JP2007079598A - カメラ付き携帯端末機器 - Google Patents

カメラ付き携帯端末機器 Download PDF

Info

Publication number
JP2007079598A
JP2007079598A JP2006299028A JP2006299028A JP2007079598A JP 2007079598 A JP2007079598 A JP 2007079598A JP 2006299028 A JP2006299028 A JP 2006299028A JP 2006299028 A JP2006299028 A JP 2006299028A JP 2007079598 A JP2007079598 A JP 2007079598A
Authority
JP
Japan
Prior art keywords
camera
acceleration
camera shake
output
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006299028A
Other languages
English (en)
Inventor
Yoshihiro Nishida
好宏 西田
Yasuyuki Hashizume
靖之 橋詰
Takeshi Tomimori
健史 冨森
Fumimitsu Ariyone
史光 有米
Nobuhiro Mikami
信弘 三上
Yoshito Hirai
義人 平井
Masaki Omi
雅紀 近江
Yoshinori Morita
佳憲 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006299028A priority Critical patent/JP2007079598A/ja
Publication of JP2007079598A publication Critical patent/JP2007079598A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

【課題】加速度検出手段の出力がノイズを多く含んでいる場合であっても、手ブレを精度よく検出し、手ブレによる画質低下を防止できるカメラ付き携帯電話を提供する。
【解決手段】加速度検出手段101は、筐体に加わる加速度成分及び筐体の回転成分(傾き)を検出する。手ブレ推定手段102は加速度検出手段の出力からノイズ成分を低減し、手ブレの発生を推定する。遅延量制御手段104は、シャッターレリーズ103から撮影開始指令が入力されると、手ブレ推定手段102の出力に基づいて、手ブレが収まるまで撮影開始指令を遅延して出力する。カメラモジュール105は、撮影開始指令が入力されると、光学レンズを通して結像された映像信号をメモリに保存する。
【選択図】図1

Description

本発明は、手ブレによる画質低下を防止するカメラ付き携帯電話に関するものである。
従来からカメラで特に手持ち撮影する場合には、カメラの保持姿勢が不安定であったり、被写体が暗いためにシャッター速度が遅かったりするときに、手ブレが発生しやすいという問題があった。
特にカメラ付き携帯電話のように小型化が優先される場合には、レンズの明るさ及び撮像素子の感度が充分に取れないというハード面の制約によりシャッター速度が遅くなってしまうという問題がある上に、小さく軽くなった分ユーザは片手で撮影することが多い等ソフト面の問題がさらに手ブレを発生しやすくしている。
このような手ブレを防止するために既に、手ブレにより撮影光軸のブレが生じたときに、そのブレの大きさをカメラに加わる角速度又は角加速度として検出し、この角速度又は角加速度に応じて補正レンズをブレの生じた方向と反対の方向に変位させて画像ブレの発生を防止するという着想のブレ補正装置が実現されている。
この技術の歴史はかなり古く、ニュース取材のヘリコプタに搭載された防振カメラや家庭用ムービーにも既に搭載されている。しかしながらこの装置は、補正レンズ等の駆動制御系を要するため、カメラの小型化の要求とは相容れない面があり、特にカメラ付き携帯電話に搭載するのは、大きさ、コストの両面において問題が大きい。
そこで特許文献1に開示された発明は、カメラに加わる角速度を検出する角速度検出手段を備え、この角速度検出手段によって検出される角速度が一定値以上のときはシャッター動作を不能とし、該角速度が一定値以下のとき又は一定値を越えた後一定値以下に至ったときにシャッター動作を可能とする構成となっている。このような構成にすることで、補正レンズを駆動する必要がないため、駆動制御系を省略することができる。
特許第2603871号公報
しかしながら、一般的に角速度検出手段は、耐衝撃性、小型化、低価格化の点において携帯端末機器に搭載することが困難であった。
本発明は、以上のような問題点に鑑みてなされたものであり、耐衝撃性、小型化、低価格化をクリアできる加速度検出手段を用いて、手ブレを精度よく検出し、手ブレを防止できるカメラ付き携帯端末機器を提供する。
この発明の主題は、カメラ付き携帯端末機器であって、携帯端末機器の筐体に加わる加速度を検出する加速度検出手段と、前記加速度検出手段の出力に対し、当該出力に含まれるノイズの影響を低減する処理を含む所定の処理を施すことによって手ブレを推定する手ブレ推定手段と、撮影開始指令を入力可能な入力手段と、前記入力手段に撮影開始指令が入力されると、前記手ブレ推定手段の出力に基づいて、前記カメラに前記撮影開始指令を遅延して出力する遅延量制御手段とを備え、前記加速度検出手段は、重力加速度を利用して前記携帯端末の筐体に加わる、当該筐体の並進の加速度成分と当該筐体の回転による回転成分を検出し、前記手ブレ推定手段は、手ブレ量に相当する角速度成分を算出することで手ブレを推定し、前記携帯端末の筐体を縦にして撮影する縦位置撮影で発生する前記回転成分と前記筐体を横にして撮影する横位置撮影で発生する前記回転成分が略同一の出力変化を示すように加速度検出手段を配したことを特徴とする。
以下、この発明の主題の様々な具体化を、添付図面を基に、その効果・利点と共に、詳述する。
本発明の主題によれば、遅延量制御手段において閾値等のパラメータを複数用意して、縦位置撮影と横位置撮影とで切り替える必要性を無くすることが出来る。
(実施の形態1)
図1は、本実施の形態に係るカメラ付き携帯電話(カメラ付き携帯端末機器)の構成を示すブロック図である。加速度センサ(加速度検出手段)101の出力が手ブレ推定手段102に入力されている。手ブレ推定手段102の出力が遅延量制御手段104に入力されている。そして、シャッターレリーズ103の出力が遅延量制御手段104に入力されている。遅延量制御手段104の出力がカメラモジュール105に入力されている。
加速度センサ101は、筐体に加わる加速度を検出し手ブレ推定手段102へ出力する。手ブレ推定手段102は、加速度センサ101の出力に含まれるノイズ成分を低減して手ブレの発生を推定し、遅延量制御手段104に出力する。
遅延量制御手段104は、ユーザが撮影開始を指令するシャッターレリーズ103からの撮影開始指令が入力されると、手ブレ推定手段102の出力に基づいて撮影開始指令をカメラモジュール105に出力するタイミングを制御する。そしてカメラモジュール105は、遅延量制御手段102からの撮影開始指令に基づいて撮影する。
加速度センサ101は、横方向に設置して加速度を検出する横方向加速度センサ101aと、縦方向に設置して加速度を検出する縦方向加速度センサ101bによって構成されている。ここで、横方向とは地表に対して水平な方向を指し、縦方向とは地表に対して垂直な方向を指している。
また、手ブレ推定手段102は、横方向加速度センサ101aの出力に基づいて手ブレを推測し、出力する横方向手ブレ推定手段102aと、縦方向加速度センサ101bの出力に基づいて手ブレを推測し、出力する縦方向手ブレ推定手段102bによって構成されている。ここで、加速度センサ101及び手ブレ推定手段102は一組でも複数組あってもよい。
次に、本実施の形態に用いる加速度センサ300について詳細に説明する。本実施の形態に係る加速度センサ300は、コリオリの力を利用した角加速度センサと異なり、可動部を持たないため、耐衝撃性が高いという特徴を備えている。
図2は、加速度センサ300の上面図を示している。加速度センサ300は、図中左右方向に生じる加速度と、上下方向に生じる加速度を検出する2軸の加速度センサを示している。ここで、一個の加速度センサ300を携帯電話に取付ける場合、加速度センサ300が図1で示した加速度センサ101に対応する。そして、図中左右方向の軸が横方向加速度センサ101aに対応し、図中上下方向の軸が縦方向加速度センサ101bに対応する。また二個の加速度センサ300を用いる場合には、二個の加速度センサ300が合わさって図1に示した加速度センサ101を構成する。そして、横方向に設置された加速度センサ300が横方向加速度センサ101aに対応し、縦方向に設置された加速度センサ300が縦方向加速度センサ101bに対応している。
シリコン基板(基板)301に、開口部305が設けられている。開口部305の略中央部にヒーター(加熱手段)303が配置されている。そしてヒーター303を上面からみて左右に挟むように二つの長方形状の温度センサ302が配置されている。さらにヒーター303を上面からみて上下に挟むように、二つの長方形状の温度センサ302が配置されている。
温度センサ302の一端は、開口部305の略中央部に配置される取付部307に接合されており、他端はシリコン基板301上に配置されている。そして取付部307の下面にヒーター303が接合されている。温度センサ302は、例えば熱電対で形成されており、信号を取り出すための出力端子306がそれぞれの温度センサ302の他端に設けられている。
図3は、図2のA1−A1線断面図に対応する図である。図3に示すように、シリコン基板301上は、樹脂309で覆われており、樹脂309内部には半球状の空洞部304が設けられている。空洞部304内には空気が閉じ込められている。なお、図2は図3のB1−B1線上面図に対応している。
次に、加速度センサ300の動作について図3を用いて説明する。加速度センサ300は、傾き(回転成分)及び平行移動の加速度(加速度成分)を検出することができる。
まず、空洞部304内に閉じ込められた空気をヒーター303で暖めると、暖められた空気は軽くなる。そして図中左方向に加速度がかかったときには、暖められた空気は左方向に移動する。逆に図中右方向に加速度がかかった場合には、暖められた空気は右方向に移動する。従って、加速度センサ300の左右の領域で温度分布に差が生じる。この温度分布の差を温度センサ302により検出することで、加速度の向きと大きさを検出することができる。
さらに、加速度センサ300にかかる重力加速度を利用して傾きを検出することができる。例えば、図3において右方向に傾くと、温められた空気は左方向に移動することになる。左右の温度分布を比較することにより、傾きを測定することができる。
次に、この加速度センサ300の検出出力について図4を用いて説明する。図4は、センサ面(シリコン面:シリコン基板301の表面)が水平に設置された加速度センサ300について、傾きに対する加速度センサ300の出力値を示した図である。
水平の状態では、加速度センサ300の左右で温度分布に差がないので出力はゼロである(点M)。右側に傾いていくと、徐々に温められた空気308が左側に移動して、左右の領域で温度分布に差が生じ、センサ出力は徐々に大きくなる(点N)。そして、垂直になると左右で最も温度分布の差が大きくなりセンサ出力は最も大きくなる。逆に、中心から左に徐々に傾いていくと負方向にセンサ出力値は徐々に大きくなる(点L)。以上から、加速度センサ300の傾斜角θに対して、加速度センサ300の出力値はsinθの関係になる。
同様に、図5のようにセンサ面(シリコン面)に対して重力が平行にかかるようにこの加速度センサ300を90度回転させて設置すると、加速度センサ300の傾斜角θに対して加速度センサ300の出力はcosθの関係になる。
図4,5からわかるように、同じ傾斜角θ(例えば点Nに対応する角度、点P)だけ傾けたときの、出力の変化S1はセンサ面を水平に設置したときの方が大きい。すなわち、水平に設置した場合、垂直に設置した場合に比べて少しの傾きで大きな出力を生じる。そのため、加速度センサ300の傾きに対する感度を高くするためには撮影時にシリコン面が水平になるように取り付け、逆に加速度センサ300の傾きに対する感度を低くするには撮影時にシリコン面が垂直になるように取り付けるのがよい。
加速度センサ300にかかる加速度成分が重力加速度のみであれば、原理的には傾きを微分することで回転方向の角速度が算出できることになる。しかし、一般にシャッターレリーズを操作する際に生じる振れ等の動きには加速度成分があるため回転成分と加速度成分が合わさって検出されることになる。そのため水平方向を向けて撮影する際に、加速度成分を支配的に検出したい場合には、前述したように、重力加速度方向と加速度センサ300の取り付け方向(加速度センサ300のシリコン面)を平行にすることによって、回転成分の検出は少なくして、加速度成分を支配的に検出することが可能である。
なお、加速度センサ300が検出する加速度成分と回転成分を合わせた量を単に「加速度」と称する場合がある。
次に、加速度センサ101の出力に基づいて手ブレを推定する手ブレ推定手段102の動作について図6〜8を用いて説明する。
図6は、加速度センサ101の出力について、一例を示す図である。縦軸は加速度センサ101からの出力の値(センサ出力値)を示し、横軸は時間を示している。ここで加速度センサ101からの入力は、連続的な値をとるが、手ブレ推定手段102は所定の微小時間ごとに加速度センサ101からの入力を得ている。そのため、図6のセンサ出力値は、時間に対して不連続に変化している。前述した通り、加速度センサ101の出力は、加速度センサ101の傾きと加速度センサ101にかかる加速度成分が合わさっている。そして、さらに熱雑音的なランダムなノイズ成分が存在している。図6は、センサ出力値−3を中心として、ノイズ成分のため、−2〜−4の間にセンサ出力値が揺らいでいる。例えば図6中にN1、N2で示した部分はランダムノイズを示しており、N1とN2の間では検出すべきセンサ出力の変化とランダムノイズの和を示している。
加速度センサ101の出力を時間について微分することで回転成分と加速度成分の変化率が検出できる。しかし、ランダムなノイズ成分が存在している場合、単純な微分ではノイズ成分を大きく含んでしまう。このようなノイズの影響を低減してセンサ出力値が大きく変化しているタイミングを判定するために、手ブレ推定手段102は、過去のセンサ出力値に基づいて以下の処理を行う。
まず、図7に示すように、過去n回のセンサ出力値(この例では5回)の移動平均値を算出する。これによりランダムなノイズ成分の影響を軽減した波形が得られるが、検出すべき波形の変化に遅れが生じるので、この波形のみでの判定では手ブレの発生時から遅れた検出となってしまう。そこで、図8のように現在のセンサ値との差分絶対値を算出する。このような処理をすることで、現在の出力値と、現在の出力値を含まない過去n回のセンサ出力値の平均値との差を得ることができる。すなわち、過去n回の平均値に対して現在の出力値がどれだけ変化しているかを算出することができる。ランダムなノイズ成分は平均値からの変化率が大きくないため、このような処理をすることでノイズ成分を低減することができる。
以上のように、手ブレ推定手段102は、ノイズ成分を低減することでセンサ出力値が大きく変化する手ブレを推定している。
ここで、手ブレ推定手段102が、横方向手ブレ推定手段102a、縦方向手ブレ推定手段102bによって構成されている場合には、それぞれ横方向手ブレ推定手段101a、縦方向手ブレ推定手段102bの出力から独立に算出する。
手ブレ推定手段102は、以上のように算出した差分絶対値を遅延量制御手段104に出力する。
なお、ノイズ成分を低減する方法の一例として移動平均との差分を算出する処理を示したが、過去のセンサ出力値に基づいてノイズ成分を低減できるものならどのような処理であってもよい。
次に図8に基づいて遅延量制御手段104の動作について説明する。なお、図8中に示された破線Rは、遅延量制御手段104に撮影開始指令が入力された時刻を示している。
遅延量制御手段104は、シャッターレリーズ103からの撮影開始指令が入力されると、手ブレ推定手段102から入力される差分絶対値を監視し、過去m回(この例では8回)の出力値に閾値s(この例では1.4)以上のときがあれば手ブレが発生しており、全て閾値未満になれば手ブレが収束したと推定する。例えば、図8の場合では、期間Dに手ブレが発生しており点Eのタイミングで手ブレが収束したと判定する。そして点Eのタイミングでカメラモジュール105に撮影開始指令を出力する。
すなわち、遅延量制御手段104は、撮影開始指令が入力されると、手ブレ推定手段102の出力に基づいて、手ブレが収束するまで撮影開始指令を遅延して出力する。
ここで、サンプリング回数mや閾値sは、想定した持ち方、スタイルで多くの人で多くの回数撮影を行うことでそのハードウエア(シャッターレリーズボタンと光学レンズの光軸と加速度センサの取り付け方向の関係)において適切なパラメータとして経験的に求めることが可能である。
図8の例では、値が3を超える最大値の後の0.5まで減少した時点でブレが収束したと誤判定することが無いように、サンプリング回数mを5以上にする必要がある。ブレの収束の誤判定を防ぐにはmは大きいほどよいが、撮影の遅延時間が長くなり撮影者の操作性を低下させることとなるため、誤判定の起きない最小値としてm=5とすることができる。
カメラモジュール105は、図示しない光学レンズ、撮像素子、信号処理回路、メモリ等から構成されている。そして撮影開始指令が入力されると、カメラモジュール105は、光学レンズを通して結像された映像信号を撮像素子から入力し、信号処理回路で一般的にJPEG等のフォーマットに映像信号を変換してメモリに保存する。
次に本実施の形態における加速度センサの取り付け方法について説明する。
まず、図9〜図16を用いて手ブレの種類とそれによって生じる像ブレ量の関係を説明する。図9は、以下の説明に用いる直交座標系の配置を説明するための図である。カメラ201内部の撮像素子(図示せず)の中心に直交座標系の原点を設定し、カメラの光軸をZ軸方向とする。カメラ201の水平方向をZ軸に直交するX軸方向とする。そしてカメラ201の垂直方向をX軸、Z軸に直交するY軸とする。
図10〜13はX軸方向、Y軸方向及びZ軸方向に平行な方向に手ブレが発生した場合に生じる像ブレ量の説明のための図である。図10は、手ブレがない状態を示している。L1は撮像レンズから被写体Oまでの距離、L2は撮像レンズから撮像素子までの距離を表す。
図11は、カメラ本体がX軸方向(水平方向)にxだけ平行に移動した場合を示す。撮像素子上における像ブレ量ΔxはΔx=x・L2/L1で表される。そのため、L1≫L2の場合、Δxは殆ど無視することができる。図12は、カメラ本体がY軸方向(垂直)にyだけ平行に移動した場合を示す。撮像素子上における像ブレ量Δyも同様にΔy=y・L2/L1で表される。そのため、L1≫L2の場合、Δyも同様に殆ど無視することができる。図13は、カメラがZ軸方向(光軸方向)にzだけ平行に移動した場合を示す。この場合、被写体Oまでの距離L1がL1+zに変化しぼけの原因となるが、L1≫L2の場合には、ぼけ及び像ブレ量の大きさも殆ど変化せず無視することができる。このように、平行な方向に発生した手ブレは、X軸方向、Y軸方向及びZ軸方向の全てにおいて像ブレ量を殆ど無視することができ、問題とはならない。
これに対し図14〜16はX軸、Y軸及びZ軸の回りに回転成分の手ブレが発生した場合に生じる像ブレ量を示している。図14は、カメラ201がX軸の回りに角度θxだけ回転した場合を示している。X軸の回りの回転は、撮像素子上ではY軸方向の像ブレを生じる。そして、像ブレ量ΔyはΔy=L2・Tanθxで表される。
図15は、カメラ201がY軸の回りに角度θyだけ回転した場合を示している。Y軸の回りの回転は、撮像素子上ではX軸方向の像ブレを生じる。そして、像ブレ量ΔxはΔx=L2・Tanθyで表される。図16は、カメラ201がZ軸の回りに角度θzだけ回転した場合を示している。この時、撮像素子上の像も角度θzだけ回転する。このように、X軸、Y軸及びZ軸回りの回転による像ブレは、撮像レンズから被写体Oまでの距離L1に関係なく直接像ブレに影響する。
これらのことから、手ブレ量を正確に検出して補正又は防止するためには、X軸、Y軸及びZ軸回りの回転量又は回転速度を検出する必要がある。一般的に、回転速度(角速度)については、コリオリの力を利用することで重力等筐体にかかる加速度に関係なく正確に検出することができる。そのため従来の技術では、よくコリオリの力を検出するための可動部を備えた角速度センサが用いられていた。
次に、カメラ付き携帯電話401の撮影時における構え方とそれぞれの構え方に対して撮影時に生じやすい手ブレについて説明する。
カメラ付き携帯電話401を用いて写真撮影する形態としては、図17のように二つ折り形状の筐体を開いて縦方向に構えて中央部の「ボタンA」を押して撮影するもの、または図18のように筐体を閉じて横方向に構えてサイド部の「ボタンB」を押して撮影するものが一般的である。一般には被写体に対して画角を決めボタンを押す際に、そのボタン操作に伴いカメラ付き携帯電話401の筐体の振動が発生する。
従って図17のように構えて撮影する場合には「ボタンA」を押すことにより、図14で説明したX軸の回りに回転する成分が大きく発生する。また、図18のように構えて撮影する場合には、「ボタンB」を押すことにより、図16で説明したZ軸の回りに回転する成分が大きく発生する。そして、その振動が収まっていない間に撮影すると撮影画像に像ブレが発生する。従って図9におけるX軸の回りとZ軸の回りの加速度成分を検出することでボタン押し下げ後の振動を検出することができる。
上記のように、カメラ撮影の場合には横方向に構えて被写体を横長で撮影するか、若しくは縦方向に構えて被写体を縦長で撮影するかの、横位置撮影と縦位置撮影とがある。そこで、一個の加速度センサ300を用いる場合、X軸方向(縦方向)とY軸方向(横方向)の加速度成分が検出できるように、XY平面に平行に加速度センサ300を取り付ける。言い換えると、加速度センサ300のシリコン基板301が垂直になるように取り付ける(図17参照)。ここで、加速度センサ300は、図1の加速度センサ101に対応するので、図17には加速度センサ101と図示している。
このように取り付けると、90度右側に回転した横位置撮影の場合(図18参照)には、X軸を縦方向、Y軸を横方向とすることで、縦位置撮影の場合と同様な出力を生じる。縦位置撮影、横位置撮影の何れであっても、加速度センサ300は同様な出力を生じるため、前述した遅延量制御手段104において閾値等のパラメータを複数用意して、縦位置撮影と横位置撮影とで切り替える必要が無くなる。ここで、加速度センサ300が図1に示した加速度センサ101に対応している。
また、二個の加速度センサ300を搭載する場合には、図19に示すように、一方の加速度センサ300を横方向加速度センサ101aとしてXZ平面に水平に取り付ける。すなわち、加速度センサ300のシリコン基板301が水平になるように取り付ける。そして他方の加速度センサ300を縦方向加速度センサ101bとしてYZ平面に水平に取り付ける。そして、縦位置撮影の場合(図20参照)には、横方向加速度センサ101aを縦方向加速度センサ101bとして、縦方向加速度センサ101bを横方向加速度センサ101aとする。このようにすることで、前述した一個の加速度センサと同様に、遅延量制御手段104での閾値等のパラメータを複数用意して、縦位置撮影と横位置撮影とで切り替える必要が無くなる。
さらに、一個の加速度センサ300を用いる場合には、回転成分の出力を大きくすることができない。例えば図17の場合、横方向成分は、X軸方向の加速度成分及びZ軸回り回転成分を大きく検出することができる。しかし、縦方向(Y軸)成分は、図5において示したように、重力加速度に対して水平になっているのでX軸回りの回転成分を大きく出力することができない。
複数の加速度センサ300を用いると、加速度センサ101a(図19参照)によりX軸回りの回転成分も大きく出力することができる。このように回転成分と加速度成分の両方を大きく出力することが可能となり、精度よく手ブレを検出することが可能となる。
次に以上のように構成されたカメラ付き携帯電話の動作について説明する。加速度センサ101は、筐体に加わる加速度成分及び回転成分を縦方向及び横方向について常に検出し、手ブレ推定手段102に出力し続けている。
手ブレ推定手段102は、センサ出力値が入力される各時点において、出力値が入力された時点を含まない過去のある時点までのセンサ出力値について平均値(移動平均値)を算出する。そして、各時点でのセンサ出力値と移動平均値との差を算出して、遅延量制御手段104に出力し続けている。
この状態でユーザが撮影開始ボタンを押すと、シャッターレリーズ103から撮影開始指令が遅延量制御手段104に入力される。遅延量入力手段104は、手ブレ推定手段102からの出力に基づいて、前述した手順に従って、手ブレが生じているか否かを判断する。そして、手ブレが収まったと判断した場合、カメラモジュール105に撮影開始指令を出力する。カメラモジュール105は、撮影開始指令が入力されると、光学レンズを通して結像された映像信号をメモリに保存する。
このようにして撮影された画像は、遅延量制御手段104において過去m回の判定が必要なため、シャッターレリーズ103が押されたタイミングから実際に撮影開始指令が出力されるまでに、少なくともm回のサンプリング時間が必要となる。例えば、1回のサンプリング周期が10msecでm=10とすると、100msecの遅延が発生する。そのため、シャッターチャンスが少なくとも0.1秒遅れることになるが手ブレのない撮影が実現できる。どうしてもシャッターチャンスが重要な場合には、この機能を切り、手ブレが生じないように筐体を固定したり、光量を充分にしてシャッター速度を高速化して撮影すればよい。
以上のように、本発明ではシャッターレリーズボタン押し下げによって生じる振動(加速度成分及び回転成分)を加速度センサ101で検出して振動が収まってから撮影する構成とした。そのためブレ補正装置のような補正機構を必要とせずブレを防止できるカメラ付き携帯電話システムを提供できる。
また、加速度センサ101に含まれるノイズ成分を手ブレ補正手段102で低減して、手ブレの発生を推定しているので精度よく手ブレを防止することができる。
さらに、加速度センサ101の出力を微分することで、傾き検出のDC成分を除去でき、加速度センサ101にかかる加速度の変化を中心に検出することができる。
縦位置撮影用と横位置撮影用の両方の加速度センサ300を設け、それぞれの撮影時にシリコン面が水平になるように取り付けることにより、その撮影によって生じる回転成分と加速度成分の両方を大きく出力し、検出精度を高くすることができる。
また、従来の技術では、手ブレの大きさを検出するために一般的な角加速度センサを必要としている。このような角加速度センサは振動している音叉によって生じたコリオリの力を利用したもので、例えばバイモルフをT字形に配置したジャイロ信号検出部、音叉駆動回路及び信号処理回路等を必要とし、特に可動部があるために高価で耐衝撃性が低く、低価格化かつ高い耐衝撃性を必要とされるカメラ付き携帯電話には搭載が困難という問題があった。
本実施の形態では、加速度センサとしてコリオリの力を利用した角速度センサではなく可動部のない加速度センサ300としたため、低価格で小型かつ耐衝撃性の高いカメラ付き携帯電話システムが実現できる。
さらに、一個の加速度センサ300で縦位置撮影も横位置撮影も両方の撮影時にシリコン面が垂直になるように取り付けることにより、後段の遅延量制御手段104の閾値等のパラメータを切り替える必要をなくすことができる。
(付記)
以上、本発明の実施の形態を詳細に開示し記述したが、以上の記述は本発明の適用可能な局面を例示したものであって、本発明はこれに限定されるものではない。即ち、記述した局面に対する様々な修正や変形例を、この発明の範囲から逸脱することの無い範囲内で考えることが可能である。
本発明の活用例として、カメラ付き携帯端末機器、その中でも特に小型・軽量であるがゆえに片手で撮影される可能性が高く、低価格、小型化、耐衝撃性の要求の高いカメラ付き携帯電話に適用できる。
実施の形態1の構成を示すブロック図である。 実施の形態1に用いられる加速度センサの上面図である。 実施の形態1に用いられる加速度センサの断面図である。 実施の形態1に用いられる加速度センサの取り付け方向とセンサ出力との関係を説明するための図である。 実施の形態1に用いられる加速度センサの取り付け方向とセンサ出力との関係を説明するための図である。 実施の形態1に用いられる加速度センサのセンサ出力を示す図である。 センサ出力の移動平均を示す図である。 センサ出力と移動平均の差分絶対値を示す図である。 カメラに設定した座標系を説明するための図である。 手ブレの平行移動成分と像ブレの関係を説明するための図である。 手ブレの平行移動成分と像ブレの関係を説明するための図である。 手ブレの平行移動成分と像ブレの関係を説明するための図である。 手ブレの平行移動成分と像ブレの関係を説明するための図である。 手ブレの回転成分と像ブレの関係を説明するための図である。 手ブレの回転成分と像ブレの関係を説明するための図である。 手ブレの回転成分と像ブレの関係を説明するための図である。 一般的なカメラ付き携帯電話のシャッターレリーズとそれによる振動の方向を示す図である。 一般的なカメラ付き携帯電話のシャッターレリーズとそれによる振動の方向を示す図である。 加速度センサの取り付け方を説明するための図である。 加速度センサの取り付け方を説明するための図である。
符号の説明
101 加速度センサ、102 手ブレ推定手段、103 シャッターレリーズ、104 遅延量制御手段、105 カメラモジュール。

Claims (6)

  1. カメラ付き携帯端末機器であって、
    携帯端末機器の筐体に加わる加速度を検出する加速度検出手段と、
    前記加速度検出手段の出力に対し、当該出力に含まれるノイズの影響を低減する処理を含む所定の処理を施すことによって手ブレを推定する手ブレ推定手段と、
    撮影開始指令を入力可能な入力手段と、
    前記入力手段に撮影開始指令が入力されると、前記手ブレ推定手段の出力に基づいて、前記カメラに前記撮影開始指令を遅延して出力する遅延量制御手段と、
    を備え、
    前記加速度検出手段は、重力加速度を利用して前記携帯端末の筐体に加わる、当該筐体の並進の加速度成分と当該筐体の回転による回転成分を検出し、
    前記手ブレ推定手段は、手ブレ量に相当する角速度成分を算出することで手ブレを推定し、
    前記携帯端末の筐体を縦にして撮影する縦位置撮影で発生する前記回転成分と前記筐体を横にして撮影する横位置撮影で発生する前記回転成分が略同一の出力変化を示すように加速度検出手段を配したことを特徴とするカメラ付き携帯端末機器。
  2. 前記ノイズの影響を低減する処理は、前記加速度検出手段の過去の出力値に基づく処理であることを特徴とする請求項1に記載のカメラ付き携帯端末機器。
  3. 前記ノイズの影響を低減する処理は、前記加速度検出手段の現在の出力値と過去の出力値の移動平均値との差分値を算出する処理であることを特徴とする請求項1に記載のカメラ付き携帯端末機器。
  4. 前記加速度検出手段は、可動部を持たないことを特徴とする請求項1乃至3のいずれかに記載のカメラ付き携帯端末機器。
  5. 前記加速度検出手段は、
    基板上に設けられた空洞中に密閉されたガスと、
    前記ガスを部分的に加熱する加熱手段と、
    前記ガスの温度分布を検出する温度センサとを備え、
    前記温度センサの出力に基づいて加速度を検出することを特徴とする請求項4に記載のカメラ付き携帯端末機器。
  6. 前記加速度検出手段として複数の加速度検出手段を更に備え、
    前記筐体を縦にして撮影する縦位置撮影、若しくは前記筐体を横にして撮影する横位置撮影のいずれであっても、少なくとも一つの前記加速度検出手段の前記基板が水平になるように前記加速度検出手段を前記筐体に取り付けたことを特徴とする請求項1乃至5のいずれかに記載のカメラ付き携帯端末機器。
JP2006299028A 2006-11-02 2006-11-02 カメラ付き携帯端末機器 Pending JP2007079598A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299028A JP2007079598A (ja) 2006-11-02 2006-11-02 カメラ付き携帯端末機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299028A JP2007079598A (ja) 2006-11-02 2006-11-02 カメラ付き携帯端末機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004173753A Division JP3892860B2 (ja) 2004-06-11 2004-06-11 カメラ付き携帯端末機器

Publications (1)

Publication Number Publication Date
JP2007079598A true JP2007079598A (ja) 2007-03-29

Family

ID=37939883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299028A Pending JP2007079598A (ja) 2006-11-02 2006-11-02 カメラ付き携帯端末機器

Country Status (1)

Country Link
JP (1) JP2007079598A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008015575A1 (de) 2007-03-26 2008-10-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Membranelektrodenanordnung für eine Brennstoffzelle und Verfahren zu deren Herstellung
KR20160079900A (ko) * 2011-12-15 2016-07-06 애플 인크. 비디오 안정화를 위한 동작센서 기반 가상삼각 방법
WO2021184207A1 (zh) * 2020-03-17 2021-09-23 深圳市大疆创新科技有限公司 图像处理方法、装置及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392830A (ja) * 1989-09-06 1991-04-18 Asahi Optical Co Ltd 像ブレ防止カメラ
JPH06308562A (ja) * 1993-04-21 1994-11-04 Olympus Optical Co Ltd カメラの手ぶれ量表示装置
JPH07209323A (ja) * 1994-01-20 1995-08-11 Honda Motor Co Ltd ヒートワイヤ型加速度検出器
JPH07260818A (ja) * 1994-03-24 1995-10-13 Honda Motor Co Ltd 加速度センサ内蔵ガスレートセンサ
JPH08110540A (ja) * 1995-04-24 1996-04-30 Asahi Optical Co Ltd 像ブレ防止カメラ
JPH095816A (ja) * 1995-06-20 1997-01-10 Olympus Optical Co Ltd 手振れ軽減カメラ
JPH1172813A (ja) * 1997-08-29 1999-03-16 Canon Inc 防振装置及び光学機器
JPH1183615A (ja) * 1997-09-12 1999-03-26 Canon Inc 振動検出装置
JPH11271832A (ja) * 1998-03-26 1999-10-08 Nikon Corp ブレ検出装置及びブレ補正カメラ
JP2000066257A (ja) * 1998-08-19 2000-03-03 Nikon Corp ブレ補正装置、ブレ補正カメラ及び交換レンズ
JP2004153503A (ja) * 2002-10-30 2004-05-27 Ngk Insulators Ltd カメラモジュールおよび角速度センサ部品の筐体への実装構造

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392830A (ja) * 1989-09-06 1991-04-18 Asahi Optical Co Ltd 像ブレ防止カメラ
JPH06308562A (ja) * 1993-04-21 1994-11-04 Olympus Optical Co Ltd カメラの手ぶれ量表示装置
JPH07209323A (ja) * 1994-01-20 1995-08-11 Honda Motor Co Ltd ヒートワイヤ型加速度検出器
JPH07260818A (ja) * 1994-03-24 1995-10-13 Honda Motor Co Ltd 加速度センサ内蔵ガスレートセンサ
JPH08110540A (ja) * 1995-04-24 1996-04-30 Asahi Optical Co Ltd 像ブレ防止カメラ
JPH095816A (ja) * 1995-06-20 1997-01-10 Olympus Optical Co Ltd 手振れ軽減カメラ
JPH1172813A (ja) * 1997-08-29 1999-03-16 Canon Inc 防振装置及び光学機器
JPH1183615A (ja) * 1997-09-12 1999-03-26 Canon Inc 振動検出装置
JPH11271832A (ja) * 1998-03-26 1999-10-08 Nikon Corp ブレ検出装置及びブレ補正カメラ
JP2000066257A (ja) * 1998-08-19 2000-03-03 Nikon Corp ブレ補正装置、ブレ補正カメラ及び交換レンズ
JP2004153503A (ja) * 2002-10-30 2004-05-27 Ngk Insulators Ltd カメラモジュールおよび角速度センサ部品の筐体への実装構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008015575A1 (de) 2007-03-26 2008-10-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Membranelektrodenanordnung für eine Brennstoffzelle und Verfahren zu deren Herstellung
KR20160079900A (ko) * 2011-12-15 2016-07-06 애플 인크. 비디오 안정화를 위한 동작센서 기반 가상삼각 방법
KR101683082B1 (ko) 2011-12-15 2016-12-07 애플 인크. 비디오 안정화를 위한 동작센서 기반 가상삼각 방법
US9628711B2 (en) 2011-12-15 2017-04-18 Apple Inc. Motion sensor based virtual tripod method for video stabilization
WO2021184207A1 (zh) * 2020-03-17 2021-09-23 深圳市大疆创新科技有限公司 图像处理方法、装置及存储介质

Similar Documents

Publication Publication Date Title
JP4789614B2 (ja) 防振制御装置およびその制御方法
JP6362556B2 (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
US7430366B2 (en) Image capture device
JP4994756B2 (ja) 防振制御装置およびそれを備えた光学機器、撮像装置、また防振制御装置の制御方法
KR101528860B1 (ko) 디지털 촬영 장치의 흔들림 보정 방법 및 장치
JP5965770B2 (ja) ブレ量検出装置、撮像装置及びブレ量検出方法
US10171737B2 (en) Imaging device
JP4665304B2 (ja) ブレ補正カメラ
TW201833649A (zh) 用來將構成為對於相機之像震進行修正的致動器之驅動量加以校正所用方法
JP5977611B2 (ja) ブレ量検出装置、撮像装置及びブレ量検出方法
CN113452914A (zh) 光学防抖控制装置及其光学防抖控制方法、移动终端
JP3892860B2 (ja) カメラ付き携帯端末機器
JP4878320B2 (ja) 撮像装置および携帯機器
JP2012128356A (ja) ブレ補正装置及び光学機器
JP2007079598A (ja) カメラ付き携帯端末機器
CN108377322B (zh) 具有自动图像显示模式的摄像装置
KR101329741B1 (ko) 손떨림 보정 제어 방법 및 손떨림 보정 제어 장치
JP2008020543A (ja) 撮像装置
JP2013054193A (ja) ブレ補正装置及び光学機器
JP2009267681A (ja) ブレ補正装置および光学装置
JP2014202793A (ja) 撮像装置及び撮像装置の像ブレ補正方法
JP2017225039A (ja) 撮像装置及び画像処理方法
JP2003189164A (ja) 撮像装置
JP2000081646A (ja) 手振れ補正機能付きカメラ
JPH11183952A (ja) 防振機能付きカメラ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330