカラーレジスト43Bについて、図6(B)、図6(C)の行程を行うことで、図6(E)のように、硬化されたカラーレジスト43Bが追加される。本実施形態の異物検査装置1は、緑のカラーレジスト43G、青のカラーレジスト43Bが塗布された状態についても検査対象4とし、その表面に付着した異物の検査を実行する。 Ultraviolet rays are irradiated through the opening 44a provided in the photomask 44 to inactivate the color resist 43R at the position of the opening 44a. After that, after removing unnecessary portions of the color resist 43R with a developing solution, the remaining color resist 43R is baked and cured. FIG. 6D is a diagram showing the cured color resist 43R. By performing the steps of FIGS. 6B and 6C for the green color resist 43G, the cured color resist 43G is added as shown in FIG. 6E. Then, by performing the steps of FIGS. 6B and 6C on the blue color resist 43B, the cured color resist 43B is added as shown in FIG. 6E. The foreign matter inspection apparatus 1 of the present embodiment also sets the green color resist 43G and the blue color resist 43B as the inspection targets 4, and inspects the foreign matter adhering to the surface.
 図1、図2等で説明したように、本実施形態では、撮像部11a、11bにおいて、異物による散乱光を受光することで、異物を効果的に検出することが可能である。ここで、異物による光の散乱について説明しておく。異物となる微小粒子に光が入射した場合、微少粒子の大きさに応じて散乱の形態は異なることが知られている。微小粒子による散乱は、微少粒子の大きさと光の波長との関係によって大別され、微小粒子の大きさが光の波長の1/10の場合、レーリー散乱を生じることが、また、微小粒子の大きさがそれ以上の場合、ミー散乱を生じることが知られている。本実施形態で検出対象となる異物は、ガラス基板の破片等であって、ミー散乱を生じる大きさの異物である。 As described with reference to FIGS. 1 and 2, in the present embodiment, it is possible to effectively detect a foreign substance by receiving scattered light from the foreign substance in the imaging units 11a and 11b. Here, the scattering of light due to foreign matter will be described. It is known that when light is incident on fine particles that are foreign matter, the form of scattering varies depending on the size of the fine particles. The scattering by the fine particles is roughly classified according to the relationship between the size of the fine particles and the wavelength of light, and when the size of the fine particles is 1/10 of the wavelength of light, Rayleigh scattering occurs, and It is known that Mie scattering occurs when the size is larger than that. The foreign matter to be detected in the present embodiment is a piece of glass substrate or the like, and has a size that causes Mie scattering.
 図7は、ミー散乱を説明するための模式図であって、球形微小粒子Sに照明光Lが入射したときの散乱の様子を示す模式図である。図7(A)は、散乱光の様子を示す上面図であり、図7(B)は、その側面図である。ここでは、検査対象4の表面をXY平面、検査対象の表面に直交する軸をZ軸、照明光Lの進行方向をY軸負の方向としている。散乱光は、Y軸の正負方向それぞれに弧を描くように現れる。また、散乱光は、球形微小粒子Sの大きさよりも大きく観察されることになるため、散乱光を観察することで、検査対象に付着した異物を効率よく検出することが可能となる。本実施形態の異物検査装置1は、このような異物における光学特性を鑑み、照明光Lを側方から入射させ、ミー散乱において大きな振幅を持つ位置(更には、照明光Lの直接光や一次反射光が入射しない位置)で観察することで、異物を的確に発見することを可能としている。 FIG. 7 is a schematic diagram for explaining Mie scattering, and is a schematic diagram showing a state of scattering when the illumination light L is incident on the spherical microparticles S. FIG. 7(A) is a top view showing a state of scattered light, and FIG. 7(B) is a side view thereof. Here, the surface of the inspection object 4 is the XY plane, the axis orthogonal to the surface of the inspection object is the Z axis, and the traveling direction of the illumination light L is the negative direction of the Y axis. The scattered light appears so as to draw an arc in each of the positive and negative directions of the Y axis. Further, since the scattered light is observed to be larger than the size of the spherical fine particles S, it is possible to efficiently detect the foreign matter attached to the inspection target by observing the scattered light. In consideration of the optical characteristics of such foreign matter, the foreign matter inspection apparatus 1 of the present embodiment allows the illumination light L to enter from the side and has a large amplitude in Mie scattering (further, the direct light of the illumination light L or the primary light). By observing at a position where reflected light does not enter), it is possible to accurately detect the foreign matter.
 図8は、ミー散乱による散乱光を撮像した撮像画像25(2値化済み)である。ここでは、透明な2つの球形微小粒子S1、S2(微少なビーズ球)を検査対象4の表面に付着させて撮像している。破線で示す円は、球形微小粒子S1、S2の実際の位置を示しており、実際には撮像画像25には写っていない。撮像画像25は、球形微小粒子S1、S2に対し、図7と同様、Y軸負の方向に照明光Lを入射させて撮影し、画像の2値化された画像である。球形微小粒子S1、S2のY軸正負の方向には、黒色で示す散乱光が写されている。このように、球形微小粒子S1、S2による散乱光は、実際の球形微小粒子S1、S2の大きさよりも大きく写されるため、検査対象4の表面に付着した異物の検査には有効である。なお、ここでは、異物として球形微小粒子Sを使用しているが、これは散乱光の観察が球形形状で最も困難であることを理由としている。実際の異物は、ガラス破片等、球形とは異なる形状が一般的であり、そのような形状において散乱光は顕著に現れることになり、その観察は球形微小粒子よりも容易である。 FIG. 8 shows a captured image 25 (binarized) obtained by capturing scattered light due to Mie scattering. Here, two transparent spherical fine particles S1 and S2 (small bead spheres) are attached to the surface of the inspection object 4 and imaged. The circles shown by broken lines show the actual positions of the spherical microparticles S1 and S2, and are not actually shown in the captured image 25. The picked-up image 25 is a binarized image of the spherical fine particles S1 and S2, which is obtained by shooting the illumination light L in the negative direction of the Y-axis in the same manner as in FIG. The scattered light shown in black is imaged in the positive and negative directions of the Y-axis of the spherical microparticles S1 and S2. In this way, the scattered light from the spherical microparticles S1 and S2 is photographed larger than the actual size of the spherical microparticles S1 and S2, which is effective for inspecting foreign substances adhering to the surface of the inspection object 4. Although spherical fine particles S are used as the foreign matter here, this is because it is the most difficult to observe scattered light in the spherical shape. An actual foreign substance generally has a shape different from a spherical shape, such as a glass shard, and in such a shape, scattered light appears remarkably, and its observation is easier than that of a spherical fine particle.
 図9は、本実施形態の画像処理で使用するマスクを説明するための模式図である。前述したようにマスクとは、撮像画像25中、異物の検査に使用しない不感帯領域を指定するために使用される。不感帯領域は、検査対象4中、予め分かっている構造物、孔、傷等の位置に割り当てられ、これらを異物として誤検出しないことを目的としている。本実施形態では、図4、図5で説明したレーザー光源12、撮像部11aの配置を取ることで、特に、検査対象4の裏面に位置する電極等の構造物、検査対象4に設けられた孔、台座30の表面にある傷等を、実寸よりも小さく認識(観察)されることを可能としている。したがって、マスク中の不感帯領域を縮小する、あるいは、不感帯領域を設けなくてもよいこととし、不感帯領域以外の領域、すなわち、異物の検査対象となる領域の拡大を図ることが可能となる。 FIG. 9 is a schematic diagram for explaining a mask used in the image processing of this embodiment. As described above, the mask is used to specify a dead zone area in the captured image 25 that is not used for inspecting foreign matters. The dead zone region is assigned to a position of a structure, a hole, a scratch, or the like which is known in advance in the inspection object 4, and the purpose thereof is not to erroneously detect these as foreign matter. In the present embodiment, by arranging the laser light source 12 and the imaging unit 11a described in FIGS. 4 and 5, the structures such as the electrodes located on the back surface of the inspection object 4 and the inspection object 4 are provided in particular. It is possible to recognize (observe) a hole, a scratch on the surface of the pedestal 30 or the like smaller than the actual size. Therefore, it is possible to reduce the dead zone area in the mask or to eliminate the dead zone area, and to enlarge the area other than the dead zone area, that is, the area to be inspected for foreign matter.
 図9(A)は、検査対象4の裏面に設けた電極45b、検査対象4を貫通する孔45aを模式的に示した上面図、及び、孔45aの位置における断面図である。図9で示す座標系は、図1、図2と同様であって、照明光Lは、Y軸正の方向から検査対象4の表面に照射される。電極45bは、照明光Lが照射される側とは反対の裏面に位置している。 FIG. 9A is a top view schematically showing the electrode 45b provided on the back surface of the inspection target 4 and the hole 45a penetrating the inspection target 4, and a cross-sectional view at the position of the hole 45a. The coordinate system shown in FIG. 9 is the same as that in FIGS. 1 and 2, and the illumination light L is applied to the surface of the inspection target 4 from the Y-axis positive direction. The electrode 45b is located on the back surface opposite to the side irradiated with the illumination light L.
 検査対象4を正面から、目視で観察した場合、孔45a、電極45bは、実寸で観察されることになる。そのため、白色光を使用した場合のマスク6aにおける不感帯領域61a、61bは、図9(B)に示すように、図9(A)の孔45a、電極45bと同じ大きさ、あるいは、余裕をみて僅かに大きく設けられる。図9(B)のマスク6a中、不感帯領域61a、61b以外の領域が異物の検査対象として使用される。したがって、これら不感帯領域61a、61bに異物が付着していた場合、当該異物は検出できないことになる。 When the inspection object 4 is visually observed from the front, the holes 45a and the electrodes 45b are observed in actual size. Therefore, as shown in FIG. 9B, the dead zone regions 61a and 61b in the mask 6a when white light is used have the same size as the holes 45a and the electrodes 45b in FIG. It is provided slightly larger. In the mask 6a of FIG. 9B, the areas other than the dead zone areas 61a and 61b are used as the foreign matter inspection target. Therefore, if a foreign matter is attached to the dead zone regions 61a and 61b, the foreign matter cannot be detected.
 一方、本実施形態の異物検査装置1では、図4、図5で説明したように、レーザー光源12、撮像部11aの配置を取ることで、検査対象への照明光Lの透過量を減少させ、検査対象4の裏面に位置する電極45b、検査対象4に設けられた孔45a、台座30に設けられた台座孔30aにおける反射量(輝度)を略0とする、あるいは、反射量を低下させることが可能となる。本実施形態では、撮像画像の各画素に対して閾値を設け、閾値以上の輝度で2値化を行っているが、2値化を行うことで、検査対象4の裏面に位置する電極45b、検査対象4に設けられた孔45a、台座30に設けられた台座孔30aは、その全領域、あるいは、一部領域の輝度が閾値以下となり、全領域、あるいは、一部領域が認識(観察)対象から外れることになる。例えば、図9(A)では、Y軸正の方向から照明光Lが入射することになるが、入射する照明光Lが電極45bの端部(Xの値が大きい側)で反射を起こし、電極45bの他の部分よりも輝度が強くなることが考えられる。そのため、電極45bの照明光が入射する側の端部では、2値化後においても、認識(観察)可能な画像として残ってしまう。 On the other hand, in the foreign matter inspection apparatus 1 of the present embodiment, as described with reference to FIGS. 4 and 5, the laser light source 12 and the image pickup unit 11a are arranged to reduce the transmission amount of the illumination light L to the inspection target. , The electrode 45b located on the back surface of the inspection object 4, the hole 45a provided in the inspection object 4, and the pedestal hole 30a provided in the pedestal 30 have a reflection amount (luminance) of substantially 0, or reduce the reflection amount. It becomes possible. In the present embodiment, a threshold value is set for each pixel of the captured image and binarization is performed with a luminance equal to or higher than the threshold value. However, by performing binarization, the electrodes 45b located on the back surface of the inspection target 4, Regarding the holes 45a provided in the inspection object 4 and the pedestal holes 30a provided in the pedestal 30, the brightness of the whole area or a part of the area becomes less than or equal to a threshold value, and the whole area or a part of the area is recognized (observed). It will be excluded from the target. For example, in FIG. 9A, the illumination light L is incident from the positive direction of the Y axis, but the incident illumination light L is reflected at the end portion of the electrode 45b (on the side where the value of X is large), It is conceivable that the brightness will be stronger than the other parts of the electrode 45b. Therefore, the end of the electrode 45b on the side where the illumination light is incident remains as a recognizable (observable) image even after binarization.
 本実施形態の異物検査装置1で使用するマスク6bは、図9(C)に示す2値化された撮像画像25に基づいて作成されることになり、図9(D)に示す形態となる。マスク6bでは、図9(C)に示されるように、撮像画像25において孔45aが消去されているため、孔45aに対する不感帯領域61aを必要としない。また、電極45bについては、電極45bの実寸よりも小さい不感帯領域61b’で済むことになる。よって、図9(B)の白色光におけるマスク6aと、図9(D)の本実施形態のマスク6bを比較して分かるように、不感帯領域を小さく抑え、残る領域、すなわち、異物の検査対象となる領域拡大を図ることが可能となっている。なお、異物の検出を行う際の画像処理として、撮像画像25に対する2値化は必ずしも行う必要はなく、2値化に代えてn値化(n≧3)とすることとしてもよい。 The mask 6b used in the foreign matter inspection apparatus 1 of the present embodiment is created based on the binarized captured image 25 shown in FIG. 9C, and has the form shown in FIG. 9D. .. In the mask 6b, as shown in FIG. 9C, since the hole 45a is erased in the captured image 25, the dead zone area 61a for the hole 45a is not necessary. Further, as for the electrode 45b, the dead zone region 61b' smaller than the actual size of the electrode 45b is sufficient. Therefore, as can be seen by comparing the mask 6a for white light of FIG. 9B with the mask 6b of the present embodiment of FIG. 9D, the dead zone region is suppressed to be small, and the remaining region, that is, the foreign matter inspection target. It is possible to expand the area to be. It is not always necessary to perform binarization on the captured image 25 as image processing when detecting a foreign substance, and n-value conversion (n≧3) may be performed instead of binarization.
 異物検査装置1の画像処理で使用するマスク6bは、異物が付着していないことを十分に確認した検査対象4を撮影し、その撮像画像を使用して作成される。 The mask 6b used in the image processing of the foreign matter inspection apparatus 1 is created by taking an image of the inspection object 4 which is sufficiently confirmed that no foreign matter is attached, and using the captured image.
 図10は、本実施形態の異物検査装置1における異物検査工程を示すフロー図である。本実施形態では、図5で説明した製造工程途中のカラーフィルタを検査対象4としている。異物検査工程では、まず、台座30に検査対象4が設置される(S11)。そして、検査対象4の表面に照明光Lを照射し(S12)、撮像部11a、11bで照射された領域の撮像を行う(S13)。なお、本実施形態では、照明光Lとして、波長630nmの赤色光を使用している。撮影後、測定ユニット10を移動レール32上で移動させ(S14)、再度、撮像を行う(S13)。あるいは、測定ユニット10を移動しながら、撮影を行うこととしてもよい。S13~S15の工程を、検査対象4の全域の撮影が完了し、全体の撮像画像25が得られるまで実行する(S15)。完了後、得られた撮像画像25は、2値化された(S16)後、表面色に対応したマスクが施される(S17)。 FIG. 10 is a flow chart showing a foreign substance inspection process in the foreign substance inspection device 1 of the present embodiment. In this embodiment, the color filter in the manufacturing process described with reference to FIG. In the foreign matter inspection process, first, the inspection target 4 is set on the pedestal 30 (S11). Then, the surface of the inspection target 4 is irradiated with the illumination light L (S12), and the regions irradiated by the image capturing units 11a and 11b are imaged (S13). In this embodiment, red light having a wavelength of 630 nm is used as the illumination light L. After the photographing, the measurement unit 10 is moved on the moving rail 32 (S14), and the image is taken again (S13). Alternatively, the measurement may be performed while moving the measurement unit 10. The steps S13 to S15 are executed until the entire image of the inspection target 4 is captured and the entire captured image 25 is obtained (S15). After the completion, the obtained captured image 25 is binarized (S16), and then a mask corresponding to the surface color is applied (S17).
 異物の有無の検査は、2値化された撮像画像25に対し、マスクによる不感帯領域以外の領域に対して行われる(S18)。異物の検出は、異物で生じる散乱光を観察することで行われるが、この散乱光の強度が閾値を超える場合、異物ありとして判断される。検査が行われた後、検査対象4は、搬送部20を使用して台座30から移動され(S19)、異物無しの場合(S20:No)は、検査対象4は次の工程に入る(S21)。一方、異物有りの場合(S20:Yes)には、検査対象4は、塗布されたカラーレジストを取り除く等の再処理工程が行われる、あるいは、廃棄処理の対象となる(S22)。なお、異物の有無の検査は、上述する形態以外に、各種形態で行うことが可能である。 The presence/absence of foreign matter is inspected in the binarized captured image 25 in a region other than the dead zone region by the mask (S18). The foreign matter is detected by observing scattered light generated by the foreign matter. When the intensity of the scattered light exceeds a threshold value, it is determined that there is a foreign matter. After the inspection is performed, the inspection target 4 is moved from the pedestal 30 using the transport unit 20 (S19), and when there is no foreign substance (S20: No), the inspection target 4 enters the next step (S21). ). On the other hand, when there is a foreign substance (S20: Yes), the inspection object 4 is subjected to a reprocessing step such as removing the applied color resist, or is an object of disposal processing (S22). The inspection for the presence of foreign matter can be performed in various forms other than the form described above.
 このように、本実施形態では、検査対象4の側方から、検査対象4の表面にコヒーレント光を入射させ、所定の位置から撮像部11a、11bによる撮像を行うことで、ミー散乱による反射光を効率よく撮影し、異物を適切に検出することが可能となる。また、レーザー光源12、撮像部11a、11bといった異物検査に必要な各種構成の高さを抑え、検査対象4を台座30の上方から搬送する搬送部20であっても使用することが可能となる。さらに、検査対象4の裏面に位置する電極45b、検査対象4に設けられた孔45a、台座30の傷等のための不感帯領域を小さくする、あるいは、不感帯領域を必要としないことが可能となり、異物の検査を行う領域の拡大を図り、検査精度の向上を図ることが可能となる。 As described above, in the present embodiment, the coherent light is made incident on the surface of the inspection target 4 from the side of the inspection target 4 and the imaging units 11a and 11b perform imaging from a predetermined position, thereby reflecting light due to Mie scattering. It is possible to efficiently photograph the object and properly detect the foreign matter. Further, it is possible to suppress the height of various components necessary for the foreign material inspection such as the laser light source 12 and the imaging units 11a and 11b, and to use the transportation unit 20 that transports the inspection target 4 from above the pedestal 30. .. Furthermore, it is possible to reduce the dead zone area due to the electrode 45b located on the back surface of the test subject 4, the hole 45a provided in the test subject 4, the pedestal 30 or the like, or to eliminate the dead zone area. It is possible to improve the inspection accuracy by enlarging the area for inspecting foreign matters.
 なお、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。 It should be noted that the present invention is not limited to these embodiments only, and embodiments configured by appropriately combining the configurations of the respective embodiments are also included in the scope of the present invention.
1:異物検査装置
4:検査対象
5:フレーム
6a、6b:マスク
10:測定ユニット
11a、11b:撮像部
11b:撮像部
12:レーザー光源(光源部)
12a:光軸
20:搬送部
21:昇降部
22:伸縮部
23:アーム
23b:電極像
25:撮像画像
30:台座
30a:台座孔
31:支持針
32:移動レール
41:透明基板
42:ブラックマトリックス
43B、43G、43R:カラーレジスト
44:フォトマスク
44a:開口
45a:孔
45b:電極
61a、61b、61b’:不感帯領域
110a、110b:撮像軸
1: Foreign matter inspection device 4: Inspection target 5: Frames 6a, 6b: Mask 10: Measuring units 11a, 11b: Imaging unit 11b: Imaging unit 12: Laser light source (light source unit)
12a: Optical axis 20: Conveying part 21: Elevating part 22: Expansion/contraction part 23: Arm 23b: Electrode image 25: Captured image 30: Pedestal 30a: Pedestal hole 31, Support needle 32: Moving rail 41: Transparent substrate 42: Black matrix 43B, 43G, 43R: Color resist 44: Photomask 44a: Opening 45a: Hole 45b: Electrodes 61a, 61b, 61b': Dead zone regions 110a, 110b: Imaging axis

Claims (10)

  1.  検査対象の表面に付着した異物を検査する異物検査装置であって、
     前記検査対象の側方から、前記検査対象の表面にコヒーレント光を照射する光源部と、
     前記検査対象を撮影する撮像部と、
     前記撮像部で撮像された画像に基づいて異物を検出する検出部を備え、
     前記撮像部の撮像軸は、前記検査対象の側方から観察したときに、前記光源部から離れた側における前記検査対象の表面と鋭角の仰角を形成し、前記検査対象の上方から観察したときに、前記光源部から離れた側の光軸と鋭角の傾斜角を形成するように位置する
     異物検査装置。
    A foreign matter inspection device for inspecting foreign matter adhered to the surface of an inspection target,
    From a side of the inspection target, a light source unit for irradiating the surface of the inspection target with coherent light,
    An imaging unit for photographing the inspection target;
    A detection unit that detects a foreign object based on the image captured by the imaging unit,
    The imaging axis of the imaging unit forms an acute elevation angle with the surface of the inspection target on the side away from the light source unit when observed from the side of the inspection target, and when observed from above the inspection target. And a foreign matter inspection device positioned so as to form an acute angle of inclination with the optical axis on the side away from the light source unit.
  2.  前記光源部から照射されるコヒーレント光は、前記検査対象の端部を照明する
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein the coherent light emitted from the light source unit illuminates an end of the inspection target.
  3.  前記仰角は、5度以上、50度以下である
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein the elevation angle is 5 degrees or more and 50 degrees or less.
  4.  前記傾斜角の絶対値は、10度以上、50度以下である
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein an absolute value of the inclination angle is 10 degrees or more and 50 degrees or less.
  5.  前記光源部は、前記コヒーレント光を前記検査対象側に傾ける見下ろし角を有するように配置されている
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein the light source unit is arranged so as to have a gaze angle that inclines the coherent light toward the inspection target side.
  6.  前記見下ろし角は、10度以下である
     請求項5に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 5, wherein the gaze angle is 10 degrees or less.
  7.  前記検査対象には、微細パターンが形成されている
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein a fine pattern is formed on the inspection target.
  8.  前記検査対象が配置される台座と、
     前記検査対象を前記台座の上方から、配置する搬送部を備える
     請求項1に記載の異物検査装置。
    A pedestal on which the inspection target is placed,
    The foreign matter inspection apparatus according to claim 1, further comprising a conveyance unit that arranges the inspection target from above the pedestal.
  9.  前記光源部と、前記撮像部は、測定ユニットに固定されている
     請求項1に記載の異物検査装置。
    The foreign matter inspection apparatus according to claim 1, wherein the light source unit and the imaging unit are fixed to a measurement unit.
  10.  検査対象の表面に付着した異物を撮像部で撮像して検査する異物検査方法であって、
     前記検査対象の側方から、前記検査対象の表面に光源部からのコヒーレント光を照射し、
     前記撮像部の撮像軸は、前記検査対象の側方から観察したときに、前記光源部から離れた側における前記検査対象の表面と鋭角の仰角を形成し、前記検査対象の上方から観察したときに、前記光源部から離れた側の光軸と鋭角の傾斜角を形成するように位置し、
     前記撮像部で撮影された画像に基づいて異物を検出する
     異物検査方法。
    A foreign matter inspection method for inspecting a foreign matter adhered to a surface of an inspection target by imaging the foreign matter with an imaging unit,
    From the side of the inspection target, irradiating the surface of the inspection target with coherent light from a light source unit,
    The imaging axis of the imaging unit forms an acute elevation angle with the surface of the inspection target on the side away from the light source unit when observed from the side of the inspection target, and when observed from above the inspection target. Is positioned so as to form an acute angle of inclination with the optical axis on the side away from the light source unit,
    A foreign matter inspection method for detecting a foreign matter based on an image captured by the imaging unit.
PCT/JP2019/006548 2019-02-21 2019-02-21 Foreign matter inspection device and foreign matter inspection method WO2020170389A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020550189A JP7125576B2 (en) 2019-02-21 2019-02-21 Foreign matter inspection device and foreign matter inspection method
PCT/JP2019/006548 WO2020170389A1 (en) 2019-02-21 2019-02-21 Foreign matter inspection device and foreign matter inspection method
CN201980061509.8A CN113490844A (en) 2019-02-21 2019-02-21 Foreign matter inspection device and foreign matter inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006548 WO2020170389A1 (en) 2019-02-21 2019-02-21 Foreign matter inspection device and foreign matter inspection method

Publications (1)

Publication Number Publication Date
WO2020170389A1 true WO2020170389A1 (en) 2020-08-27

Family

ID=72143558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006548 WO2020170389A1 (en) 2019-02-21 2019-02-21 Foreign matter inspection device and foreign matter inspection method

Country Status (3)

Country Link
JP (1) JP7125576B2 (en)
CN (1) CN113490844A (en)
WO (1) WO2020170389A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009490A1 (en) * 2020-07-07 2022-01-13 コニカミノルタ株式会社 Inspection device
EP4043870A1 (en) * 2021-02-16 2022-08-17 sun-X GmbH Device and method for determining the degree of soiling of a surface of a solar module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067845A (en) * 1983-09-26 1985-04-18 Nippon Kogaku Kk <Nikon> Foreign matter inspecting device
JPH08292021A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Foreign substance inspection device
JP2007119115A (en) * 2005-10-25 2007-05-17 Shimadzu Corp Tft array inspection device
JP2009238992A (en) * 2008-03-27 2009-10-15 Tokyo Electron Ltd Method for classifying defects, program, computer storage medium, and device for classifying defects
US20120044346A1 (en) * 2010-08-23 2012-02-23 Yen-Chun Chou Apparatus and method for inspecting internal defect of substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516849C (en) * 2005-12-08 2009-07-22 群康科技(深圳)有限公司 Film defect checking method
JP5639169B2 (en) * 2009-07-22 2014-12-10 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Dark field inspection system and method for configuring dark field inspection system
DE102012002174B4 (en) * 2012-02-07 2014-05-15 Schott Ag Apparatus and method for detecting defects within the volume of a transparent pane and using the apparatus
JP2014038045A (en) 2012-08-17 2014-02-27 Sony Corp Inspection device, illumination, inspection method, program and substrate producing method
DE102014102543A1 (en) * 2014-02-26 2015-08-27 Krones Ag Apparatus and method for inspecting containers
CH711104A2 (en) * 2015-05-18 2016-11-30 Finatec Holding Ag Test method and test system for testing workpieces.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067845A (en) * 1983-09-26 1985-04-18 Nippon Kogaku Kk <Nikon> Foreign matter inspecting device
JPH08292021A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Foreign substance inspection device
JP2007119115A (en) * 2005-10-25 2007-05-17 Shimadzu Corp Tft array inspection device
JP2009238992A (en) * 2008-03-27 2009-10-15 Tokyo Electron Ltd Method for classifying defects, program, computer storage medium, and device for classifying defects
US20120044346A1 (en) * 2010-08-23 2012-02-23 Yen-Chun Chou Apparatus and method for inspecting internal defect of substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009490A1 (en) * 2020-07-07 2022-01-13 コニカミノルタ株式会社 Inspection device
EP4043870A1 (en) * 2021-02-16 2022-08-17 sun-X GmbH Device and method for determining the degree of soiling of a surface of a solar module

Also Published As

Publication number Publication date
CN113490844A (en) 2021-10-08
JPWO2020170389A1 (en) 2021-03-11
JP7125576B2 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
KR101735403B1 (en) Inspection method, templet substrate and focus offset method
JP5909751B2 (en) Flat glass foreign matter inspection apparatus and inspection method
TWI648534B (en) Inspection method for back surface of epitaxial wafer, inspection device for back surface of epitaxial wafer, lift pin management method for epitaxial growth device, and manufacturing method for epitaxial wafer
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
WO2020170389A1 (en) Foreign matter inspection device and foreign matter inspection method
JP3482425B2 (en) Inspection device
KR20180136421A (en) System and method for defect detection
JP2001209798A (en) Method and device for inspecting outward appearance
JPS63165738A (en) Flaw inspection apparatus for transparent substrate
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP7011348B2 (en) Foreign matter inspection device and foreign matter inspection method
JP3078784B2 (en) Defect inspection equipment
JP2001124538A (en) Method and device for detecting defect in surface of object
JPH08271436A (en) Inspection equipment for color filter substrate
JP3102850B2 (en) Crystal blank scratch inspection equipment
KR101198406B1 (en) Pattern inspection device
JP2006244869A (en) Plasma display panel inspection device, manufacturing method of plasma display panel, and device inspection method
KR0183713B1 (en) Apparatus for detecting the fault of crt panel
JP6980241B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2000028535A (en) Defect inspecting device
JPH085573A (en) Method and apparatus for inspecting work surface
KR20150026527A (en) System for detecting foreing material of part surface and method for exclding foreing material of part surface using it
JP2002014058A (en) Method and apparatus for checking
TWI819285B (en) Inspection device of transmission optical system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020550189

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916013

Country of ref document: EP

Kind code of ref document: A1