JP2007073391A - 高周波加速空胴および円形加速器 - Google Patents

高周波加速空胴および円形加速器 Download PDF

Info

Publication number
JP2007073391A
JP2007073391A JP2005260112A JP2005260112A JP2007073391A JP 2007073391 A JP2007073391 A JP 2007073391A JP 2005260112 A JP2005260112 A JP 2005260112A JP 2005260112 A JP2005260112 A JP 2005260112A JP 2007073391 A JP2007073391 A JP 2007073391A
Authority
JP
Japan
Prior art keywords
acceleration
frequency
cavity
core
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005260112A
Other languages
English (en)
Other versions
JP4485437B2 (ja
Inventor
Takahisa Nagayama
貴久 永山
Nobuyuki Zumoto
信行 頭本
Sadahiro Ishi
禎浩 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005260112A priority Critical patent/JP4485437B2/ja
Priority to US11/452,999 priority patent/US7741781B2/en
Publication of JP2007073391A publication Critical patent/JP2007073391A/ja
Application granted granted Critical
Publication of JP4485437B2 publication Critical patent/JP4485437B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

【課題】 荷電粒子ビームを加速する円形加速器に用いられる高周波加速空胴において、従来技術では共振点を加速周波数帯域に設定するための加速コアのインピーダンスを自由に選ぶことができず、高周波加速空胴のインピーダンスを十分に大きく出来ないという課題を解決し、加速コア材への要求条件を緩和し、高いインピーダンスの高周波加速空胴を提供する。
【解決手段】 加速空胴本体の加速電極ギャップに並列接続された磁性体を有するインダクタンス可変手段を備え、荷電粒子を加速するための加速周波数の変化パターンに合わせてインダクタンス可変手段のインダクタンスを変化させることにより加速周波数と高周波加速空胴の共振周波数とを同調させる。また、空胴の加速周波数帯域が狭い場合は、加速電極ギャップに並列に固定インダクタンスを設けることでも、空胴のインピーダンスを大きくできる。
【選択図】 図1

Description

この発明は円形荷電粒子加速器に用いられる高周波加速空胴およびこの高周波加速空胴を用いた円形加速器に関するものである。
従来より荷電粒子を加速する円形加速器に用いられている高周波加速空胴にはよく知られているように同調型高周波加速空胴(以下、同調型RF加速空胴と称す)と、非同調型高周波加速空胴(以下、非同調型RF加速空胴と称す)とがある。これらの高周波加速空胴(以下、RF加速空胴と称す)を用いた、例えばイオンシンクロトロンにおいて、イオンを加速しようとするときイオンがシンクロトロン内を周回する際の周回周波数と等しい高周波を高周波電源からRF加速空胴に印加しなければならない。
前記同調型RF加速空胴は、空胴の共振周波数を高周波電源の印加周波数に同調させて、必要な加速電圧を発生させる。一方、非同調型RF加速空胴は、予め加速周波数の全範囲で空胴のインピーダンスを必要な値まで上げておく。
前記同調型RF加速空胴において、印加周波数とRF加速空胴の共振周波数との共振周波数制御をシーケンス制御で行うために、RF加速空胴内に透磁率の虚数部の大きいフェライトを装荷し、RF加速空胴のQ値(共振周波数に対する共振幅の比)を低下させ、前記フェライトの透磁率を調節するための磁場を発生させるバイアスコイルを装荷し、バイアスコイルの作る磁場の強さによって、フェライトの透磁率の実数部分を変化させ、RF加速空胴内に励起される電磁場の共振周波数を制御することが示されている(例えば、特許文献1)。
一方、前記非同調型RF加速空胴において、加速周波数範囲で一定のインピーダンスをもつことを実現するために、ジュール損の大きいフェライトをRF加速空胴内に装荷し、フェライトによるインピーダンスを大きくし、シャント抵抗をフェライトに並列接続した構成で、フェライトによる抵抗値Zferrが低い周波数領域では抵抗値の大きなシャント抵抗を接続し、抵抗値Zferrが大きい周波数領域では抵抗値の小さなシャント抵抗に接続を切り替えることが示されている(例えば、特許文献2)。
またさらに非同調型RF加速空胴において、RF加速空胴のQ値を任意に調整することでビームローディング(イオンビームがRF加速空胴に及ぼす影響)を低減させ、均一にビームを加速することを目的として、フェライトを用いた加速コアを中心軸を含む平面によって複数に分割することが示されている(例えば、特許文献3)。
特開平07−006900号公報 特開平07−161500号公報 特開2001−126900号公報
しかしながら前記特許文献1のRF加速空胴では、フェライトに直流バイアスをかけフェライトコアの飽和磁界の近傍で使用する必要があるため、RF加速空胴に大きな高周波磁界を印加できないという問題点や、またフェライトの冷却構造がなされなくフェライトのインダクタンスが温度上昇による影響を受けやすく、安定した制御が得にくいという問題点を有している。
また、前記特許文献2のRF加速空胴では、共振点を加速周波数帯域に設定する必要があるために、加速コアのインピーダンスを自由に選ぶことができず、RF加速空胴のインピーダンスを十分に大きくできないという問題点を有している。さらに前記特許文献3の高周波加速空胴では、大型コアの場合、コア切断コストが上昇し、また切断面端部の磁界集中による発熱などの問題点を有している。
この発明は前記のような課題を解決するために為されたものであって、空胴本体の加速電極ギャップに並列にインダクタンス、もしくはインダクタンス可変手段を設け、加速コアとインダクタンス可変手段の磁性材とで合成されるインダクタンスと、加速電極ギャップのキャパシタンスとを共振させ、高いインピーダンスの高周波加速空胴およびこの高周波加速空胴を用いた円形加速器を得るものである。
この発明に係る高周波加速空胴は、荷電粒子ビームを加速するための高周波電界を発生する加速電極ギャップと、荷電粒子ビーム軌道をとりまく磁路を形成する加速コアとが設けられた加速空胴本体と、加速電極ギャップに並列に接続された磁性体を有するインダクタンス可変手段とを備えており、荷電粒子ビームを加速するための加速周波数の変化パターンに合わせてインダクタンス可変手段の生成するインダクタンスを変化させることにより、荷電粒子ビームの加速周波数と高周波加速空胴共振周波数とを同調させるものである。
この発明の高周波加速空胴は、加速電極ギャップに並列に接続された磁性体を有するインダクタンス可変手段の生成するインダクタンスを、荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて変化させることにより、荷電粒子ビームの加速周波数と高周波加速空胴共振周波数とを同調させるので、加速空胴のインピーダンスを高くでき、加速コアに必要な条件が緩和され、かつ簡単な構成で同調がとれるという効果がある。
本発明の各実施の形態の説明に入る前に、本発明の構成および動作をより理解しやすくするために、まず加速コアと加速電極ギャップで構成される従来型のRF加速空胴の動作を図12に基づいて説明する。
図12(a)に示すRF加速空胴100は、加速コア1と加速電極ギャップ2、空胴外壁3、真空ダクト4と、高周波電源5とで構成されている。このような構成であって、数MHz程度の周波数帯域で駆動されるRF加速空胴100は、サイズに比較して高周波数の波長が長いため、その動作はほぼ電気回路モデルで解析することができる。図12(b)はRF加速空胴100を電気回路でモデル化したものを示す。図12(b)のインダクタンスXsと抵抗Rsの直列接続がRF加速空胴100に設けられた加速コア1を、キャパシタンスCが加速電極ギャップ2を表している。加速コア1が抵抗成分Rsを有しているのは、加速コア1の励磁に伴う発熱(コアロス)が、回路で表現すると抵抗に相当するからである。コアロスを含めた加速コア1のインピーダンスZは、複素透磁率μ(=μ′−μ″)を用いて(μ′は透磁率の実数部、μ″は透磁率の虚数部)次の数式1によって示される。
Figure 2007073391
となる。ここでωは角周波数(加速周波数をfとすると、ω=2πf)、Lは加速コア1のインダクタンス成分、Rsは加速コア1の抵抗成分、iXsはインピーダンスの虚数部である。図12(b)に示したこのモデルは、加速コア1のインダクタンスXsと抵抗Rsの直列接続で表現したが、図12(c)に示すように並列接続で表現することもできる。並列接続で表現したインダクタンス成分Xp(=ωLp)と、抵抗成分RpをXs、Rsを用いて表すと次の数式となる。この数式2は直列接続と並列接続のインピーダンスが等しいとおくことで求められる。
Figure 2007073391
ここで、Rpはシャントインピーダンスと呼ばれる量であり、後述する数式3でも明らかなように、RF加速空胴100のインダクタンスと加速電極ギャップ2のキャパシタンスCが並列共振し、インピーダンスが無限大になった時に得られるインピーダンスである。また通常一般に表現されているμQfは加速コア材特有の量(シャント抵抗値、Q値)であり、これが大きいほど大きなインピーダンスが得られる。加速電極ギャップ2のキャパシタンスも含めたRF加速空胴のインピーダンスZcは、LpとRpを用いて以下となる。
Figure 2007073391
ここで、|Zc|はインピーダンスの絶対値である。
所定の加速電圧V(ピーク値)を得るために必要な電力Pは、以下で求められる。
Figure 2007073391
消費電力を下げるためには、RF加速空胴100のインピーダンス|Zc|を大きくすればよい。|Zc|を大きくする一つの方法は、加速周波数範囲において、共振条件(1/ωLp=ωC)を満たすようにインダクタンスを変化させることである(前述の同調型RF加速空胴、特許文献1)。
一方、数式3において、分母の第1項が第2項より十分大きければ、少々共振条件からずれても、|Zc|は低下しない。すなわち、RpをXp(=ωLp)と比較して小さくすれば、特に共振を取らなくても実用上は問題がない(非同調型RF加速空胴、特許文献2、3)。この関係を加速コア1のQ値を用いて表現すると、次の5式となる。
Figure 2007073391
ここで、foは共振周波数、Δfは半値幅(|Zc|がピークの半分以上を保つ周波数帯域)である。Q値の小さい材質を用いれば、非同調型RF加速空胴を実現することが判る。
以上の議論をベースに、従来のRF加速空胴の課題に関し以下説明をする。
加速コア1の磁性体材としてMAコア(Magnetic Alloyコア)、例えば、アモルファス系の積層合金薄膜を用いている非同調型RF加速空胴は、1000Gsを越える磁束密度においてもシャントインピーダンス(損失抵抗)が劣化しない特徴があるが、シャントインピーダンスを数百Ω以上にすることが難しい。
一方、フェライトを用いた同調型RF加速空胴は、後述するように非同調型RF加速空胴と比較して、シャントインピーダンスの向上が少ない上に、RF加速空胴に印加可能な加速電圧の最大値が小さいという課題がある。
この2つの課題について、同調型RF加速空胴(フェライトコア材、Q=20)と、非同調型RF加速空胴(MAコア材、Q=0.5)について具体例を挙げて説明する。
共振周波数を3MHzとし、図12に示すRF加速空胴100の加速電極ギャップ2キャパシタンスは、50、100、200pFとする。この場合のMAコアとフェライトコアの空胴特性の概算結果を表1に示す。
Figure 2007073391
まず、MAコア材を用いた非同調型RF加速空胴の特性を説明する。
MAコアはQ値が小さいため半値幅が大きい(数式5よりΔf=6MHz)。この例では、加速周波数帯域(2〜4MHzを想定する)が半値幅に含まれるため、計算例では加速の全周波数帯域にわたり、ピーク値の80%程度のインピーダンスを伴っている。一方、共振周波数と加速電極ギャップ2のキャパシタンスが決まれば、Xp、Rp(=Q・Xp)は一意に決まる。加速電極ギャップ2のキャパシタンスを50pF以下に抑制するのは困難なため、MAコア材を用いたRF加速空胴100のインピーダンスを数百Ω以上にするのは難しいことがわかる。
次にフェライトコア材を用いた同調型RF加速空胴特性を述べる。フェライト材のQ値にはかなり幅があるが、ここでは仮に、Q=20の加速コア1を用いることを想定する。Q値が大きいため半値幅は1/40(0.15MHz)しかないが、RF加速空胴100のインピーダンスについては、MAコア材を用いたRF加速空胴100に比較して40倍まで引き上げることが可能であり、大幅な電力削減を期待できる。
しかしながら、現実のフェライト材を用いたRF加速空胴100では、Q値を1程度のフェライトコア材を用いることが多く、RF加速空胴100のインピーダンスもそれほど上げることが出来ない。その理由はフェライト材のインダクタンス制御が難しく、高Q値のコア(共振周波数以外ではほとんど機能しないコア)を使うと、安定した制御が出来なくなるためである。
以下、その事情を詳細に説明する。
従来の同調型RF加速空胴100では、加速コア1のインダクタンスを変化させるため、直流磁界を重畳してフェライトコアの透磁率を変化させる方式を採用していた。この方式を図13について説明する。
図13は、フェライトのB−H曲線を示す(簡単のため、ヒステリシスは考慮していない)。透磁率μは、B=μHより求められる。Bはコア中の磁束密度、Hは起磁力であり、コアを鎖交する電流に比例する。これより、図13における初透磁率(原点周辺の透磁率)は、μ1=tan(θ)ということになる。Hの大きいところではコアが飽和してくるため、B−H曲線の傾きが小さくなる。この性質を用いれば、例えば動作点qにおける透磁率μqは、μq=tan(θq)となり、透磁率を変化させることができる。この方式のRF加速空胴100は前述したように、動作の不安定性と、印加可能な加速電圧が小さいことが課題であった。
まず、動作の不安定性について説明する。
フェライトは一般にキュリー温度が低く、温度によってB−H特性が変化しやすい。特にこの方式は、B−H特性の微分値(透磁率)を制御することで共振させているため、不安定性が拡大されてしまう。さらに、RF加速空胴100を駆動することにより加速コア1自体が発熱し、温度平衡に達するまで加速コア1の温度が変化していくという問題もあり、RF加速空胴100の制御を難しくしている。
従来の同調型RF加速空胴100では、制御の難しさ故、加速周波数とRF加速空胴100の共振周波数のマッチング誤差を大きくみる必要があった。これは、マッチングがずれてもインピーダンスが変化しにくいコア、すなわちQ値の低い加速コア1を指向することを意味しており、従来の同調型RF加速空胴では、Q値が〜1程度のフェライトコア材を用いることが多かった。
この程度のQ値では、表1に示された高インピーダンスRF加速空胴は実現できず、現在では、熱的安定性、動作領域に優れたMAコア材を用いた非同調型のRF加速空胴100が主流になりつつある。
次に、印加可能加速電圧が小さい理由について説明する。加速電極ギャップ2に発生する加速電圧Vは、加速コア1内の高周波電流による磁束密度の変化dB/dtと、加速コア1の断面積Sとの積になる。すなわち、高周波電流による加速コア1中の磁束密度の変化が大きいほど、大きい加速電圧を得ることができる。
加速コア1の動作領域は、通常、加速コア1の飽和磁束密度Bsの70〜90%程度であるから、大きい加速電圧を得るためには、加速コア1を図13の原点両振りで動作させるのが望ましい。
しかしこの方式では、直流磁界を重畳して透磁率を変化させているため、加速コア1の動作領域はBs−Bqの範囲となり大幅に狭くなってしまう。
それにも関わらず、一定の加速電圧を得ようとするため、加速コア1の断面積を増やす必要があり、結果として同調型RF加速空胴100は大型化している。
以上の説明で明らかになったように、従来の同調型RF加速空胴100は加速コア1に直流磁界を重畳してインダクタンスを変化させたため、種々の不都合を生じていた。
上記のような課題を解決するために本発明が為されたものであり、同調型RF加速空胴に係る各構成、動作を各実施の形態について説明する。
実施の形態1.
この発明の実施の形態1を図に基づいて説明する。図1(a)において、RF加速空胴100は加速コア1と加速電極ギャップ2と空胴外壁3と真空ダクト4とで構成される加速空胴本体50と、高周波電源5と前記加速空胴本体50の外部にあって、前記加速電極ギャップ2に並列に設けられたコア材を有するインダクタンス可変手段6によって構成されている。なお、荷電粒子ビームBは図1の左側より右側に進むものとする。
図1(b)は、RF加速空胴100を並列電気回路でモデル化したものを示す。Rpは加速コア1の抵抗成分でシャントインピーダンスを示し、Lpはインダクタンス成分を示す。Lvはインダクタンス可変手段6のインダクタンスを示し、Cは加速電極ギャップ2のキャパシタンスを示す。
この実施の形態1におけるRF加速空胴100は、加速コア1とは別個に同調用のインダクタンスをインダクタンス可変手段6として加速電極ギャップ2に並列に設け、前記インダクタンス可変手段6のインダクタンス量を変化させることで同調運転を可能とするものである。
次にインダクタンス可変手段6の動作を説明する。最初に前記加速コア1と、インダクタンス可変手段6を構成する図示省略のコアの役割について簡単に説明する。
加速空胴本体50内に装荷された加速コア1は、加速電極ギャップ2に誘導電界を発生させるための交流磁束の媒体であり、荷電粒子ビームBと鎖交しなければならない。すなわち、荷電粒子ビームBを鎖交するコアに発生した磁束がビームBを加速する電界を生成する。この際、インダクタンス可変手段6を用いて加速空胴本体50のインダクタンスを変化させれば、コアの透磁率を変化させる必要がないため、動作領域を0から飽和磁束密度までフルに利用できる。すなわち、比較的飽和磁束の小さいコア材料でも、十分大きな動作領域を確保することができるため、コア材料に対する制限が大幅に緩和される。
一方、インダクタンス可変手段6は、加速電極ギャップ2のキャパシタンスCとのLC共振周波数を調整するために存在し、ビームBの加速には寄与しない。このため、Q値の高いコア材を用いて、加速空胴本体50のインピーダンスの低下を抑制するのが望ましい。また、ビームBと鎖交するという条件がないため、インダクタンスを変化させる様々な手法が可能となる。さらに、形状や図示省略したコイルの巻き数を自由に選べるため、インダクタンス可変手段6に用いるコア材質に対する制限が大幅に緩和される。
以上のように、加速空胴本体50の加速電極ギャップ2に並列にインダクタンス可変手段6を設けることにより、加速空胴本体50のインピーダンスを高く出来るとともに、加速コア1のコア材およびインダクタンス可変手段6のコア材に要求される条件が大幅に緩和される。
以上、インダクタンス可変手段6を並列に負荷したRF加速空胴100の特性向上について述べたが、次にインダクタンス可変手段6の実施例を図2に基づいて説明する。通常一般に、インダクタンスを可変するための手法としては、大きく分けて磁気抵抗を変化させる方法と、コア透磁率を変化させる方法とがあり、前者は例えばギャップ付コアのギャップを変化させる方法であり、後者は従来例でも示したバイアス磁場を変化させる方法に相当する。この実施例では、磁気抵抗を変化させる構成を採用している。
図2は前記図1に示したインダクタンス可変手段6の詳細図である。インダクタンス可変手段6はトロイダルコア7と平板状トロイダル磁性体8と、この平板状トロイダル磁性体8を制御、回転駆動する回転駆動機構9によって構成される。トロイダルコア7は図示省略のコイルを有すると共に例えば、フェライト等の磁性体が用いられ、外半径r、内半径rを有するとともに、図2に示すように周方向に1個所ギャップ長aのギャップ7aが設けられている。平板状トロイダル磁性体8は外半径r、内半径rを有するドーナッツ状をなし、例えばフェライト等の渦電流損の少ないμQf値の高いトロイダル磁性材8aと、セラミック系のトロイダル非磁性材8bとは、板厚方向において所定の角度傾斜したテーパ面8cが形成されているとともに、互いにテーパ面8cで接着して構成されている。トロイダル磁性材8aは厚肉部でta1、薄肉部でta2、トロイダル非磁性材8bのそれはtb1、tb2を有し、接着後の厚さtは、t=ta1+tb2あるいはt=ta2+tb1である。
前記平板状トロイダル磁性体8の厚さtは前記トロイダルコア7のギャップ7aのギャップ長aより小さい。またトロイダル磁性材8の軸はトロイダルコア7のY軸に並行に設けられ、例えばモータによる駆動機構9によって図示ように回転する。なお、トロイダルコア7の幅W7=r2−r1と、トロイダル磁性体8の幅W=r−rとの関係はW=W、W>WまたはW>Wのいずれかが選択される。なお、テーパ形状を有することによるテーパ先端部の過熱は平板状トロイダル磁性体が回転することによる空冷効果により低減させることができる。
次に磁気抵抗を変化させる方法について説明する。まず、基本となるトロイダルコア7のインダクタンスを求める。内径r、外径rのトロイダルコア7の平均磁路長mと、磁気抵抗Rm、及びN回巻きコイルのコアのインダクタンスLは、次の数式6で表される。ここで、磁路長は、コア中の磁束の平均的な長さ、μ は比透磁率、μは真空の透磁率である。
Figure 2007073391
次に、このコアの一部を切り欠き、ギャップ長aを設けた場合のインダクタンスを求める。ギャップを含む磁気抵抗Rmgは、次の数式7のように変化する。
Figure 2007073391
図2に示すようにトロイダル磁性体8をトロイダルコア7のギャップ7a間で図示省略の制御手段を介し、回転駆動機構9によって回転させると、トロイダルコア7とトロイダル磁性材8a間のギャップが連続的に変化して、磁気抵抗が変化し、可変インダクタンスとなる。その際、円形加速器、例えばイオンシンクロトロン内に設置されたRF加速空胴100を荷電粒子ビーム加速周波数の変化パターンに合わせて、インダクタンスが同様の変化となるように、トロイダル磁性体8を回転駆動するモータを制御、回転しトロイダル磁性材8aの形状をトロイダルコア7に対して変化させることにより、加速周波数の変化パターンに合わせた同調が可能となる。なおトロイダル非磁性材8bは回転のバランサとしての構成要素をなし、同程度の重さを有するものでも良いが、より厳密なバランス調整を行う場合は、トロイダル磁性材8aより若干重く作り、穿孔により回転バランスを合わせてもよい。
なお、この実施の形態1では加速電極ギャップ2のキャパシタンスCと並列に可変手段インダクタンス6を入れた例を示したが、図3(a)に示すように、可変インダクタンス成分をもつインピーダンス6aでも同様の効果を奏する。また、図1(a)に示した加速電極ギャップ2間に電極板を設けることによって図3(b)に示すように、キャパシタンスCを2分割したCとCとし、その一部に可変インダクタンスLvまたはインピーダンスZを入れてもよい。
また、平板状トロイダル磁性体は磁性材と非磁性材とをテーパ面で一体化した構成を示したが、テーパに限らず例えば階段形状であってもよい。またさらに、加速電極ギャップ2は1段設ける例を示したが、2段以上の多段であってもよい。
実施の形態2.
この実施の形態2では、実施の形態1で示した実施例と同様、磁気抵抗を変化させてインダクタンスを変化させる方法を、図4について説明する。この構成では、ドーナツ状のコアを半分割し、その一方を固定側とし、他の片側を回転させで磁極ギャップを変化させたインダクタンス可変手段6aを実現している。
図4においてインダクタンス可変手段6aは、磁性材を用いたドーナツ状コアを半分割した半円状トロイダル固定コア10(コイルは図示省略)と、このトロイダル固定コア10と同軸上(X−X軸上)で回転可能なドーナツ状コアを半分割した半円状トロイダル回転コア11と、この半円状トロイダル回転コア11を回転駆動する回転駆動機構9とより構成されている。なお、半円状トロイダル固定コア10の端部10Eと、半円状トロイダル回転コア11の端部11E間には、ギャップ長aの磁極ギャップが設けてある。
このような構成のインダクタンス可変手段6aは半円状トロイダル固定コア10と半円状トロイダル回転コア11との間の磁極ギャップaの変化を大きくできるため、比較的μの低い、例えばフェライト材でも数式7の(m/a<<μ)の条件を満たすことができる。
この形状で加速周波数変化パターン(インダクタンス変化パターン)を所望の形状にするためには、半円状トロイダル固定コア10の端面10Fに適当な磁極シムを取り付ければよい。
尚、この図4では、回転軸は横向きになっているが、垂直(磁極吊り下げがベター)にした方が、軸に重力による曲げ応力が生じず、滑らかな運転が可能となる。
また、この形状を有するインダクタンス可変手段6aにおいても、回転時の回転バランス、及び、空気抵抗を改善するため、図5に示すように外形が回転対称になるようなセラミック等の非磁性半球状回転バランサ12をトロイダル回転側コア11に設けたインダクタンス可変手段6bとすると滑らかな回転を得ることが出来る。
実施の形態3.
次に実施の形態3について述べる。円形加速器、例えばイオンシンクロトロンの荷電粒子加速周波数の繰り返し周波数が100Hzを越えるような場合には、前記実施の形態1、2に示したコアの回転による磁極ギャップの変化を得る構成は、回転駆動機構9の回転数上限の関係から実現が難しくなる。この課題を解決するため、実施の形態1の図2の平板状トロイダル磁性体8に代替して、1回の回転で複数の磁気抵抗変化が発生するような平板状トロイダル磁性体を設けたインダクタンス可変手段とすればよい。図6にこの実施の形態3によるインダクタンス可変手段6cを示す。図6において、トロイダルコア7は前記図2と同様である。平板状トロイダル磁性体8は、図1に示した平板状トロイダル磁性体8と同一の大きさの外半径r4、内半径r3、厚さtを有したドーナツ状をなしている。この平板状トロイダル磁性体8はフェライト等の磁性体8aとセラミック系の非磁性材8bとで構成されており、磁性材8aと非磁性材8bとがドーナツ状円周方向で交互に複数の鋸歯形状8dを周方向に順次周期的に組み合わせ形成して接着されている。図6に示す例の平板状トロイダル磁性体8は4個の鋸歯形状8dを備えているが、この数に限るものではない。
このような構成のインダクタンス可変手段6cにおいて、回転駆動機構9によって平板状トロイダル磁性体8を回転させると、円形加速器の加速周波数の変化パターンと同じ磁気抵抗の変化パターン(インダクタンス変化パターン)、つまり加速周波数変化パターンに合わせたRF加速空胴50と同調が可能となる。
実施の形態4.
実施の形態4を図7に基づいて説明する。この実施の形態4は、前記した実施の形態2の図4に示したインダクタンス可変手段6aのトロイダル回転コア11に代替して、多極化したトロイダル回転コアを設けたものである。
図7において、多極トロイダル回転コア11はドーナツ状コアを半分割したトロイダル回転コア11a、11bとが十文字状に接着されている。このような多極トロイダル回転コア11を回転駆動機構9によって回転させることにより、加速周波数の変化パターンに合わせたインダクタンス変化パターンがより容易に得られる。なお、このインダクタンス変化パターンの微調整は、固定コア10の端部10の磁極形状を変更する。例えば適当な磁極シムを取り付ければよい。
実施の形態5.
次に実施の形態5について述べる。この実施の形態5によるインダクタンス可変手段6は、図8(a)(b)に示すように固定インダクタンス13を加速電極ギャップ2に並列にかつ加速空胴本体50の外部に外付けコアとして設けた構成である。なお、この構成が有利になる条件は以下の通りである。
1.高い加速電圧を必要とするため、励磁磁束を大きくしたい。しかも、加速コアの設置スペースに制限があり、磁束密度を上げるため、高い飽和磁束密度を持つ加速コアが必要。
2.加速周波数帯域が狭く、RF加速空胴のQ=3〜9程度まで許容。
従来は特許文献3に示したように、同様の条件のRF加速空胴を実現するため、加速コアにギャップを設け、ギャップ幅を調整することで加速コアのインダクタンスを下げ、ある共振周波数におけるシャントインピーダンスを大きくすると共に、Q値の調整を行っていた。
この実施の形態5では前述した特許文献3の課題を解決するものであり、図8に示すように、加速電極ギャップ2に並列に固定インダクタンス13を接続することで、加速コアにギャップを設けるのと同等の効果を得ることができる。このように固定インダクタンス13を用いる場合は、加速コアにギャップを設ける必要がなく、かつ、インダクタンスを可変にする必要がないので、安価にRF加速空胴100を製作することができる。
以下、この実施の形態5による本構成の動作を試算例を基に説明する。
加速コア1のインピーダンスをZ=R+iX、外付けコア13のインピーダンスをZ=R+iXとする。このとき、2つのコアの並列インピーダンスZ=R+iXの各成分は下記数式8となる。
Figure 2007073391
これより、Q=X/Rは、次式となる。
Figure 2007073391
ここで、代表的な例について、並列に設けた固定インダクタンス(外付け)13の効果を試算してみる。まず、Zとして、MAコア材料を想定しQ=0.5、Zとして、フェライトを想定し、Q=20とする。さらに、外付けコア13のインピーダンスのインダクタンス成分を加速コア1の半分とすれば、下式が得られる。
Figure 2007073391
並列に設けた固定インダクタンス13の付加効果をみるためには、並列接続形式に変換した方が便利であるため、MAコア材料単体(Z)、及び固定インダクタンス付加時(Z)のインピーダンスを、数式2を用いて変換し、数式10を代入すると、以下が得られる。
Figure 2007073391
一方、RF加速空胴100のインダクタンスは、共振周波数と加速電極ギャップ2のキャパシタンスCにより、一意に定まるため、インダクタンスが同じになるように調整する必要がある。この例では、RF加速空胴100のインダクタンスが0.091倍になっているから、外付けインダクタンス13のコア厚を1/0.091倍にする等の方法で、同じインダクタンスになるように調整する。この調整により、シャントインピーダンスも1/0.091倍される。
結局、RF加速空胴100のインピーダンスZ’p3は次式となる。
Figure 2007073391
すなわち、この実施の形態5では、加速電極ギャップ2に適正に選定された寸法を有する並列に固定インダクタンス13を付加することにより、シャントインピーダンスが8.8倍となり、Q値が0.5→4.4と大きくなることがわかる。
これは例えば前記特許文献3に示されるコアにギャップを設ける効果と同等であり、コアを切断する必要がない分だけ、安価に空胴を構成できる。
実施の形態6.
次に実施の形態6のインダクタンス可変手段6eを図9に基づいて説明する。
以上の実施の形態では、構造的、機構的にインダクタンスを変化させる場合であったが、この実施の形態6では、回路的にインダクタンスを変化させるものである。
図9に示すように、加速電極ギャップ2に並列に、例えばトロイダル状の空胴コア17が加速空胴本体50の外部に設けられているとともに、この空胴コア17に可変定電流電源16が設けられている。この可変定電流電源16を荷電粒子ビームを加速するための加速周波数の変化パターンに合わせてONすることによって空胴コア17インダクタンスを変化させるものである。
実施の形態1で説明したように、フェライトの特性は熱的に不安定なため、バイアス電流によるインダクタンス調整が難しい。しかし、この実施の形態6の図9に示す外付けインダクタンスに相当する空胴コアは設置場所に制約されることなく、また空胴外壁3を取り巻く必要がなく、サイズも自由に選べるため、冷却システムを容易に構成することができる。例えば、空胴コアのコア自体を冷媒に浸して液冷する構成も、簡単に実現することができ、熱的な安定性を向上させることができる。
さらに、加速コア1としてQ値の低いコア(Q=0.5)を用いる場合、数式10に示されるように、Q=20というロスの小さいフェライトを選んでも、RF加速空胴100全体としてはQ=4.4程度となり、共振の鋭さが小さくなる。別の言い方をすれば、パワーロスの小さい(Q値の大きい)フェライトを使用し、フェライトの発熱を抑制して温度変動を抑制すると共に、共振の鋭さを小さくして共振の安定性を向上させることによりこの実施の形態6における本方式の共振の不安定性を大幅に抑制することが可能となる。
なお、前記加速コア材のQ値(μQf)と、インダクタンス可変手段の磁性材のQ値が異なり、かつ前記加速コア材のQ値が前記インダクタンス可変手段の磁性材のQ値より小さいように選定するのは前記実施の形態1〜5および後述の実施の形態7に適用された場合にその効果を一層向上させるためである。
実施の形態7.
実施の形態7を図10に基づいて説明する。この実施の形態7のインダクタンス可変手段6fはインダクタンスを階段的に変化させて概同調させるものである。Q値が〜5程度のRF加速空胴なら、共振周波数f(数MHzを想定)に対し、f±0.25MHz程度まで、共振時の90%のインピーダンスを維持する。一方、通常の加速器における加速周波数の変化幅は、1〜5MHz程度である。これより、5MHzの加速周波数変化幅がある場合には、インダクタンスを10回離散的に変化させれば連続的に同調させた場合の90%のインピーダンスを維持することになる。
次に、インダクタンスを階段的に変化させる構成を図10について説明する。図10に示すように加速電極ギャップ2に並列に接続された、例えば3個の外付けインダクタンスに相当する空胴コア17a、17b、17cとそのそれぞれに接続された可変定電流電源16a〜16cおよびスイッチ20a〜20cが設けられている。スイッチ20a〜20cの加速周波数の変化パターンに合わせてONされることにより空胴コアにバイアス電流が流れるように構成されている。但し、バイアス電流はON、OFFの2つのモードしかなく、ONの場合には、外付けインダクタンス17a〜17cのコアが飽和し、透磁率が1に近い値になる。
このような構成を採用することで、空胴コアである外付けインダクタンス17a〜17cの数が1、2、3と変化し、インダクタンスを3倍変化させることが出来る。なお、空胴コアの数を3個としたが、これに限るものではない。
なお、外付けインダクタンス17a〜17cは、図11に示すように単に加速電極ギャップ2に並列に接続され、回路上の隣接する空胴コア間、図11では17aと17b、17bと17c間にスイッチ20a、20bを設け図示省略の制御手段の信号により前記スイッチをONさせる構成であってもよい。
実施の形態8.
以上では、空胴のギャップに並列に設けたインダクタンスを、可変インダクタンスとして説明してきたが、固定インダクタンスを用いれば、空胴を、加速周波数帯域を狭く、高インピーダンスをもつ特性に変化させることができる。これは、特許文献3と同じ目的で、並列固定インダクタンスを調整することで、RF加速空胴のQ値を任意に調整できることを意味しており、同様のアプリケーションでは、コアの切断やギャップ調整機構を用いることなく、安価にQ値の調整が可能である。
実施の形態9.
以上述べた実施の形態1〜8の構成を備えたRF加速空胴100は、荷電粒子ビーム加速あるいは蓄積する円形加速器に適用すると、簡単な制御によって加速周波数とRF加速空胴との共振周波数の同調が容易に行うことができる。その結果、加速電圧の上昇、加速の安定性、加速エネルギやビーム電流値の上昇、さらには円形加速装置のコンパクト化等優れた効果を奏する。
この発明の活用例として、荷電粒子を加速あるいは蓄積する円形加速器の高周波加速空胴に適用できる。
この発明の実施の形態1によるRF加速空胴の構成を示す模式図とその等価回路を示す図である。 この発明の実施の形態1によるインダクタンス可変手段の構成を示す図である。 この発明の実施の形態1によるインダクタンス可変手段の配置を示す図である。 この発明の実施の形態2によるインダクタンス可変手段の構成を示す図である。 この発明の実施の形態2によるインダクタンス可変手段の構成を示す図である。 この発明の実施の形態3によるインダクタンス可変手段の構成を示す図である。 この発明の実施の形態4によるインダクタンス可変手段の構成を示す図である。 この発明の実施の形態5によるRF加速空胴の構成を示す模式図とその等価回路を示す図である。 この発明の実施の形態6によるRF加速空胴の構成を示す模式図とその等価回路を示す図である。 この発明の実施の形態7によるRF加速空胴の構成を示す模式図とその等価回路を示す図である。 この発明の実施の形態7によるRF加速空胴の構成を示す模式図とその等価回路を示す図である。 従来のRF加速空胴の構成を示す模式図とその等価回路を示す図である。 フェライトのB−H曲線を示す概略図である。
符号の説明
1 加速コア、2 加速電極ギャップ、6,6a〜6f インダクタンス可変手段、
7 トロイダルコア、8 平板状トロイダル磁性体、8a トロイダル磁性材、
8b トロイダル非磁性材、9 回転駆動機構、10 半円状トロイダル固定コア、
11 半円状トロイダル回転コア、12 半球状バランサ、
13 外付けコア(固定インダクタンス)、16a〜16c 可変定電流電源、
17a〜17c 空胴コア、20a〜20c スイッチ、50 加速空胴本体、
100 RF加速空胴。

Claims (15)

  1. 荷電粒子ビームを加速あるいは蓄積する円形加速器に用いられる高周波加速空胴であって、前記高周波加速空胴は、前記荷電粒子ビームを加速するための高周波電界を発生する加速電極ギャップおよび前記荷電粒子ビームの軌道をとりまく磁路を形成する加速コアとが設けられた加速空胴本体と、前記加速電極ギャップに並列に接続された磁性体を有するインダクタンス可変手段とを備えており、前記荷電粒子を加速するための加速周波数の変化パターンに合わせて前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする高周波加速空胴。
  2. 前記インダクタンス可変手段は、周方向にギャップが設けられたトロイダルコアと、該トロイダルコアと直交し、回転中心が前記トロイダルコア外周より離れた個所に配置された平板状トロイダル磁性体と、該平板状トロイダル磁性体の回転駆動機構とで構成されており、前記荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて、前記平板状トロイダル磁性体が前記回転駆動機構によって回転駆動され、前記トロイダルコアのギャップ内を回転通過して前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする請求項1に記載の高周波加速空胴。
  3. 前記平板状トロイダル磁性体は、トロイダル磁性材とトロイダル非磁性材とで構成されており、前記トロイダル磁性材およびトロイダル非磁性材はともに、板厚方向において所定の角度傾斜したテーパ面が形成されているとともに、該テーパ面を互いに接するよう組み合わせて一体化し、平板状トロイダル磁性体が形成されていることを特徴とする請求項2に記載の高周波加速空胴。
  4. 前記平板状トロイダル磁性体は、トロイダル磁性材とトロイダル非磁性材とで構成されており、前記トロイダル磁性材およびトロイダル非磁性材はともに、トロイダル周方向に複数個分割されているとともに、板厚方向の断面形状が鋸歯状をなし、前記トロイダル磁性材の鋸歯状の山と谷が、前記トロイダル非磁性材の谷と山とに周方向に順次周期的に互いに組み合わされて一体化し、平板状トロイダル磁性体が形成されていることを特徴とする請求項2に記載の高周波加速空胴。
  5. 前記インダクタンス可変手段は、半円状トロイダル固定コアと、該半円状トロイダル固定コアと所定のギャップ長を介するとともに、同軸上で回転可能に配置された半円状トロイダル回転コアと、該半円状トロイダル回転コアの回転駆動機構とで構成されており、前記荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて前記回転駆動機構によって前記半円状トロイダル回転コアが回転駆動され、前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする請求項1に記載の高周波加速空胴。
  6. 前記半円状トロイダル回転コアには、該半円状トロイダル回転コア全体を覆う非磁性材の半球状回転バランサが設けられていることを特徴とする請求項5に記載の高周波加速空胴。
  7. 前記インダクタンス可変手段は、半円状トロイダル固定コアと、該半円状トロイダル固定コアに所定のギャップ長を介するとともに同軸上に回転可能に配置され、2個の半円状トロイダル回転コアが互いに90°直交して形成された多極トロイダル回転コアと、該多極トロイダル回転コアの回転駆動機構とで構成されており、前記荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて前記回転駆動機構によって前記多極トロイダル回転コアが回転駆動され、前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする請求項1に記載の高周波加速空胴。
  8. 荷電粒子ビームを加速あるいは蓄積する円形加速器に用いられる高周波加速空胴であって、前記高周波加速空胴は前記荷電粒子ビームを加速するための高周波電界を発生する加速電極ギャップと、前記荷電粒子ビーム軌道をとりまく磁路を形成する加速コアとが設けられた加速空胴本体と、前記加速電極ギャップに並列に接続された固定インダクタンスとを備えており、前記固定インダクタンスの寸法を選定することにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする高周波加速空胴。
  9. 前記インダクタンス可変手段は、空胴コアと可変定電流電源とで構成されており、前記荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて前記可変定電流電源によって前記空胴コアにバイアス磁界が印加され、前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする請求項1に記載の高周波加速空胴。
  10. 前記インダクタンス可変手段は、複数の空胴コアが直列に設けられ、該空胴コアにそれぞれ設けられた可変定電流電源およびスイッチとで構成されており、前記荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて前記各スイッチがONされることによって前記空胴コアにバイアス磁界が印加され、前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする請求項1に記載の高周波加速空胴。
  11. 前記インダクタンス可変手段は、複数の空胴コアが直列に設けられ、前記複数の空胴コアの隣り合う空胴コア間の回路上にはスイッチが設けられており、前記荷電粒子ビームを加速するための加速周波数の変化パターンに合わせて前記スイッチがONされ、前記インダクタンス可変手段の生成するインダクタンスを変化させることにより、前記荷電粒子ビームの加速周波数と前記高周波加速空胴との共振周波数とを同調させることを特徴とする請求項1に記載の高周波加速空胴。
  12. 前記加速コア材のμQf値と、前記インダクタンス可変手段の磁性材のμQf値が異なる材質であり、かつ、前記加速コア材のμQf値が前記インダクタンス可変手段の磁性体のμQf値より小さいことを特徴とする請求項1に記載の高周波加速空胴。
  13. 前記加速コア材のμQf値と、前記固定インダクタンスの磁性材のμQf値が異なる材質であり、かつ、前記加速コア材のμQf値が前記固定インダクタンスの磁性体のμQf値より小さいことを特徴とする請求項8に記載の高周波加速空胴。
  14. 荷電粒子ビームを加速あるいは蓄積する円形加速器に用いられる高周波加速空胴であって、前記高周波加速空胴は、前記荷電粒子ビームを加速するための高周波電界を発生する加速電極ギャップおよび前記荷電粒子ビームの軌道をとりまく磁路を形成する加速コアとが設けられた加速空胴本体と、前記加速電極ギャップに並列に接続されたインダクタンスを備えることを特徴とする高周波加速空胴。
  15. 請求項1〜請求項14のいずれか1項に記載の前記高周波加速空胴を備え、荷電粒子ビームを加速あるいは蓄積することを特徴とする円形加速器。
JP2005260112A 2005-09-08 2005-09-08 高周波加速空胴および円形加速器 Expired - Fee Related JP4485437B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005260112A JP4485437B2 (ja) 2005-09-08 2005-09-08 高周波加速空胴および円形加速器
US11/452,999 US7741781B2 (en) 2005-09-08 2006-06-15 Radio-frequency accelerating cavity and circular accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260112A JP4485437B2 (ja) 2005-09-08 2005-09-08 高周波加速空胴および円形加速器

Publications (2)

Publication Number Publication Date
JP2007073391A true JP2007073391A (ja) 2007-03-22
JP4485437B2 JP4485437B2 (ja) 2010-06-23

Family

ID=37829208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260112A Expired - Fee Related JP4485437B2 (ja) 2005-09-08 2005-09-08 高周波加速空胴および円形加速器

Country Status (2)

Country Link
US (1) US7741781B2 (ja)
JP (1) JP4485437B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234769A (ja) * 2011-05-09 2012-11-29 Sumitomo Heavy Ind Ltd 粒子加速器及びそれを備えた荷電粒子線照射装置
CN106231774A (zh) * 2016-07-29 2016-12-14 中国原子能科学研究院 一种带有补偿电容的高频腔体及其工作频率调节方法
TWI660648B (zh) * 2017-01-05 2019-05-21 日商三菱電機股份有限公司 圓形加速器的高頻加速裝置及圓形加速器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089222B2 (en) * 2006-12-12 2012-01-03 Osaka University Fast electromagnet device
GB2557706A (en) * 2015-05-15 2018-06-27 Halliburton Energy Services Inc Geometrically configurable multi-core inductor and methods for tools having particular space constraints
EP3895204B1 (en) * 2018-12-13 2023-03-15 DH Technologies Development Pte. Ltd. Electrostatic linear ion trap with a selectable ion path length
CN112449475B (zh) * 2020-12-08 2023-07-25 中国工程物理研究院流体物理研究所 一种直线感应加速腔结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150204A (ja) * 1984-12-24 1986-07-08 Nec Corp 電流制御型可変インダクタ
JPS63193499A (ja) * 1987-02-04 1988-08-10 Hitachi Ltd 四重極粒子加速器
JPH03245499A (ja) * 1990-02-21 1991-11-01 Hitachi Ltd 四重極粒子加速器
JPH09161997A (ja) * 1995-12-14 1997-06-20 Hitachi Ltd 高周波加速装置およびそれを用いた環状加速器
JP2000077200A (ja) * 1998-08-31 2000-03-14 Hitachi Ltd 高周波加速装置及び環状型加速器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174278A (en) * 1963-01-24 1965-03-23 Raymond L Barger Continuously operating induction plasma accelerator
US4801847A (en) * 1983-11-28 1989-01-31 Hitachi, Ltd. Charged particle accelerator using quadrupole electrodes
US4712042A (en) * 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
JPH076900A (ja) 1993-06-15 1995-01-10 Hitachi Ltd 高周波加速空胴及びイオンシンクロトロン加速器
JPH07161500A (ja) 1993-12-07 1995-06-23 Hitachi Ltd 高周波加速空胴及びイオンシンクロトロン
JP3054712B1 (ja) 1999-10-26 2000-06-19 高エネルギー加速器研究機構長 高周波加速空胴及び高周波加速空胴の制御方法
JP3961925B2 (ja) * 2002-10-17 2007-08-22 三菱電機株式会社 ビーム加速装置
US7196337B2 (en) * 2003-05-05 2007-03-27 Cabot Microelectronics Corporation Particle processing apparatus and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150204A (ja) * 1984-12-24 1986-07-08 Nec Corp 電流制御型可変インダクタ
JPS63193499A (ja) * 1987-02-04 1988-08-10 Hitachi Ltd 四重極粒子加速器
JPH03245499A (ja) * 1990-02-21 1991-11-01 Hitachi Ltd 四重極粒子加速器
JPH09161997A (ja) * 1995-12-14 1997-06-20 Hitachi Ltd 高周波加速装置およびそれを用いた環状加速器
JP2000077200A (ja) * 1998-08-31 2000-03-14 Hitachi Ltd 高周波加速装置及び環状型加速器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234769A (ja) * 2011-05-09 2012-11-29 Sumitomo Heavy Ind Ltd 粒子加速器及びそれを備えた荷電粒子線照射装置
CN106231774A (zh) * 2016-07-29 2016-12-14 中国原子能科学研究院 一种带有补偿电容的高频腔体及其工作频率调节方法
TWI660648B (zh) * 2017-01-05 2019-05-21 日商三菱電機股份有限公司 圓形加速器的高頻加速裝置及圓形加速器

Also Published As

Publication number Publication date
US20070051897A1 (en) 2007-03-08
JP4485437B2 (ja) 2010-06-23
US7741781B2 (en) 2010-06-22

Similar Documents

Publication Publication Date Title
JP4485437B2 (ja) 高周波加速空胴および円形加速器
US8525448B2 (en) Circular accelerator and operating method therefor
US20040175953A1 (en) Apparatus for generating planar plasma using concentric coils and ferromagnetic cores
JP2003244921A (ja) リニアモータおよびリニアコンプレッサ
JP2007157696A (ja) プラズマリアクタ内のイオン密度、イオンエネルギー分布及びイオン解離の独立した制御
US6548809B2 (en) Electromagnetic device for production of cold neutral atoms
JP7405994B2 (ja) 非対称な輪郭を有する共振器コイル
JP4534005B2 (ja) 高周波加速空洞及び装置
JP2016506626A (ja) 誘導鉄心
JP2003333823A (ja) ボイスコイル形リニアモータ
KR20170062185A (ko) 고출력 마그네트론에서의 자기장 형성 장치
JP2011045211A (ja) ステッピングモータ
JP3102784B2 (ja) 磁場可変マグネット
JPH1187140A (ja) 磁性流体を用いた高周波用インダクタ
JP3054712B1 (ja) 高周波加速空胴及び高周波加速空胴の制御方法
JP2003142300A (ja) 周期磁場発生装置
JPH0787118B2 (ja) 四重極粒子加速器
JPH0864142A (ja) ジャイロトロン用磁場発生装置
JP3324748B2 (ja) 磁場可変マグネット
Jeong et al. Multisegmented magnet array on voice coil motor in rotating data storage devices
JP2001338799A (ja) 高周波加速空胴及び円形加速器
JP2002151298A (ja) 電磁石装置および荷電粒子加速装置
Ahmad et al. Performance and design comparison of moving-magnet linear oscillating actuators based on their mover positions
JP2009187678A (ja) 電力フィーダ
JP2001338589A (ja) 電子サイクロトロン共鳴イオン源

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees