JP2007083877A - 蓄冷装置付き空調装置 - Google Patents
蓄冷装置付き空調装置 Download PDFInfo
- Publication number
- JP2007083877A JP2007083877A JP2005275183A JP2005275183A JP2007083877A JP 2007083877 A JP2007083877 A JP 2007083877A JP 2005275183 A JP2005275183 A JP 2005275183A JP 2005275183 A JP2005275183 A JP 2005275183A JP 2007083877 A JP2007083877 A JP 2007083877A
- Authority
- JP
- Japan
- Prior art keywords
- air
- air conditioning
- cold storage
- refrigerant
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】蓄冷能力を維持しながら、デフロスト運転時における空調フィーリングの悪化を抑制できる蓄冷装置付き空調装置を提供すること。
【解決手段】冷凍サイクル中に空調用エバポレータ4と蓄冷用冷却コイル8とを並列に設け、空調用エバポレータ4及び蓄冷用冷却コイル8の入口側にそれぞれ設けた空調電磁弁7及び蓄冷電磁弁11を所定時間交互に開閉制御して運転するとともに、空調用エバポレータ4にフロストサーモ13を設け、フロストサーモ13が所定値以下の低温を検出した場合にコンプレッサ1の運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、所定値にコンプレッサ1の停止防止域を加えて嵩上げした閾値を設定し、フロストサーモ13が閾値を検出した時点で蓄冷用冷却コイル8側の蓄冷電磁弁11を開いたままコンプレッサ1の運転を継続する。
【選択図】図1
【解決手段】冷凍サイクル中に空調用エバポレータ4と蓄冷用冷却コイル8とを並列に設け、空調用エバポレータ4及び蓄冷用冷却コイル8の入口側にそれぞれ設けた空調電磁弁7及び蓄冷電磁弁11を所定時間交互に開閉制御して運転するとともに、空調用エバポレータ4にフロストサーモ13を設け、フロストサーモ13が所定値以下の低温を検出した場合にコンプレッサ1の運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、所定値にコンプレッサ1の停止防止域を加えて嵩上げした閾値を設定し、フロストサーモ13が閾値を検出した時点で蓄冷用冷却コイル8側の蓄冷電磁弁11を開いたままコンプレッサ1の運転を継続する。
【選択図】図1
Description
本発明は、車両用の空気調和装置に適用される蓄冷装置付き空調装置に関する。
従来より、たとえばトラックのキャビン用空調装置として、蓄冷装置付きの冷凍サイクル(冷媒回路)を備えた蓄冷装置付き空調装置が知られている。この空調装置では、たとえば運転手が仮眠する場合などエンジンを停止した状態でキャビン内の冷房が可能となるように、車両走行中に冷熱を蓄熱するための蓄冷用冷却コイルを備えている。
蓄冷用冷却コイルは、冷凍サイクル中において、エンジンが駆動される車両走行中等にキャビン内の空調に使用される空調用エバポレータと並列に設置され、エンジンで駆動されるコンプレッサから交互に冷媒の供給を受けて蓄冷材に蓄冷するものである。
蓄冷用冷却コイルは、冷凍サイクル中において、エンジンが駆動される車両走行中等にキャビン内の空調に使用される空調用エバポレータと並列に設置され、エンジンで駆動されるコンプレッサから交互に冷媒の供給を受けて蓄冷材に蓄冷するものである。
空調用エバポレータまたは蓄冷用コイルに供給する冷媒は、それぞれの上流側に設置した電磁弁を開閉制御することにより行われる。具体的に説明すると、空調用エバポレータ側に所定時間(たとえば45秒)冷媒を流して空調(冷房)した後、電磁弁の開閉状態を切り換えることにより、蓄冷用コイル側に所定時間(たとえば15秒)冷媒を流して蓄冷するという運転が交互に繰り返される。このような蓄冷装置付き空調装置には、高車速時や軽負荷時において空調用エバポレータが凍結するのを防止する目的でフロストサーモが設けられており、このフロストサーモが所定の低温を検出して作動するとコンプレッサの運転を停止し、空調用エバポレータへの冷媒供給を停止するというデフロスト運転が行われるようになっている。
しかし、このような空調及び蓄冷の切換では、高車速時や軽負荷時にフロストサーモが作動してデフロスト運転が行われると、運転モードに係わらずコンプレッサの運転が停止される。このため、蓄冷運転の順番になってもコンプレッサが停止して冷媒の供給を受けることができなくなるので、蓄冷運転の実施時間が短くなって冷熱の蓄熱量を減少させ、蓄冷用冷却コイルの冷却能力を十分に確保できなくなるという問題が生じてくる。
このような問題を解決するため、空調用エバポレータにフロストサーモを設け、このフロストサーモが空調用エバポレータのフロストを検知した場合には、空調用エバポレータの入口側に設置された電磁弁を閉成すると共に、蓄冷用冷却コイルの入口側に設置された電磁開閉弁を開成する手段を備えた蓄冷装置付き空調装置が提案されている。このような蓄冷装置付き空調装置は、フロストサーモが作動してデフロスト運転を行ってもコンプレッサを停止させることはなく、しかも、空調用エバポレータへの冷媒の流入を止めて蓄冷用冷却コイルへ冷媒を導入するため、蓄冷用コイルの蓄冷能力を減少させない。(たとえば、特許文献1参照)
特開平10−129244号公報(図2参照)
このような問題を解決するため、空調用エバポレータにフロストサーモを設け、このフロストサーモが空調用エバポレータのフロストを検知した場合には、空調用エバポレータの入口側に設置された電磁弁を閉成すると共に、蓄冷用冷却コイルの入口側に設置された電磁開閉弁を開成する手段を備えた蓄冷装置付き空調装置が提案されている。このような蓄冷装置付き空調装置は、フロストサーモが作動してデフロスト運転を行ってもコンプレッサを停止させることはなく、しかも、空調用エバポレータへの冷媒の流入を止めて蓄冷用冷却コイルへ冷媒を導入するため、蓄冷用コイルの蓄冷能力を減少させない。(たとえば、特許文献1参照)
しかしながら、上述した特許文献1の従来技術によれば、フロストサーモが作動してデフロスト運転を行う場合には、蓄冷運転モードのままでコンプレッサは常に運転されている。このため、空調用エバポレータのフロストを防止するために蓄冷運転の時間が短縮されるという問題は解消される反面、デフロスト運転が終了するまでキャビン内を冷房する空調運転は行われないこととなる。このため、キャビン内の空調フィーリングが悪化し、キャビン内の快適性に問題が生じてくる。
このような背景から、デフロスト運転による蓄冷時間の低下を防止するとともに、デフロスト運転による空調フィーリングの悪化を最小限に抑制し、蓄冷運転とデフロスト運転とを両立させることができる蓄冷装置付き空調装置の開発が望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、蓄冷能力を維持しながら、デフロスト運転時における空調フィーリングの悪化を抑制できる蓄冷装置付き空調装置を提供することにある。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、蓄冷能力を維持しながら、デフロスト運転時における空調フィーリングの悪化を抑制できる蓄冷装置付き空調装置を提供することにある。
本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明は、冷凍サイクル中に空調用エバポレータと蓄冷用冷却コイルとを並列に設け、前記空調用エバポレータ及び前記蓄冷用冷却コイルの入口側にそれぞれ設けた開閉手段を所定時間交互に開閉制御して運転するとともに、前記空調用エバポレータにフロスト検知手段を設け、該フロスト検知手段が所定値以下の低温を検出した場合にコンプレッサの運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、
前記所定値に前記コンプレッサの停止防止域を加えて嵩上げした閾値を設定し、前記フロスト検知手段が前記閾値を検出した時点で前記蓄冷用冷却コイル側の開閉手段を開いたまま前記コンプレッサの運転を継続することを特徴とするものである。
本発明は、冷凍サイクル中に空調用エバポレータと蓄冷用冷却コイルとを並列に設け、前記空調用エバポレータ及び前記蓄冷用冷却コイルの入口側にそれぞれ設けた開閉手段を所定時間交互に開閉制御して運転するとともに、前記空調用エバポレータにフロスト検知手段を設け、該フロスト検知手段が所定値以下の低温を検出した場合にコンプレッサの運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、
前記所定値に前記コンプレッサの停止防止域を加えて嵩上げした閾値を設定し、前記フロスト検知手段が前記閾値を検出した時点で前記蓄冷用冷却コイル側の開閉手段を開いたまま前記コンプレッサの運転を継続することを特徴とするものである。
このような蓄冷装置付き空調装置によれば、所定値にコンプレッサの停止防止域を加えて嵩上げした閾値を設定し、フロスト検知手段が閾値を検出した時点で蓄冷用冷却コイル側の開閉手段を開いたままコンプレッサの運転を継続するので、空調用エバポレータがフロストするより若干高い温度に設定された閾値まで温度低下した時点で、コンプレッサの運転を継続しながら空調用エバポレータ及び蓄冷用冷却コイルの両方、あるいは蓄冷用冷却コイルのみに冷媒を流すデフロスト運転が交互に行われる。すなわち、空調用エバポレータの入口側に設けた開閉手段は従来通り所定時間交互に開閉するので、開閉手段が閉の状態では、従来と同様に空調用エバポレータに冷媒が供給されることはなく、開閉手段が開の状態では、蓄冷用冷却コイルに流れる冷媒量分だけ減少した冷媒が空調用エバポレータに供給される。
上述した本発明によれば、所定値にコンプレッサの停止防止域を加えて嵩上げした閾値を設定し、フロスト検知手段が閾値を検出した時点で蓄冷用冷却コイル側の開閉手段を開いてコンプレッサの運転を継続するので、空調用エバポレータがフロストするより若干高い温度に設定された閾値まで温度低下した時点で、コンプレッサの運転を継続しながら空調用エバポレータ及び蓄冷用冷却コイルの両方、あるいは蓄冷用冷却コイルのみに冷媒を流すデフロスト運転が交互に行われる。すなわち、空調用エバポレータの入口側に設けた開閉手段は従来通り所定時間交互に開閉するので、開閉手段が閉の状態では、従来と同様に空調用エバポレータに冷媒が供給されることはなく、開閉手段が開の状態では、蓄冷用冷却コイルに流れる冷媒量分だけ減少した冷媒が空調用エバポレータに供給され、この結果、コンプレッサの運転を継続しながら、蓄冷用冷却コイルのみに冷媒を流すデフロスト運転と空調用エバポレータ及び蓄冷用冷却コイルの両方に冷媒を流すデフロスト運転とが交互に行われる。
そして、空調用エバポレータ及び蓄冷用冷却コイルの両方に冷媒を流すデフロスト運転では、空調用エバポレータに供給される冷媒量が減少してフロストの進行が停止され、しかも、空調用エバポレータに着いた霜を解かしながらの空調運転を実施できる。
一方、蓄冷用冷却コイルにおいては、デフロスト運転が実施されても蓄冷運転時にコンプレッサを停止して冷媒の供給が停止されることはなく、従って、蓄冷がデフロスト運転の影響を受けることはなく、しかも、デフロスト運転時には、空調用エバポレータと同時に冷媒の供給を受けて蓄冷できるため、蓄冷能力が減少しない。
このように、デフロスト運転時の蓄冷能力を減少させないとともに、デフロスト運転時における空調フィーリングの低下を最小限に抑制した蓄冷装置付き空調装置を提供できるという顕著な効果が得られる。
一方、蓄冷用冷却コイルにおいては、デフロスト運転が実施されても蓄冷運転時にコンプレッサを停止して冷媒の供給が停止されることはなく、従って、蓄冷がデフロスト運転の影響を受けることはなく、しかも、デフロスト運転時には、空調用エバポレータと同時に冷媒の供給を受けて蓄冷できるため、蓄冷能力が減少しない。
このように、デフロスト運転時の蓄冷能力を減少させないとともに、デフロスト運転時における空調フィーリングの低下を最小限に抑制した蓄冷装置付き空調装置を提供できるという顕著な効果が得られる。
以下、本発明に係る蓄冷装置付き空調装置の一実施形態を、図面に基いて具体的に説明する。
図1に示す冷媒回路図は、主として車両用空調装置に適用されるものであり、たとえばトラック等の車両に装備される蓄冷装置付き空調装置に採用されている。図1において、1はコンプレッサ、2はコンデンサ、3はレシーバ、4は空調用エバポレータ、5は感温筒6を備えた温度式の膨張弁(以下、「空調用膨張弁」ともいう)、7は空調電磁弁、8は蓄冷用冷却コイル、9は感温筒10を備えた温度式の膨張弁(以下、「蓄冷用膨張弁」ともいう)、11は蓄冷電磁弁、12は逆止弁、13は空調用エバポレータの温度を検知し作動するフロストサーモ、14は装置全体の制御装置である。
図1に示す冷媒回路図は、主として車両用空調装置に適用されるものであり、たとえばトラック等の車両に装備される蓄冷装置付き空調装置に採用されている。図1において、1はコンプレッサ、2はコンデンサ、3はレシーバ、4は空調用エバポレータ、5は感温筒6を備えた温度式の膨張弁(以下、「空調用膨張弁」ともいう)、7は空調電磁弁、8は蓄冷用冷却コイル、9は感温筒10を備えた温度式の膨張弁(以下、「蓄冷用膨張弁」ともいう)、11は蓄冷電磁弁、12は逆止弁、13は空調用エバポレータの温度を検知し作動するフロストサーモ、14は装置全体の制御装置である。
上記の各要素から構成される蓄冷装置付き空調装置において、冷媒回路中に並列に配置された空調用エバポレータ4及び蓄冷用冷却コイル8には、各々の冷媒配管上流側に空調電磁弁7及び畜冷電磁弁11が設けられている。制御装置14は、空調電磁弁7または蓄冷電磁弁11に対して交互に通電することで開閉制御し、空調用エバポレータ4と蓄冷用冷却コイル8とに冷媒を交互に流す。この場合、空調用エバポレータ4の運転時間及び蓄冷用冷却コイル8の運転時間は、たとえば所定の時間比(空調運転時間t1:蓄冷運転時間t2)となるように設定され、この時間比に基づいて制御装置14が空調電磁弁7及び蓄冷電磁弁11の開閉を制御する。
なお、上述した運転時間t1,t2の一例をあげると、たとえば空調用エバポレータ4に冷媒を流す空調運転時間t1を45秒とし、蓄冷用冷却コイル8に冷媒を流す蓄冷運転時間t2を20秒とする。
なお、上述した運転時間t1,t2の一例をあげると、たとえば空調用エバポレータ4に冷媒を流す空調運転時間t1を45秒とし、蓄冷用冷却コイル8に冷媒を流す蓄冷運転時間t2を20秒とする。
図2及び図3は、蓄冷装置付き空調装置の運転パターン例を示す図である。なお、図中の破線表示は、デフロスト運転時において、運転モードに係わらずコンプレッサ1の運転を停止する従来の運転パターン例を示している。
図2に示す第1の運転パターン例において、空調電磁弁7及び蓄冷電磁弁11は、コンプレッサ1の運転を継続しながら運転時間t1,t2の順で交互に導通及び閉止を繰り返すことで運転モードを切り換えており、空調電磁弁7に導通した時には、空調電磁弁7が開いて空調用エバポレータ4にコンプレッサ1から冷媒の供給を受ける空調運転モードとなる。このとき、蓄冷用電磁弁11は閉止されているので、蓄冷用電磁弁11が閉じて蓄冷用コイル8への冷媒供給は行われない。
一方、空調電磁弁7の導通を閉止した時には、空調用電磁弁7が閉じて空調用エバポレータ4への冷媒供給は停止される。このとき、蓄冷用電磁弁11に導通されて開となるので、冷媒は蓄冷用冷却コイル8に供給される蓄冷運転モードとなる。
なお、空調用エバポレータ4及び蓄冷用コイル8に供給される冷媒は、膨張弁5,9で減圧された液冷媒である。
図2に示す第1の運転パターン例において、空調電磁弁7及び蓄冷電磁弁11は、コンプレッサ1の運転を継続しながら運転時間t1,t2の順で交互に導通及び閉止を繰り返すことで運転モードを切り換えており、空調電磁弁7に導通した時には、空調電磁弁7が開いて空調用エバポレータ4にコンプレッサ1から冷媒の供給を受ける空調運転モードとなる。このとき、蓄冷用電磁弁11は閉止されているので、蓄冷用電磁弁11が閉じて蓄冷用コイル8への冷媒供給は行われない。
一方、空調電磁弁7の導通を閉止した時には、空調用電磁弁7が閉じて空調用エバポレータ4への冷媒供給は停止される。このとき、蓄冷用電磁弁11に導通されて開となるので、冷媒は蓄冷用冷却コイル8に供給される蓄冷運転モードとなる。
なお、空調用エバポレータ4及び蓄冷用コイル8に供給される冷媒は、膨張弁5,9で減圧された液冷媒である。
空調用エバポレータ4に液冷媒が供給される空調運転モード時には、液冷媒が車室内の空気から吸熱して気化するので、車室内の冷房運転が可能となる。また、蓄冷用コイル8に液冷媒が供給される蓄冷運転モード時には、液冷媒が水等の蓄冷材から吸熱して気化するので、蓄冷材を凍らせることにより冷熱が蓄熱される。
このような空調運転モード及び蓄冷運転モードにおいて、デフロスト運転を実施する温度の閾値T2が設定されている。この閾値T2は、従来の制御でデフロスト運転を開始する所定温度T1に、すなわち、デフロスト運転が必要となる空調用エバポレータ4の温度(たとえば0℃)にコンプレッサ1の停止防止域αを加えて嵩上げした値であり、閾値T2は所定温度T1より若干高い温度となる。なお、上述した所定値T1及び閾値T2は、空調用エバポレータ4の適所に設けたフロストサーモ13で検出される温度であり、その検出位置に応じて適宜補正される。
このような空調運転モード及び蓄冷運転モードにおいて、デフロスト運転を実施する温度の閾値T2が設定されている。この閾値T2は、従来の制御でデフロスト運転を開始する所定温度T1に、すなわち、デフロスト運転が必要となる空調用エバポレータ4の温度(たとえば0℃)にコンプレッサ1の停止防止域αを加えて嵩上げした値であり、閾値T2は所定温度T1より若干高い温度となる。なお、上述した所定値T1及び閾値T2は、空調用エバポレータ4の適所に設けたフロストサーモ13で検出される温度であり、その検出位置に応じて適宜補正される。
ここで、所定温度T1及び閾値T2の一例を示す。
フロストサーモ13を空調用エバポレータ4の後流側に設置した空気温度センサとした場合、所定温度T1を5℃に設定すると、空気温度センサの公差(たとえば±0.5℃)を考慮した閾値T2は5.6℃となる。すなわち、5.6℃に設定された閾値T2は、所定温度T1に0.1℃の停止防止域αを加えて嵩上げし、さらに、公差0.5℃を加えた値である。このような閾値T2は、停止防止域αの値など諸条件に応じて適宜設定すればよい。また、上述した停止防止域αは、実際のフロスト温度との差を小さくしてデフロスト運転を最小にするため、できるだけ小さな値に設定することが好ましい。
フロストサーモ13を空調用エバポレータ4の後流側に設置した空気温度センサとした場合、所定温度T1を5℃に設定すると、空気温度センサの公差(たとえば±0.5℃)を考慮した閾値T2は5.6℃となる。すなわち、5.6℃に設定された閾値T2は、所定温度T1に0.1℃の停止防止域αを加えて嵩上げし、さらに、公差0.5℃を加えた値である。このような閾値T2は、停止防止域αの値など諸条件に応じて適宜設定すればよい。また、上述した停止防止域αは、実際のフロスト温度との差を小さくしてデフロスト運転を最小にするため、できるだけ小さな値に設定することが好ましい。
このように設定された閾値T2をフロストサーモ13が検出すると、図2に示す空調運転モード時には、コンプレッサ1をONに維持したまま、閉状態にある蓄冷用冷却コイル8を開としてデフロスト運転が開始される。この結果、コンプレッサ1から吐出された冷媒は、いずれも開状態にある空調電磁弁7及び蓄冷電磁弁11を通り、空調用エバポレータ4及び蓄冷用冷却コイル8の両方に供給される。なお、このようなデフロスト運転は、サーモ温度が復帰温度T3まで上昇した時点で終了する。
図示の例では、空調運転モードの途中でサーモ温度が閾値T2まで低下しており、この閾値T2でデフロスト運転を開始してからサーモ温度が復帰温度T3に上昇してデフロスト運転を終了するまでの間、各々1回ずつ運転時間t1の空調運転及び運転時間t2の蓄冷運転の切換が行われ、さらに、蓄冷運転の途中で復帰温度T3に到達している。
従って、デフロスト運転中の蓄冷用冷却コイル8は、本来は空調運転モードの時間であるにもかかわらず、デフロスト運転開始から終了まで継続して冷媒の供給を受けた後、本来の蓄冷運転時間t2が経過するまで連続して冷熱を蓄熱することができる。
図示の例では、空調運転モードの途中でサーモ温度が閾値T2まで低下しており、この閾値T2でデフロスト運転を開始してからサーモ温度が復帰温度T3に上昇してデフロスト運転を終了するまでの間、各々1回ずつ運転時間t1の空調運転及び運転時間t2の蓄冷運転の切換が行われ、さらに、蓄冷運転の途中で復帰温度T3に到達している。
従って、デフロスト運転中の蓄冷用冷却コイル8は、本来は空調運転モードの時間であるにもかかわらず、デフロスト運転開始から終了まで継続して冷媒の供給を受けた後、本来の蓄冷運転時間t2が経過するまで連続して冷熱を蓄熱することができる。
また、デフロスト運転中の空調用エバポレータ4では、本来の空調運転モード時において、蓄冷用冷却コイル8にも冷媒が流れる分だけ冷媒供給量が減少する。このため、吸熱能力の低下により空調用エバポレータ8への着霜が停止されるとともに、付着した霜が解け始める。このとき、冷媒量は減少しても供給が完全に止まらないので、通常の空調運転時と比較すれば冷却した空調空気の吹出温度が高くなるものの、空調フィーリングの低下は最小限に抑制される。
一方、デフロスト運転中に本来の蓄冷運転モードに切り換えられると、空調電磁弁7が閉じるため、空調用エバポレータ4に対する冷媒の供給は停止される。この結果、空調用エバポレータ4に付着した霜を解かすデフロスト能力は向上する反面、冷媒との熱交換がなくなったため空調吹出温度は上昇する。
しかし、このような空調吹出温度の上昇は、図2(5)に示すように、デフロスト運転時にコンプレッサ1を停止して冷媒を全く流さない破線表示の場合と比較すれば、空調用エバポレータ4に冷媒が供給されない時間はt2とかなり短くなるので、温度上昇率を同じにすればΔTだけ低くなる温度差が生じることとなる。すなわち、この温度差ΔTの分だけ空調吹出温度を低くできるので、本来は蓄冷運転モード時である場合においても、冷房運転の空調フィーリングが低下するのを抑制することができる。
なお、デフロスト運転中におけるフロストサーモ温度の上昇率は、空調用エバポレータ4に冷媒が全く流れない蓄冷運転モードの運転時間t1で大きくなるため、温度上昇の傾斜は空調運転時の運転時間t1よりも急になる。
しかし、このような空調吹出温度の上昇は、図2(5)に示すように、デフロスト運転時にコンプレッサ1を停止して冷媒を全く流さない破線表示の場合と比較すれば、空調用エバポレータ4に冷媒が供給されない時間はt2とかなり短くなるので、温度上昇率を同じにすればΔTだけ低くなる温度差が生じることとなる。すなわち、この温度差ΔTの分だけ空調吹出温度を低くできるので、本来は蓄冷運転モード時である場合においても、冷房運転の空調フィーリングが低下するのを抑制することができる。
なお、デフロスト運転中におけるフロストサーモ温度の上昇率は、空調用エバポレータ4に冷媒が全く流れない蓄冷運転モードの運転時間t1で大きくなるため、温度上昇の傾斜は空調運転時の運転時間t1よりも急になる。
図3に示した第2の運転パターン例では、空調運転モードの途中でデフロスト運転が開始され、本来は空調運転モードとなる時間帯にデフロスト運転を終了する場合が示されている。
このような場合には、デフロスト運転が終了した時点で蓄冷電磁弁11を開から閉に切り換え、本来の空調運転モードを実施して空調用エバポレータ4のみに冷媒を流す。すなわち、空調用エバポレータ4及び蓄冷用エバポレータ8の両方に冷媒を流す運転から、空調用エバポレータ4のみに冷媒を流す本来の空調運転に戻す。
このような運転パターンにおいても、デフロスト運転中の蓄冷運転時間が長くなって蓄冷能力を向上させ、さらに、デフロスト運転中における空調運転時間には、冷媒量は減少するものの冷却が可能になるため空調フィーリングの低下を抑制することができる。
このような場合には、デフロスト運転が終了した時点で蓄冷電磁弁11を開から閉に切り換え、本来の空調運転モードを実施して空調用エバポレータ4のみに冷媒を流す。すなわち、空調用エバポレータ4及び蓄冷用エバポレータ8の両方に冷媒を流す運転から、空調用エバポレータ4のみに冷媒を流す本来の空調運転に戻す。
このような運転パターンにおいても、デフロスト運転中の蓄冷運転時間が長くなって蓄冷能力を向上させ、さらに、デフロスト運転中における空調運転時間には、冷媒量は減少するものの冷却が可能になるため空調フィーリングの低下を抑制することができる。
上述したように、本発明の蓄冷装置付き空調装置によれば、所定値T1にコンプレッサ1の停止防止域を加えて嵩上げした閾値T2を設定し、フロストサーモ13が閾値T2を検出した時点で蓄冷用冷却コイル8側の蓄冷電磁弁11を開いてコンプレッサ1の運転を継続するので、空調用エバポレータ4がフロストするより若干高い温度に設定された閾値T2まで温度低下した時点で、コンプレッサ1の運転を継続しながら空調用エバポレータ4及び蓄冷用冷却コイル8の両方、あるいは蓄冷用冷却コイル8のみに冷媒を流すデフロスト運転が交互に行われる。すなわち、空調用エバポレータ4の入口側に設けた空調電磁弁7は所定時間t1/t2ずつ交互に開閉するので、空調電磁弁7が閉の状態では、空調用エバポレータ4に冷媒が供給されることはなく、空調電磁弁7が開の状態では、蓄冷用冷却コイル8に流れる冷媒量分だけ減少した冷媒が空調用エバポレータ4に供給され、従って、コンプレッサ1の運転を継続しながら、蓄冷用冷却コイル8のみに冷媒を流すデフロスト運転と空調用エバポレータ4及び蓄冷用冷却コイル8の両方に冷媒を流すデフロスト運転とが交互に行われる。
そして、空調用エバポレータ4及び蓄冷用冷却コイル8の両方に冷媒を流すデフロスト運転では、空調用エバポレータ4に供給される冷媒量が減少してフロストの進行が停止され、しかも、空調用エバポレータ4に着いた霜を解かしながらの空調運転を実施できるので、空調フィーリングの低下を最小限に抑制することができる。
一方、蓄冷用冷却コイル8においては、デフロスト運転が実施されても蓄冷運転時にコンプレッサ1を停止して冷媒の供給が停止されることはなく、従って、デフロスト運転の影響を受けて蓄冷能力が低下するようなことはなく、しかも、デフロスト運転時には、空調用エバポレータ4と同時に冷媒の供給を受けて蓄冷できるため、蓄冷能力が向上するという効果が得られる。
このように、デフロスト運転時の蓄冷能力を向上させるとともに、デフロスト運転時における空調フィーリングの低下を最小限に抑制した蓄冷装置付き空調装置を提供することが可能になる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
一方、蓄冷用冷却コイル8においては、デフロスト運転が実施されても蓄冷運転時にコンプレッサ1を停止して冷媒の供給が停止されることはなく、従って、デフロスト運転の影響を受けて蓄冷能力が低下するようなことはなく、しかも、デフロスト運転時には、空調用エバポレータ4と同時に冷媒の供給を受けて蓄冷できるため、蓄冷能力が向上するという効果が得られる。
このように、デフロスト運転時の蓄冷能力を向上させるとともに、デフロスト運転時における空調フィーリングの低下を最小限に抑制した蓄冷装置付き空調装置を提供することが可能になる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
1 コンプレッサ
2 コンデンサ
4 空調用エバポレータ
5,9 膨張弁
7 空調電磁弁
8 蓄冷用冷却コイル
11 蓄冷電磁弁
13 フロストサーモ
14 制御装置
2 コンデンサ
4 空調用エバポレータ
5,9 膨張弁
7 空調電磁弁
8 蓄冷用冷却コイル
11 蓄冷電磁弁
13 フロストサーモ
14 制御装置
Claims (1)
- 冷凍サイクル中に空調用エバポレータと蓄冷用冷却コイルとを並列に設け、前記空調用エバポレータ及び前記蓄冷用冷却コイルの入口側にそれぞれ設けた開閉手段を所定時間交互に開閉制御して運転するとともに、前記空調用エバポレータにフロスト検知手段を設け、該フロスト検知手段が所定値以下の低温を検出した場合にコンプレッサの運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、
前記所定値に前記コンプレッサの停止防止域を加えて嵩上げした閾値を設定し、前記フロスト検知手段が前記閾値を検出した時点で前記蓄冷用冷却コイル側の開閉手段を開いたまま前記コンプレッサの運転を継続することを特徴とする蓄冷装置付き空調装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005275183A JP2007083877A (ja) | 2005-09-22 | 2005-09-22 | 蓄冷装置付き空調装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005275183A JP2007083877A (ja) | 2005-09-22 | 2005-09-22 | 蓄冷装置付き空調装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007083877A true JP2007083877A (ja) | 2007-04-05 |
Family
ID=37971321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005275183A Withdrawn JP2007083877A (ja) | 2005-09-22 | 2005-09-22 | 蓄冷装置付き空調装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007083877A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009298390A (ja) * | 2008-06-17 | 2009-12-24 | Denso Corp | 車両用空調装置 |
CN107062671A (zh) * | 2016-12-21 | 2017-08-18 | 曙光节能技术(北京)股份有限公司 | 冷却系统 |
CN110962546A (zh) * | 2019-10-28 | 2020-04-07 | 宁波奥克斯电气股份有限公司 | 一种具有蓄冷功能的驻车空调器及其控制方法 |
-
2005
- 2005-09-22 JP JP2005275183A patent/JP2007083877A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009298390A (ja) * | 2008-06-17 | 2009-12-24 | Denso Corp | 車両用空調装置 |
CN107062671A (zh) * | 2016-12-21 | 2017-08-18 | 曙光节能技术(北京)股份有限公司 | 冷却系统 |
CN110962546A (zh) * | 2019-10-28 | 2020-04-07 | 宁波奥克斯电气股份有限公司 | 一种具有蓄冷功能的驻车空调器及其控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4174929B2 (ja) | 車両用空調装置 | |
JP4445264B2 (ja) | 自動車空調装置用暖房/冷房サイクル、空調装置、およびこの空調装置を制御するための方法 | |
JPH1053019A (ja) | 車両用空調装置 | |
JP5446524B2 (ja) | 車両用空調装置 | |
JP5287578B2 (ja) | 車両用空調装置 | |
JP5532095B2 (ja) | 車両用空調装置 | |
JP5423181B2 (ja) | 車両用空調装置 | |
JP2005249254A (ja) | 冷凍冷蔵庫 | |
US10012424B2 (en) | Refrigeration apparatus | |
JP5609803B2 (ja) | 冷凍サイクル装置 | |
JP5582080B2 (ja) | 蓄冷型空調装置 | |
JP4023458B2 (ja) | 熱交換器 | |
JP4023459B2 (ja) | 熱交換器 | |
JP2007083877A (ja) | 蓄冷装置付き空調装置 | |
JP2008081121A (ja) | 車両用空調装置 | |
JP2006273150A (ja) | 車載用空調装置 | |
JP2007071438A (ja) | 冷凍車用の冷凍サイクル装置 | |
JP4333586B2 (ja) | 冷凍サイクル装置およびその制御方法 | |
JP2010052478A (ja) | 車両用空気調和装置 | |
JP2002115954A (ja) | 冷蔵庫 | |
JPH10129244A (ja) | 蓄冷装置付き空調装置 | |
JP5054909B2 (ja) | 蓄冷装置付き空調装置 | |
JP2005180752A (ja) | 輸送用冷凍機及びその運転制御方法 | |
JP2006132800A (ja) | 冷凍サイクル装置 | |
KR101266435B1 (ko) | 차량용 공조장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |